1
|
Wiwatsomwong N, Jantasing R, Akkawat B, Uapresert N, Rojnuckarin P. Idiopathic Mild Platelet Dysfunction: Baseline Characteristics and Clinical Courses. Int J Lab Hematol 2025. [PMID: 39912515 DOI: 10.1111/ijlh.14433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 01/09/2025] [Accepted: 01/19/2025] [Indexed: 02/07/2025]
Abstract
INTRODUCTION The causes of nonsyndromic platelet storage pool disease are still unclear, and whether they are of genetic or acquired origin remains to be defined. The study aimed to describe the characteristics and natural history of this disorder. METHODS This mostly retrospective cohort enrolled adults presenting with bleeding from platelet dysfunction. Platelet glycoprotein defects, von Willebrand disease, syndromic inherited platelet disorders and known acquired platelet dysfunctions were excluded. Available patients were retested by lumiaggregometry (Chrono-Log) over 1 year after the initial diagnosis. RESULTS There was a total of 56 patients; 91% female, with a median diagnostic age of 28 years (interquartile range [IQR]: 24.5-38.5). The subnormal responses to ADP, epinephrine, collagen, and arachidonate were found in 91%, 82%, 55%, and 34%, respectively. Nineteen patients had von Willebrand factor levels measured. Twenty-three subjects underwent repeat tests. Twenty-one of them were female (91%), with a median age and follow-up time of 37 years (IQR: 28-55) and 6 years (IQR: 3-12), respectively. Median ISTH-BAT bleeding scores at diagnosis and follow-up were 5 (IQR: 3-8) and 1 (IQR: 0-2), respectively. The common abnormalities were reduced responses to ADP combined with other agonists (83%). Twelve (52%) and five (22%) showed complete and partial platelet function recovery, respectively. None of the partial and non-recovery groups had a bleeding score over 4 at follow-up. CONCLUSIONS Idiopathic mild platelet dysfunction was female-predominant and showed spontaneous symptom resolution after a long follow-up. Platelet function recovery was observed in most cases. Exogenous factors triggering this condition remain to be identified.
Collapse
Affiliation(s)
- Nitchkan Wiwatsomwong
- Center of Excellence in Translational Hematology, Division of Hematology, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Ratchaneekorn Jantasing
- Center of Excellence in Translational Hematology, Division of Hematology, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Benjaporn Akkawat
- Center of Excellence in Translational Hematology, Division of Hematology, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Noppacharn Uapresert
- Center of Excellence in Translational Hematology, Division of Hematology, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Ponlapat Rojnuckarin
- Center of Excellence in Translational Hematology, Division of Hematology, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| |
Collapse
|
2
|
Baker RI, Choi P, Curry N, Gebhart J, Gomez K, Henskens Y, Heubel-Moenen F, James P, Kadir RA, Kouides P, Lavin M, Lordkipanidze M, Lowe G, Mumford A, Mutch N, Nagler M, Othman M, Pabinger I, Sidonio R, Thomas W, O'Donnell JS. Standardization of definition and management for bleeding disorder of unknown cause: communication from the SSC of the ISTH. J Thromb Haemost 2024; 22:2059-2070. [PMID: 38518896 DOI: 10.1016/j.jtha.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/08/2024] [Accepted: 03/08/2024] [Indexed: 03/24/2024]
Abstract
In many patients referred with significant bleeding phenotype, laboratory testing fails to define any hemostatic abnormalities. Clinical practice with respect to diagnosis and management of this patient cohort poses significant clinical challenges. We recommend that bleeding history in these patients should be objectively assessed using the International Society on Thrombosis and Haemostasis (ISTH) bleeding assessment tool. Patients with increased bleeding assessment tool scores should progress to hemostasis laboratory testing. To diagnose bleeding disorder of unknown cause (BDUC), normal complete blood count, prothrombin time, activated partial thromboplastin time, thrombin time, von Willebrand factor antigen, von Willebrand factor function, coagulation factors VIII, IX, and XI, and platelet light transmission aggregometry should be the minimum laboratory assessment. In some laboratories, additional specialized hemostasis testing may be performed to identify other rare causes of bleeding. We recommend that patients with a significant bleeding phenotype but normal laboratory investigations should be registered with a diagnosis of BDUC in preference to other terminology. Global hemostatic tests and markers of fibrinolysis demonstrate variable abnormalities, and their clinical significance remains uncertain. Targeted genomic sequencing examining candidate hemostatic genes has a low diagnostic yield. Underlying BDUC should be considered in patients with heavy menstrual bleeding since delays in diagnosis often extend to many years and negatively impact quality of life. Treatment options for BDUC patients include tranexamic acid, desmopressin, and platelet transfusions.
Collapse
Affiliation(s)
- Ross I Baker
- Western Australia Centre for Thrombosis and Haemostasis, Murdoch University, Perth, Australia; Clinical Research Unit, Perth Blood Institute, Perth, Australia; Hollywood Hospital Haemophilia Centre, Haematology Academic Unit, Perth, Australia; Irish-Australian Blood Collaborative Network, Dublin, Ireland and Perth, Australia.
| | - Philip Choi
- Haematology Department, The Canberra Hospital, Canberra, Australia; Division of Genome Sciences and Cancer, John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - Nicola Curry
- Department of Clinical Haematology, Haemophilia & Thrombosis Centre, Oxford University Hospitals National Health Service Foundation Trust, Oxford, United Kingdom; Radcliffe Department of Medicine, Oxford University, Oxford, United Kingdom
| | - Johanna Gebhart
- Department of Medicine, Division of Hematology and Hemostaseology, Medical University Vienna, Vienna, Austria
| | - Keith Gomez
- Katharine Dormandy Haemophilia Centre and Thrombosis Unit, Royal Free London National Health Service Foundation Trust, London, United Kingdom
| | - Yvonne Henskens
- Central Diagnostic Laboratory, Maastricht University Medical Centre, Maastricht, The Netherlands; Department of Biochemistry, Institute for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands
| | - Floor Heubel-Moenen
- Department of Hematology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Paula James
- Department of Medicine, Queen's University, Kingston, Ontario, Canada
| | - Rezan Abdul Kadir
- Department of Obstetrics and Gynaecology, Katharine Dormandy Haemophilia and Thrombosis Centre, The Royal Free National Health Service Hospital, London, United Kingdom; Institute for Women's Health, University College, London, United Kingdom
| | - Peter Kouides
- Mary M. Gooley Hemophilia Center, Rochester, New York, USA
| | - Michelle Lavin
- Irish-Australian Blood Collaborative Network, Dublin, Ireland and Perth, Australia; National Coagulation Centre, St. James's Hospital, Dublin, Ireland; Irish Centre for Vascular Biology, School of Pharmacy & Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Marie Lordkipanidze
- Research Center, Montreal Heart Institute, Montreal, Quebec, Canada; Faculty of Pharmacy, Université de Montréal, Montreal, Quebec, Canada
| | - Gillian Lowe
- West Midlands Adult Comprehensive Care Haemophilia Centre, University Hospitals Birmingham National Health Service Foundation Trust, Birmingham, United Kingdom
| | - Andrew Mumford
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Nicola Mutch
- Aberdeen Cardiovascular and Diabetes Centre, Institute of Medical Sciences, School of Medicine, United Kingdom; Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, United Kingdom
| | - Michael Nagler
- Department of Clinical Chemistry, Inselspital, Bern University Hospital, Bern, Switzerland; Department of Clinical Chemistry, Inselspital University Hospital Bern, Bern, Switzerland
| | - Maha Othman
- Department of Biomedical and Molecular Sciences, School of Medicine, Queen's University, Kingston, Ontario, Canada; School of Baccalaureate Nursing, St Lawrence College, Kingston, Ontario, Canada; Clinical Pathology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Ingrid Pabinger
- Department of Medicine, Division of Hematology and Hemostaseology, Medical University Vienna, Vienna, Austria
| | - Robert Sidonio
- Emory University and Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Will Thomas
- Department of Haematology, Cambridge University Hospitals National Health Service Foundation Trust, Cambridge, United Kingdom
| | - James S O'Donnell
- Irish-Australian Blood Collaborative Network, Dublin, Ireland and Perth, Australia; National Coagulation Centre, St. James's Hospital, Dublin, Ireland; Irish Centre for Vascular Biology, School of Pharmacy & Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| |
Collapse
|
3
|
Yoon I, Han JH, Jeon HJ. Advances in Platelet-Dysfunction Diagnostic Technologies. Biomolecules 2024; 14:714. [PMID: 38927117 PMCID: PMC11201885 DOI: 10.3390/biom14060714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
The crucial role of platelets in hemostasis and their broad implications under various physiological conditions underscore the importance of accurate platelet-function testing. Platelets are key to clotting blood and healing wounds. Therefore, accurate diagnosis and management of platelet disorders are vital for patient care. This review outlines the significant advancements in platelet-function testing technologies, focusing on their working principles and the shift from traditional diagnostic methods to more innovative approaches. These improvements have deepened our understanding of platelet-related disorders and ushered in personalized treatment options. Despite challenges such as interpretation of complex data and the costs of new technologies, the potential for artificial-intelligence integration and the creation of wearable monitoring devices offers exciting future possibilities. This review underscores how these technological advances have enhanced the landscape of precision medicine and provided better diagnostic and treatment options for platelet-function disorders.
Collapse
Affiliation(s)
- Inkwon Yoon
- Department of Smart Health Science and Technology, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Jong Hyeok Han
- Department of Smart Health Science and Technology, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Hee-Jae Jeon
- Department of Smart Health Science and Technology, Kangwon National University, Chuncheon 24341, Republic of Korea
- Department of Mechanical and Biomedical Engineering, Kangwon National University, Chuncheon 24341, Republic of Korea
| |
Collapse
|
4
|
Bhatia HS, Becker RC, Leibundgut G, Patel M, Lacaze P, Tonkin A, Narula J, Tsimikas S. Lipoprotein(a), platelet function and cardiovascular disease. Nat Rev Cardiol 2024; 21:299-311. [PMID: 37938756 PMCID: PMC11216952 DOI: 10.1038/s41569-023-00947-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/10/2023] [Indexed: 11/09/2023]
Abstract
Lipoprotein(a) (Lp(a)) is associated with atherothrombosis through several mechanisms, including putative antifibrinolytic properties. However, genetic association studies have not demonstrated an association between high plasma levels of Lp(a) and the risk of venous thromboembolism, and studies in patients with highly elevated Lp(a) levels have shown that Lp(a) lowering does not modify the clotting properties of plasma ex vivo. Lp(a) can interact with several platelet receptors, providing biological plausibility for a pro-aggregatory effect. Observational clinical studies suggest that elevated plasma Lp(a) concentrations are associated with worse long-term outcomes in patients undergoing revascularization. Furthermore, in these patients, those with elevated plasma Lp(a) levels derive more benefit from prolonged dual antiplatelet therapy than those with normal Lp(a) levels. The ASPREE trial in healthy older individuals treated with aspirin showed a reduction in ischaemic events in those who had a single-nucleotide polymorphism in LPA that is associated with elevated Lp(a) levels in plasma, without an increase in bleeding events. In this Review, we re-examine the role of Lp(a) in the regulation of platelet function and suggest areas of research to define further the clinical relevance to cardiovascular disease of the observed associations between Lp(a) and platelet function.
Collapse
Affiliation(s)
- Harpreet S Bhatia
- Division of Cardiovascular Medicine, Sulpizio Cardiovascular Center, University of California San Diego, La Jolla, CA, USA
| | - Richard C Becker
- Heart, Lung and Vascular Institute, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Gregor Leibundgut
- Division of Cardiology, University Hospital of Basel, Basel, Switzerland
| | - Mitul Patel
- Division of Cardiovascular Medicine, Sulpizio Cardiovascular Center, University of California San Diego, La Jolla, CA, USA
| | - Paul Lacaze
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Andrew Tonkin
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Jagat Narula
- Mount Sinai Heart, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sotirios Tsimikas
- Division of Cardiovascular Medicine, Sulpizio Cardiovascular Center, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
5
|
Altahan RM, Mathews N, Bourguignon A, Tasneem S, Arnold DM, Lim W, Hayward CPM. Evaluation of a diagnostic platelet aggregation test strategy for platelet rich plasma samples with low platelet counts. Int J Lab Hematol 2024; 46:362-374. [PMID: 38148642 DOI: 10.1111/ijlh.14216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 11/25/2023] [Indexed: 12/28/2023]
Abstract
INTRODUCTION Light transmission aggregometry (LTA) is important for diagnosing platelet function disorders (PFD) and von Willebrand disease (VWD) affecting ristocetin-induced platelet aggregation (RIPA). Nonetheless, data is lacking on the utility of LTA for investigating thrombocytopenic patients and platelet rich plasma samples with low platelet counts (L-PRP). Previously, we developed a strategy for diagnostic LTA assessment of L-PRP that included: (1) acceptance of referrals/samples, regardless of thrombocytopenia severity, (2) tailored agonist selection, based on which are informative for L-PRP with mildly or severely low platelet counts, and (3) interpretation of maximal aggregation (MA) using regression-derived 95% confidence intervals, determined for diluted control L-PRP (C-L-PRP). METHODS To further evaluate the L-PRP LTA strategy, we evaluated findings for a subsequent patient cohort. RESULTS Between 2008 and 2021, the L-PRP strategy was applied to 211 samples (11.7% of all LTA samples) from 192 unique patients, whose platelet counts (median [range] × 109 /L) for blood and L-PRP were: 105 [13-282; 89% with thrombocytopenia] and 164 [17-249], respectively. Patient-L-PRP had more abnormal MA findings than simultaneously tested C-L-PRP (p-values <0.001). Among patients with accessible electronic medical records (n = 181), L-PRP LTA uncovered significant aggregation abnormalities in 45 (24.9%), including 18/30 (60%) with <80 × 109 platelets/L L-PRP, and ruled out PFD, and VWD affecting RIPA, in others. The L-PRP LTA strategy helped diagnose VWD affecting RIPA, Bernard Soulier syndrome, familial platelet disorder with myeloid malignancy, suspected ITGA2B/ITGB3-related thrombocytopenia, and acquired PFD. CONCLUSION Diagnostic LTA with L-PRP, using a strategy that considers thrombocytopenia severity, is feasible and informative.
Collapse
Affiliation(s)
- Rahaf Mahmoud Altahan
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
- Pathology and Clinical Laboratory Medicine Administration, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Natalie Mathews
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Alex Bourguignon
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Subia Tasneem
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Donald M Arnold
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Wendy Lim
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
- Hamilton Regional Laboratory Medicine Program, Hamilton, Ontario, Canada
| | - Catherine P M Hayward
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
- Hamilton Regional Laboratory Medicine Program, Hamilton, Ontario, Canada
| |
Collapse
|
6
|
Casini A, Al-Samkari H, Hayward C, Peyvandi F. Rare bleeding disorders: Advances in management. Haemophilia 2024; 30 Suppl 3:60-69. [PMID: 38494995 DOI: 10.1111/hae.14986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/28/2024] [Accepted: 02/28/2024] [Indexed: 03/19/2024]
Abstract
Inherited factor coagulation deficiencies and vascular bleeding disorders, associated with bleeding of various severity, are often classified as rare bleeding disorders (RBDs). These include inherited fibrinogen disorders, inherited platelet function disorders (IPFD) and hereditary haemorrhagic telangiectasia (HHT). In the last decades, there have been large increases in knowledge on the epidemiology, genetics, physiopathology, clinical features, and diagnosis of RBDs, but improvements in management have been more limited and remain challenging. The treatment mainstay of RBDs is based only on replacement of a few available coagulation factor concentrates or cryoprecipitates. There is growing interest in therapeutic agents that enhance coagulation or inhibiting anticoagulant pathways in RBDs. In severe IPFD, the optimal platelet transfusion strategy is not yet established. Moreover, data is scarce on the effectiveness and safety of desmopressin and/or antifibrinolytic drugs often used for milder IPFD treatment. The best fibrinogen replacement strategy (prophylaxis vs. on demand) in afibrinogenemia is still debated. Similarly, the optimal trough fibrinogen target level for treatment of acute bleeding, and the role of fibrinogen replacement during pregnancy in mild hypofibrinogenemia and dysfibrinogenemia, have not been properly evaluated. The therapeutic arsenal in HHT includes antifibrinolytics and a series of antiangiogenic agents whose potential efficacy has been tested in small studies or are under investigation for treatment of bleeding. However, there is need to address several issues, including the optimal dosing strategies, the potential emergent toxicity of longer-term use, and the impact of systemic antiangiogenic treatment on visceral arteriovenous malformations.
Collapse
Affiliation(s)
- Alessandro Casini
- Division of Angiology and Hemostasis, University Hospitals of Geneva and Faculty of Medicine of Geneva, Geneva, Switzerland
| | - Hanny Al-Samkari
- Division of Hematology Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Catherine Hayward
- Departments of Pathology and Molecular Medicine, and Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Flora Peyvandi
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Angelo Bianchi Bonomi Hemophilia and Thrombosis Center and Fondazione Luigi Villa, Milan, Italy
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
7
|
Fernandez DI, Provenzale I, Canault M, Fels S, Lenz A, Andresen F, Krümpel A, Dupuis A, Heemskerk JWM, Boeckelmann D, Zieger B. High-throughput microfluidic blood testing to phenotype genetically linked platelet disorders: an aid to diagnosis. Blood Adv 2023; 7:6163-6177. [PMID: 37389831 PMCID: PMC10582840 DOI: 10.1182/bloodadvances.2023009860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 05/12/2023] [Accepted: 05/30/2023] [Indexed: 07/01/2023] Open
Abstract
Linking the genetic background of patients with bleeding diathesis and altered platelet function remains challenging. We aimed to assess how a multiparameter microspot-based measurement of thrombus formation under flow can help identify patients with a platelet bleeding disorder. For this purpose, we studied 16 patients presenting with bleeding and/or albinism and suspected platelet dysfunction and 15 relatives. Genotyping of patients revealed a novel biallelic pathogenic variant in RASGRP2 (splice site c.240-1G>A), abrogating CalDAG-GEFI expression, compound heterozygosity (c.537del, c.571A>T) in P2RY12, affecting P2Y12 signaling, and heterozygous variants of unknown significance in the P2RY12 and HPS3 genes. Other patients were confirmed to have Hermansky-Pudlak syndrome type 1 or 3. In 5 patients, no genetic variant was found. Platelet functions were assessed via routine laboratory measurements. Blood samples from all subjects and day controls were screened for blood cell counts and microfluidic outcomes on 6 surfaces (48 parameters) in comparison with those of a reference cohort of healthy subjects. Differential analysis of the microfluidic data showed that the key parameters of thrombus formation were compromised in the 16 index patients. Principal component analysis revealed separate clusters of patients vs heterozygous family members and control subjects. Clusters were further segregated based on inclusion of hematologic values and laboratory measurements. Subject ranking indicated an overall impairment in thrombus formation in patients carrying a (likely) pathogenic variant of the genes but not in asymptomatic relatives. Taken together, our results indicate the advantages of testing for multiparametric thrombus formation in this patient population.
Collapse
Affiliation(s)
- Delia I. Fernandez
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
- Platelet Proteomics Group, Center for Research in Molecular Medicine and Chronic Diseases, Universidad de Santiago de Compostela, Santiago de Compostela, Spain
| | - Isabella Provenzale
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
- Institute for Cardiovascular and Metabolic Research, University of Reading, Reading, United Kingdom
| | - Matthias Canault
- Institut National de la Santé et de la Recherche Médicale, UMR_INRA 1260, Faculté de Medecine, Aix Marseille Université, Marseille, France
| | - Salome Fels
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, Medical Center, University of Freiburg, Freiburg, Germany
| | - Antonia Lenz
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, Medical Center, University of Freiburg, Freiburg, Germany
| | - Felicia Andresen
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, Medical Center, University of Freiburg, Freiburg, Germany
| | - Anne Krümpel
- Practice for Pediatric and Youth Medicine, Wettringen, Germany
| | - Arnaud Dupuis
- Université de Strasbourg, Etablissement Français du Sang Grand Est, UMR_S 1255, Fédération de Médecine Translationnelle de Strasbourg, Strasbourg, France
| | - Johan W. M. Heemskerk
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
- Synapse Research Institute, Maastricht, The Netherlands
| | - Doris Boeckelmann
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, Medical Center, University of Freiburg, Freiburg, Germany
| | - Barbara Zieger
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, Medical Center, University of Freiburg, Freiburg, Germany
| |
Collapse
|
8
|
Gebetsberger J, Mott K, Bernar A, Klopocki E, Streif W, Schulze H. State-of-the-Art Targeted High-Throughput Sequencing for Detecting Inherited Platelet Disorders. Hamostaseologie 2023; 43:244-251. [PMID: 37611606 DOI: 10.1055/a-2099-3266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023] Open
Abstract
Inherited platelet disorders (IPDs) are a heterogeneous group of rare entities caused by molecular divergence in genes relevant for platelet formation and function. A rational diagnostic approach is necessary to counsel and treat patients with IPDs. With the introduction of high-throughput sequencing at the beginning of this millennium, a more accurate diagnosis of IPDs has become available. We discuss advantages and limitations of genetic testing, technical issues, and ethical aspects. Additionally, we provide information on the clinical significance of different classes of variants and how they are correctly reported.
Collapse
Affiliation(s)
- Jennifer Gebetsberger
- Department of Pediatrics I, Medical University of Innsbruck, Innsbruck, Tirol, Austria
| | - Kristina Mott
- Institute of Experimental Biomedicine, University Hospital Würzburg, Würzburg, Germany
| | - Aline Bernar
- Department of Pediatrics I, Medical University of Innsbruck, Innsbruck, Tirol, Austria
| | - Eva Klopocki
- Institute of Human Genetics, University of Würzburg, Würzburg, Germany
| | - Werner Streif
- Department of Pediatrics I, Medical University of Innsbruck, Innsbruck, Tirol, Austria
| | - Harald Schulze
- Institute of Experimental Biomedicine, University Hospital Würzburg, Würzburg, Germany
- Center for Rare Blood Cell Disorders, Center for Rare Diseases, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
9
|
Shen CL, Wu YF. Flow cytometry for evaluating platelet immunophenotyping and function in patients with thrombocytopenia. Tzu Chi Med J 2022; 34:381-387. [PMID: 36578648 PMCID: PMC9791859 DOI: 10.4103/tcmj.tcmj_117_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/10/2022] [Accepted: 06/08/2022] [Indexed: 01/19/2023] Open
Abstract
Platelets play an essential role in primary hemostasis through bleeding and thromboembolism. Thus, the diagnosis or evaluation of impaired hereditary, acquired, and drug-related platelet dysfunction has become imperative. The assessment of the platelet function is too complex for routine platelet function study. The major methods involved in platelet function study include platelet function analyzer testing, thromboelastography, thromboelastometry, light transmission aggregometry, and flow cytometry. The current review article focuses on the methods with flow cytometry for immunophenotyping of platelet and evaluating platelet function for platelet disorders, especially in patients with thrombocytopenia. According to the consensus published by the International Society on Thrombosis and Haemostasis, for inherited and acquired platelet disorders, the two major measures by which flow cytometry determines platelet function are glycoprotein IIb/IIIa/P-selectin (CD62p) expression and percentage of leukocyte-platelet aggregates. Using flow cytometry to determine platelet function has several advantages, including good sensitivity to low platelet counts, small blood volume required, and the nonnecessity of centrifugation. However, flow cytometry has still many limitations and challenges, with standardization for routine laboratory testing also proving difficult. Although flow cytometry is available for multipurpose and sensitive study of platelet functions at the same time, the challenging analysis gradually increases and needs to be addressed before reality.
Collapse
Affiliation(s)
- Chih-Lung Shen
- Department of Hematology and Oncology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Yi-Feng Wu
- Department of Hematology and Oncology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan,School of Medicine, Tzu Chi University, Hualien, Taiwan,Address for correspondence: Dr. Yi-Feng Wu, Department of Hematology and Oncology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, 707, Section 3, Chung-Yang Road, Hualien, Taiwan. E-mail:
| |
Collapse
|
10
|
Lassandro G, Palladino V, Faleschini M, Barone A, Boscarol G, Cesaro S, Chiocca E, Farruggia P, Giona F, Gorio C, Maggio A, Marinoni M, Marzollo A, Palumbo G, Russo G, Saracco P, Spinelli M, Verzegnassi F, Morga F, Savoia A, Giordano P. "CHildren with Inherited Platelet disorders Surveillance" (CHIPS) retrospective and prospective observational cohort study by Italian Association of Pediatric Hematology and Oncology (AIEOP). Front Pediatr 2022; 10:967417. [PMID: 36507135 PMCID: PMC9728612 DOI: 10.3389/fped.2022.967417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 10/18/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Inherited thrombocytopenias (ITs) are rare congenital bleeding disorders characterized by different clinical expression and variable prognosis. ITs are poorly known by clinicians and often misdiagnosed with most common forms of thrombocytopenia. MATERIAL AND METHODS "CHildren with Inherited Platelet disorders Surveillance" study (CHIPS) is a retrospective - prospective observational cohort study conducted between January 2003 and January 2022 in 17 centers affiliated to the Italian Association of Pediatric Hematology and Oncology (AIEOP). The primary objective of this study was to collect clinical and laboratory data on Italian pediatric patients with inherited thrombocytopenias. Secondary objectives were to calculate prevalence of ITs in Italian pediatric population and to assess frequency and genotype-phenotype correlation of different types of mutations in our study cohort. RESULTS A total of 139 children, with ITs (82 male - 57 female) were enrolled. ITs prevalence in Italy ranged from 0.7 per 100,000 children during 2010 to 2 per 100,000 children during 2022. The median time between the onset of thrombocytopenia and the diagnosis of ITs was 1 years (range 0 - 18 years). A family history of thrombocytopenia has been reported in 90 patients (65%). Among 139 children with ITs, in 73 (53%) children almost one defective gene has been identified. In 61 patients a pathogenic mutation has been identified. Among them, 2 patients also carry a variant of uncertain significance (VUS), and 4 others harbour 2 VUS variants. VUS variants were identified in further 8 patients (6%), 4 of which carry more than one variant VUS. Three patients (2%) had a likely pathogenic variant while in 1 patient (1%) a variant was identified that was initially given an uncertain significance but was later classified as benign. In addition, in 17 patients the genetic diagnosis is not available, but their family history and clinical/laboratory features strongly suggest the presence of a specific genetic cause. In 49 children (35%) no genetic defect were identified. In ninetyseven patients (70%), thrombocytopenia was not associated with other clinically apparent disorders. However, 42 children (30%) had one or more additional clinical alterations. CONCLUSION Our study provides a descriptive collection of ITs in the pediatric Italian population.
Collapse
Affiliation(s)
- Giuseppe Lassandro
- Interdisciplinary Department of Medicine, Pediatric Section, University of Bari "Aldo Moro", Bari, Italy
| | - Valentina Palladino
- Interdisciplinary Department of Medicine, Pediatric Section, University of Bari "Aldo Moro", Bari, Italy
| | - Michela Faleschini
- Department of Medical Genetics, Institute for Maternal and Child Health-IRCCS Burlo Garofolo, Trieste, Italy
| | - Angelica Barone
- Pediatric Hematology Oncology, Dipartimento Materno-Infantile, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Gianluca Boscarol
- Department of Pediatrics, Central Teaching Hospital of Bolzano/Bozen, Bolzano, Italy
| | - Simone Cesaro
- Pediatric Hematology Oncology, Department of Mother and Child, Azienda Ospedaliera Universitaria Integrata Verona, Verona, Italy
| | - Elena Chiocca
- Pediatric Hematology Oncology, Department of Pediatric Hematology/Oncology and HSCT, Meyer Children's University Hospital, Florence, Italy
| | - Piero Farruggia
- Pediatric Hematology and Oncology Unit, ARNAS (Azienda di Rilievo Nazionale ad Alta Specializzazione) Ospedale Civico, Palermo, Italy
| | - Fiorina Giona
- Department of Translational and Precision Medicine, Sapienza University of Rome, AOU Policlinico Umberto I, Rome, Italy
| | - Chiara Gorio
- Hematology Oncology Unit, Children's Hospital, ASST Spedali Civili, Brescia, Italy
| | - Angela Maggio
- UOC Oncoematologia Pediatrica-IRCCS Ospedale Casa Sollievo Della Sofferenza, San Giovanni Rotondo, Italy
| | - Maddalena Marinoni
- Pediatric Hematology Oncology, Department of Mother and Child, Azienda Socio Sanitaria Settelaghi, Varese, Italy
| | - Antonio Marzollo
- Pediatric Hematology, Oncology and Stem Cell Transplant Division, Padua University Hospital, Padua, Italy
| | - Giuseppe Palumbo
- Department of Pediatric Hematology and Oncology Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.,Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Giovanna Russo
- Pediatric Hematology Oncology, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Paola Saracco
- Pediatric Hematology, Department of Pediatrics, University Hospital Città Della Salute e Della Scienza, Turin, Italy
| | - Marco Spinelli
- Pediatric Hematology Oncology, Department of Pediatrics, MBBM Foundation, Monza, Italy
| | - Federico Verzegnassi
- Department of Medical Genetics, Institute for Maternal and Child Health-IRCCS Burlo Garofolo, Trieste, Italy
| | - Francesca Morga
- Interdisciplinary Department of Medicine, Pediatric Section, University of Bari "Aldo Moro", Bari, Italy
| | - Anna Savoia
- Department of Medical Genetics, Institute for Maternal and Child Health-IRCCS Burlo Garofolo, Trieste, Italy.,Department of Medical Sciences, University of Trieste, Trieste, Italy
| | - Paola Giordano
- Interdisciplinary Department of Medicine, Pediatric Section, University of Bari "Aldo Moro", Bari, Italy
| |
Collapse
|