1
|
Just-Borràs A, Moroz E, Giménez P, Gombau J, Ribé E, Collado A, Cabanillas P, Marangon M, Fort F, Canals JM, Zamora F. Comparison of ancestral and traditional methods for elaborating sparkling wines. Curr Res Food Sci 2024; 8:100768. [PMID: 38860264 PMCID: PMC11163175 DOI: 10.1016/j.crfs.2024.100768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/18/2024] [Accepted: 05/09/2024] [Indexed: 06/12/2024] Open
Abstract
This work compares the ancestral method for elaborating sparkling wines with the most widely used traditional method. Ancestral method is a single fermentation procedure in which the fermenting grape must is bottled before the end of alcoholic fermentation whereas traditional method involves a second fermentation of a base wine inside a bottle. Macabeo grapes were used to elaborate a traditional sparkling wine and two ancestral sparkling wines, one with a low yeast population and one with a high yeast population. The findings indicate that ancestral sparkling wines have lower ethanol content and can be elaborated using lower sulphur dioxide levels. In general, ancestral sparkling wines showed similar protein concentration, higher polysaccharide content, similar or better foamability (HM) than the traditional sparkling wine., No differences were found in the foam stability (HS). In addition, the sensory analysis indicated that ancestral sparkling wines have smaller bubble size, lower CO2 aggressivity, they seemed to have longer ageing time and were scored better than the traditional sparkling wine. These results therefore indicate that the ancestral method is of great interest for the elaboration of high-quality sparkling wines.
Collapse
Affiliation(s)
- Arnau Just-Borràs
- Departament de Bioquímica I Biotecnologia, Facultat D’Enologia de Tarragona, Universitat Rovira I Virgili, C/Marcel.li Domingo 1, 43007 Tarragona, Spain
| | - Ekaterina Moroz
- Departament de Bioquímica I Biotecnologia, Facultat D’Enologia de Tarragona, Universitat Rovira I Virgili, C/Marcel.li Domingo 1, 43007 Tarragona, Spain
| | - Pol Giménez
- Departament de Bioquímica I Biotecnologia, Facultat D’Enologia de Tarragona, Universitat Rovira I Virgili, C/Marcel.li Domingo 1, 43007 Tarragona, Spain
| | - Jordi Gombau
- Departament de Bioquímica I Biotecnologia, Facultat D’Enologia de Tarragona, Universitat Rovira I Virgili, C/Marcel.li Domingo 1, 43007 Tarragona, Spain
| | - Elisa Ribé
- Consell Regulador D.O, Tarragona, C/ de La Cort Nº 41, Baixos, 43800 Valls, Spain
| | - Angels Collado
- Consell Regulador D.O, Tarragona, C/ de La Cort Nº 41, Baixos, 43800 Valls, Spain
| | - Pedro Cabanillas
- Departament de Bioquímica I Biotecnologia, Facultat D’Enologia de Tarragona, Universitat Rovira I Virgili, C/Marcel.li Domingo 1, 43007 Tarragona, Spain
| | - Matteo Marangon
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Viale Dell'Università, 16, 35020, Legnaro, PD, Italy
- Interdepartmental Centre for Research in Viticulture and Enology (CIRVE), University of Padova, Conegliano, TV, Italy
| | - Francesca Fort
- Departament de Bioquímica I Biotecnologia, Facultat D’Enologia de Tarragona, Universitat Rovira I Virgili, C/Marcel.li Domingo 1, 43007 Tarragona, Spain
| | - Joan M. Canals
- Departament de Bioquímica I Biotecnologia, Facultat D’Enologia de Tarragona, Universitat Rovira I Virgili, C/Marcel.li Domingo 1, 43007 Tarragona, Spain
| | - Fernando Zamora
- Departament de Bioquímica I Biotecnologia, Facultat D’Enologia de Tarragona, Universitat Rovira I Virgili, C/Marcel.li Domingo 1, 43007 Tarragona, Spain
| |
Collapse
|
2
|
Liger-Belair G, Khenniche C, Poteau C, Bailleul C, Thollin V, Cilindre C. Losses of Yeast-Fermented Carbon Dioxide during Prolonged Champagne Aging: Yes, the Bottle Size Does Matter! ACS OMEGA 2023; 8:22844-22853. [PMID: 37396213 PMCID: PMC10308572 DOI: 10.1021/acsomega.3c01812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 05/03/2023] [Indexed: 07/04/2023]
Abstract
When it comes to champagne tasting, dissolved CO2 is a key compound responsible for the very much sought-after effervescence in glasses. Nevertheless, the slow decrease of dissolved CO2 during prolonged aging of the most prestigious cuvees raises the issue of how long champagne can age before it becomes unable to form CO2 bubbles during tasting. Measurements of dissolved CO2 concentrations were done on a collection of 13 successive champagne vintages stored in standard 75 cL bottles and 150 cL magnums showing prolonged aging ranging from 25 to 47 years. The vintages elaborated in magnums were found to retain their dissolved CO2 much more efficiently during prolonged aging than the same vintages elaborated in standard bottles. A multivariable exponential decay-type model was proposed for the theoretical time-dependent concentration of dissolved CO2 and the subsequent CO2 pressure in the sealed bottles during champagne aging. The CO2 mass transfer coefficient through the crown caps used to seal champagne bottles prior to the 2000s was thus approached in situ with a global average value of K ≈ 7 × 10-13 m3 s-1. Moreover, the shelf-life of a champagne bottle was examined in view of its ability to still produce CO2 bubbles in a tasting glass. A formula was proposed to estimate the shelf-life of a bottle having experienced prolonged aging, which combines the various relevant parameters at play, including the geometric parameters of the bottle. Increasing the bottle size is found to tremendously increase its capacity to preserve dissolved CO2 and therefore the bubbling capacity of champagne during tasting. For the very first time, a long time-series dataset combined with a multivariable model indicates that the bottle size plays a crucial role on the progressive decay of dissolved CO2 experienced by champagne during aging.
Collapse
Affiliation(s)
- Gérard Liger-Belair
- Equipe
Effervescence & Champagne (GSMA), UMR CNRS 7331, Université de Reims Champagne-Ardenne, BP 1039, 51687 Reims Cedex 2, France
| | - Chloé Khenniche
- Equipe
Effervescence & Champagne (GSMA), UMR CNRS 7331, Université de Reims Champagne-Ardenne, BP 1039, 51687 Reims Cedex 2, France
- Champagne
Castelnau, 5 Rue Gosset, 51100 Reims, France
| | - Clara Poteau
- Champagne
Castelnau, 5 Rue Gosset, 51100 Reims, France
| | | | | | - Clara Cilindre
- Equipe
Effervescence & Champagne (GSMA), UMR CNRS 7331, Université de Reims Champagne-Ardenne, BP 1039, 51687 Reims Cedex 2, France
| |
Collapse
|
3
|
Marangon M, Seeley P, Barocci E, Milanowski T, Mayr Marangon C, Ricci A, Bellon J, Parpinello GP. Effect of Interspecific Yeast Hybrids for Secondary In-Bottle Alcoholic Fermentation of English Sparkling Wines. Foods 2023; 12:foods12101995. [PMID: 37238813 DOI: 10.3390/foods12101995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/01/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
In sparkling winemaking, only a few yeast strains are regularly used for the secondary in-bottle alcoholic fermentation (SiBAF). Recently, advances in yeast development programs have yielded new breeds of interspecific wine yeast hybrids that ferment efficiently while producing novel flavors and aromas. In this work, the chemical and sensorial impacts of the use of interspecific yeast hybrids for SiBAF were studied using three commercial English base wines prepared for SiBAF using two commercial and four novel interspecific hybrids. After 12 months of lees aging, the chemical and macromolecular composition, phenolic profile, foaming, viscosity and sensory properties of the resulting 13 wines were assessed. Chemically, the yeast strains did not result in significant differences in the main wine parameters, while some differences in their macromolecular contents and sensory characteristics were noticeable. The foamability was mostly unaffected by the strain used; however, some effect on the foam stability was noticeable, likely due to the differences in polysaccharides released into the wines by the yeast strains. The wines exhibited different sensory characteristics in terms of aroma and bouquet, balance, finish, overall liking and preference, but these were mostly attributable to the differences in the base wines rather than the strain used for SiBAF. Novel interspecific yeast hybrids can be used for the elaboration of sparkling wines, as they provided wines with chemical characteristics, flavor and aroma attributes similar to those of commonly used commercial Saccharomyces cerevisiae strains.
Collapse
Affiliation(s)
- Matteo Marangon
- Department of Agronomy, Food, Natural Resources Animals and Environment (DAFNAE), University of Padua, Viale dell'Università, 16, 35020 Legnaro, Italy
- Interdepartmental Centre for Research in Viticulture and Enology (CIRVE), University of Padova, via XXVIII Aprile 14, 31015 Conegliano, Italy
| | - Poppy Seeley
- Wine Division, Plumpton College, Ditchling Road, Lewes BN7 3AE, UK
| | - Erica Barocci
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Piazza Goidanich, 60, 47523 Cesena, Italy
| | - Tony Milanowski
- Wine Division, Plumpton College, Ditchling Road, Lewes BN7 3AE, UK
| | - Christine Mayr Marangon
- Department of Agronomy, Food, Natural Resources Animals and Environment (DAFNAE), University of Padua, Viale dell'Università, 16, 35020 Legnaro, Italy
| | - Arianna Ricci
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Piazza Goidanich, 60, 47523 Cesena, Italy
| | - Jennifer Bellon
- The Australian Wine Research Institute, Glen Osmond, P.O. Box 197, Adelaide, SA 5064, Australia
| | - Giuseppina P Parpinello
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Piazza Goidanich, 60, 47523 Cesena, Italy
| |
Collapse
|
4
|
Gribkova I, Eliseev M, Zakharov M, Kosareva O, Zakharova V. Developing colloidal structure of beer by grain organic compounds. FOODS AND RAW MATERIALS 2022. [DOI: 10.21603/2308-4057-2022-2-538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The present article introduces the problem of determining the general structure of beer as a complex system of related biomolecules. The objective was to establish the correlation of various quantities of organic compounds in beer formulation.
The research featured samples of filtered pasteurized beer obtained from a retail chain shop in Moscow (Russia). The experiment relied on standard research methods, including instrumental methods of analysis, e.g., high-performance liquid chromatography (HPLC). The obtained experimental data underwent a statistical analysis using the Statistica software (StatSoft, 2016).
The research established the correlation between the type of grain (barley or wheat malt) and the content of organic compounds, e.g., β-glucan, polyphenols, soluble nitrogen, etc. The research also revealed some patterns in the distribution of proteins, which served as a framework for the system of organic compounds. The distribution of thiol proteins proved to depend on the dissolution degree of the grain and was different in barley light, barley dark, and wheat malt samples. The fraction distribution of β-glucan depended on the color of the malt. In light beer samples, it concentrated in high- and medium-molecular fractions of nitrogenous substances, in dark beer – in low-molecular fractions (≤ 63%). Initial wort density and alcohol content affected the amount of catechins and total polyphenols. Nitrogenous compounds depended on the color, initial extract, and alcohol content.
The nitrogenous structure and other organic compounds of beer proved to depend on protein substances. The research also revealed a number of factors that affected the fraction distribution of biomolecules in different beer sorts.
Collapse
Affiliation(s)
- Irina Gribkova
- All-Russian Research Institute of Brewing, Non-Alcoholic and Wine Industry
| | | | - Maxim Zakharov
- All-Russian Research Institute of Brewing, Non-Alcoholic and Wine Industry
| | - Olga Kosareva
- Moscow University for Industry and Finance “Synergy”
| | - Varvara Zakharova
- All-Russian Research Institute of Brewing, Non-Alcoholic and Wine Industry
| |
Collapse
|
5
|
The diversity of effects of yeast derivatives during sparkling wine aging. Food Chem 2022; 390:133174. [PMID: 35594771 DOI: 10.1016/j.foodchem.2022.133174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 04/15/2022] [Accepted: 05/05/2022] [Indexed: 11/22/2022]
Abstract
This study shows the monitoring of the physical, chemical and sensorial changes that occur in the sparkling wine along 18 months of aging due to different typology yeast-derived products; dry inactivated yeast from Saccharomyces (Saccharomyces cerevisiae) and non-Saccharomyces (Torulaspora delbrueckii) yeast strains, yeast autolysate, and yeast protein extract tested at two different doses. The addition of 5 g/hL yeast protein extract and inactivated yeast from T. delbrueckii helped to preserve esters in wines with 9 and 18 months of aging on lees. The addition of yeast autolysate achieved greater polysaccharide enrichment and gave rise to sparkling wines with the highest antioxidant activity. Effects on foaming properties were quite different depending on the aging time. Despite this, sparkling wines treated with 10 g/hL of yeast autolysate and Optimum White™ generally exhibited the highest foamability and foam stability. Further experiments with higher doses are needed to observe clear effects on sensory profile.
Collapse
|
6
|
The interactions of wine polysaccharides with aroma compounds, tannins, and proteins, and their importance to winemaking. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107150] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
7
|
Kong CL, Zhu DY, Zhao Y, Zhao TY, Tao YS. Spent yeast polysaccharides in mixed alcoholic fermentation between Pichia kluyveri, Pichia fermentans and Saccharomyces cerevisiae retarded wine fruity ester hydrolysis. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2021.104200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
8
|
Non-Conventional Grape Varieties and Yeast Starters for First and Second Fermentation in Sparkling Wine Production Using the Traditional Method. FERMENTATION-BASEL 2021. [DOI: 10.3390/fermentation7040321] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Sparkling wine production using the traditional method involves a second fermentation of still wines in bottles, followed by prolonged aging on lees. The key factors affecting the organoleptic profiles of these wines are the grape varieties, the chemical and sensory attributes of the base wines elaborated, the yeast strains used for first and second fermentation, and the winery practices. While Chardonnay and Pinot noir are gold standard grape varieties in sparkling wine production, other valuable grape cultivars are used worldwide to elaborate highly reputable sparkling wines. Fundamental research on the chemical and sensory profiles of innovative sparkling wines produced by the traditional method, using non-conventional grape varieties and novel yeast strains for first and/or second fermentation, is accompanying their market diversification. In this review, we summarize relevant aspects of sparkling wine production using the traditional method and non-conventional grape varieties and yeast starters.
Collapse
|
9
|
Dinache A, Pascu ML, Smarandache A. Spectral Properties of Foams and Emulsions. Molecules 2021; 26:7704. [PMID: 34946785 PMCID: PMC8707813 DOI: 10.3390/molecules26247704] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 11/17/2022] Open
Abstract
The optical and spectral properties of foams and emulsions provide information about their micro-/nanostructures, chemical and time stability and molecular data of their components. Foams and emulsions are collections of different kinds of bubbles or drops with particular properties. A summary of various surfactant and emulsifier types is performed here, as well as an overview of methods for producing foams and emulsions. Absorption, reflectance, and vibrational spectroscopy (Fourier Transform Infrared spectroscopy-FTIR, Raman spectroscopy) studies are detailed in connection with the spectral characterization techniques of colloidal systems. Diffusing Wave Spectroscopy (DWS) data for foams and emulsions are likewise introduced. The utility of spectroscopic approaches has grown as processing power and analysis capabilities have improved. In addition, lasers offer advantages due to the specific properties of the emitted beams which allow focusing on very small volumes and enable accurate, fast, and high spatial resolution sample characterization. Emulsions and foams provide exceptional sensitive bases for measuring low concentrations of molecules down to the level of traces using spectroscopy techniques, thus opening new horizons in microfluidics.
Collapse
Affiliation(s)
- Andra Dinache
- National Institute for Laser, Plasma and Radiation Physics, 077125 Magurele, Ilfov, Romania; (A.D.); (M.-L.P.)
| | - Mihail-Lucian Pascu
- National Institute for Laser, Plasma and Radiation Physics, 077125 Magurele, Ilfov, Romania; (A.D.); (M.-L.P.)
- Faculty of Physics, University of Bucharest, 077125 Magurele, Ilfov, Romania
| | - Adriana Smarandache
- National Institute for Laser, Plasma and Radiation Physics, 077125 Magurele, Ilfov, Romania; (A.D.); (M.-L.P.)
| |
Collapse
|
10
|
Debastiani R, Iochims dos Santos CE, Ferraz Dias J. Elemental characterization of sparkling wine and cork stoppers. Curr Res Food Sci 2021; 4:670-678. [PMID: 34632409 PMCID: PMC8488460 DOI: 10.1016/j.crfs.2021.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 09/02/2021] [Accepted: 09/18/2021] [Indexed: 11/21/2022] Open
Abstract
The variations of the elemental concentrations in sparkling white wine and respective cork stoppers throughout 18 months of storage time were determined with the PIXE (Particle-Induced X-ray Emission) technique. Three portions of the cork stoppers were analyzed: the top part (external layer), the inner part (bulk layer) and the bottom layer (which was in contact with the sparkling wine). Elements such as Na, Mg, Si, P, S, Cl, K, Ca, Mn, Fe, Zn and Rb were determined for both cork stoppers and sparkling wine samples. Similar concentrations of Si, P, S, Cl and Ca were found in the external and bottom layers of the corks. Distinct behaviors of the changes in the elemental concentrations as a function of the time were observed for cork stoppers and sparkling wines. The concentrations of Mg, S, K, Ca, Cu, Sr and Ba increased in the bottom layer of the cork as a function of storage time. On the other hand, concentrations of Al, Si, Cl, Ti, Zn and Br proved to be invariant, while the concentrations of P and Fe showed a slight decrease. Concerning the sparkling wine, an increasing trend of elemental concentrations was observed for most elements throughout the storage time. A diffusion mechanism of elements in the cork and the role of the secondary fermentation in the bottle are discussed.
Collapse
Affiliation(s)
- Rafaela Debastiani
- Corresponding author. Institute of Nanotechnology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany.
| | | | - Johnny Ferraz Dias
- Ion Implantation Laboratory, Institute of Physics, Federal University of Rio Grande do Sul, Av. Bento Gonçalves 9500, CP 15051, CEP 91501-970, Porto Alegre, RS, Brazil
| |
Collapse
|
11
|
Liger-Belair G, Cilindre C. Recent Progress in the Analytical Chemistry of Champagne and Sparkling Wines. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2021; 14:21-46. [PMID: 34014763 DOI: 10.1146/annurev-anchem-061318-115018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The strong interplay between the various parameters at play in a bottle and in a glass of champagne or sparkling wine has been the subject of study for about two decades. After a brief overview of the history of champagne and sparkling wines, this article presents the key steps involved in the traditional method leading to the production of premium modern-day sparkling wines, with a specific focus on quantification of the dissolved CO2 found in the sealed bottles and in a glass. Moreover, a review of the literature on the various chemical and instrumental approaches used in the analysis of dissolved and gaseous CO2, effervescence, foam, and volatile organic compounds is reported.
Collapse
Affiliation(s)
- Gérard Liger-Belair
- Equipe Effervescence Champagne et Applications, Groupe de Spectrométrie Moléculaire et Atmosphérique (GSMA), CNRS UMR 7331, UFR Sciences Exactes et Naturelles, BP 1039, Université de Reims Champagne-Ardenne, 51687 Reims CEDEX 2, France; ,
| | - Clara Cilindre
- Equipe Effervescence Champagne et Applications, Groupe de Spectrométrie Moléculaire et Atmosphérique (GSMA), CNRS UMR 7331, UFR Sciences Exactes et Naturelles, BP 1039, Université de Reims Champagne-Ardenne, 51687 Reims CEDEX 2, France; ,
| |
Collapse
|
12
|
Does the Temperature of the prise de mousse Affect the Effervescence and the Foam of Sparkling Wines? Molecules 2021; 26:molecules26154434. [PMID: 34361583 PMCID: PMC8347939 DOI: 10.3390/molecules26154434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/06/2021] [Accepted: 07/19/2021] [Indexed: 11/17/2022] Open
Abstract
The persistence of effervescence and foam collar during a Champagne or sparkling wine tasting constitute one, among others, specific consumer preference for these products. Many different factors related to the product or to the tasting conditions might influence their behavior in the glass. However, the underlying factor behind the fizziness of these wines involves a second in-bottle alcoholic fermentation, also well known as the prise de mousse. The aim of this study was to assess whether a low temperature (13 °C) or a high temperature (20 °C) during the in-bottle fermentation might have an impact on the effervescence and the foaming properties (i.e., collar height and bubble size) of three French sparkling wines (a Crémant de Loire and two Champagne wines), under standard tasting conditions. Our results showed that sparkling wines elaborated at 13 °C and served in standard tasting conditions (i.e., 100 mL, 18 °C) had better ability to keep the dissolved CO2 (between 0.09 and 0.30 g/L) in the liquid phase than those elaborated at 20 °C (with P < 0.05). Most interestingly, we also observed, for the Crémant de Loire and for one Champagne wine, that the lower the temperature of the prise de mousse, the smaller (with P < 0.05) the bubbles in the foam collar throughout the wine tasting.
Collapse
|
13
|
|
14
|
Škrab D, Sivilotti P, Comuzzo P, Voce S, Degano F, Carlin S, Arapitsas P, Masuero D, Vrhovšek U. Cluster Thinning and Vineyard Site Modulate the Metabolomic Profile of Ribolla Gialla Base and Sparkling Wines. Metabolites 2021; 11:metabo11050331. [PMID: 34065397 PMCID: PMC8160841 DOI: 10.3390/metabo11050331] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 01/02/2023] Open
Abstract
Depending on the vineyard location, cluster thinning (CT) may represent an effective tool to obtain the desired grape composition and wine quality. The effect of 20% cluster thinning on Ribolla Gialla (Vitis vinifera L.) sparkling wine aroma, lipid compounds, and aromatic amino acid (AAA) metabolites composition was studied for three consecutive seasons in two vineyards located in the Friuli Venezia Giulia region, Italy. In the examined sparkling wines, the vintage meteorological conditions exhibited significant influences on the metabolic profile of the samples. Data were normalized by season, and the impact of the CT treatment was evaluated for each vineyard site separately. Crop removal showed a limited positive impact on aroma compounds in sparkling wines from vineyards located in the valley. Concerning the AAA compounds, their concentration was higher in the vineyard at the foot of the hills. Cluster thinning resulted in a drop in concentration, reducing the risk of atypical aging. Despite minor differences according to targeted metabolome profiling, the sensory analysis confirmed the effects of the CT treatment in the valley floor vineyard. Reducing crop in this site, where the yield was higher, promoted a moderate improvement of Ribolla Gialla sparkling wine. In contrast, for wine produced in the vineyard at the foot of the hills, the sensory analysis indicated a preference for wines from the unthinned control samples. Overall, the study indicates that cluster thinning is a viticultural technique that could potentially improve the quality of Ribolla Gialla sparkling wines, but only in situations of excessive grape production.
Collapse
Affiliation(s)
- Domen Škrab
- Department of Food Quality and Nutrition, Edmund Mach Foundation, Research and Innovation Centre, Via Edmund Mach 1, 38010 San Michele all’Adige, TN, Italy; (D.Š.); (S.C.); (P.A.); (D.M.); (U.V.)
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via delle Scienze 206, 33100 Udine, UD, Italy; (P.C.); (S.V.)
| | - Paolo Sivilotti
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via delle Scienze 206, 33100 Udine, UD, Italy; (P.C.); (S.V.)
- Correspondence: ; Tel.: +39-0432-558628
| | - Piergiorgio Comuzzo
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via delle Scienze 206, 33100 Udine, UD, Italy; (P.C.); (S.V.)
| | - Sabrina Voce
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via delle Scienze 206, 33100 Udine, UD, Italy; (P.C.); (S.V.)
| | - Francesco Degano
- Consorzio “Friuli Colli Orientali e Ramandolo”, Piazza 27 Maggio 11, 33040 Corno di Rosazzo, UD, Italy;
| | - Silvia Carlin
- Department of Food Quality and Nutrition, Edmund Mach Foundation, Research and Innovation Centre, Via Edmund Mach 1, 38010 San Michele all’Adige, TN, Italy; (D.Š.); (S.C.); (P.A.); (D.M.); (U.V.)
| | - Panagiotis Arapitsas
- Department of Food Quality and Nutrition, Edmund Mach Foundation, Research and Innovation Centre, Via Edmund Mach 1, 38010 San Michele all’Adige, TN, Italy; (D.Š.); (S.C.); (P.A.); (D.M.); (U.V.)
| | - Domenico Masuero
- Department of Food Quality and Nutrition, Edmund Mach Foundation, Research and Innovation Centre, Via Edmund Mach 1, 38010 San Michele all’Adige, TN, Italy; (D.Š.); (S.C.); (P.A.); (D.M.); (U.V.)
| | - Urška Vrhovšek
- Department of Food Quality and Nutrition, Edmund Mach Foundation, Research and Innovation Centre, Via Edmund Mach 1, 38010 San Michele all’Adige, TN, Italy; (D.Š.); (S.C.); (P.A.); (D.M.); (U.V.)
| |
Collapse
|
15
|
Moriaux AL, Vallon R, Lecasse F, Chauvin N, Parvitte B, Zéninari V, Liger-Belair G, Cilindre C. How Does Gas-Phase CO 2 Evolve in the Headspace of Champagne Glasses? JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:2262-2270. [PMID: 33560838 DOI: 10.1021/acs.jafc.0c02958] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The chemical space perceived by a consumer of champagne or other sparkling wines is progressively modified all along tasting. Real-time monitoring of gas-phase CO2 concentration was performed, through a CO2-diode laser sensor, along a two-dimensional array of nine points in the headspace of three types of glasses poured with champagne. Two original glasses with distinct headspace volumes were compared with the standard INAO tasting glass. For each of the three glass types, a kind of temperature-dependent CO2 fingerprint was revealed and discussed as a function of the glass geometry and headspace volume. Moreover, a simple model was developed, which considers the rate of decrease of the concentration of gas-phase CO2 in the headspace of a glass after the pouring process as being mainly ruled by natural air convection in ambient air. The timescale which controls the rate of decrease of gas-phase CO2 was found to highly depend on the ratio of the headspace volume to the open aperture of the glass.
Collapse
Affiliation(s)
- Anne-Laure Moriaux
- Equipe Effervescence, Champagne et Applications, Groupe de Spectrométrie Moléculaire et Applications (GSMA), UMR CNRS 7331, Université de Reims Champagne-Ardenne, BP 1039, 51687 Reims Cedex 2, France
| | - Raphaël Vallon
- Equipe Effervescence, Champagne et Applications, Groupe de Spectrométrie Moléculaire et Applications (GSMA), UMR CNRS 7331, Université de Reims Champagne-Ardenne, BP 1039, 51687 Reims Cedex 2, France
| | - Florian Lecasse
- Equipe Effervescence, Champagne et Applications, Groupe de Spectrométrie Moléculaire et Applications (GSMA), UMR CNRS 7331, Université de Reims Champagne-Ardenne, BP 1039, 51687 Reims Cedex 2, France
| | - Nicolas Chauvin
- Equipe Effervescence, Champagne et Applications, Groupe de Spectrométrie Moléculaire et Applications (GSMA), UMR CNRS 7331, Université de Reims Champagne-Ardenne, BP 1039, 51687 Reims Cedex 2, France
| | - Bertrand Parvitte
- Equipe Effervescence, Champagne et Applications, Groupe de Spectrométrie Moléculaire et Applications (GSMA), UMR CNRS 7331, Université de Reims Champagne-Ardenne, BP 1039, 51687 Reims Cedex 2, France
| | - Virginie Zéninari
- Equipe Effervescence, Champagne et Applications, Groupe de Spectrométrie Moléculaire et Applications (GSMA), UMR CNRS 7331, Université de Reims Champagne-Ardenne, BP 1039, 51687 Reims Cedex 2, France
| | - Gérard Liger-Belair
- Equipe Effervescence, Champagne et Applications, Groupe de Spectrométrie Moléculaire et Applications (GSMA), UMR CNRS 7331, Université de Reims Champagne-Ardenne, BP 1039, 51687 Reims Cedex 2, France
| | - Clara Cilindre
- Equipe Effervescence, Champagne et Applications, Groupe de Spectrométrie Moléculaire et Applications (GSMA), UMR CNRS 7331, Université de Reims Champagne-Ardenne, BP 1039, 51687 Reims Cedex 2, France
| |
Collapse
|
16
|
Chemical, Physical, and Sensory Effects of the Use of Bentonite at Different Stages of the Production of Traditional Sparkling Wines. Foods 2021; 10:foods10020390. [PMID: 33578939 PMCID: PMC7916653 DOI: 10.3390/foods10020390] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/26/2021] [Accepted: 02/03/2021] [Indexed: 12/28/2022] Open
Abstract
The addition of bentonite to wine to eliminate unstable haze-forming proteins and as a riddling adjuvant in the remuage is not selective, and other important molecules are lost in this process. The moment of the addition of bentonite is a key factor. Volatile profile (SPME-GC-MS), foam characteristics (Mosalux method), and sensory analyses were performed to study the effect of the distribution of the dosage of bentonite for stabilization of the wine among the addition on the base wine before the tirage (50%, 75%, and 100% bentonite dosage) and during the tirage (addition of the remaining dosage for each case). Results showed that the addition of 50% of the bentonite to the base wine (before the tirage) resulted in sparkling wines with the lowest quantity of volatile compounds, mainly esters and norisoprenoids. No significant differences were found among the sparkling wines after 9 months of aging in relation to foam properties measured by Mosalux, although higher foamability and crown’s persistence were perceived in the sparkling wines with the addition of 75% and 100% of the bentonite dosage in sensory trials. The results of this study suggested that the amount of bentonite added as a fining agent in the tirage had greater effects than during the addition of this agent in the base wine.
Collapse
|
17
|
Pegg CL, Phung TK, Caboche CH, Niamsuphap S, Bern M, Howell K, Schulz BL. Quantitative Data-Independent Acquisition Glycoproteomics of Sparkling Wine. Mol Cell Proteomics 2020; 20:100020. [PMID: 32938748 PMCID: PMC8724608 DOI: 10.1074/mcp.ra120.002181] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/26/2020] [Accepted: 09/16/2020] [Indexed: 11/16/2022] Open
Abstract
Sparkling wine is an alcoholic beverage enjoyed around the world. The sensory properties of sparkling wine depend on a complex interplay between the chemical and biochemical components in the final product. Glycoproteins have been linked to positive and negative qualities in sparkling wine, but the glycosylation profiles of sparkling wine have not been previously investigated in detail. We analyzed the glycoproteome of sparkling wines using protein- and glycopeptide-centric approaches. We developed an automated workflow that created ion libraries to analyze sequential window acquisition of all theoretical mass spectra data-independent acquisition mass spectrometry data based on glycopeptides identified by Byonic (Protein Metrics; version 2.13.17). We applied our workflow to three pairs of experimental sparkling wines to assess the effects of aging on lees and of different yeast strains used in the liqueur de tirage for secondary fermentation. We found that aging a cuvée on lees for 24 months compared with 8 months led to a dramatic decrease in overall protein abundance and an enrichment in large glycans at specific sites in some proteins. Secondary fermentation of a Riesling wine with Saccharomyces cerevisiae yeast strain Siha4 produced more yeast proteins and glycoproteins than with S. cerevisiae yeast strain DV10. The abundance and glycosylation profiles of grape glycoproteins were also different between grape varieties. To our knowledge, this work represents the first in-depth study into protein- and peptide-specific glycosylation in sparkling wines and describes a quantitative glycoproteomic sequential window acquisition of all theoretical mass spectra/data-independent acquisition workflow that is broadly applicable to other sample types. Development of an automated glycoproteomic sequential window acquisition of all theoretical mass spectra workflow. Application to three pairs of commercial-scale experimental sparkling wines. Decreased protein abundance in cuvée during the aging process. Different yeast strains produce varying levels of yeast proteins.
Collapse
Affiliation(s)
- Cassandra L Pegg
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Toan K Phung
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Christopher H Caboche
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Suchada Niamsuphap
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia; Centre for Biopharmaceutical Innovation, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD, Australia
| | | | - Kate Howell
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Benjamin L Schulz
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia; Centre for Biopharmaceutical Innovation, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD, Australia.
| |
Collapse
|
18
|
Pons-Mercadé P, Giménez P, Gombau J, Vilomara G, Conde M, Cantos A, Rozès N, Canals JM, Zamora F. Oxygen consumption rate of lees during sparkling wine (Cava) aging; influence of the aging time. Food Chem 2020; 342:128238. [PMID: 33051100 DOI: 10.1016/j.foodchem.2020.128238] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 09/24/2020] [Accepted: 09/25/2020] [Indexed: 01/16/2023]
Abstract
Sparkling wines elaborated with a traditional method need to age in the bottle in contact with wine lees because yeast autolysis enriches the wines in colloids and improves their effervescence, foam and aromatic complexity. It is generally considered that lees protect the wine against oxidation because they consume small amounts of oxygen that can permeate the crown cap. However, to our knowledge there is no specific study on this subject using lees from real sparkling wine. Therefore, the oxygen consumption rate (OCR) of the lees of sparkling wines from the first to the ninth year of aging time was measured using a noninvasive fluorescence measurement method. The results indicate that lees really consume oxygen and that their OCR tended to decrease with the wine aging time. These data suggest that the lees' capacity to protect against oxidation decreases over time, which could affect the ability of sparkling wines to age properly.
Collapse
Affiliation(s)
- Pere Pons-Mercadé
- Departament de Bioquímica i Biotecnologia, Facultat d'Enologia de Tarragona, Universitat Rovira i Virgili, C/Marcel.li Domingo s/n, 43007 Tarragona, Spain
| | - Pol Giménez
- Departament de Bioquímica i Biotecnologia, Facultat d'Enologia de Tarragona, Universitat Rovira i Virgili, C/Marcel.li Domingo s/n, 43007 Tarragona, Spain
| | - Jordi Gombau
- Departament de Bioquímica i Biotecnologia, Facultat d'Enologia de Tarragona, Universitat Rovira i Virgili, C/Marcel.li Domingo s/n, 43007 Tarragona, Spain
| | - Glòria Vilomara
- Juvé & Camps SA, c/Sant Venat, 1, 08770 Sant Sadurní d'Anoia, Barcelona, Spain
| | - Marta Conde
- Juvé & Camps SA, c/Sant Venat, 1, 08770 Sant Sadurní d'Anoia, Barcelona, Spain
| | - Antoni Cantos
- Juvé & Camps SA, c/Sant Venat, 1, 08770 Sant Sadurní d'Anoia, Barcelona, Spain
| | - Nicolas Rozès
- Departament de Bioquímica i Biotecnologia, Facultat d'Enologia de Tarragona, Universitat Rovira i Virgili, C/Marcel.li Domingo s/n, 43007 Tarragona, Spain
| | - Joan-Miquel Canals
- Departament de Bioquímica i Biotecnologia, Facultat d'Enologia de Tarragona, Universitat Rovira i Virgili, C/Marcel.li Domingo s/n, 43007 Tarragona, Spain
| | - Fernando Zamora
- Departament de Bioquímica i Biotecnologia, Facultat d'Enologia de Tarragona, Universitat Rovira i Virgili, C/Marcel.li Domingo s/n, 43007 Tarragona, Spain.
| |
Collapse
|
19
|
Di Gaspero M, Ruzza P, Hussain R, Honisch C, Biondi B, Siligardi G, Marangon M, Curioni A, Vincenzi S. The Secondary Structure of a Major Wine Protein is Modified upon Interaction with Polyphenols. Molecules 2020; 25:E1646. [PMID: 32260104 PMCID: PMC7180857 DOI: 10.3390/molecules25071646] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/01/2020] [Accepted: 04/01/2020] [Indexed: 01/20/2023] Open
Abstract
Polyphenols are an important constituent of wines and they are largely studied due to their antioxidant properties and for their effects on wine quality and stability, which is also related to their capacity to bind to proteins. The effects of some selected polyphenols, including procyanidins B1 and B2, tannic acid, quercetin, and rutin, as well as those of a total white wine procyanidin extract on the conformational properties of the major wine protein VVTL1 (Vitis vinifera Thaumatin-Like-1) were investigated by Synchrotron Radiation Circular Dichroism (SRCD). Results showed that VVTL1 interacts with polyphenols as demonstrated by the changes in the secondary (far-UV) and tertiary (near-UV) structures, which were differently affected by different polyphenols. Additionally, polyphenols modified the two melting temperatures (TM) that were found for VVTL1 (32.2 °C and 53.9 °C for the protein alone). The circular dichroism (CD) spectra in the near-UV region revealed an involvement of the aromatic side-chains of the protein in the interaction with phenolics. The data demonstrate the existence of an interaction between polyphenols and VVTL1, which results in modification of its thermal and UV denaturation pattern. This information can be useful in understanding the behavior of wine proteins in presence of polyphenols, thus giving new insights on the phenomena that are involved in wine stability.
Collapse
Affiliation(s)
- Mattia Di Gaspero
- Department of Land, Environment, Agriculture and Forestry (TESAF), University of Padua, Viale dell’Università, 16, 35020 Legnaro (PD), Italy;
| | - Paolo Ruzza
- Institute of Biomolecular Chemistry of CNR, Padua Unit, via Marzolo 1, 35131 Padua, Italy; (P.R.); (C.H.); (B.B.)
| | - Rohanah Hussain
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, UK; (R.H.); (G.S.)
| | - Claudia Honisch
- Institute of Biomolecular Chemistry of CNR, Padua Unit, via Marzolo 1, 35131 Padua, Italy; (P.R.); (C.H.); (B.B.)
- Department of Chemical Sciences, University of Padua, Via Marzolo 1, 35131 Padua, Italy
| | - Barbara Biondi
- Institute of Biomolecular Chemistry of CNR, Padua Unit, via Marzolo 1, 35131 Padua, Italy; (P.R.); (C.H.); (B.B.)
| | - Giuliano Siligardi
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, UK; (R.H.); (G.S.)
| | - Matteo Marangon
- Department of Agronomy, Food, Natural Resources Animals and Environment (DAFNAE), University of Padua, Viale dell’Università, 16, 35020 Legnaro (PD), Italy; (A.C.); (S.V.)
| | - Andrea Curioni
- Department of Agronomy, Food, Natural Resources Animals and Environment (DAFNAE), University of Padua, Viale dell’Università, 16, 35020 Legnaro (PD), Italy; (A.C.); (S.V.)
| | - Simone Vincenzi
- Department of Agronomy, Food, Natural Resources Animals and Environment (DAFNAE), University of Padua, Viale dell’Università, 16, 35020 Legnaro (PD), Italy; (A.C.); (S.V.)
| |
Collapse
|
20
|
Foaming Characteristics of Beverages and Its Relevance to Food Processing. FOOD ENGINEERING REVIEWS 2020. [DOI: 10.1007/s12393-020-09213-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
21
|
Using Synchronous Fluorescence to Investigate Chemical Interactions Influencing Foam Characteristics in Sparkling Wines. BEVERAGES 2019. [DOI: 10.3390/beverages5030054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The appearance of bubbles and foam can influence the likeability of a wine even before its consumption. Since foams are essential to visual and taste attributes of sparkling wines, it is of great importance to understand which compounds affect bubbles and foam characteristics. The aim of this work was to investigate the effect of interactions among proteins, amino acids, and phenols on the characteristics of foam in sparkling wines by using synchronous fluorescence spectroscopy techniques. Results have shown that several compounds present in sparkling wines influence foam quality differently, and importantly, highlighted how the interaction of those compounds might result in different effects on foam parameters. Amongst the results, mannoproteins were found to be most likely to promote foam and collar stability, while phenols were likely to increase the small bubbles and collar height in the foam matrix. In summary, this work contributes to a better understanding of the effect of wine compounds on foam quality as well as the effect of the interactions between those compounds.
Collapse
|
22
|
Ubeda C, Kania-Zelada I, del Barrio-Galán R, Medel-Marabolí M, Gil M, Peña-Neira Á. Study of the changes in volatile compounds, aroma and sensory attributes during the production process of sparkling wine by traditional method. Food Res Int 2019; 119:554-563. [DOI: 10.1016/j.foodres.2018.10.032] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 10/02/2018] [Accepted: 10/07/2018] [Indexed: 11/16/2022]
|
23
|
Abstract
The interest in non-Saccharomyces yeast for use in sparkling wine production has increased in recent years. Studies have reported differences in amino acids and ammonia, volatile aroma compounds (VOCs), glycerol, organic acids, proteins and polysaccharides. The aim of this review is to report on our current knowledge concerning the influence of non-Saccharomyces yeast on sparkling wine chemical composition and sensory profiles. Further information regarding the nutritional requirements of each of these yeasts and nutrient supplementation products specifically for non-Saccharomyces yeasts are likely to be produced in the future. Further studies that focus on the long-term aging ability of sparkling wines made from non-Saccharomyces yeast and mixed inoculations including their foam ability and persistence, organic acid levels and mouthfeel properties are recommended as future research topics.
Collapse
|
24
|
Di Gianvito P, Perpetuini G, Tittarelli F, Schirone M, Arfelli G, Piva A, Patrignani F, Lanciotti R, Olivastri L, Suzzi G, Tofalo R. Impact of Saccharomyces cerevisiae strains on traditional sparkling wines production. Food Res Int 2018; 109:552-560. [DOI: 10.1016/j.foodres.2018.04.070] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 04/16/2018] [Accepted: 04/30/2018] [Indexed: 10/17/2022]
|
25
|
Effect of Carboxymethyl Cellulose Added at the Dosage Stage on the Foamability of a Bottle-Fermented Sparkling Wine. BEVERAGES 2018. [DOI: 10.3390/beverages4020027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|