1
|
Yao Z, Xie T, Deng H, Xiao S, Yang T. Directed Evolution of Microbial Communities in Fermented Foods: Strategies, Mechanisms, and Challenges. Foods 2025; 14:216. [PMID: 39856881 PMCID: PMC11764801 DOI: 10.3390/foods14020216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/21/2024] [Accepted: 01/10/2025] [Indexed: 01/27/2025] Open
Abstract
Directed Evolution of Microbial Communities (DEMC) offers a promising approach to enhance the functional attributes of microbial consortia in fermented foods by mimicking natural selection processes. This review details the application of DEMC in fermented foods, focusing on optimizing community traits to improve both fermentation efficiency and the sensory quality of the final products. We outline the core techniques used in DEMC, including the strategic construction of initial microbial communities, the systematic introduction of stress factors to induce desirable traits, and the use of artificial selection to cultivate superior communities. Additionally, we explore the integration of genomic tools and dynamic community analysis to understand and guide the evolutionary trajectories of these communities. While DEMC shows substantial potential for refining fermented food products, it faces challenges such as maintaining genetic diversity and functional stability of the communities. Looking ahead, the integration of advanced omics technologies and computational modeling is anticipated to significantly enhance the predictability and control of microbial community evolution in food fermentation processes. By systematically improving the selection and management of microbial traits, DEMC serves as a crucial tool for enhancing the quality and consistency of fermented foods, directly contributing to more robust and efficient food production systems.
Collapse
Affiliation(s)
| | | | | | | | - Tao Yang
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| |
Collapse
|
2
|
Al-Dalali S, He Z, Du M, Sun H, Zhao D, Li C, Li P, Xu B. Influence of frozen storage and flavoring substances on the nonvolatile metabolite profile of raw beef: Correlation of lipids and lipid-like molecules with flavor profiles. Food Chem X 2024; 24:101898. [PMID: 39498248 PMCID: PMC11532440 DOI: 10.1016/j.fochx.2024.101898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 10/01/2024] [Accepted: 10/11/2024] [Indexed: 11/07/2024] Open
Abstract
This study aimed to explore the effects of frozen storage and flavoring substances (sugar and salt) on the metabolite profiles of nonflavored (BS1) and flavored (BS2) beef samples through UHPLC-MS/MS and an untargeted method and flavor profiles using GC-MS and targeted method. Analysis was conducted during 0, 3, and 6 months of frozen storage. A comprehensive analysis of biochemical databases yielded a total of 1791 metabolites: 1183 metabolites were identified in positive ion mode and 608 in negative ion mode. There were 3 categories of metabolites under superclass classification, accounting for 77.93 % of the total metabolites, including lipids and lipid-like compounds (502 species, 33.87 %), organic acids and derivatives (459 species, 30.97 %), and organoheterocyclic compounds (194, 13.09 %). Multivariate statistical analysis showed that after 0, 3, and 6 months of frozen storage, 120, 106, and 62 differential metabolites, respectively, were identified in the comparison between the BS1 and BS2 samples. The results indicated that frozen storage has a decreasing effect on the differential metabolites, while the flavoring substances mainly enhance the metabolite profiles. It can be concluded that flavoring substances and frozen storage primarily influence the metabolites. At 0 and 6 months of frozen storage, 27 volatiles were detected. The correlation analysis displayed a positive correlation between lipids and lipid-like molecules and flavor compounds.
Collapse
Affiliation(s)
- Sam Al-Dalali
- School of Food and Health, Guilin Tourism University, Guilin, 541006, China
- Guangxi Engineering Research Center for Large-Scale Preparation & Nutrients and Hygiene of Guangxi Cuisine, China
- Key Laboratory of Industrialized Processing and Safety of Guangxi Cuisine, (Guilin Tourism University), Education Department of Guangxi Zhuang Autonomous Region, China
- Department of Food Science and Technology, Faculty of Agriculture and Food Science, Ibb University, Ibb 70270, Yemen
| | - Zhigui He
- School of Food and Health, Guilin Tourism University, Guilin, 541006, China
- Guangxi Engineering Research Center for Large-Scale Preparation & Nutrients and Hygiene of Guangxi Cuisine, China
- Key Laboratory of Industrialized Processing and Safety of Guangxi Cuisine, (Guilin Tourism University), Education Department of Guangxi Zhuang Autonomous Region, China
| | - Miying Du
- School of Food and Health, Guilin Tourism University, Guilin, 541006, China
- Guangxi Engineering Research Center for Large-Scale Preparation & Nutrients and Hygiene of Guangxi Cuisine, China
- Key Laboratory of Industrialized Processing and Safety of Guangxi Cuisine, (Guilin Tourism University), Education Department of Guangxi Zhuang Autonomous Region, China
| | - Hui Sun
- School of Food and Health, Guilin Tourism University, Guilin, 541006, China
- Guangxi Engineering Research Center for Large-Scale Preparation & Nutrients and Hygiene of Guangxi Cuisine, China
- Key Laboratory of Industrialized Processing and Safety of Guangxi Cuisine, (Guilin Tourism University), Education Department of Guangxi Zhuang Autonomous Region, China
| | - Dong Zhao
- School of Food and Health, Guilin Tourism University, Guilin, 541006, China
- Guangxi Engineering Research Center for Large-Scale Preparation & Nutrients and Hygiene of Guangxi Cuisine, China
- Key Laboratory of Industrialized Processing and Safety of Guangxi Cuisine, (Guilin Tourism University), Education Department of Guangxi Zhuang Autonomous Region, China
| | - Cong Li
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Peijun Li
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Baocai Xu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| |
Collapse
|
3
|
Li Y, He W, Liu S, Hu X, He Y, Song X, Yin J, Nie S, Xie M. Innovative omics strategies in fermented fruits and vegetables: Unveiling nutritional profiles, microbial diversity, and future prospects. Compr Rev Food Sci Food Saf 2024; 23:e70030. [PMID: 39379298 DOI: 10.1111/1541-4337.70030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 09/06/2024] [Accepted: 09/08/2024] [Indexed: 10/10/2024]
Abstract
Fermented fruits and vegetables (FFVs) are not only rich in essential nutrients but also contain distinctive flavors, prebiotics, and metabolites. Although omics techniques have gained widespread recognition as an analytical strategy for FFVs, its application still encounters several challenges due to the intricacies of biological systems. This review systematically summarizes the advances, obstacles and prospects of genomics, transcriptomics, proteomics, metabolomics, and multi-omics strategies in FFVs. It is evident that beyond traditional applications, such as the exploration of microbial diversity, protein expression, and metabolic pathways, omics techniques exhibit innovative potential in deciphering stress response mechanisms and uncovering spoilage microorganisms. The adoption of multi-omics strategies is paramount to acquire a multidimensional network fusion, thereby mitigating the limitations of single omics strategies. Although substantial progress has been made, this review underscores the necessity for a comprehensive repository of omics data and the establishment of universal databases to ensure precision in predictions. Furthermore, multidisciplinary integration with other physical or biochemical approaches is imperative, as it enriches our comprehension of this intricate process.
Collapse
Affiliation(s)
- Yuhao Li
- State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang, China
| | - Weiwei He
- State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang, China
| | - Shuai Liu
- State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang, China
| | - Xiaoyi Hu
- State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang, China
| | - Yuxing He
- State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang, China
| | - Xiaoxiao Song
- State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang, China
| | - Junyi Yin
- State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang, China
| | - Shaoping Nie
- State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang, China
| | - Mingyong Xie
- State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang, China
| |
Collapse
|
4
|
Wang X, Yang S, Gao Q, Dai Y, Tian L, Wen L, Yan H, Yang L, Hou X, Liu P, Zhang L. Multi-omics reveals the phyllosphere microbial community and material transformations in cigars. Front Microbiol 2024; 15:1436382. [PMID: 39144227 PMCID: PMC11322134 DOI: 10.3389/fmicb.2024.1436382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 07/19/2024] [Indexed: 08/16/2024] Open
Abstract
The quality of fermented plant leaves is closely related to the interleaf microorganisms and their metabolic activities. In this experiment, a multi-omics analysis was applied to investigate the link between the structural composition of the phyllosphere microbial community and the main metabolites during the fermentation process. It was found that the whole fermentation process of cigar leaves could be divided into three stages, in which the Mid-Stage was the most active period of microbial metabolic activities and occupied an important position. Staphylococcus, Brevundimonas, Acinetobacter, Brevibacterium, Pantoea, Aspergillus, Wallemia, Meyerozyma, Sampaiozyma, Adosporium and Trichomonascus played important roles in this fermentation. Staphylococcus and Aspergillus are the microorganisms that play an important role in the fermentation process. Staphylococcus were strongly correlated with lipids and amino acids, despite its low abundance, Stenotrophomonas is importantly associated with terpene and plays a significant role throughout the process. It is worth noting that Wapper exists more characteristic fungal genera than Filler and is more rapid in fermentation progress, which implies that the details of the fermentation process should be adjusted appropriately to ensure stable quality when faced with plant leaves of different genotypes. This experiment explored the relationship between metabolites and microorganisms, and provided a theoretical basis for further optimizing the fermentation process of plant leaves and developing techniques to improve product quality. Biomarker is mostly present in the pre-fermentation phase, but the mid-fermentation phase is the most important part of the process.
Collapse
Affiliation(s)
- Xiaoyu Wang
- College of Plant Protection, Shandong Agricultural University, Tai’an, China
| | - Shuai Yang
- Yuxi Zhongyan Tobacco Seed Co., Ltd., Yu’xi, China
| | - Qiang Gao
- Shandong Linyi Tobacco Co., Ltd., Lin’yi, China
| | - Youqing Dai
- Cigar Operating Centre of China Tobacco Shandong Industrial Co., Ltd., Ji’nan, China
| | - Lei Tian
- Shandong Linyi Tobacco Co., Ltd., Lin’yi, China
| | - Liang Wen
- Shandong Linyi Tobacco Co., Ltd., Lin’yi, China
| | - Honghao Yan
- College of Plant Protection, Shandong Agricultural University, Tai’an, China
| | - Long Yang
- College of Plant Protection, Shandong Agricultural University, Tai’an, China
| | - Xin Hou
- College of Plant Protection, Shandong Agricultural University, Tai’an, China
| | - Peng Liu
- College of Plant Protection, Shandong Agricultural University, Tai’an, China
| | - Li Zhang
- College of Plant Protection, Shandong Agricultural University, Tai’an, China
| |
Collapse
|
5
|
Román-Camacho JJ, Mauricio JC, Sánchez-León I, Santos-Dueñas IM, Fuentes-Almagro CA, Amil-Ruiz F, García-Martínez T, García-García I. Implementation of a Novel Method for Processing Proteins from Acetic Acid Bacteria via Liquid Chromatography Coupled with Tandem Mass Spectrometry. Molecules 2024; 29:2548. [PMID: 38893424 PMCID: PMC11173641 DOI: 10.3390/molecules29112548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/22/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
Acetic acid bacteria (AAB) and other members of the complex microbiotas, whose activity is essential for vinegar production, display biodiversity and richness that is difficult to study in depth due to their highly selective culture conditions. In recent years, liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) has emerged as a powerful tool for rapidly identifying thousands of proteins present in microbial communities, offering broader precision and coverage. In this work, a novel method based on LC-MS/MS was established and developed from previous studies. This methodology was tested in three studies, enabling the characterization of three submerged acetification profiles using innovative raw materials (synthetic alcohol medium, fine wine, and craft beer) while working in a semicontinuous mode. The biodiversity of existing microorganisms was clarified, and both the predominant taxa (Komagataeibacter, Acetobacter, Gluconacetobacter, and Gluconobacter) and others never detected in these media (Asaia and Bombella, among others) were identified. The key functions and adaptive metabolic strategies were determined using comparative studies, mainly those related to cellular material biosynthesis, energy-associated pathways, and cellular detoxification processes. This study provides the groundwork for a highly reliable and reproducible method for the characterization of microbial profiles in the vinegar industry.
Collapse
Affiliation(s)
- Juan J. Román-Camacho
- Department of Agricultural Chemistry, Edaphology and Microbiology Agrifood Campus of International Excellence ceiA3, University of Cordoba, 14014 Cordoba, Spain; (J.J.R.-C.); (I.S.-L.); (T.G.-M.)
| | - Juan C. Mauricio
- Department of Agricultural Chemistry, Edaphology and Microbiology Agrifood Campus of International Excellence ceiA3, University of Cordoba, 14014 Cordoba, Spain; (J.J.R.-C.); (I.S.-L.); (T.G.-M.)
| | - Irene Sánchez-León
- Department of Agricultural Chemistry, Edaphology and Microbiology Agrifood Campus of International Excellence ceiA3, University of Cordoba, 14014 Cordoba, Spain; (J.J.R.-C.); (I.S.-L.); (T.G.-M.)
| | - Inés M. Santos-Dueñas
- Department of Inorganic Chemistry and Chemical Engineering, Agrifood Campus of International Excellence ceiA3, Institute of Chemistry for Energy and Environment (IQUEMA), University of Cordoba, 14014 Cordoba, Spain; (I.M.S.-D.); (I.G.-G.)
| | - Carlos A. Fuentes-Almagro
- Proteomics Unit, Central Service for Research Support (SCAI), University of Cordoba, 14014 Cordoba, Spain;
| | - Francisco Amil-Ruiz
- Bioinformatics Unit, Central Service for Research Support (SCAI), University of Cordoba, 14014 Cordoba, Spain;
| | - Teresa García-Martínez
- Department of Agricultural Chemistry, Edaphology and Microbiology Agrifood Campus of International Excellence ceiA3, University of Cordoba, 14014 Cordoba, Spain; (J.J.R.-C.); (I.S.-L.); (T.G.-M.)
| | - Isidoro García-García
- Department of Inorganic Chemistry and Chemical Engineering, Agrifood Campus of International Excellence ceiA3, Institute of Chemistry for Energy and Environment (IQUEMA), University of Cordoba, 14014 Cordoba, Spain; (I.M.S.-D.); (I.G.-G.)
| |
Collapse
|
6
|
Sun M, Shao W, Liu Z, Ma X, Chen H, Zheng N, Zhao Y. Microbial diversity in camel milk from Xinjiang, China as revealed by metataxonomic analysis. Front Microbiol 2024; 15:1367116. [PMID: 38533337 PMCID: PMC10964795 DOI: 10.3389/fmicb.2024.1367116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 02/26/2024] [Indexed: 03/28/2024] Open
Abstract
The quality of raw camel milk is affected by its bacterial composition and diversity. However, few studies have investigated the bacterial composition and diversity of raw camel milk. In this study, we obtained 20 samples of camel milk during spring and summer in Urumqi and Hami, Xinjiang, China. Single-molecule real-time sequencing technology was used to analyze the bacterial community composition. The results revealed that there were significant seasonal differences in the bacterial composition and diversity of camel milk. Overall, Epilithonimonas was the most abundant bacterial genus in our samples. Through the annotated genes inferred by PICRUSt2 were mapped against KEGG database. Non-parametric analysis of the bacterial community prediction function revealed a strong bacterial interdependence with metabolic pathways (81.83%). There were clear regional and seasonal differences in level 3 metabolic pathways such as fat, vitamins, and amino acids in camel milk. In addition, we identified lactic acid bacteria in camel milk with antibacterial and anti-tumor activities. Our findings revealed that camel milk from Xinjiang had serious risk of contamination by psychrophilic and pathogenic bacteria. Our research established a crucial theoretical foundation for ensuring the quality and safety of camel milk, thereby contributing significantly to the robust growth of China's camel milk industry.
Collapse
Affiliation(s)
- Miao Sun
- Institute of Quality Standards and Testing Technology for Agro-Products, Xinjiang Academy of Agricultural Sciences, Laboratory of Quality and Safety Risk Assessment for Agro-products, Ministry of Agriculture, Urumqi, China
- College of Animal Science Xinjiang Agriculture University, Urumqi, China
| | - Wei Shao
- College of Animal Science Xinjiang Agriculture University, Urumqi, China
| | - Zhengyu Liu
- Institute of Quality Standards and Testing Technology for Agro-Products, Xinjiang Academy of Agricultural Sciences, Laboratory of Quality and Safety Risk Assessment for Agro-products, Ministry of Agriculture, Urumqi, China
- College of Animal Science Xinjiang Agriculture University, Urumqi, China
| | - Xianlan Ma
- Institute of Quality Standards and Testing Technology for Agro-Products, Xinjiang Academy of Agricultural Sciences, Laboratory of Quality and Safety Risk Assessment for Agro-products, Ministry of Agriculture, Urumqi, China
| | - He Chen
- Institute of Quality Standards and Testing Technology for Agro-Products, Xinjiang Academy of Agricultural Sciences, Laboratory of Quality and Safety Risk Assessment for Agro-products, Ministry of Agriculture, Urumqi, China
| | - Nan Zheng
- Ministry of Agriculture Laboratory of Quality and Safety Risk Assessment for Dairy Products, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yankun Zhao
- Institute of Quality Standards and Testing Technology for Agro-Products, Xinjiang Academy of Agricultural Sciences, Laboratory of Quality and Safety Risk Assessment for Agro-products, Ministry of Agriculture, Urumqi, China
- Ministry of Agriculture Laboratory of Quality and Safety Risk Assessment for Dairy Products, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
7
|
Román-Camacho JJ, Mauricio JC, Santos-Dueñas IM, García-Martínez T, García-García I. Recent advances in applying omic technologies for studying acetic acid bacteria in industrial vinegar production: A comprehensive review. Biotechnol J 2024; 19:e2300566. [PMID: 38403443 DOI: 10.1002/biot.202300566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/22/2023] [Accepted: 12/28/2023] [Indexed: 02/27/2024]
Abstract
Vinegar and related bioproducts containing acetic acid as the main component are among the most appreciated fermented foodstuffs in numerous European and Asian countries because of their exceptional organoleptic and bio-healthy properties. Regarding the acetification process and obtaining of final products, there is still a lack of knowledge on fundamental aspects, especially those related to the study of biodiversity and metabolism of the present microbiota. In this context, omic technologies currently allow for the massive analysis of macromolecules and metabolites for the identification and characterization of these microorganisms working in their natural media without the need for isolation. This review approaches comprehensive research on the application of omic tools for the identification of vinegar microbiota, mainly acetic acid bacteria, with subsequent emphasis on the study of the microbial diversity, behavior, and key molecular strategies used by the predominant groups throughout acetification. The current omics tools are enabling both the finding of new vinegar microbiota members and exploring underlying strategies during the elaboration process. The species Komagataeibacter europaeus may be a model organism for present and future research in this industry; moreover, the development of integrated meta-omic analysis may facilitate the achievement of numerous of the proposed milestones. This work might provide useful guidance for the vinegar industry establishing the first steps towards the improvement of the acetification conditions and the development of new products with sensory and bio-healthy profiles adapted to the agri-food market.
Collapse
Affiliation(s)
- Juan J Román-Camacho
- Department of Agricultural Chemistry, Edaphology, and Microbiology (Microbiology area), Severo Ochoa building (C6), Agrifood Campus of International Excellence ceiA3, Universidad de Córdoba, Córdoba, Spain
| | - Juan C Mauricio
- Department of Agricultural Chemistry, Edaphology, and Microbiology (Microbiology area), Severo Ochoa building (C6), Agrifood Campus of International Excellence ceiA3, Universidad de Córdoba, Córdoba, Spain
| | - Inés María Santos-Dueñas
- Department of Inorganic Chemistry and Chemical Engineering (Chemical Engineering area), Instituto Químico Para la Energía y el Medioambiente (IQUEMA), Marie Curie building (C3), Agrifood Campus of International Excellence ceiA3, Nano Chemistry Institute (IUNAN), Universidad de Córdoba, Córdoba, Spain
| | - Teresa García-Martínez
- Department of Agricultural Chemistry, Edaphology, and Microbiology (Microbiology area), Severo Ochoa building (C6), Agrifood Campus of International Excellence ceiA3, Universidad de Córdoba, Córdoba, Spain
| | - Isidoro García-García
- Department of Inorganic Chemistry and Chemical Engineering (Chemical Engineering area), Instituto Químico Para la Energía y el Medioambiente (IQUEMA), Marie Curie building (C3), Agrifood Campus of International Excellence ceiA3, Nano Chemistry Institute (IUNAN), Universidad de Córdoba, Córdoba, Spain
| |
Collapse
|
8
|
Rizo J, Leyva CT, Sánchez S, Rodríguez-Sanoja R. Extraction of Proteins from Fermented Food. Methods Mol Biol 2024; 2820:21-28. [PMID: 38941011 DOI: 10.1007/978-1-0716-3910-8_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
The metaproteomic approach allows a deep microbiome characterization in different complex systems. Based on metaproteome data, microbial communities' composition, succession, and functional role in different environmental conditions can be established.The main challenge in metaproteomic studies is protein extraction, and although many protocols have been developed, a few are focused on the protein extraction of fermented foods. In this chapter, a reproducible and efficient method for the extraction of proteins from a traditionally fermented starchy food is described. The method can be applied to any fermented food and aims to enrich the extraction of proteins from microorganisms for their subsequent characterization.
Collapse
Affiliation(s)
- Jocelin Rizo
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Cynthia T Leyva
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Sergio Sánchez
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Romina Rodríguez-Sanoja
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico.
| |
Collapse
|
9
|
Zhang T, Liu Z, Wang H, Zhang H, Li H, Lu W, Zhu J. Multi-omics analysis reveals genes and metabolites involved in Bifidobacterium pseudocatenulatum biofilm formation. Front Microbiol 2023; 14:1287680. [PMID: 38029154 PMCID: PMC10666050 DOI: 10.3389/fmicb.2023.1287680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 10/26/2023] [Indexed: 12/01/2023] Open
Abstract
Bacterial biofilm is an emerging form of life that involves cell populations living embedded in a self-produced matrix of extracellular polymeric substances (EPS). Currently, little is known about the molecular mechanisms of Bifidobacterium biofilm formation. We used the Bifidobacterium biofilm fermentation system to preparation of biofilms on wheat fibers, and multi-omics analysis of both B. pseudocatenulatum biofilms and planktonic cells were performed to identify genes and metabolites involved in biofilm formation. The average diameter of wheat fibers was around 50 μm, while the diameter of particle in wheat fibers culture of B. pseudocatenulatum was over 260 μm at 22 h with 78.96% biofilm formation rate (BR), and the field emission scanning electron microscopy (FESEM) results showed that biofilm cells on the surface of wheat fibers secreted EPS. Transcriptomic analysis indicated that genes associated with stress response (groS, mntH, nth, pdtaR, pstA, pstC, radA, rbpA, whiB, ybjG), quorum sensing (dppC, livM, luxS, sapF), polysaccharide metabolic process (rfbX, galE, zwf, opcA, glgC, glgP, gtfA) may be involved in biofilm formation. In addition, 17 weighted gene co-expression network analysis (WGCNA) modules were identified and two of them positively correlated to BR. Metabolomic analysis indicated that amino acids and amides; organic acids, alcohols and esters; and sugar (trehalose-6-phosphate, uridine diphosphategalactose, uridine diphosphate-N-acetylglucosamine) were main metabolites during biofilm formation. These results indicate that stress response, quorum sensing (QS), and EPS production are essential during B. pseudocatenulatum biofilm formation.
Collapse
Affiliation(s)
- Ting Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Zongmin Liu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Hongchao Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou, China
| | - Haitao Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Wenwei Lu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Jinlin Zhu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
10
|
Soberón‐Chávez G. Some insights on traditional and novel approaches in microbial biotechnology that contribute to the United Nations Sustainable Development Goals. Microb Biotechnol 2023; 16:2015-2018. [PMID: 37452713 PMCID: PMC10616639 DOI: 10.1111/1751-7915.14318] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 07/04/2023] [Indexed: 07/18/2023] Open
Affiliation(s)
- Gloria Soberón‐Chávez
- Departamento de Biología Molecular y BiotecnologíaInstituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad UniversitariaCiudad de MéxicoMexico
| |
Collapse
|
11
|
Román-Camacho JJ, García-García I, Santos-Dueñas IM, García-Martínez T, Mauricio JC. Latest Trends in Industrial Vinegar Production and the Role of Acetic Acid Bacteria: Classification, Metabolism, and Applications-A Comprehensive Review. Foods 2023; 12:3705. [PMID: 37835358 PMCID: PMC10572879 DOI: 10.3390/foods12193705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/03/2023] [Accepted: 10/06/2023] [Indexed: 10/15/2023] Open
Abstract
Vinegar is one of the most appreciated fermented foods in European and Asian countries. In industry, its elaboration depends on numerous factors, including the nature of starter culture and raw material, as well as the production system and operational conditions. Furthermore, vinegar is obtained by the action of acetic acid bacteria (AAB) on an alcoholic medium in which ethanol is transformed into acetic acid. Besides the highlighted oxidative metabolism of AAB, their versatility and metabolic adaptability make them a taxonomic group with several biotechnological uses. Due to new and rapid advances in this field, this review attempts to approach the current state of knowledge by firstly discussing fundamental aspects related to industrial vinegar production and then exploring aspects related to AAB: classification, metabolism, and applications. Emphasis has been placed on an exhaustive taxonomic review considering the progressive increase in the number of new AAB species and genera, especially those with recognized biotechnological potential.
Collapse
Affiliation(s)
- Juan J. Román-Camacho
- Department of Agricultural Chemistry, Edaphology and Microbiology, Agrifood Campus of International Excellence ceiA3, University of Córdoba, 14014 Córdoba, Spain; (J.J.R.-C.); (T.G.-M.); (J.C.M.)
| | - Isidoro García-García
- Department of Inorganic Chemistry and Chemical Engineering, Agrifood Campus of International Excellence ceiA3, Nano Chemistry Institute (IUNAN), University of Córdoba, 14014 Córdoba, Spain;
| | - Inés M. Santos-Dueñas
- Department of Inorganic Chemistry and Chemical Engineering, Agrifood Campus of International Excellence ceiA3, Nano Chemistry Institute (IUNAN), University of Córdoba, 14014 Córdoba, Spain;
| | - Teresa García-Martínez
- Department of Agricultural Chemistry, Edaphology and Microbiology, Agrifood Campus of International Excellence ceiA3, University of Córdoba, 14014 Córdoba, Spain; (J.J.R.-C.); (T.G.-M.); (J.C.M.)
| | - Juan C. Mauricio
- Department of Agricultural Chemistry, Edaphology and Microbiology, Agrifood Campus of International Excellence ceiA3, University of Córdoba, 14014 Córdoba, Spain; (J.J.R.-C.); (T.G.-M.); (J.C.M.)
| |
Collapse
|
12
|
Ji X, Zhang L, Yu X, Chen F, Guo F, Wu Q, Xu Y. Selection of initial microbial community for the alcoholic fermentation of sesame flavor-type baijiu. Food Res Int 2023; 172:113141. [PMID: 37689904 DOI: 10.1016/j.foodres.2023.113141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/02/2023] [Accepted: 06/13/2023] [Indexed: 09/11/2023]
Abstract
The initial microbial community is critical for the production of volatile metabolites during traditional food fermentations. Selection of the initial community plays an important role in improving the quality of fermented foods. Here, we used high-throughput amplicon sequencing combined with multivariate statistical methods to explore the microbial succession in stacking and alcoholic fermentation stages in sesame flavor-type baijiu making. We proposed a selection strategy for the initial microbial community in the alcoholic fermentation stage, which determined the quality of baijiu. Results suggested that the microbial composition statistically differed between stacking and alcoholic fermentation stages (ANOSIM, Bacteria: R = 0.60, P = 0.001; Fungi: R = 0.53, P = 0.001). Microbial succession drove metabolic succession (Bacteria: r = 0.87, P < 0.05; Fungi: r = 0.56, P < 0.05) in alcoholic fermentation. The fermentation time of stacking fermentation determined the initial community for alcoholic fermentation, and it can be used as a criterion for selection of the initial microbial community for alcoholic fermentation. The succession distance of the microbial community was varied and reached the highest (Bacteria: 0.048, Fungi: 0.064) at 30 h in stacking fermentation. When we selected 30 h as stacking fermentation time, the concentration (4.58 mg/kg) and diversity (0.61) of volatile metabolites were highest at the end of alcoholic fermentation. This work developed a succession distance-guided approach to select the initial microbial community for the alcoholic fermentation of sesame flavor-type baijiu. This approach can be used to improve the quality of baijiu.
Collapse
Affiliation(s)
- Xueao Ji
- Lab of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology of Ministry of Education, State Key Laboratory of Food Science and Technology, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Longyun Zhang
- Suqian Yanghe Distillery Co. Ltd, Jiangsu 223800, China
| | - Xiaowei Yu
- Lab of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology of Ministry of Education, State Key Laboratory of Food Science and Technology, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Fujiang Chen
- Suqian Yanghe Distillery Co. Ltd, Jiangsu 223800, China
| | - Fengxue Guo
- Suqian Yanghe Distillery Co. Ltd, Jiangsu 223800, China
| | - Qun Wu
- Lab of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology of Ministry of Education, State Key Laboratory of Food Science and Technology, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yan Xu
- Lab of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology of Ministry of Education, State Key Laboratory of Food Science and Technology, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
13
|
Abstract
For thousands of years, humans have enjoyed the novel flavors, increased shelf-life, and nutritional benefits that microbes provide in fermented foods and beverages. Recent sequencing surveys of ferments have mapped patterns of microbial diversity across space, time, and production practices. But a mechanistic understanding of how fermented food microbiomes assemble has only recently begun to emerge. Using three foods as case studies (surface-ripened cheese, sourdough starters, and fermented vegetables), we use an ecological and evolutionary framework to identify how microbial communities assemble in ferments. By combining in situ sequencing surveys with in vitro models, we are beginning to understand how dispersal, selection, diversification, and drift generate the diversity of fermented food communities. Most food producers are unaware of the ecological processes occurring in their production environments, but the theory and models of ecology and evolution can provide new approaches for managing fermented food microbiomes, from farm to ferment.
Collapse
Affiliation(s)
- Nicolas L Louw
- Department of Biology, Tufts University, Medford, Massachusetts, USA; , , , ,
| | - Kasturi Lele
- Department of Biology, Tufts University, Medford, Massachusetts, USA; , , , ,
| | - Ruby Ye
- Department of Biology, Tufts University, Medford, Massachusetts, USA; , , , ,
| | - Collin B Edwards
- Department of Biology, Tufts University, Medford, Massachusetts, USA; , , , ,
- School of Biological Sciences, Washington State University, Vancouver, Washington, USA
| | - Benjamin E Wolfe
- Department of Biology, Tufts University, Medford, Massachusetts, USA; , , , ,
| |
Collapse
|
14
|
Wang J, Hao S, Ren Q. Uncultured Microorganisms and Their Functions in the Fermentation Systems of Traditional Chinese Fermented Foods. Foods 2023; 12:2691. [PMID: 37509783 PMCID: PMC10378637 DOI: 10.3390/foods12142691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/04/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Traditional Chinese fermented foods are diverse and loved by people for their rich nutrition and unique flavors. In the fermentation processes of these foods, the microorganisms in the fermentation systems play a crucial role in determining the flavor and quality. Currently, some microorganisms in the fermentation systems of traditional Chinese fermented foods are in a state of being unculturable or difficult to culture, which hinders the comprehensive analysis and resource development of the microbial communities in the fermentation systems. This article provides an overview of the uncultured microorganisms in the natural environment, in the fermentation systems of traditional Chinese fermented foods, and the research methods for studying such microorganisms. It also discusses the prospects of utilizing the uncultured microorganisms in the fermentation systems of traditional Chinese fermented foods. The aim is to gain a comprehensive understanding of the microbial diversity and uncultured microorganisms in the fermentation systems of traditional Chinese fermented foods in order to better exploit and utilize these microorganisms and promote the development of traditional Chinese fermented foods.
Collapse
Affiliation(s)
- Jiaxuan Wang
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China
| | - Shuyue Hao
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China
| | - Qing Ren
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
15
|
Li S, Liu X, Wang L, Wang K, Li M, Wang X, Yuan Y, Yue T, Cai R, Wang Z. Innovative beverage creation through symbiotic microbial communities inspired by traditional fermented beverages: current status, challenges and future directions. Crit Rev Food Sci Nutr 2023; 64:10456-10483. [PMID: 37357963 DOI: 10.1080/10408398.2023.2225191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2023]
Abstract
Fermented beverages (FBs) are facing challenges in functional performance and flavor complexity, necessitating the development of new multi-functional options. Traditional fermented beverages (TFBs), both alcoholic and nonalcoholic, have gained increased attention for their health-promoting effects during the COVID-19 pandemic. This review summarized the primary commercially available probiotics of FBs, along with the limitations of single and mixed probiotic FBs. It also examined the recent research progress on TFBs, emphasizing the typical microbial communities (MC) of TFBs, and TFBs made from crops (grains, vegetables, fruits, etc.) worldwide and their associated functions and health benefits. Furthermore, the construction, technical bottlenecks of the synthetic MC involved in developing innovative FBs were presented, and the promising perspective of FBs was described. Drawing inspiration from the MC of TFBs, developing of stable and multifunctional FBs using synthetic MC holds great promise for beverage industry. However, synthetic MC suffers from structural instability and poorly acknowledged interaction mechanisms, resulting in disappointing results in FBs. Future researches should prioritize creating synthetic MC fermentation that closely resemble natural fermentation, tailored to meet the needs of different consumers. Creating personalized FBs with high-tech intelligence is vital in attracting potential consumers and developing novel beverages for the future.
Collapse
Affiliation(s)
- Shiqi Li
- College of Food Science and Engineering, Northwest A&F University, YangLing, Shaanxi, China
- Laboratory of Quality & Safety Risk Assessment for Agro-products (YangLing), Ministry of Agriculture, Yangling, Shaanxi, China
| | - Xiaoshuang Liu
- College of Food Science and Engineering, Northwest A&F University, YangLing, Shaanxi, China
- Laboratory of Quality & Safety Risk Assessment for Agro-products (YangLing), Ministry of Agriculture, Yangling, Shaanxi, China
| | - Leran Wang
- College of Food Science and Engineering, Northwest A&F University, YangLing, Shaanxi, China
- Laboratory of Quality & Safety Risk Assessment for Agro-products (YangLing), Ministry of Agriculture, Yangling, Shaanxi, China
| | - Kai Wang
- College of Food Science and Engineering, Northwest A&F University, YangLing, Shaanxi, China
- Laboratory of Quality & Safety Risk Assessment for Agro-products (YangLing), Ministry of Agriculture, Yangling, Shaanxi, China
| | - Menghui Li
- College of Food Science and Engineering, Northwest A&F University, YangLing, Shaanxi, China
- Laboratory of Quality & Safety Risk Assessment for Agro-products (YangLing), Ministry of Agriculture, Yangling, Shaanxi, China
| | - Xingnan Wang
- College of Food Science and Engineering, Northwest A&F University, YangLing, Shaanxi, China
- Laboratory of Quality & Safety Risk Assessment for Agro-products (YangLing), Ministry of Agriculture, Yangling, Shaanxi, China
| | - Yahong Yuan
- College of Food Science and Engineering, Northwest University, Xi'an, Shaanxi, China
| | - Tianli Yue
- College of Food Science and Engineering, Northwest University, Xi'an, Shaanxi, China
| | - Rui Cai
- College of Food Science and Engineering, Northwest University, Xi'an, Shaanxi, China
| | - Zhouli Wang
- College of Food Science and Engineering, Northwest A&F University, YangLing, Shaanxi, China
- Laboratory of Quality & Safety Risk Assessment for Agro-products (YangLing), Ministry of Agriculture, Yangling, Shaanxi, China
| |
Collapse
|
16
|
Chen L, Gao W, Tan X, Han Y, Jiao F, Feng B, Xie J, Li B, Zhao H, Tu H, Yu S, Wang L. MALDI-TOF MS Is an Effective Technique To Classify Specific Microbiota. Microbiol Spectr 2023; 11:e0030723. [PMID: 37140390 PMCID: PMC10269913 DOI: 10.1128/spectrum.00307-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 04/11/2023] [Indexed: 05/05/2023] Open
Abstract
MALDI-TOF MS is well-recognized for single microbial identification and widely used in research and clinical fields due to its specificity, speed of analysis, and low cost of consumables. Multiple commercial platforms have been developed and approved by the U.S. Food and Drug Administration. Matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOF MS) has been used for microbial identification. However, microbes can present as a specific microbiota, and detection and classification remain a challenge. Here, we constructed several specific microbiotas and tried to classify them using MALDI-TOF MS. Different concentrations of nine bacterial strains (belonging to eight genera) constituted 20 specific microbiotas. Using MALDI-TOF MS, the overlap spectrum of each microbiota (MS spectra of nine bacterial strains with component percentages) could be classified by hierarchical clustering analysis (HCA). However, the real MS spectrum of a specific microbiota was different than that of the overlap spectrum of component bacteria. The MS spectra of specific microbiota showed excellent repeatability and were easier to classify by HCA, with an accuracy close to 90%. These results indicate that the widely used MALDI-TOF MS identification method for individual bacteria can be expanded to classification of microbiota. IMPORTANCE MALDI-TOF MS can be used to classify specific model microbiota. The actual MS spectrum of the model microbiota was not a simple superposition of every single bacterium in a certain proportion but had a specific spectral fingerprint. The specificity of this fingerprint can enhance the accuracy of microbiota classification.
Collapse
Affiliation(s)
- Liangqiang Chen
- Kweichow Moutai Group, Renhuai, Guizhou, People’s Republic of China
| | - Wenjing Gao
- Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, People’s Republic of China
| | - Xue Tan
- Kweichow Moutai Group, Renhuai, Guizhou, People’s Republic of China
| | - Ying Han
- Kweichow Moutai Group, Renhuai, Guizhou, People’s Republic of China
| | - Fu Jiao
- Kweichow Moutai Group, Renhuai, Guizhou, People’s Republic of China
| | - Bin Feng
- Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, People’s Republic of China
| | - Jinghang Xie
- Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, People’s Republic of China
| | - Bin Li
- Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, People’s Republic of China
| | - Huilin Zhao
- Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, People’s Republic of China
| | - Huabin Tu
- Kweichow Moutai Group, Renhuai, Guizhou, People’s Republic of China
| | - Shaoning Yu
- Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, People’s Republic of China
| | - Li Wang
- Kweichow Moutai Group, Renhuai, Guizhou, People’s Republic of China
| |
Collapse
|
17
|
Lei Y, Chen X, Shi J, Liu Y, Xu YJ. Development and application of a data processing method for food metabolomics analysis. Mol Omics 2023. [PMID: 37139637 DOI: 10.1039/d2mo00338d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Food metabolomics is described as the implementation of metabolomics to food systems such as food materials, food processing, and food nutrition. These applications generally create large amounts of data, and although technologies exist to analyze these data and different tools exist for various ecosystems, downstream analysis is still a challenge and the tools are not integrated into a single method. In this article, we developed a data processing method for untargeted LC-MS data in metabolomics, derived from the integration of computational MS tools from OpenMS into the workflow system Konstanz Information Miner (KNIME). This method can analyze raw MS data and produce high-quality visualization. A MS1 spectra-based identification, two MS2 spectra-based identification workflows and a GNPSExport-GNPS workflow are included in this method. Compared with conventional approaches, the results of MS1&MS2 spectra-based identification workflows are combined in this approach via the tolerance of retention times and mass to charge ratios (m/z), which can greatly reduce the rate of false positives in metabolomics datasets. In our example, filtering with the tolerance removed more than 50% of the possible identifications while retaining 90% of the correct identification. The results demonstrated that the developed method is a rapid and reliable method for food metabolomics data processing.
Collapse
Affiliation(s)
- Yuanluo Lei
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Reacher Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, No. 1800, Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China.
| | - Xiaoying Chen
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Reacher Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, No. 1800, Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China.
| | - Jiachen Shi
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Reacher Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, No. 1800, Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China.
| | - Yuanfa Liu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Reacher Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, No. 1800, Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China.
| | - Yong-Jiang Xu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Reacher Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, No. 1800, Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China.
| |
Collapse
|
18
|
Wen L, Yang L, Chen C, Li J, Fu J, Liu G, Kan Q, Ho CT, Huang Q, Lan Y, Cao Y. Applications of multi-omics techniques to unravel the fermentation process and the flavor formation mechanism in fermented foods. Crit Rev Food Sci Nutr 2023; 64:8367-8383. [PMID: 37068005 DOI: 10.1080/10408398.2023.2199425] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Fermented foods are important components of the human diet. There is increasing awareness of abundant nutritional and functional properties present in fermented foods that arise from the transformation of substrates by microbial communities. Thus, it is significant to unravel the microbial communities and mechanisms of characteristic flavor formation occurring during fermentation. There has been rapid development of high-throughput and other omics technologies, such as metaproteomics and metabolomics, and as a result, there is growing recognition of the importance of integrating these approaches. The successful applications of multi-omics approaches and bioinformatics analyses have provided a solid foundation for exploring the fermentation process. Compared with single-omics, multi-omics analyses more accurately delineate microbial and molecular features, thus they are more apt to reveal the mechanisms of fermentation. This review introduces fermented foods and an overview of single-omics technologies - including metagenomics, metatranscriptomics, metaproteomics, and metabolomics. We also discuss integrated multi-omics and bioinformatic analyses and their role in recent research progress related to fermented foods, as well as summarize the main potential pathways involved in certain fermented foods. In the future, multilayered analyses of multi-omics data should be conducted to enable better understanding of flavor formation mechanisms in fermented foods.
Collapse
Affiliation(s)
- Linfeng Wen
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Lixin Yang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Cong Chen
- Guangdong Eco-engineering Polytechnic, Guangzhou, China
| | - Jun Li
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
- Guangdong Meiweixian Flavoring Foods Co., Ltd, Zhongshan, China
| | - Jiangyan Fu
- Guangdong Meiweixian Flavoring Foods Co., Ltd, Zhongshan, China
| | - Guo Liu
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Qixin Kan
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, New Jersey, USA
| | - Qingrong Huang
- Department of Food Science, Rutgers University, New Brunswick, New Jersey, USA
| | - Yaqi Lan
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Yong Cao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
19
|
Hou H, Zhou W, Guo L, Jia S, Zhang X, Wang L. Effects of characteristics of douchi during rapid fermentation and antioxidant activity using different starter cultures. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:2459-2472. [PMID: 36588174 DOI: 10.1002/jsfa.12419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 09/14/2022] [Accepted: 01/02/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND As a traditional Chinese condiment, douchi has attracted attention in Asian and European countries because of its high nutrient content and unique flavors. Douchi is currently produced mostly by natural fermentation. The quality of douchi produced in this way is affected by microbial species, temperature, humidity, and season, so the physical and chemical properties of the product, the content of flavor substances, and its safety vary. In this study, four safe strains with high protease activity, screened previously, namely Bacillus velezensis, Bacillus amyloliquefaciens, Lichtheimia ramosa, and Lichtheimia corymbifera, were used as starter cultures for douchi fermentation. RESULTS After 35 days, the results showed that the pH, titratable acids, free amino-type nitrogen, amino acids, the total number of colonies, and neutral protease activity of all samples had reached an average level. Through gas chromatography-mass spectrometry (GC-MS), the content of key aroma substances aldehydes and esters was higher than in commercial douchi and the free amino acid content of douchi fermented by the four strains was three to five times that of commercial douchi. Douchi fermented by Bacillus amyloliquefaciens had more flavor substances and the highest 2, 2-diphenyl-1-(2, 4, 6-trinitrophenyl) hydrazyl (DPPH) free radical scavenging rates of 92.4%. Four samples yielded total phenolic content and soy isoflavones in the range of 0.98-1.93 g kg-1 and 0.58-0.89 g kg-1 , respectively. CONCLUSION These findings indicate that the use of a high-protease activity starter to produce douchi can improve the quality of douchi to a certain extent. The douchi obtained using Bacillus amyloliquefaciens not only has a good flavor but also has a high level of antioxidant activity. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hongwei Hou
- College of Food Science And Engineering, Shanghai Ocean University, Shanghai, China
| | - Wanting Zhou
- College of Food Science And Engineering, Shanghai Ocean University, Shanghai, China
| | - Lidan Guo
- College of Food Science And Engineering, Shanghai Ocean University, Shanghai, China
| | - Shuang Jia
- College of Food Science And Engineering, Shanghai Ocean University, Shanghai, China
| | - Xiaoyan Zhang
- College of Food Science And Engineering, Shanghai Ocean University, Shanghai, China
| | - Liping Wang
- College of Food Science And Engineering, Shanghai Ocean University, Shanghai, China
- Engineering Research Center of Food Thermal-processing Technology, Shanghai Ocean University, Shanghai, China
- Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai, China
| |
Collapse
|
20
|
Ding S, Tian M, Yang L, Pan Y, Suo L, Zhu X, Ren D, Yu H. Diversity and dynamics of microbial population during fermentation of gray sufu and their correlation with quality characteristics. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
21
|
Everyday Evaluation of Herb/Dietary Supplement–Drug Interaction: A Pilot Study. MEDICINES 2023; 10:medicines10030020. [PMID: 36976309 PMCID: PMC10055849 DOI: 10.3390/medicines10030020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/04/2023] [Accepted: 02/21/2023] [Indexed: 03/06/2023]
Abstract
A lack of reliable information hinders the clinician evaluation of suspected herb–drug interactions. This pilot study was a survey-based study conceived as a descriptive analysis of real-life experiences with herb–drug interaction from the perspective of herbalists, licensed health-care providers, and lay persons. Reported dietary supplement–drug interactions were evaluated against the resources most commonly cited for the evaluation of potential supplement–drug interactions. Disproportionality analyses were performed using tools available to most clinicians using data from the U.S. Federal Adverse Event Reporting System (FAERS) and the US Center for Food Safety and Applied Nutrition (CFSAN) Adverse Event Reporting System (CAERS). Secondary aims of the study included exploration of the reasons for respondent use of dietary supplements and qualitative analysis of respondent’s perceptions of dietary supplement–drug interaction. While agreement among reported supplement–drug interactions with commonly cited resources for supplement–drug interaction evaluation and via disproportionality analyses through FAERS was low, agreement using data from CAERS was high.
Collapse
|
22
|
Fermentation for Designing Innovative Plant-Based Meat and Dairy Alternatives. Foods 2023; 12:foods12051005. [PMID: 36900522 PMCID: PMC10000644 DOI: 10.3390/foods12051005] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/13/2023] [Accepted: 02/17/2023] [Indexed: 03/02/2023] Open
Abstract
Fermentation was traditionally used all over the world, having the preservation of plant and animal foods as a primary role. Owing to the rise of dairy and meat alternatives, fermentation is booming as an effective technology to improve the sensory, nutritional, and functional profiles of the new generation of plant-based products. This article intends to review the market landscape of fermented plant-based products with a focus on dairy and meat alternatives. Fermentation contributes to improving the organoleptic properties and nutritional profile of dairy and meat alternatives. Precision fermentation provides more opportunities for plant-based meat and dairy manufacturers to deliver a meat/dairy-like experience. Seizing the opportunities that the progress of digitalization is offering would boost the production of high-value ingredients such as enzymes, fats, proteins, and vitamins. Innovative technologies such as 3D printing could be an effective post-processing solution following fermentation in order to mimic the structure and texture of conventional products.
Collapse
|
23
|
Román-Camacho JJ, García-García I, Santos-Dueñas IM, Ehrenreich A, Liebl W, García-Martínez T, Mauricio JC. Combining omics tools for the characterization of the microbiota of diverse vinegars obtained by submerged culture: 16S rRNA amplicon sequencing and MALDI-TOF MS. Front Microbiol 2022; 13:1055010. [PMID: 36569054 PMCID: PMC9767973 DOI: 10.3389/fmicb.2022.1055010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022] Open
Abstract
Vinegars elaborated in southern Spain are highly valued all over the world because of their exceptional organoleptic properties and high quality. Among the factors which influence the characteristics of the final industrial products, the composition of the microbiota responsible for the process and the raw material used as acetification substrate have a crucial role. The current state of knowledge shows that few microbial groups are usually present throughout acetification, mainly acetic acid bacteria (AAB), although other microorganisms, present in smaller proportions, may also affect the overall activity and behavior of the microbial community. In the present work, the composition of a starter microbiota propagated on and subsequently developing three acetification profiles on different raw materials, an alcohol wine medium and two other natural substrates (a craft beer and fine wine), was characterized and compared. For this purpose, two different "omics" tools were combined for the first time to study submerged vinegar production: 16S rRNA amplicon sequencing, a culture-independent technique, and matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS), a culture-dependent method. Analysis of the metagenome revealed numerous taxa from 30 different phyla and highlighted the importance of the AAB genus Komagataeibacter, which was much more frequent than the other taxa, and Acetobacter; interestingly, also archaea from the Nitrososphaeraceae family were detected by 16S rRNA amplicon sequencing. MALDI-TOF MS confirmed the presence of Komagataeibacter by the identification of K. intermedius. These tools allowed for identifying some taxonomic groups such as the bacteria genera Cetobacterium and Rhodobacter, the bacteria species Lysinibacillus fusiformis, and even archaea, never to date found in this medium. Definitely, the effect of the combination of these techniques has allowed first, to confirm the composition of the predominant microbiota obtained in our previous metaproteomics approaches; second, to identify the microbial community and discriminate specific species that can be cultivated under laboratory conditions; and third, to obtain new insights on the characterization of the acetification raw materials used. These first findings may contribute to improving the understanding of the microbial communities' role in the vinegar-making industry.
Collapse
Affiliation(s)
- Juan J. Román-Camacho
- Department of Agricultural Chemistry, Edaphology and Microbiology, Agrifood Campus of International Excellence ceiA3, University of Córdoba, Córdoba, Spain
| | - Isidoro García-García
- Department of Inorganic Chemistry and Chemical Engineering, Agrifood Campus of International Excellence ceiA3, Nano Chemistry Institute (IUNAN), University of Córdoba, Córdoba, Spain,*Correspondence: Isidoro García-García,
| | - Inés M. Santos-Dueñas
- Department of Inorganic Chemistry and Chemical Engineering, Agrifood Campus of International Excellence ceiA3, Nano Chemistry Institute (IUNAN), University of Córdoba, Córdoba, Spain
| | - Armin Ehrenreich
- Department of Microbiology, School of Life Sciences, Technical University of Munich, Freising-Weihenstephan, Germany
| | - Wolfgang Liebl
- Department of Microbiology, School of Life Sciences, Technical University of Munich, Freising-Weihenstephan, Germany
| | - Teresa García-Martínez
- Department of Agricultural Chemistry, Edaphology and Microbiology, Agrifood Campus of International Excellence ceiA3, University of Córdoba, Córdoba, Spain
| | - Juan C. Mauricio
- Department of Agricultural Chemistry, Edaphology and Microbiology, Agrifood Campus of International Excellence ceiA3, University of Córdoba, Córdoba, Spain
| |
Collapse
|
24
|
Li C, Al-Dalali S, Zhou H, Xu B. Influence of curing on the metabolite profile of water-boiled salted duck. Food Chem 2022; 397:133752. [DOI: 10.1016/j.foodchem.2022.133752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 07/18/2022] [Accepted: 07/18/2022] [Indexed: 11/16/2022]
|
25
|
Bahule CE, Martins LHDS, Chaúque BJM, Lopes AS. Metaproteomics as a tool to optimize the maize fermentation process. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.09.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
26
|
Bao W, He Y, Yu J, Yang X, Liu M, Ji R. Diversity analysis and gene function prediction of bacteria and fungi of Bactrian camel milk and naturally fermented camel milk from Alxa in Inner Mongolia. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
27
|
Yu H, Liu S, Qin H, Zhou Z, Zhao H, Zhang S, Mao J. Artificial intelligence-based approaches for traditional fermented alcoholic beverages' development: review and prospect. Crit Rev Food Sci Nutr 2022; 64:2879-2889. [PMID: 36310425 DOI: 10.1080/10408398.2022.2128034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Traditional fermented alcoholic beverages (TFABs) have gained widespread acceptance and enjoyed great popularity for centuries. COVID-19 pandemics lead to the surge in health demand for diet, thus TFABs once again attract increased focus for the health benefits. Though the production technology is quite mature, food companies and research institutions are looking for transformative innovation in TFABs to make healthy, nutritious offerings that give a competitive advantage in current beverage market. The implementation of intelligent platforms enables companies and researchers to gather, store and analyze data in a more convenient way. The development of data collection methods contributed to the big data environment of TFABs, providing a fresh perspective that helps brewers to observe and improve the production steps. Among data analytical tools, Artificial Intelligence (AI) is considered to be one of the most promising methodological approaches for big data analytics and decision-making of automated production, and machine learning (ML) is an important method to fulfill the goal. This review describes the development trends and challenges of TFABs in big data era and summarize the application of AI-based methods in TFABs. Finally, we provide perspectives on the potential research directions of new frontiers in application of AI approaches in the supply chain of TFABs.
Collapse
Affiliation(s)
- Huakun Yu
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, State Key Laboratory of Food Science and Technology, School of Food Science and technology, Jiangnan University, Wuxi, China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, China
| | - Shuangping Liu
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, State Key Laboratory of Food Science and Technology, School of Food Science and technology, Jiangnan University, Wuxi, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
- Luzhou Laojiao Group Co. Ltd, Luzhou, China
| | - Hui Qin
- Luzhou Laojiao Group Co. Ltd, Luzhou, China
| | - Zhilei Zhou
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, State Key Laboratory of Food Science and Technology, School of Food Science and technology, Jiangnan University, Wuxi, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
- Shaoxing Key Laboratory of Traditional Fermentation Food and Human Health, Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing, Zhejiang, China
| | - Hongyuan Zhao
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, State Key Laboratory of Food Science and Technology, School of Food Science and technology, Jiangnan University, Wuxi, China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, China
- School of Artificial Intelligence and Computer Science, Jiangnan University, Wuxi, Jiangsu, China
| | - Suyi Zhang
- Luzhou Laojiao Group Co. Ltd, Luzhou, China
| | - Jian Mao
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, State Key Laboratory of Food Science and Technology, School of Food Science and technology, Jiangnan University, Wuxi, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
- Shaoxing Key Laboratory of Traditional Fermentation Food and Human Health, Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing, Zhejiang, China
| |
Collapse
|
28
|
Innovative Application of Metabolomics on Bioactive Ingredients of Foods. Foods 2022; 11:foods11192974. [PMID: 36230049 PMCID: PMC9562173 DOI: 10.3390/foods11192974] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/12/2022] [Accepted: 09/20/2022] [Indexed: 11/17/2022] Open
Abstract
Metabolomics, as a new omics technology, has been widely accepted by researchers and has shown great potential in the field of nutrition and health in recent years. This review briefly introduces the process of metabolomics analysis, including sample preparation and extraction, derivatization, separation and detection, and data processing. This paper focuses on the application of metabolomics in food-derived bioactive ingredients. For example, metabolomics techniques are used to analyze metabolites in food to find bioactive substances or new metabolites in food materials. Moreover, bioactive substances have been tested in vitro and in vivo, as well as in humans, to investigate the changes of metabolites and the underlying metabolic pathways, among which metabolomics is used to find potential biomarkers and targets. Metabolomics provides a new approach for the prevention and regulation of chronic diseases and the study of the underlying mechanisms. It also provides strong support for the development of functional food or drugs. Although metabolomics has some limitations such as low sensitivity, poor repeatability, and limited detection range, it is developing rapidly in general, and also in the field of nutrition and health. At the end of this paper, we put forward our own insights on the development prospects of metabolomics in the application of bioactive ingredients in food.
Collapse
|
29
|
Jia Z, Zhang B, Sharma A, Kim NS, Purohit SM, Green MM, Roche MR, Holliday E, Chen H. Revelation of the sciences of traditional foods. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
30
|
Kang J, Xue Y, Chen X, Han BZ. Integrated multi-omics approaches to understand microbiome assembly in Jiuqu, a mixed-culture starter. Compr Rev Food Sci Food Saf 2022; 21:4076-4107. [PMID: 36038529 DOI: 10.1111/1541-4337.13025] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 07/21/2022] [Accepted: 07/26/2022] [Indexed: 01/28/2023]
Abstract
The use of Jiuqu as a saccharifying and fermenting starter in the production of fermented foods is a very old biotechnological process that can be traced back to ancient times. Jiuqu harbors a hub of microbial communities, in which prokaryotes and eukaryotes cohabit, interact, and communicate. However, the spontaneous fermentation based on empirical processing hardly guarantees the stable assembly of the microbiome and a standardized quality of Jiuqu. This review describes the state of the art, limitations, and challenges towards the application of traditional and omics-based technology to study the Jiuqu microbiome and highlights the need for integrating meta-omics data. In addition, we review the varieties of Jiuqu and their production processes, with particular attention to factors shaping the microbiota of Jiuqu. Then, the potentials of integrated omics approaches used in Jiuqu research are examined in order to understand the assembly of the microbiome and improve the quality of the products. A variety of different approaches, including molecular and mass spectrometry-based techniques, have led to scientific advances in the analysis of the complex ecosystem of Jiuqu. To date, the extensive research on Jiuqu has mainly focused on the microbial community diversity, flavor profiles, and biochemical characteristics. An integrative approach to large-scale omics datasets and cultivated microbiota has great potential for understanding the interrelation of the Jiuqu microbiome. Further research on the Jiuqu microbiome may explain the inherent property of compositional stability and stable performance of a complex microbiota coping with environmental perturbations and provide important insights to reconstruct synthetic microbiota and develop modern intelligent manufacturing procedures for Jiuqu.
Collapse
Affiliation(s)
- Jiamu Kang
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Key Laboratory of Food Bioengineering (China National Light Industry), College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Yansong Xue
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Key Laboratory of Food Bioengineering (China National Light Industry), College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Xiaoxue Chen
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Bei-Zhong Han
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Key Laboratory of Food Bioengineering (China National Light Industry), College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| |
Collapse
|
31
|
Traditional Fermented Foods and Beverages from around the World and Their Health Benefits. Microorganisms 2022; 10:microorganisms10061151. [PMID: 35744669 PMCID: PMC9227559 DOI: 10.3390/microorganisms10061151] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/24/2022] [Accepted: 05/27/2022] [Indexed: 02/04/2023] Open
Abstract
Traditional fermented foods and beverages play an important role in a range of human diets, and several experimental studies have shown their potential positive effects on human health. Studies from different continents have revealed strong associations between the microorganisms present in certain fermented foods (e.g., agave fructans, kefir, yeats, kombucha, chungkookjang, cheeses and vegetables, among others) and weight maintenance, reductions in the risk of cardiovascular disease, antidiabetic and constipation benefits, improvement of glucose and lipids levels, stimulation of the immunological system, anticarcinogenic effects and, most importantly, reduced mortality. Accordingly, the aim of this review is to corroborate information reported in experimental studies that comprised interventions involving the consumption of traditional fermented foods or beverages and their association with human health. This work focuses on studies that used fermented food from 2014 to the present. In conclusion, traditional fermented foods or beverages could be important in the promotion of human health. Further studies are needed to understand the mechanisms involved in inflammatory, immune, chronic and gastrointestinal diseases and the roles of fermented traditional foods and beverages in terms of preventing or managing those diseases.
Collapse
|
32
|
Effects of an Iranian traditional fermented food consumption on blood glucose, blood pressure, and lipid profile in type 2 diabetes: a randomized controlled clinical trial. Eur J Nutr 2022; 61:3367-3375. [PMID: 35511285 DOI: 10.1007/s00394-022-02867-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 03/08/2022] [Indexed: 12/07/2022]
Abstract
BACKGROUND Ash-Kardeh is one of the few fermented foods without a dairy base in Iran, which is traditionally prepared from cereals and plants in the presence of microorganisms (mainly lactic acid bacteria). PURPOSE This study aimed to assess the effects of Ash-Kardeh consumption on blood glucose, lipid profile, and blood pressure in type 2 diabetic patients. METHODS Forty-six patients with type 2 diabetes were studied in this randomized controlled clinical trial. Subjects were randomly allocated into intervention (n = 23) and control (n = 23) groups. Individuals of both groups received the usual treatment of diabetic patients, while those in the intervention group, in addition to the usual treatment, received 250 g of Ash-Kardeh daily for 6 weeks. Fasting blood glucose, blood pressure, and lipid profiles were measured before and after the intervention. RESULTS Compared to the control group, Ash-Kardeh consumption led to a significant decrease in fasting blood glucose (P = 0.003), total cholesterol (P = 0.025), triglyceride (P = 0.003), systolic (P < 0.001), and diastolic blood pressure (P = 0.014) in the intervention group. Also, a significant increase in the concentrations of high-density lipoprotein cholesterol (P = 0.048) was observed after Ash-Kardeh consumption. CONCLUSION It seems that Ash-Kardeh consumption could improve high blood glucose, lipid profile, and hypertension in type 2 diabetic patients but does not affect low-density lipoprotein cholesterol concentrations. This study was registered on 2019-09-15 in the Iranian Registry of Clinical Trials ( www.irct.ir ) with the code number IRCT20170202032367N3.
Collapse
|
33
|
Meng FB, Zhou L, Li JJ, Li YC, Wang M, Zou LH, Liu DY, Chen WJ. The combined effect of protein hydrolysis and Lactobacillus plantarum fermentation on antioxidant activity and metabolomic profiles of quinoa beverage. Food Res Int 2022; 157:111416. [DOI: 10.1016/j.foodres.2022.111416] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/18/2022] [Accepted: 05/23/2022] [Indexed: 12/25/2022]
|
34
|
Jiang N, Wu R, Wu C, Wang R, Wu J, Shi H. Multi-omics approaches to elucidate the role of interactions between microbial communities in cheese flavor and quality. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2070199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Nan Jiang
- College of Food Science, Shenyang Agricultural University, Shenyang, P. R. China
| | - Rina Wu
- College of Food Science, Shenyang Agricultural University, Shenyang, P. R. China
- Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang Agricultural University, Shenyang, P. R. China
| | - Chen Wu
- College of Food Science, Shenyang Agricultural University, Shenyang, P. R. China
| | - Ruhong Wang
- College of Food Science, Shenyang Agricultural University, Shenyang, P. R. China
| | - Junrui Wu
- College of Food Science, Shenyang Agricultural University, Shenyang, P. R. China
- Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang Agricultural University, Shenyang, P. R. China
- Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang Agricultural University, Shenyang, P. R. China
| | - Haisu Shi
- College of Food Science, Shenyang Agricultural University, Shenyang, P. R. China
- Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang Agricultural University, Shenyang, P. R. China
- Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang Agricultural University, Shenyang, P. R. China
| |
Collapse
|
35
|
Bao W, He Y, Liu W. Diversity Analysis of Bacterial and Function Prediction in Hurunge From Mongolia. Front Nutr 2022; 9:835123. [PMID: 35399660 PMCID: PMC8990233 DOI: 10.3389/fnut.2022.835123] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/19/2022] [Indexed: 11/13/2022] Open
Abstract
With the continuous infiltration of industrialization and modern lifestyle into pastoral areas, the types and processing capacity of Hurunge are decreasing, and the beneficial microbial resources contained in it are gradually disappearing. The preservation and processing of Hurunge are very important for herdsmen to successfully produce high-quality koumiss in the second year. Therefore, in this study, 12 precious Hurunge samples collected from Bulgan Province, Ovorkhangay Province, Arkhangay Province, and Tov Province of Mongolia were sequenced based on the V3-V4 region of the 16S rRNA gene, and the bacterial diversity and function were predicted and analyzed. There were significant differences in the species and abundance of bacteria in Hurunge from different regions and different production methods (p < 0.05). Compared with the traditional fermentation methods, the OTU level of Hurunge fermented in the capsule was low, the Acetobacter content was high and the bacterial diversity was low. Firmicutes and Lactobacillus were the dominant phylum and genus of 12 samples, respectively. The sample QHA contained Komagataeibacter with the potential ability to produce bacterial nanocellulose, and the abundance of Lactococcus in the Tov Province (Z) was significantly higher than that in the other three regions. Functional prediction analysis showed that genes related to the metabolism of bacterial growth and reproduction, especially carbohydrate and amino acid metabolism, played a dominant role in microorganisms. In summary, it is of great significance to further explore the bacterial diversity of Hurunge for the future development and research of beneficial microbial resources, promotion, and protection of the traditional ethnic dairy products.
Collapse
Affiliation(s)
- Wuyundalai Bao
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, China
| | | | | |
Collapse
|
36
|
Valdés A, Álvarez-Rivera G, Socas-Rodríguez B, Herrero M, Ibáñez E, Cifuentes A. Foodomics: Analytical Opportunities and Challenges. Anal Chem 2022; 94:366-381. [PMID: 34813295 PMCID: PMC8756396 DOI: 10.1021/acs.analchem.1c04678] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Alberto Valdés
- Laboratory of Foodomics, Institute
of Food Science Research, CIAL, CSIC, Nicolas Cabrera 9, Madrid, 28049, Spain
| | - Gerardo Álvarez-Rivera
- Laboratory of Foodomics, Institute
of Food Science Research, CIAL, CSIC, Nicolas Cabrera 9, Madrid, 28049, Spain
| | - Bárbara Socas-Rodríguez
- Laboratory of Foodomics, Institute
of Food Science Research, CIAL, CSIC, Nicolas Cabrera 9, Madrid, 28049, Spain
| | - Miguel Herrero
- Laboratory of Foodomics, Institute
of Food Science Research, CIAL, CSIC, Nicolas Cabrera 9, Madrid, 28049, Spain
| | - Elena Ibáñez
- Laboratory of Foodomics, Institute
of Food Science Research, CIAL, CSIC, Nicolas Cabrera 9, Madrid, 28049, Spain
| | - Alejandro Cifuentes
- Laboratory of Foodomics, Institute
of Food Science Research, CIAL, CSIC, Nicolas Cabrera 9, Madrid, 28049, Spain
| |
Collapse
|
37
|
Abstract
The growing interest in the consumption and study of traditionally fermented food worldwide has led to the development of numerous scientific investigations that have focused on analyzing the microbial and nutritional composition and the health effects derived from the consumption of these foods. Traditionally fermented foods and beverages are a significant source of nutrients, including proteins, essential fatty acids, soluble fiber, minerals, vitamins, and some essential amino acids. Additionally, fermented foods have been considered functional due to their prebiotic content, and the presence of specific lactic acid bacterial strains (LAB), which have shown positive effects on the balance of the intestinal microbiota, providing a beneficial impact in the treatment of diseases. This review presents a bibliographic compilation of scientific studies assessing the effect of the nutritional content and LAB profile of traditional fermented foods on different conditions such as obesity, diabetes, and gastrointestinal disorders.
Collapse
|
38
|
Keșa AL, Pop CR, Mudura E, Salanță LC, Pasqualone A, Dărab C, Burja-Udrea C, Zhao H, Coldea TE. Strategies to Improve the Potential Functionality of Fruit-Based Fermented Beverages. PLANTS (BASEL, SWITZERLAND) 2021; 10:2263. [PMID: 34834623 PMCID: PMC8623731 DOI: 10.3390/plants10112263] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/13/2021] [Accepted: 10/17/2021] [Indexed: 06/01/2023]
Abstract
It is only recently that fermentation has been facing a dynamic revival in the food industry. Fermented fruit-based beverages are among the most ancient products consumed worldwide, while in recent years special research attention has been granted to assess their functionality. This review highlights the functional potential of alcoholic and non-alcoholic fermented fruit beverages in terms of chemical and nutritional profiles that impact on human health, considering the natural occurrence and enrichment of fermented fruit-based beverages in phenolic compounds, vitamins and minerals, and pro/prebiotics. The health benefits of fruit-based beverages that resulted from lactic, acetic, alcoholic, or symbiotic fermentation and specific daily recommended doses of each claimed bioactive compound were also highlighted. The latest trends on pre-fermentative methods used to optimize the extraction of bioactive compounds (maceration, decoction, and extraction assisted by supercritical fluids, microwave, ultrasound, pulsed electric fields, high pressure homogenization, or enzymes) are critically assessed. As such, optimized fermentation processes and post-fermentative operations, reviewed in an industrial scale-up, can prolong the shelf life and the quality of fermented fruit beverages.
Collapse
Affiliation(s)
- Ancuța-Liliana Keșa
- Department of Food Engineering, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania; (A.-L.K.); (E.M.)
| | - Carmen Rodica Pop
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (C.R.P.); (L.C.S.)
| | - Elena Mudura
- Department of Food Engineering, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania; (A.-L.K.); (E.M.)
| | - Liana Claudia Salanță
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (C.R.P.); (L.C.S.)
| | - Antonella Pasqualone
- Department of Soil, Plant and Food Sciences, University of Bari ‘Aldo Moro’, Via Amendola, 165/A, 70126 Bari, Italy;
| | - Cosmin Dărab
- Department of Electric Power Systems, Faculty of Electrical Engineering, Technical University of Cluj-Napoca, 400027 Cluj-Napoca, Romania;
| | - Cristina Burja-Udrea
- Industrial Engineering and Management Department, Faculty of Engineering, Lucian Blaga University of Sibiu, 10 Victoriei Blv., 550024 Sibiu, Romania;
| | - Haifeng Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China;
- Research Institute for Food Nutrition and Human Health, Guangzhou 510640, China
| | - Teodora Emilia Coldea
- Department of Food Engineering, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania; (A.-L.K.); (E.M.)
| |
Collapse
|
39
|
Ren F, Yan D, Liu Y, Wang C, Guo C. Bacterial and fungal communities of traditional fermented Chinese soybean paste (Doujiang) and their properties. Food Sci Nutr 2021; 9:5457-5466. [PMID: 34646516 PMCID: PMC8498056 DOI: 10.1002/fsn3.2505] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/24/2021] [Accepted: 07/17/2021] [Indexed: 11/30/2022] Open
Abstract
Soybean paste (Doujiang) is one of the traditional fermented foods from China, fermented by various microorganisms. However, the microflora of Doujiang keeps little known. In this study, the microbial communities of seven kinds of representative Doujiang samples were investigated by both culture-independent and culture-dependent methods. We found that core OTUs among seven Doujiang samples were mainly from Bacillus, Pseudomonas, Candida, and Aspergillus according to Illumina sequencing. Every type of Doujiang sample harbored a different composition of microbial community. Doujiang LSJ and LBJ had the highest bacterial and fungal richness and diversity, respectively. The structure of microbial community was remarkably correlated with Doujiang properties-pH, and the content of total protein, soluble protein, amino acid, and total sugar (p < .05). Bacillus spp. were most frequently isolated bacterial species. Fungi of Monascus, Candida, and Aspergillus were also isolated. Eleven microbial strains showed high protease activities to degrade corn proteins, which can form obvious transparent hydrolytic circles in corn gluten meal medium plates. Therefore, microbial communities were supposed to tightly connect to Doujiang type and properties. It is possible to apply potential protein-degrading microbial strains to corn byproducts for protein production in the future study.
Collapse
Affiliation(s)
- Fei Ren
- Institute of Cereal & Oil Science and TechnologyAcademy of National Food and Strategic Reserves AdministrationBeijingChina
| | - Dong‐Hui Yan
- The Key Laboratory of Forest Protection affiliated to State Forestry Administration of ChinaInstitute of Forest EcologyEnvironment and ProtectionChinese Academy of ForestryBeijingChina
| | - Yuchun Liu
- Institute of Cereal & Oil Science and TechnologyAcademy of National Food and Strategic Reserves AdministrationBeijingChina
| | - Chao Wang
- Institute of Cereal & Oil Science and TechnologyAcademy of National Food and Strategic Reserves AdministrationBeijingChina
| | - Chao Guo
- Institute of Cereal & Oil Science and TechnologyAcademy of National Food and Strategic Reserves AdministrationBeijingChina
| |
Collapse
|
40
|
Kang J, Hu Y, Ding Z, Ye L, Li H, Cheng J, Fan L, Zhao H, Han B, Zheng X. Deciphering the Shifts in Microbial Community Diversity From Material Pretreatment to Saccharification Process of Fuyu-Flavor Baijiu. Front Microbiol 2021; 12:705967. [PMID: 34489894 PMCID: PMC8417803 DOI: 10.3389/fmicb.2021.705967] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/26/2021] [Indexed: 11/14/2022] Open
Abstract
The microbiota of the pretreatment phase is crucial to the assembly of the microbial community in the saccharification of fuyu-flavor baijiu. This study investigates the shifts in microbial community diversity from the pretreatment of raw materials to the end of saccharification. High-throughput sequencing reveals that Lactobacillus, Weissella, and Bacillus in the bacterial community and Rhizopus, Candida, Pichia, and Aspergillus in the fungal community are predominant during raw material pretreatment and saccharification processes. Also, 11 bacterial genera, including Bacillus, Lactobacillus, Leuconostoc, Weissella, Lactococcus, and Acetobacter, and eight yeast genera, including Candida, Pichia, Saccharomyces, and Wickerhamomyces, were isolated from the initial saccharification stage by culture-dependent approaches. Sourcetracker analysis indicates that the cooling grains and rice husks were the main contributors to the bacterial community composition of the saccharification process, and Qu was the main contributor to the shaping of the fungal community structure during the saccharification process. Abundance variation of the predictive functional profiles of microbial communities encoding for key enzymes involved in pyruvate metabolism, starch and sucrose metabolism, and glycolysis/gluconeogenesis during the pretreatment and saccharification phases were inferred by PICRUSt2 analysis. The results of this study will be utilized to produce consistently high-quality fuyu-flavor baijiu via better controlling the shaping of microbial community structures during the pretreatment and fermentation processes.
Collapse
Affiliation(s)
- Jiamu Kang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Yunan Hu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Ziyuan Ding
- Nutrition & Health Research Institute, COFCO Corporation, Beijing, China.,Beijing Key Laboratory of Nutrition, Health and Food Safety, Beijing, China
| | - Li Ye
- Jiugui Liquor Co., Ltd., Hunan, China
| | - Haoran Li
- Nutrition & Health Research Institute, COFCO Corporation, Beijing, China.,Beijing Key Laboratory of Nutrition, Health and Food Safety, Beijing, China
| | - Jun Cheng
- Jiugui Liquor Co., Ltd., Hunan, China
| | - Lin Fan
- Jiugui Liquor Co., Ltd., Hunan, China
| | - Hu Zhao
- Jiugui Liquor Co., Ltd., Hunan, China
| | - Beizhong Han
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Xiaowei Zheng
- Nutrition & Health Research Institute, COFCO Corporation, Beijing, China.,Beijing Key Laboratory of Nutrition, Health and Food Safety, Beijing, China.,Jiugui Liquor Co., Ltd., Hunan, China
| |
Collapse
|
41
|
Rizo J, Guillén D, Díaz-Ruiz G, Wacher C, Encarnación S, Sánchez S, Rodríguez-Sanoja R. Metaproteomic Insights Into the Microbial Community in Pozol. Front Nutr 2021; 8:714814. [PMID: 34490328 DOI: 10.3389/fnut.2021.714814] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 07/05/2021] [Indexed: 01/11/2023] Open
Abstract
Pozol is an acidic, refreshing, and non-alcoholic traditional Mayan beverage made with nixtamalized corn dough that is fermented spontaneously. The extensive analysis of the microbiology, biochemistry and metaproteomics of pozol allowed the construction of a comprehensive image of the fermentation system. The main changes in both the substrate and the microbiota occurred in the first 9 h of fermentation. The increase in microorganisms correlated with the drop in pH and with the decrease in the contents of carbohydrates, lipids, and nitrogen, which shows that this stage has the highest metabolic activity. Bacterial proteins were mainly represented by those of lactic acid bacteria, and among them, the proteins from genus Streptococcus was overwhelmingly the most abundant. Yeast proteins were present in all the analyzed samples, while proteins from filamentous fungi increased up to 48 h. The metaproteomic approach allowed us to identify several previously unknown enzyme complexes in the system. Additionally, enzymes for hydrolysis of starch, hemicellulose and cellulose were found, indicating that all these substrates can be used as a carbon source by the microbiota. Finally, enzymes related to the production of essential intermediates involved in the synthesis of organic acids, acetoin, butanediol, fatty acids and amino acids important for the generation of compounds that contribute to the sensorial quality of pozol, were found.
Collapse
Affiliation(s)
- Jocelin Rizo
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico.,Programa de Doctorado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Daniel Guillén
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Gloria Díaz-Ruiz
- Departamento de Alimentos y Biotecnología, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Carmen Wacher
- Departamento de Alimentos y Biotecnología, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Sergio Encarnación
- Departamento de Genómica Funcional de Procariontes, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Sergio Sánchez
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Romina Rodríguez-Sanoja
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
42
|
Utpott M, Rodrigues E, Rios ADO, Mercali GD, Flôres SH. Metabolomics: An analytical technique for food processing evaluation. Food Chem 2021; 366:130685. [PMID: 34333182 DOI: 10.1016/j.foodchem.2021.130685] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 12/16/2022]
Abstract
This review aimed to retrieve the most recent research with strong impact concerning the application of metabolomics analysis in food processing. The literature reveals the high capacity of this methodology to evaluate chemical and organoleptic transformations that occur during food production. Current and potential applications of metabolomics analysis will be addressed, focusing on process-composition-function relationships. The use of the metabolomics approach to evaluate transformations in foods submitted to minimal processes, heat or cold treatments, drying, fermentation, chemical and enzymatic treatments and processes using innovative technologies will be discussed. Moreover, the main strategies and advantages of metabolomics-based approaches are reviewed, as well as the most used analytical platforms. Overall, metabolomics can be seen as an important tool to support academia and industry on pursuing knowledge about the transformation of raw animal or plant materials into ready-to-eat products.
Collapse
Affiliation(s)
- Michele Utpott
- Bioactive Compounds Laboratory, Food Science and Technology Institute, Federal University of Rio Grande do Sul, Avenue Bento Gonçalves n° 9500, P. O. Box 15059, Porto Alegre, Rio Grande do Sul 91501-970, Brazil.
| | - Eliseu Rodrigues
- Food Science and Technology Institute, Federal University of Rio Grande do Sul, Avenue Bento Gonçalves n° 9500, Porto Alegre, Rio Grande do Sul 91501-970, Brazil.
| | - Alessandro de Oliveira Rios
- Bioactive Compounds Laboratory, Food Science and Technology Institute, Federal University of Rio Grande do Sul, Avenue Bento Gonçalves n° 9500, P. O. Box 15059, Porto Alegre, Rio Grande do Sul 91501-970, Brazil.
| | - Giovana Domeneghini Mercali
- Food Science and Technology Institute, Federal University of Rio Grande do Sul, Avenue Bento Gonçalves n° 9500, Porto Alegre, Rio Grande do Sul 91501-970, Brazil.
| | - Simone Hickmann Flôres
- Bioactive Compounds Laboratory, Food Science and Technology Institute, Federal University of Rio Grande do Sul, Avenue Bento Gonçalves n° 9500, P. O. Box 15059, Porto Alegre, Rio Grande do Sul 91501-970, Brazil.
| |
Collapse
|
43
|
Gustaw K, Niedźwiedź I, Rachwał K, Polak-Berecka M. New Insight into Bacterial Interaction with the Matrix of Plant-Based Fermented Foods. Foods 2021; 10:1603. [PMID: 34359473 PMCID: PMC8304663 DOI: 10.3390/foods10071603] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 06/24/2021] [Accepted: 07/08/2021] [Indexed: 12/12/2022] Open
Abstract
Microorganisms have been harnessed to process raw plants into fermented foods. The adaptation to a variety of plant environments has resulted in a nearly inseparable association between the bacterial species and the plant with a characteristic chemical profile. Lactic acid bacteria, which are known for their ability to adapt to nutrient-rich niches, have altered their genomes to dominate specific habitats through gene loss or gain. Molecular biology approaches provide a deep insight into the evolutionary process in many bacteria and their adaptation to colonize the plant matrix. Knowledge of the adaptive characteristics of microorganisms facilitates an efficient use thereof in fermentation to achieve desired final product properties. With their ability to acidify the environment and degrade plant compounds enzymatically, bacteria can modify the textural and organoleptic properties of the product and increase the bioavailability of plant matrix components. This article describes selected microorganisms and their competitive survival and adaptation in fermented fruit and vegetable environments. Beneficial changes in the plant matrix caused by microbial activity and their beneficial potential for human health are discussed as well.
Collapse
Affiliation(s)
| | | | - Kamila Rachwał
- Department of Biotechnology, Microbiology and Human Nutrition, Faculty of Food Science and Biotechnology, University of Life Sciences in Lublin, 8 Skromna Street, 20-704 Lublin, Poland; (K.G.); (I.N.); (M.P.-B.)
| | | |
Collapse
|
44
|
Shi Y, Feng R, Mao J, Liu S, Zhou Z, Ji Z, Chen S, Mao J. Structural Characterization of Peptides From Huangjiu and Their Regulation of Hepatic Steatosis and Gut Microbiota Dysbiosis in Hyperlipidemia Mice. Front Pharmacol 2021; 12:689092. [PMID: 34220514 PMCID: PMC8243288 DOI: 10.3389/fphar.2021.689092] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 06/04/2021] [Indexed: 12/13/2022] Open
Abstract
Hyperlipidemia is a chronic disorder that is difficult to cure and usually treated with long-term lipid-reducing drugs. Recent trends have led to the use of diet therapies or food-derived strategies in the treatment of such long-term diseases. The Chinese rice wine (huangjiu) contains a wide range of bioactive peptides that are produced during the multi-species fermentation process. To clarify the regulation effects of lipid metabolism and gut microbiota by huangjiu bioactive peptides, three huangjiu peptides were isolated, purified and characterized by hyper-filtration, macroporous resin, gel filtration separation and structural identification. Meanwhile, a mouse model of high-fat diet-induced hyperlipidemia was established to study the effects of huangjiu peptides on serum biomarker, hepatic metabolism and gut microbiota dysbiosis. Experimental results showed that huangjiu peptides T1 and T2 (HpT1, HpT2) treatment alleviated the increase in serum total cholesterol, triglyceride, low-density lipoprotein cholesterol levels and aberrant hepatic lipid accumulation in the high-fat diet-induced hyperlipidemia mice. Furthermore, HpT2 and HpT1 restored the α-diversity and structure of gut microbial community after hyperlipidemia-induced microbiota disturbance compared with simvastatin and HpT3. The administration of HpT2 and HpT1 regulated the microbiota-mediated gut ecology through alterations of characteristic taxa including Lactobacillus, Ileibacterium, Faecalibaculum and Alloprevotella by linear discriminant analysis effect size analysis. Collectively, our results offer new insights into the abilities of food-derived peptides on alleviation of high-fat diet-induced hyperlipidemia, hepatic steatosis and gut dysbiosis in mice.
Collapse
Affiliation(s)
- Ying Shi
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China.,Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing, China
| | - Ruixue Feng
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jieqi Mao
- College of Agriculture and Environmental Sciences, University of California, Davis, CA, United States
| | - Shuangping Liu
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China.,Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing, China.,National Engineering Research Center of Chinese Rice Wine, Zhejiang Guyuelongshan Shaoxing Wine CO., Ltd, Shaoxing, China
| | - Zhilei Zhou
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China.,Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing, China
| | - Zhongwei Ji
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China.,Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing, China
| | - Shuguang Chen
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS and PUMC), Beijing, China
| | - Jian Mao
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China.,Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing, China
| |
Collapse
|
45
|
Vieira KCDO, Silva HRAD, Rocha IPM, Barboza E, Eller LKW. Foodborne pathogens in the omics era. Crit Rev Food Sci Nutr 2021; 62:6726-6741. [PMID: 33783282 DOI: 10.1080/10408398.2021.1905603] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Outbreaks and deaths related to Foodborne Diseases (FBD) occur constantly in the world, as a result of the consumption of contaminated foodstuffs with pathogens such as Listeria monocytogenes, Escherichia coli, Staphylococcus aureus, Salmonella spp, Clostridium spp. and Campylobacter spp. The purpose of this review is to discuss the main omic techniques applied in foodborne pathogen and to demonstrate their functionalities through the food chain and to guarantee the food safety. The main techniques presented are genomic, transcriptomic, secretomic, proteomic, and metabolomic, which together, in the field of food and nutrition, are known as "Foodomics." This review had highlighted the potential of omics to integrate variables that contribute to food safety and to enable us to understand their application on foodborne diseases. The appropriate use of these techniques had driven the definition of critical parameters to achieve successful results in the improvement of consumers health, costs and to obtain safe and high-quality products.
Collapse
Affiliation(s)
| | | | | | - Emmanuel Barboza
- Health Sciences Faculty, University of Western Sao Paulo, Presidente Prudente, Sao Paulo, Brazil
| | | |
Collapse
|
46
|
Temperature-Induced Annual Variation in Microbial Community Changes and Resulting Metabolome Shifts in a Controlled Fermentation System. mSystems 2020; 5:5/4/e00555-20. [PMID: 32694129 PMCID: PMC7566281 DOI: 10.1128/msystems.00555-20] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
We used Chinese liquor fermentation as a model system to show that microbiome composition changes more dramatically across seasons than throughout the fermentation process within seasons. These changes translate to differences in the metabolome as the ultimate functional outcome of microbial activity, suggesting that temporal changes in microbiome composition are translating into functional changes. This result is striking as it suggests that microbial functioning, despite controlled conditions in the fermentors, fluctuates over season along with external temperature differences, which threatens a reproducible food taste. As such, we believe that our study provides a stepping-stone into novel taxonomy-functional studies that promote future work in other systems and that also is relevant in applied settings to better control surrounding conditions in food production. We are rapidly increasing our understanding on the spatial distribution of microbial communities. However, microbial functioning, as well as temporal differences and mechanisms causing microbial community shifts, remains comparably little explored. Here, using Chinese liquor fermentation as a model system containing a low microbial diversity, we studied temporal changes in microbial community structure and functioning. For that, we used high-throughput sequencing to analyze the composition of bacteria and fungi and analyzed the microbially derived metabolome throughout the fermentation process in all four seasons in both 2018 and 2019. We show that microbial communities and the metabolome changed throughout the fermentation process in each of the four seasons, with metabolome diversity increasing throughout the fermentation process. Across seasons, bacterial and fungal communities as well as the metabolome driven by 10 indicator microorganisms and six metabolites varied even more. Daily average temperature in the external surroundings was the primary determinant of the observed temporal microbial community and metabolome changes. Collectively, our work reveals critical insights into patterns and processes determining temporal changes of microbial community composition and functioning. We highlight the importance of linking taxonomic to functional changes in microbial ecology to enable predictions of human-relevant applications. IMPORTANCE We used Chinese liquor fermentation as a model system to show that microbiome composition changes more dramatically across seasons than throughout the fermentation process within seasons. These changes translate to differences in the metabolome as the ultimate functional outcome of microbial activity, suggesting that temporal changes in microbiome composition are translating into functional changes. This result is striking as it suggests that microbial functioning, despite controlled conditions in the fermentors, fluctuates over season along with external temperature differences, which threatens a reproducible food taste. As such, we believe that our study provides a stepping-stone into novel taxonomy-functional studies that promote future work in other systems and that also is relevant in applied settings to better control surrounding conditions in food production.
Collapse
|
47
|
Yeast-Free Doughs by Zymomonas mobilis: Evaluation of Technological and Fermentation Performances by Using a Metabolomic Approach. Microorganisms 2020; 8:microorganisms8060792. [PMID: 32466402 PMCID: PMC7357046 DOI: 10.3390/microorganisms8060792] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/22/2020] [Accepted: 05/22/2020] [Indexed: 12/15/2022] Open
Abstract
This research focuses on the leavening performances and development of volatile compounds of three strains of Zymomonas mobilis in the production of yeast-free doughs. Z. mobilis DSM 3580, 424, and 473 were used in doughs supplemented with glucose and with or without NaCl. Z. mobilis produced about 10 mg ethanol/g dough, with maximum dough volumes (640–680 mL) being reached after 2 h leavening. NaCl addition postponed this parameter up to 6 h. Among organic acids, hexanoic acid resulted the highest produced compound; DSM 424 and 473 formed more propanoic, butanoic and pentanoic acid, being both negatively affected by NaCl. Esters were mainly discriminated on NaCl addition, with octanoic acid (DSM 3580), butanoic acid (DSM 424), and propanoic acid (DSM 473) ethyl esters as main components. DSM 3580 specifically produced 2-heptanal, DSM 424 2-hexadecenal, (E) and DSM 473 octanal, while DSM 424 and DSM 473 produced 2-butanone-4-hydroxy better than DSM 3580. Z. mobilis unique signatures were the production of nonanoic and undecanoic acids, 2-hexadecenal, (E), L(+)-tartaric acid diethyl ester and 3-decen-5-one, 4-methyl, (E). This outcome can pave the way for using Z. mobilis in baking goods, providing innovation possibilities in the area of yeast-free leavened products.
Collapse
|
48
|
Nissen L, Bordoni A, Gianotti A. Shift of Volatile Organic Compounds (VOCs) in Gluten-Free Hemp-Enriched Sourdough Bread: A Metabolomic Approach. Nutrients 2020; 12:nu12041050. [PMID: 32290149 PMCID: PMC7230689 DOI: 10.3390/nu12041050] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/01/2020] [Accepted: 04/07/2020] [Indexed: 02/08/2023] Open
Abstract
Hemp seed flour represents a potential ingredient for protein enrichment of gluten-free bakery products, the nutritional value of which could be further increased by fermentation with sourdough or with beneficial lactic acid bacteria strains. In this study, a metabolomic approach was used to evaluate the effect of hemp seed flour addition and sourdough fermentation on the production of flavoring and health-related volatile organic compounds (VOCs) in a gluten-free bread. Multivariate analysis of VOCs provided an in-depth description of the effects of hemp seed flour addition and sourdough fermentation on flavoring and bioactive compounds. In particular, an increased concentration of antimicrobial compounds, a larger spectrum of bioactive VOCs and a typical flavoring profile was evidenced in comparison to standard products. Furthermore, an increase of fermentation metabolites was observed in comparison to a standard dough, relating to abundances of 2-butanone-3-hydroxy, acetic acid, ethanol, and 1,4-butanediol. This study provides new insights on the evolution of flavoring and bioactive hemp seed flour constituents during sourdough fermentation, evidencing their retention in baked goods, and describes a new approach that could guide the formulation of innovative, fermented food with enhanced nutritional value.
Collapse
Affiliation(s)
- Lorenzo Nissen
- CIRI - Interdepartamental Centre of Agri-Food Industrial Research, Alma Mater Studiorum University of Bologna, P.za G. Goidanich 60, 47521 Cesena, FC, Italy; (L.N.); (A.G.)
| | - Alessandra Bordoni
- CIRI - Interdepartamental Centre of Agri-Food Industrial Research, Alma Mater Studiorum University of Bologna, P.za G. Goidanich 60, 47521 Cesena, FC, Italy; (L.N.); (A.G.)
- DiSTAL-Department of Agricultural and Food Sciences, Alma Mater Studiorum University of Bologna, Piazza Goidanich, 60–47521 Cesena (FC), Italy
- Correspondence:
| | - Andrea Gianotti
- CIRI - Interdepartamental Centre of Agri-Food Industrial Research, Alma Mater Studiorum University of Bologna, P.za G. Goidanich 60, 47521 Cesena, FC, Italy; (L.N.); (A.G.)
- DiSTAL-Department of Agricultural and Food Sciences, Alma Mater Studiorum University of Bologna, Piazza Goidanich, 60–47521 Cesena (FC), Italy
| |
Collapse
|
49
|
Hauptmann AL, Paulová P, Castro-Mejía JL, Hansen LH, Sicheritz-Pontén T, Mulvad G, Nielsen DS. The microbial composition of dried fish prepared according to Greenlandic Inuit traditions and industrial counterparts. Food Microbiol 2020; 85:103305. [DOI: 10.1016/j.fm.2019.103305] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 06/14/2019] [Accepted: 08/12/2019] [Indexed: 01/19/2023]
|
50
|
Hauptmann AL, Paulová P, Hansen LH, Sicheritz-Pontén T, Mulvad G, Nielsen DS. Microbiota in foods from Inuit traditional hunting. PLoS One 2020; 15:e0227819. [PMID: 31935269 PMCID: PMC6959823 DOI: 10.1371/journal.pone.0227819] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 12/30/2019] [Indexed: 01/21/2023] Open
Abstract
The foods we eat contain microorganisms that we ingest alongside the food. Industrialized food systems offer great advantages from a safety point of view, but have also been accused of depleting the diversity of the human microbiota with negative implications for human health. In contrast, artisanal traditional foods are potential sources of a diverse food microbiota. Traditional foods of the Greenlandic Inuit are comprised of animal-sourced foods prepared in the natural environment and are often consumed raw. These foods, some of which are on the verge of extinction, have not previously been microbiologically characterized. We mapped the microbiota of foods stemming from traditional Inuit land-based hunting activities. The foods included in the current study are dried muskox and caribou meat, caribou rumen and intestinal content as well as larval parasites from caribou hides, all traditional Inuit foods. This study shows that traditional drying methods are efficient for limiting microbial growth through desiccation. The results also show the rumen content of the caribou to be a highly diverse source of microbes with potential for degradation of plants. Finally, a number of parasites were shown to be included in the biodiversity of the assessed traditional foods. Taken together, the results map out a diverse source of ingested microbes and parasites that originate from the natural environment. These results have implications for understanding the nature-sourced traditional Inuit diet, which is in contrast to current day diet recommendations as well as modern industrialized food systems.
Collapse
Affiliation(s)
- Aviaja L. Hauptmann
- Greenland Center for Health Research, Ilisimatusarfik—University of Greenland, Nuuk, Greenland
- The Greenland Institute of Natural Resources, Nuuk, Greenland
- * E-mail:
| | - Petronela Paulová
- Department of Food Science, The University of Copenhagen, Frederiksberg, Denmark
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | | | - Thomas Sicheritz-Pontén
- Centre of Excellence for Omics-Driven Computational Biodiscovery (COMBio), AIMST University, Kedah, Malaysia
- Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Gert Mulvad
- Greenland Center for Health Research, Ilisimatusarfik—University of Greenland, Nuuk, Greenland
| | - Dennis S. Nielsen
- Department of Food Science, The University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|