Sheikh Beig Goharrizi MA, Kazemi Oskuee R, Aleyaghoob G, Mohajeri T, Mohammadinejad A, Rezayi M. A new molecularly imprinted polymer electrochemical sensor based on CuCo
2 O
4 /N-doped CNTs/P-doped GO nanocomposite for detection of 25-hydroxyvitamin D
3 in serum samples.
Biotechnol Appl Biochem 2023;
70:357-373. [PMID:
35638383 DOI:
10.1002/bab.2363]
[Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 05/07/2022] [Indexed: 11/12/2022]
Abstract
25-Hydroxyvitamin D3 as a main circulating metabolite of vitamin D is usually measured in serum to evaluate the vitamin D status of humans. So, developing an accessible, fast response, sensitive, and selective detection method for 25-hydroxyvitamin D3 is highly important. In this study, we designed a sensitive and selective electrochemical sensor based on the modification of glassy carbon electrode by nanocomposite of CuCo2 O4 /nitrogen-doped carbon nanotubes and phosphorus-doped graphene oxide. Then 25-hydroxyvitamin D3 -imprinted polypyrrole was coated on the electrode surface through electropolymerization. Moreover, ferricyanide was used as a mediator for the creation of a readable signal, which was considerably decreased after rebinding of 25-hydroxyvitamin D3 on the electrode. The proposed sensor successfully detected 25-hydroxyvitamin D3 in the range of 0.002-10 μM, with a detection limit of 0.38 nM, which was highly lower than deficiency concentration (20 ng/ml; 49.92 nM). Finally, the proposed sensor was checked for detection of 25-hydroxyvitamin D3 in serum samples with recovery in the range of 80%-106.42%. The results demonstrated the applicability of the designed sensor for the detection of 25-hydroxyvitamin D3 in biological samples.
Collapse