1
|
Wu J, Shen S, Cheng H, Pan H, Ye X, Chen S, Chen J. RG-I pectic polysaccharides and hesperidin synergistically modulate gut microbiota: An in vitro study targeting the proportional relationship. Food Chem 2025; 462:141010. [PMID: 39217745 DOI: 10.1016/j.foodchem.2024.141010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/29/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
In this study, we investigated how different proportions blends of Rhamnogalacturonan-I pectic polysaccharides and hesperidin impact the gut microbiota and metabolites using an in vitro simulated digestion and fermentation model. The results indicated that both of them could modulate the gut microbiota and produce beneficial metabolites. However, their blends in particular proportions (such as 1:1) exhibited remarkable synergistic effects on modulating the intestinal microenvironment, surpassing the effects observed with individual components. Specifically, these blends could benefit the host by increasing short-chain fatty acids production (such as acetate), improving hesperidin bioavailability, producing more metabolites (such as hesperetin, phenolic acids), and promoting the growth of beneficial bacteria. This synergistic and additive effect was inseparable from the role of gut microbiota. Certain beneficial bacteria, such as Blautia, Faecalibacterium, and Prevotella, exhibited strong preferences for those blends, thereby contributing to host health through participating in carbohydrate and flavonoid metabolism.
Collapse
Affiliation(s)
- Jiaxiong Wu
- Ningbo Innovation Center, Zhejiang University, Ningbo 315100, China; College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China; Zhejiang University Zhongyuan Institute, Zhengzhou 450000, China
| | - Sihuan Shen
- Ningbo Innovation Center, Zhejiang University, Ningbo 315100, China; College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China; Zhejiang University Zhongyuan Institute, Zhengzhou 450000, China
| | - Huan Cheng
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China; Zhejiang University Zhongyuan Institute, Zhengzhou 450000, China
| | - Haibo Pan
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China; Zhejiang University Zhongyuan Institute, Zhengzhou 450000, China
| | - Xingqian Ye
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China; Zhejiang University Zhongyuan Institute, Zhengzhou 450000, China
| | - Shiguo Chen
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China; Zhejiang University Zhongyuan Institute, Zhengzhou 450000, China
| | - Jianle Chen
- Ningbo Innovation Center, Zhejiang University, Ningbo 315100, China; College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
2
|
Aslan MN, Sukan-Karaçağıl B, Acar-Tek N. Roles of citrus fruits on energy expenditure, body weight management, and metabolic biomarkers: a comprehensive review. Nutr Rev 2024; 82:1292-1307. [PMID: 37702528 PMCID: PMC11317776 DOI: 10.1093/nutrit/nuad116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023] Open
Abstract
Citrus fruits are widely consumed for their nutritional and health benefits. They belong to the Rutaceae and have many varieties, such as sweet orange (Citrus sinensis), which is the most popular. Citrus fruits are rich in water (>80%), dietary fiber, and vitamins. They also contain bioactive components, which may modulate energy metabolism and lipid oxidation through various mechanisms. These mechanisms include stimulating β3-adrenergic receptors, increasing mitochondrial biogenesis and thermogenesis, activating AMP kinase and peroxisome proliferator-activated receptor-gamma coactivator-1α pathways, inhibiting lipogenesis and lipid accumulation, and inducing browning of white adipose tissue. This review summarizes the mechanisms and outcomes of citrus fruits and their metabolites on energy metabolism and body weight in different experimental models. The literature was searched for in vitro and in vivo animal and human studies that investigated the effects of citrus consumption on energy expenditure, thermogenesis, adipogenesis, and lipid accumulation. Citrus fruits and their metabolites have shown promising effects on energy metabolism and lipid oxidation in in vitro and in vivo animal studies. However, the evidence from human studies is limited and inconsistent. Possible reasons for the discrepancy are briefly discussed, and knowledge gaps and research needs are identified for future studies. Citrus fruits may have beneficial effects on energy metabolism and body weight, but more rigorous and well-designed human trials are needed to confirm their efficacy and safety.
Collapse
Affiliation(s)
- Merve Nur Aslan
- Faculty of Health Sciences, Department of Nutrition and Dietetics, Bolu Abant Izzet Baysal University, Bolu, Turkey
- Department of Nutrition and Dietetics, Institute of Health Sciences, Gazi University, Ankara, Turkey
| | - Betül Sukan-Karaçağıl
- Department of Nutrition and Dietetics, Institute of Health Sciences, Gazi University, Ankara, Turkey
| | - Nilüfer Acar-Tek
- Faculty of Health Sciences, Department of Nutrition and Dietetics, Gazi University, Ankara, Turkey
| |
Collapse
|
3
|
Ugulu I, Khan ZI, Mumtaz M, Ahmad K, Memona H, Akhtar S, Ashfaq A. Bioaccumulation and Health Risk Assessment of Potentially Toxic Metals in Citrus Limetta & Citrus Sinensis Irrigated by Wastewater. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2024; 113:5. [PMID: 38980525 DOI: 10.1007/s00128-024-03910-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 05/20/2024] [Indexed: 07/10/2024]
Abstract
The aim of this study was to evaluate the impact of different irrigation sources on the levels of potentially toxic metals (Cd, Cr, Fe and Mn) in the edibles of citrus fruits (Citrus sinensis and Citrus limetta). The samples of fruit, soil and water were collected from two locations (fresh water irrigated-FW I and sewage water irrigated-SW II) within the city of Sargodha. The samples utilized in the study for metal analysis were prepared utilizing the wet acid digestion method. Metal determination was performed using Atomic Absorption Spectrometry (AAS). The potentially toxic metal values in the citrus samples ranged from 0.010 to 0.063, 0.015 to 0.293, 6.691 to 11.342 and 0.366 to 0.667 mg/kg for Cd, Cr, Fe and Mn, respectively. Analysis of Citrus limetta and Citrus sinensis indicated that the highest concentration of Cr, Fe and Mn is observed at the sewage water irrigation site (SW-II), whilst the minimum levels of Cr, Fe and Mn were observed at the fresh water irrigation site (FW-I). The results show that the levels of these metals in soil and fruit samples meet the acceptable guidelines outlined by USEPA and WHO. It was found that the metal pollution constitutes a potential threat to human health due to the HRI values for Cd, Cr, and Fe being above 1, despite the DIM values being below 1. Regular monitoring of vegetables irrigated with wastewater is highly recommended in order to minimise health risks to individuals.
Collapse
Affiliation(s)
- Ilker Ugulu
- Special Education Department, Usak University, Usak, Turkey.
| | - Zafar Iqbal Khan
- Department of Botany, University of Sargodha, Sargodha, Pakistan
| | - Mahrukh Mumtaz
- Department of Botany, University of Sargodha, Sargodha, Pakistan
| | - Kafeel Ahmad
- Department of Botany, University of Sargodha, Sargodha, Pakistan
| | - Hafsa Memona
- Department of Zoology, Queen Marry College, Lahore, Pakistan
| | - Shehzad Akhtar
- Department of Botany, University of Sargodha, Sargodha, Pakistan
| | - Asma Ashfaq
- Department of Botany, University of Sargodha, Sargodha, Pakistan
| |
Collapse
|
4
|
Liu X, Wang B, Tang S, Yue Y, Xi W, Tan X, Li G, Bai J, Huang L. Modification, biological activity, applications, and future trends of citrus fiber as a functional component: A comprehensive review. Int J Biol Macromol 2024; 269:131798. [PMID: 38677689 DOI: 10.1016/j.ijbiomac.2024.131798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 03/06/2024] [Accepted: 03/26/2024] [Indexed: 04/29/2024]
Abstract
Citrus fiber, a by-product of citrus processing that has significant nutritional and bioactive properties, has gained attention as a promising raw material with extensive developmental potential in the food, pharmaceutical, and feed industries. However, the lack of in-depth understanding regarding citrus fiber, including its structure, modification, mechanism of action, and potential applications is holding back its development and utilization in functional foods and drugs. This review explores the status of extraction methods and modifications applied to citrus fiber to augment its health benefits. With the aim of introducing readers to the potential health benefits of citrus fibers, we have placed special emphasis on their regulatory mechanisms in the context of various conditions, including type 2 diabetes mellitus, cardiovascular disease, obesity, and cancer. Furthermore, this review highlights the applications and prospects of citrus fiber, aiming to provide a theoretical basis for the utilization and exploration of this valuable resource.
Collapse
Affiliation(s)
- Xin Liu
- Citrus Research Institute, Southwest University, Chongqing 400700, China; National Citrus Engineering Research Center, Chongqing 400700, China
| | - Botao Wang
- Bloomage Biotechnology CO, LTD., Jinan 250000, China
| | - Sheng Tang
- Citrus Research Institute, Southwest University, Chongqing 400700, China; National Citrus Engineering Research Center, Chongqing 400700, China
| | - Yuanyuan Yue
- Citrus Research Institute, Southwest University, Chongqing 400700, China; School of Food Science and Technology, Shihezi University, Shihezi 832000, China
| | - Wenxia Xi
- Citrus Research Institute, Southwest University, Chongqing 400700, China; School of Food Science and Technology, Shihezi University, Shihezi 832000, China
| | - Xiang Tan
- Citrus Research Institute, Southwest University, Chongqing 400700, China; National Citrus Engineering Research Center, Chongqing 400700, China
| | - Guijie Li
- Citrus Research Institute, Southwest University, Chongqing 400700, China; National Citrus Engineering Research Center, Chongqing 400700, China
| | - Junying Bai
- Citrus Research Institute, Southwest University, Chongqing 400700, China; National Citrus Engineering Research Center, Chongqing 400700, China.
| | - Linhua Huang
- Citrus Research Institute, Southwest University, Chongqing 400700, China; National Citrus Engineering Research Center, Chongqing 400700, China.
| |
Collapse
|
5
|
Huynh NT, Le TKN, Le THA, Dang TT. Optimising the recovery of phenolic compounds and antioxidant activity from orange peels through solid-state fermentation. Nat Prod Res 2024:1-10. [PMID: 38710024 DOI: 10.1080/14786419.2024.2351541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 04/28/2024] [Indexed: 05/08/2024]
Abstract
It is widely recognised that orange peels contain a considerable quantity of phenolics, primarily in the form of glycosides. The process of fermentation holds potential as a viable method for extracting phenolic compounds and facilitating their biotransformation into novel metabolites. The aim of this study was to assess the enhanced release of phenolic compounds through the process of solid-state fermentation of orange peels using microorganisms. Following a 6-day incubation period, the methanol extract obtained from the sample fermented with starter Banh men exhibited the highest concentration of total phenolic compounds (17.57 ± 0.34 mg GAE/g DW) and demonstrated the most significant DPPH (2,2-diphenyl-1-picrylhydrazyl) radical scavenging activity (55.03%). The Reverse Phase High Performance Liquid Chromatography (RP-HPLC) analysis revealed that the predominant phenolic compounds in all fermented samples were flavonoid aglycones, specifically naringenin, hesperetin, and nobiletin. Conversely, in the unfermented orange peels, the major compound observed was the glycoside derivative hesperidin.
Collapse
Affiliation(s)
- Nguyen Thai Huynh
- Faculty of Food Science and Technology, Ho Chi Minh City University of Industry and Trade, Ho Chi Minh City, Vietnam
| | - Thi Kha Nguyen Le
- Faculty of Food Science and Technology, Ho Chi Minh City University of Industry and Trade, Ho Chi Minh City, Vietnam
| | - Thi Hong Anh Le
- Faculty of Food Science and Technology, Ho Chi Minh City University of Industry and Trade, Ho Chi Minh City, Vietnam
| | - Tien T Dang
- Institute of Applied Materials Science, Vietnam Academy of Science and Technology, Ho Chi Minh City, Viet Nam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, Viet Nam
| |
Collapse
|
6
|
Bai J, Tan X, Tang S, Liu X, Shao L, Wang C, Huang L. Citrus p-Synephrine Improves Energy Homeostasis by Regulating Amino Acid Metabolism in HFD-Induced Mice. Nutrients 2024; 16:248. [PMID: 38257140 PMCID: PMC10818793 DOI: 10.3390/nu16020248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/07/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
p-Synephrine is a common alkaloid widely distributed in citrus fruits. However, the effects of p-synephrine on the metabolic profiles of individuals with energy abnormalities are still unclear. In the study, we investigated the effect of p-synephrine on energy homeostasis and metabolic profiles using a high fat diet (HFD)-induced mouse model. We found that p-synephrine inhibited the gain in body weight, liver weight and white adipose tissues weight induced by HFD. p-Synephrine supplementation also reduced levels of serum total cholesterol (TC), triglyceride (TG) and low-density lipoprotein cholesterol (LDL-C) but not to a statistically significant degree. Histological analysis showed that HFD induced excessive lipid accumulation and glycogen loss in the liver and adipocyte enlargement in perirenal fat tissue, while p-synephrine supplementation reversed the changes induced by HFD. Moreover, HFD feeding significantly increased mRNA expression levels of tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) and reduced the mRNA expression level of interleukin-10 (IL-10) compared to the control group, while p-synephrine supplementation significantly reversed these HFD-induced changes. Liver and serum metabolomic analysis showed that p-synephrine supplementation significantly altered small molecule metabolites in liver and serum in HFD mice and that the changes were closely associated with improvement of energy homeostasis. Notably, amino acid metabolism pathways, both in liver and serum samples, were significantly enriched. Our study suggests that p-synephrine improves energy homeostasis probably by regulating amino acid metabolism in HFD mice, which provides a novel insight into the action mechanism of p-synephrine modulating energy homeostasis.
Collapse
Affiliation(s)
- Junying Bai
- Citrus Research Institute, Southwest University, Chongqing 400700, China; (J.B.)
- National Citrus Engineering Research Center, Chongqing 400700, China
| | - Xiang Tan
- Citrus Research Institute, Southwest University, Chongqing 400700, China; (J.B.)
- National Citrus Engineering Research Center, Chongqing 400700, China
| | - Sheng Tang
- Citrus Research Institute, Southwest University, Chongqing 400700, China; (J.B.)
- National Citrus Engineering Research Center, Chongqing 400700, China
| | - Xin Liu
- Citrus Research Institute, Southwest University, Chongqing 400700, China; (J.B.)
- National Citrus Engineering Research Center, Chongqing 400700, China
| | - Linzi Shao
- Citrus Research Institute, Southwest University, Chongqing 400700, China; (J.B.)
- National Citrus Engineering Research Center, Chongqing 400700, China
| | - Chen Wang
- National Citrus Engineering Research Center, Chongqing 400700, China
- College of Food Science, Southwest University, Chongqing 400700, China
| | - Linhua Huang
- Citrus Research Institute, Southwest University, Chongqing 400700, China; (J.B.)
- National Citrus Engineering Research Center, Chongqing 400700, China
| |
Collapse
|
7
|
Zhou Y, Moon JH, Kim JT, Qiu S, Lee SB, Park HJ, Son MJ, Lee GY, Kwon JW, Park SH, Auh JH, Lee HJ. Curcumol metabolized by rat liver S9 fraction and orally administered in mouse suppressed the proliferation of colon cancer in vitro and in vivo. Food Sci Biotechnol 2024; 33:171-180. [PMID: 38186621 PMCID: PMC10767046 DOI: 10.1007/s10068-023-01321-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/15/2023] [Accepted: 04/20/2023] [Indexed: 01/09/2024] Open
Abstract
Following 3R (reduction, refinement, and replacement) principles, we employed the rat liver S9 fraction to mimic liver metabolism of curcumol having high in vitro IC50 on cancer cells. In HCT116 and HT29 colon cancer cells, the metabolites of curcumol by S9 fraction exerted more enhanced activity in inducing cell cycle arrest and apoptosis via regulating the expression of cyclin D1, CDK1, p21, PARP and Bcl-2 than curcumol. In addition, oral administration of curcumol at 4 mg/kg BW significantly suppressed the development of colon tumor induced by azoxymethane/dextran sulfate sodium, and induced cell cycle arrest and apoptosis in tumor tissues. In mass analysis, curcumenol and curzerene were identified as the metabolites of curcumol by S9 fraction metabolism. Taken together, curcumol metabolites showed the enhanced suppressive effect on colon cancer, suggesting that S9 fraction can be considered as simple, fast, and bio-mimicking platform for the screening of chemical libraries on different chronic diseases.
Collapse
Affiliation(s)
- Yimeng Zhou
- Department of Food Science and Biotechnology, Chung-Ang University, Anseong, 17546 South Korea
| | - Ji Hyun Moon
- Department of Food Science and Biotechnology, Chung-Ang University, Anseong, 17546 South Korea
| | - Jin Tae Kim
- Department of Food Science and Biotechnology, Chung-Ang University, Anseong, 17546 South Korea
| | - Shuai Qiu
- Department of Food Science and Biotechnology, Chung-Ang University, Anseong, 17546 South Korea
| | - Seung Beom Lee
- Department of Food Science and Biotechnology, Chung-Ang University, Anseong, 17546 South Korea
| | - Ho Jin Park
- Department of Food Science and Biotechnology, Chung-Ang University, Anseong, 17546 South Korea
| | - Moon Jeong Son
- Department of Food Science and Biotechnology, Chung-Ang University, Anseong, 17546 South Korea
| | - Ga Yeon Lee
- Department of Food Science and Biotechnology, Chung-Ang University, Anseong, 17546 South Korea
| | - Jung Won Kwon
- Department of Food Science and Biotechnology, Chung-Ang University, Anseong, 17546 South Korea
| | - So-Hyeon Park
- Department of Food Science and Biotechnology, Chung-Ang University, Anseong, 17546 South Korea
| | - Joong-Hyuck Auh
- Department of Food Science and Biotechnology, Chung-Ang University, Anseong, 17546 South Korea
| | - Hong Jin Lee
- Department of Food Science and Biotechnology, Chung-Ang University, Anseong, 17546 South Korea
| |
Collapse
|
8
|
Li Q, Yao J, Zheng W, Wang J, Liao L, Sun G, Wang X, Deng H, Zhang M, Wang Z, Xiong B. Hetero-grafting affects flavonoid biosynthesis in sweet orange 'Newhall' ( Citrus sinensis) peels: a metabolomics and transcriptomics analysis. FRONTIERS IN PLANT SCIENCE 2023; 14:1218426. [PMID: 37465384 PMCID: PMC10351390 DOI: 10.3389/fpls.2023.1218426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 06/13/2023] [Indexed: 07/20/2023]
Abstract
Citrus cultivation involves the widespread practice of grafting, which has a significant impact on citrus development and fruit quality and yield. However, understanding the effect of flavonoid compounds after different rootstock grafting have been limited. Flavonoid compounds, found at the highest levels in citrus peels, contribute to improving fruit quality and nutritional value. In this study, scion-rootstock interaction was investigated at various developmental stages when sweet orange 'Newhall' was hetero-grafted with two commonly used rootstocks (Poncirus trifoliate population, C. junos Siebold ex Tanaka). Physiological index detection showed a higher concentration of total flavonoid content in peels of sweet orange 'Newhall' grafted on Poncirus trifoliate population (ct) than C. junos Siebold ex Tanaka (cj). Further metabolomic analysis identified 703 flavonoid compounds, including flavones, flavonols, and flavanones. Out of the 25 flavonoids affected by different rootstock grafting and developmental stages, most were flavones. Transcriptomic analysis identified 8,562 differentially expressed genes (DEGs). Co-expression and Pearson's correlation analysis discovered six hub structure genes and 19 transcription factors (TFs) that affected flavonoid biosynthesis. In addition to increasing the transcript levels of genes that synthesize flavones, flavonols, and flavanones, the scion-rootstock interaction also affected the expression of many TFs. Taken together, our findings suggested that hetero-grafting could promote the accumulation of flavonoid compounds in citrus peels during the development stages. These results offered fresh perspectives on grafting's application usefulness and the enhancement of the accumulation of nutritive flavonoid components by grafting in citrus.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Bo Xiong
- *Correspondence: Zhihui Wang, ; Bo Xiong,
| |
Collapse
|
9
|
Phytomediated Silver Nanoparticles (AgNPs) Embellish Antioxidant Defense System, Ameliorating HLB-Diseased 'Kinnow' Mandarin Plants. Molecules 2023; 28:molecules28052044. [PMID: 36903290 PMCID: PMC10004207 DOI: 10.3390/molecules28052044] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 01/31/2023] [Accepted: 02/11/2023] [Indexed: 02/24/2023] Open
Abstract
Citrus production is harmed worldwide by yellow dragon disease, also known as Huanglongbing (HLB), or citrus greening. As a result, it has negative effects and a significant impact on the agro-industrial sector. There is still no viable biocompatible treatment for Huanglongbing, despite enormous efforts to combat this disease and decrease its detrimental effects on citrus production. Nowadays, green-synthesized nanoparticles are gaining attention for their use in controlling various crop diseases. This research is the first scientific approach to examine the potential of phylogenic silver nanoparticles (AgNPs) to restore the health of Huanglongbing-diseased 'Kinnow' mandarin plants in a biocompatible manner. AgNPs were synthesized using Moringa oleifera as a reducing, capping, and stabilizing agent and characterized using different characterization techniques, i.e., UV-visible spectroscopy with a maximum average peak at 418 nm, scanning electron microscopy (SEM) with a size of 74 nm, and energy-dispersive spectroscopy (EDX), which confirmed the presence of silver ions along with different elements, and Fourier transform infrared spectroscopy served to confirm different functional groups of elements. Exogenously, AgNPs at various concentrations, i.e., 25, 50, 75, and 100 mgL-1, were applied against Huanglongbing-diseased plants to evaluate the physiological, biochemical, and fruit parameters. The findings of the current study revealed that 75 mgL-1 AgNPs were most effective in boosting the plants' physiological profiles, i.e., chl a, chl b, total chl, carotenoid content, MSI, and RWC up to 92.87%, 93.36%, 66.72%, 80.95%, 59.61%, and 79.55%, respectively; biochemical parameters, i.e., 75 mgL-1 concentration decreased the proline content by up to 40.98%, and increased the SSC, SOD, POD, CAT, TPC, and TFC content by 74.75%, 72.86%, 93.76%, 76.41%, 73.98%, and 92.85%, respectively; and fruit parameters, i.e., 75 mgL-1 concentration increased the average fruit weight, peel diameter, peel weight, juice weight, rag weight, juice pH, total soluble solids, and total sugarby up to 90.78%, 8.65%, 68.06%, 84.74%, 74.66%, 52.58%, 72.94%, and 69.69%, respectively. These findings enable us to develop the AgNP formulation as a potential citrus Huanglongbing disease management method.
Collapse
|
10
|
Wang YL, Lin SX, Wang Y, Liang T, Jiang T, Liu P, Li XY, Lang DQ, Liu Q, Shen CY. p-Synephrine ameliorates alloxan-induced diabetes mellitus through inhibiting oxidative stress and inflammation via suppressing the NF-kappa B and MAPK pathways. Food Funct 2023; 14:1971-1988. [PMID: 36723106 DOI: 10.1039/d2fo03003a] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Oxidative stress and inflammation play important roles in the development of diabetes mellitus. p-Synephrine, the primary pharmacologically active protoalkaloid in Citrus species, has been popularly consumed as a dietary supplement for weight loss management. However, the effects of p-synephrine on diabetes mellitus and the action mechanisms have not been clearly elucidated. In this study, the in vitro antioxidant effects of p-synephrine were evaluated. The data showed that p-synephrine treatment exhibited significant scavenging effects against DPPH, ABTS and OH radicals and showed high reducing power. Diabetic mice were developed by alloxan injection, followed by p-synephrine administration to investigate its hypoglycemic effects in vivo. The results showed that p-synephrine intervention significantly prevented alloxan-induced alteration in body weight, organ indexes, serum uric acid content and serum creatinine content. Meanwhile, p-synephrine application significantly improved the lipid profiles, superoxide dismutase (SOD) and catalase (CAT) activities and glutathione (GSH) contents in the serum and kidneys of diabetic mice and reduced the malondialdehyde (MDA) content in the serum of diabetic mice. Further assays suggested that p-synephrine treatment improved alloxan-induced decreases of glucose tolerance and insulin sensitivity. Also, p-synephrine supplementation altered histopathological changes in the kidneys and interscapular brown adipose tissues in diabetic mice. In addition, p-synephrine administration inhibited renal inflammation through suppressing tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and interleukin-1β (IL-1β) gene expression levels, as well as CD45 expression levels. The anti-inflammatory effects were probably involved in the regulation of nuclear factor-κB (NF-κB) activation and mitogen-activated protein kinase (MAPK) phosphorylation. In conclusion, p-synephrine application significantly ameliorated alloxan-induced diabetes mellitus by inhibiting oxidative stress via suppressing the NF-κB and MAPK pathways.
Collapse
Affiliation(s)
- Ya-Li Wang
- School of Public Health, Southern Medical University, Guangzhou 510515, P. R. China. .,School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, P. R. China. .,Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou 510515, P. R. China.,Guangdong Provincial Engineering Laboratory of Chinese Medicine Preparation Technology, Guangzhou 510515, P. R. China
| | - Song-Xia Lin
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, P. R. China. .,Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou 510515, P. R. China.,Guangdong Provincial Engineering Laboratory of Chinese Medicine Preparation Technology, Guangzhou 510515, P. R. China
| | - Yuan Wang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, P. R. China. .,Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou 510515, P. R. China.,Guangdong Provincial Engineering Laboratory of Chinese Medicine Preparation Technology, Guangzhou 510515, P. R. China
| | - Tao Liang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, P. R. China. .,Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou 510515, P. R. China.,Guangdong Provincial Engineering Laboratory of Chinese Medicine Preparation Technology, Guangzhou 510515, P. R. China
| | - Tao Jiang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, P. R. China. .,Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou 510515, P. R. China.,Guangdong Provincial Engineering Laboratory of Chinese Medicine Preparation Technology, Guangzhou 510515, P. R. China
| | - Peng Liu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, P. R. China. .,Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou 510515, P. R. China.,Guangdong Provincial Engineering Laboratory of Chinese Medicine Preparation Technology, Guangzhou 510515, P. R. China
| | - Xiao-Yi Li
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, P. R. China. .,Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou 510515, P. R. China.,Guangdong Provincial Engineering Laboratory of Chinese Medicine Preparation Technology, Guangzhou 510515, P. R. China
| | - Deng-Qin Lang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, P. R. China. .,Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou 510515, P. R. China.,Guangdong Provincial Engineering Laboratory of Chinese Medicine Preparation Technology, Guangzhou 510515, P. R. China
| | - Qiang Liu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, P. R. China. .,Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou 510515, P. R. China.,Guangdong Provincial Engineering Laboratory of Chinese Medicine Preparation Technology, Guangzhou 510515, P. R. China
| | - Chun-Yan Shen
- School of Public Health, Southern Medical University, Guangzhou 510515, P. R. China. .,School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, P. R. China. .,Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou 510515, P. R. China.,Guangdong Provincial Engineering Laboratory of Chinese Medicine Preparation Technology, Guangzhou 510515, P. R. China
| |
Collapse
|
11
|
Zhao C, Liu D, Feng L, Cui J, Du H, Wang Y, Xiao H, Zheng J. Research advances of in vivo biological fate of food bioactives delivered by colloidal systems. Crit Rev Food Sci Nutr 2022; 64:5414-5432. [PMID: 36576258 DOI: 10.1080/10408398.2022.2154741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Food bioactives exhibit various health-promoting effects and are widely used in functional foods to maintain human health. After oral intake, bioactives undergo complex biological processes before reaching the target organs to exert their biological effects. However, several factors may reduce their bioavailability. Colloidal systems have attracted special attention due to their great potential to improve bioavailability and bioefficiency. Herein, we focus on the importance of in vivo studies of the biological fates of bioactives delivered by colloidal systems. Increasing evidence demonstrates that the construction, composition, and physicochemical properties of the delivery systems significantly influence the in vivo biological fates of bioactives. These results demonstrate the great potential to control the in vivo behavior of food bioactives by designing specific delivery systems. We also compare in vivo and in vitro models used for biological studies of the fate of food bioactives delivered by colloidal systems. Meanwhile, the significance of the gut microbiota, targeted delivery, and personalized nutrition should be carefully considered. This review provides new insight for further studies of food bioactives delivered by colloidal systems, as well as scientific guidance for the reasonable design of personalized nutrition.
Collapse
Affiliation(s)
- Chengying Zhao
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Dan Liu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Liping Feng
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jiefen Cui
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Hengjun Du
- Department of Food Science, University of Massachusetts, Amherst, MA, United States
| | - Yanqi Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, MA, United States
| | - Jinkai Zheng
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
12
|
Polyphenols as Drivers of a Homeostatic Gut Microecology and Immuno-Metabolic Traits of Akkermansia muciniphila: From Mouse to Man. Int J Mol Sci 2022; 24:ijms24010045. [PMID: 36613488 PMCID: PMC9820369 DOI: 10.3390/ijms24010045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
Akkermansia muciniphila is a mucosal symbiont considered a gut microbial marker in healthy individuals, as its relative abundance is significantly reduced in subjects with gut inflammation and metabolic disturbances. Dietary polyphenols can distinctly stimulate the relative abundance of A. muciniphila, contributing to the attenuation of several diseases, including obesity, type 2 diabetes, inflammatory bowel diseases, and liver damage. However, mechanistic insight into how polyphenols stimulate A. muciniphila or its activity is limited. This review focuses on dietary interventions in rodents and humans and in vitro studies using different phenolic classes. We provide critical insights with respect to potential mechanisms explaining the effects of polyphenols affecting A. muciniphila. Anthocyanins, flavan-3-ols, flavonols, flavanones, stilbenes, and phenolic acids are shown to increase relative A. muciniphila levels in vivo, whereas lignans exert the opposite effect. Clinical trials show consistent findings, and high intervariability relying on the gut microbiota composition at the baseline and the presence of multiple polyphenol degraders appear to be cardinal determinants in inducing A. muciniphila and associated benefits by polyphenol intake. Polyphenols signal to the AhR receptor and impact the relative abundance of A. muciniphila in a direct and indirect fashion, resulting in the restoration of intestinal epithelial integrity and homeostatic crosstalk with the gut microbiota by affecting IL-22 production. Moreover, recent evidence suggests that A. muciniphila participates in the initial hydrolysis of some polyphenols but does not participate in their complete metabolism. In conclusion, the consumption of polyphenol-rich foods targeting A. muciniphila as a pivotal intermediary represents a promising precision nutritional therapy to prevent and attenuate metabolic and inflammatory diseases.
Collapse
|
13
|
Citrus Essential Oils in Aromatherapy: Therapeutic Effects and Mechanisms. Antioxidants (Basel) 2022; 11:antiox11122374. [PMID: 36552586 PMCID: PMC9774566 DOI: 10.3390/antiox11122374] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/22/2022] [Accepted: 11/25/2022] [Indexed: 12/05/2022] Open
Abstract
Citrus is one of the main fruit crops cultivated in tropical and subtropical regions worldwide. Approximately half (40-47%) of the fruit mass is inedible and discarded as waste after processing, which causes pollution to the environment. Essential oils (EOs) are aromatic compounds found in significant quantities in oil sacs or oil glands present in the leaves, flowers, and fruit peels (mainly the flavedo part). Citrus EO is a complex mixture of ~400 compounds and has been found to be useful in aromatic infusions for personal health care, perfumes, pharmaceuticals, color enhancers in foods and beverages, and aromatherapy. The citrus EOs possess a pleasant scent, and impart relaxing, calming, mood-uplifting, and cheer-enhancing effects. In aromatherapy, it is applied either in message oils or in diffusion sprays for homes and vehicle sittings. The diffusion creates a fresh feeling and enhances relaxation from stress and anxiety and helps uplifting mood and boosting emotional and physical energy. This review presents a comprehensive outlook on the composition, properties, characterization, and mechanism of action of the citrus EOs in various health-related issues, with a focus on its antioxidant properties.
Collapse
|
14
|
Zheng J, Xiao H. Editorial: The effects of food processing on food components and their health functions, Volume II. Front Nutr 2022; 9:1051869. [DOI: 10.3389/fnut.2022.1051869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 10/12/2022] [Indexed: 11/09/2022] Open
|
15
|
Miao W, Liu X, Li N, Bian X, Zhao Y, He J, Zhou T, Wu JL. Polarity-extended composition profiling via LC-MS-based metabolomics approaches: a key to functional investigation of Citrus aurantium L. Food Chem 2022; 405:134988. [DOI: 10.1016/j.foodchem.2022.134988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 10/18/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022]
|
16
|
Liu S, Lou Y, Li Y, Zhang J, Li P, Yang B, Gu Q. Review of phytochemical and nutritional characteristics and food applications of Citrus L. fruits. Front Nutr 2022; 9:968604. [PMID: 35923210 PMCID: PMC9339955 DOI: 10.3389/fnut.2022.968604] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 06/28/2022] [Indexed: 12/02/2022] Open
Abstract
Since the dietary regimen rich in fruits is being widely recognized and encouraged, Citrus L. fruits have been growing in popularity worldwide due to their high amounts of health-promoting phytonutrients and bioactive compounds, such as flavonoids, phenolic acids, vitamins, carotenoids, pectins, and fatty acids. The diverse physicochemical properties and multiple utilization of citrus fruits in food industry are associated with their unique chemical compositions. Throughout the world, citrus has been used for producing various value-added and nutritionally enhanced products, including juices, wines, jams, canned citrus, and dried citrus. However, the current studies regarding the phytochemical and nutritional characteristics and food applications of citrus are scattered. This review systematically summarizes the existing bibliography on the chemical characteristics, functional and nutraceutical benefits, processing, and potential applications of citrus. A thorough understanding of this information may provide scientific guidance for better utilizing citrus as a functional fruit and benefit the extension of citrus value chain.
Collapse
Affiliation(s)
- Shuxun Liu
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Ying Lou
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Yixian Li
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Jiaojiao Zhang
- College of Food and Health, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Ping Li
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Baoru Yang
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
- Food Sciences, Department of Biochemistry, University of Turku, Turku, Finland
| | - Qing Gu
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
- *Correspondence: Qing Gu
| |
Collapse
|
17
|
Zheng J, Xiao H. Editorial: The Effects of Food Processing on Food Components and Their Health Functions. Front Nutr 2022; 9:837956. [PMID: 35242799 PMCID: PMC8886617 DOI: 10.3389/fnut.2022.837956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 01/11/2022] [Indexed: 12/01/2022] Open
Affiliation(s)
- Jinkai Zheng
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Jinkai Zheng ;
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, MA, United States
- Hang Xiao
| |
Collapse
|
18
|
Ultrasound-Assisted Extraction, Chemical Characterization, and Impact on Cell Viability of Food Wastes Derived from Southern Italy Autochthonous Citrus Fruits. Antioxidants (Basel) 2022; 11:antiox11020285. [PMID: 35204168 PMCID: PMC8868432 DOI: 10.3390/antiox11020285] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 01/22/2023] Open
Abstract
Citrus fruits are one of the principal fruits used to produce juices. Over the years, these fruits have been recognized as new health-promoting agents. In this work, food wastes derived from autochthonous citrus fruits of Southern Italy, named Limone di Rocca Imperiale, Arancia Rossa Moro, and Arancia Bionda Tardivo from Trebisacce, were analyzed. After fresh-squeezing juice, peel and pomace were employed to obtain six different extracts using an ultrasound-assisted method in a hydroalcoholic solvent. The extracts were analyzed in terms of qualitative composition, antioxidant properties, and antiproliferative activity on MCF-7, MDA-MB-231, and BJ-hTERT cell lines. GC-MS and LC-ESI-MS analyses showed different compounds: of note, limonin-hexoside, neodiosmin, obacunone glucoside, and diacetyl nomilinic acid glucoside have been identified as limonoid structures present in all the samples, in addition to different polyphenols including naringenin-glucoside, hesperetin-O-hexoside-O-rhamnoside-O-glucoside, diferuloyl-glucaric acid ester, chlorogenic acid, and the presence of fatty acids such as palmitic, myristic, and linoleic acids. These extracts were able to exert antioxidant activity as demonstrated by DPPH and ABTS assays and, although at higher doses, to reduce the cell viability of different solid tumor cell lines, as shown in MTT assays.
Collapse
|
19
|
Briskey D, Malfa GA, Rao A. Effectiveness of "Moro" Blood Orange Citrus sinensis Osbeck (Rutaceae) Standardized Extract on Weight Loss in Overweight but Otherwise Healthy Men and Women-A Randomized Double-Blind Placebo-Controlled Study. Nutrients 2022; 14:427. [PMID: 35276783 PMCID: PMC8838101 DOI: 10.3390/nu14030427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 01/19/2023] Open
Abstract
This study aimed to assess the efficacy of a blood orange Citrus sinensis standardized extract from “Moro” cultivar, on weight loss in overweight but otherwise healthy individuals. Anthocyanins and particularly cyanidin 3-glucoside, found in a large variety of fruits including Sicilian blood oranges, can help to counteract weight gain and to reduce body fat accumulation through the modulation of antioxidant, anti-inflammatory and metabolic pathways. In this randomized, double blind, placebo-controlled study, all participants (overweight adults aged 20−65 years old) were randomized to receive either Moro blood orange standardized extract or a placebo daily for 6-months. The primary outcome measure was change in body mass and body composition at the end of the study. After 6-months, body mass (4.2% vs. 2.2%, p = 0.015), body mass index (p = 0.019), hip (3.4 cm vs. 2.0 cm, p = 0.049) and waist (3.9 cm vs. 1.7 cm, p = 0.017) circumferences, fat mass (p = 0.012) and fat distribution (visceral and subcutaneous fat p = 0.018 and 0.006, respectively) were all significantly better in the extract supplemented group compared to the placebo (p < 0.05). In addition, all safety markers of liver toxicity were within the normal range throughout the study for both analyzed groups. Concluding, the present study demonstrates that Moro blood orange standardized extract may be a safe and effective option for helping with weight loss when used in conjunction with diet and exercise.
Collapse
Affiliation(s)
- David Briskey
- School of Human Movement and Nutrition Sciences, University of Queensland, Brisbane, QLD 4072, Australia;
- RDC Clinical, Newstead, Brisbane, QLD 4005, Australia;
| | - Giuseppe Antonio Malfa
- Department of Drug and Health Science, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Amanda Rao
- RDC Clinical, Newstead, Brisbane, QLD 4005, Australia;
| |
Collapse
|
20
|
Lu X, Zhao C, Shi H, Liao Y, Xu F, Du H, Xiao H, Zheng J. Nutrients and bioactives in citrus fruits: Different citrus varieties, fruit parts, and growth stages. Crit Rev Food Sci Nutr 2021; 63:2018-2041. [PMID: 34609268 DOI: 10.1080/10408398.2021.1969891] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Citrus fruits are consumed in large quantities worldwide due to their attractive aromas and taste, as well as their high nutritional values and various health-promoting effects, which are due to their abundance of nutrients and bioactives. In addition to water, carbohydrates, vitamins, minerals, and dietary fibers are important nutrients in citrus, providing them with high nutritional values. Citrus fruits are also rich in various bioactives such as flavonoids, essential oils, carotenoids, limonoids, and synephrines, which protect from various ailments, including cancer and inflammatory, digestive, and cardiovascular diseases. The composition and content of nutrients and bioactives differ significantly among citrus varieties, fruit parts, and growth stages. To better understand the nutrient and bioactive profiles of citrus fruits and provide guidance for the utilization of high-value citrus resources, this review systematically summarizes the nutrients and bioactives in citrus fruit, including their contents, structural characteristics, and potential health benefits. We also explore the composition variation in different citrus varieties, fruits parts, and growth stages, as well as their health-promoting effects and applications.
Collapse
Affiliation(s)
- Xingmiao Lu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chengying Zhao
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Huan Shi
- Department of science and technology catalyze, Nestlé R&D (China) Ltd, Beijing, China
| | - Yongcheng Liao
- Department of science and technology catalyze, Nestlé R&D (China) Ltd, Beijing, China
| | - Fei Xu
- Department of science and technology catalyze, Nestlé R&D (China) Ltd, Beijing, China
| | - Hengjun Du
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| | - Jinkai Zheng
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
21
|
Zhang M, Zhang X, Zhu J, Zhao DG, Ma YY, Li D, Ho CT, Huang Q. Bidirectional interaction of nobiletin and gut microbiota in mice fed with a high-fat diet. Food Funct 2021; 12:3516-3526. [PMID: 33900329 DOI: 10.1039/d1fo00126d] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Nobiletin is abundant in citrus peels and demonstrates good anti-obesity bioactivity. However, its anti-obesity mechanisms still remain unclear. This study aims to explore the bidirectional interaction between nobiletin and gut microbiota in mice fed with a high-fat diet. For the colonic bioconversion, more demethylated metabolites with higher biological activity were found in feces than nobiletin in the 48 h excretion study and 8 week consecutive dosing study. Moreover, long-term oral intake of nobiletin would modify the gut microbiota with improved demethylation ability and enhanced production of short chain fatty acids. The comparison of metabolite profiles in mouse liver and feces indicated that gut microbiota might have a higher biotransformation activity on nobiletin than the host. Two bacteria at the genus level, Allobaculum and Roseburia, remained enriched by nobiletin after the 4- and 8-week feedings. They might correlate with the enhanced nobiletin biotransformation and actively contribute to the health benefits of nobiletin in vivo. These results suggested that the bidirectional interaction of nobiletin and gut microbiota played an important role on the anti-obesity effect of nobiletin.
Collapse
Affiliation(s)
- Man Zhang
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, New Jersey 08901, USA.
| | - Xin Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Jieyu Zhu
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, New Jersey 08901, USA.
| | - Deng-Gao Zhao
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, Guangdong, China
| | - Yan-Yan Ma
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, Guangdong, China
| | - Dongli Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, Guangdong, China
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, New Jersey 08901, USA.
| | - Qingrong Huang
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, New Jersey 08901, USA.
| |
Collapse
|
22
|
Zhang M, Xin Y, Feng K, Yin B, Kan Q, Xiao J, Cao Y, Ho CT, Huang Q. Comparative Analyses of Bioavailability, Biotransformation, and Excretion of Nobiletin in Lean and Obese Rats. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:10709-10718. [PMID: 32880448 DOI: 10.1021/acs.jafc.0c04425] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Nobiletin, one of the prevalent polymethoxyflavones in citrus peels, was reported to possess various health benefits. We conducted the excretion study and pharmacokinetics study of nobiletin via oral administration and intravenous injection and 15 day consecutive dosing study using the high fat diet-induced obese rats and their lean counterparts. By comparing the demethylated metabolite profiles in the urine and feces, gut microbiota demonstrated greater biotransformation activity on nobiletin than the host. The absolute oral bioavailability of nobiletin in lean (22.37% ± 4.52%) and obese (18.67% ± 4.80%) rats has a negligible statistically significant difference (P > 0.05). However, a higher extent of demethylated metabolites was found in the feces and plasma of obese rats than lean rats (P < 0.05). Moreover, the consecutive dosing of nobiletin might lead to a higher extent of demethylated metabolites in the plasma and in feces. These results suggested that gut microbiota played important roles in nobiletin metabolism.
Collapse
Affiliation(s)
- Man Zhang
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, New Jersey 08901, United States
| | - Yanping Xin
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, China
| | - Konglong Feng
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong 510642, China
| | - Baoer Yin
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong 510642, China
| | - Qixin Kan
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong 510642, China
| | - Jie Xiao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong 510642, China
| | - Yong Cao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong 510642, China
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, New Jersey 08901, United States
| | - Qingrong Huang
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, New Jersey 08901, United States
| |
Collapse
|
23
|
Elyasi L, Jahanshahi M, Jameie SB, Hamid Abadi HG, Nikmahzar E, Khalili M, Jameie M, Jameie M. 6-OHDA mediated neurotoxicity in SH-SY5Y cellular model of Parkinson disease suppressed by pretreatment with hesperidin through activating L-type calcium channels. J Basic Clin Physiol Pharmacol 2020; 32:11-17. [PMID: 32918805 DOI: 10.1515/jbcpp-2019-0270] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 06/11/2020] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Parkinson's disease (PD) is a neurological condition with selective progressive degeneration of dopaminergic neurons. Routine therapies are symptomatic and palliative. Although, hesperidin (Hsd) is known for its neuroprotective effects, its exact cellular mechanism is still a mystery. Considering the important role of calcium (Ca2+) in cellular mechanisms of neurodegenerative diseases, the present study aimed to investigate the possible effects of Hsd on Ca2+ channels in cellular model of PD and the possible association between the selective vulnerability of neurons in cellular models of PD and expression of the physiological phenotype that changes Ca2+ homeostasis. METHODS SH-SY5Y cell line was used in this study; cell damage was induced by 150 µM 6-OHDA and the cells' viability was examined using MTT assay. Intracellular calcium, reactive oxygen species (ROS) and mitochondrial membrane potential were determined by the fluorescence spectrophotometry method. The expressions of calcium channel receptors were determined by gel electrophoresis and immunoblotting. RESULTS Loss of cell viability and mitochondrial membrane potential were confirmed in 6-OHDA treated cells. In addition, intracellular ROS and calcium levels, calcium channel receptors significantly increased in 6-OHDA-treated cells. Incubation of SH-SY5Y cells with hesperidin showed a protective effect, reduced the biochemical markers of cell damage/death, and balanced calcium hemostasis. CONCLUSIONS Based on our findings, it seems that hesperidin could suppress the progression of the cellular model of PD via acting on intracellular calcium homeostasis. Further studies are needed to confirm the potential benefits of preventive and therapeutic effects of stabilizing cellular calcium homeostasis in neurodegenerative disease.
Collapse
Affiliation(s)
- Leila Elyasi
- Neuroscience Research Center, Department of Anatomy, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Mehrdad Jahanshahi
- Neuroscience Research Center, Department of Anatomy, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - S B Jameie
- Neuroscience Research Center (NRC), Iran University of Medical Sciences, Tehran, Iran
| | - Hatef Ghasemi Hamid Abadi
- Immunogenetic Research Center, Department of Anatomy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Emsehgol Nikmahzar
- Neuroscience Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Masoumeh Khalili
- Neuroscience Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Melika Jameie
- Neuroscience Research Center (NRC), Iran University of Medical Sciences, Tehran, Iran.,Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mana Jameie
- Neuroscience Research Center (NRC), Iran University of Medical Sciences, Tehran, Iran.,Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
24
|
Li M, Zhao H, Wu J, Wang L, Wang J, Lv K, Liu S, Wang M, Guan W, Liu J, Ho CT, Li S. Nobiletin Protects against Acute Liver Injury via Targeting c-Jun N-Terminal Kinase (JNK)-Induced Apoptosis of Hepatocytes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:7112-7120. [PMID: 32538091 DOI: 10.1021/acs.jafc.0c01722] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Acute liver injury resulting from several factors such as medication, food toxins, and herbal supplementation often leads to a severe health condition and makes treatment difficult; thereby, the prevention of acute liver injury remains a critical issue and is of great importance. In this study, we investigated the preventive effects of nobiletin (NOB) on a mouse model of concanavalin A (ConA)-induced acute liver injury. We observed that NOB (10 mg/kg) pretreatment of ConA-treated mice significantly lowered the levels of liver enzymes including alanine aminotransferase (ALT) and aspartate aminotransferase (AST), decreased the intracellular generation of reactive oxygen species (ROS), and suppressed the release of inflammatory cytokines such as tumor necrosis factor-α (TNF-α) and interferon-γ (IFN-γ). Pathological data suggested that pretreatment with NOB ameliorated ConA-induced liver damage by promoting proliferation and alleviating apoptosis of hepatocytes. Furthermore, significant suppression of the c-Jun-activating kinase (JNK) signal was also observed in NOB-pretreated liver tissues compared with that of ConA treatment only. In addition, an in vitro mechanism study confirmed that the addition of NOB protected hepatocytes via inhibition of JNK activation, manifesting that alleviation of JNK-induced apoptosis of hepatocytes is correlated with NOB protection in acute liver injury.
Collapse
Affiliation(s)
- Mengmeng Li
- Tianjin Key Laboratory of Food and Biotechnology, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Hui Zhao
- Tianjin Key Laboratory of Food and Biotechnology, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Jiayan Wu
- Tianjin Key Laboratory of Food and Biotechnology, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Liwen Wang
- Tianjin Key Laboratory of Food and Biotechnology, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
- Centre for Food Research and Innovation, Department of Wine, Food and Molecular Bioscience, Lincoln University, Lincoln 7647, New Zealand
| | - Juan Wang
- Tianjin Key Laboratory of Food and Biotechnology, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Ke Lv
- Tianjin Key Laboratory of Food and Biotechnology, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
- Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources, Huanggang Normal University, Huanggang, Hubei 438000, China
| | - Shuangqing Liu
- Department of Laboratory Test, Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Meiyan Wang
- Tianjin Key Laboratory of Food and Biotechnology, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Wenqiang Guan
- Tianjin Key Laboratory of Food and Biotechnology, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Jianfu Liu
- Tianjin Key Laboratory of Food and Biotechnology, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Chi-Tang Ho
- Centre for Food Research and Innovation, Department of Wine, Food and Molecular Bioscience, Lincoln University, Lincoln 7647, New Zealand
| | - Shiming Li
- Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources, Huanggang Normal University, Huanggang, Hubei 438000, China
- Department of Food Science, Rutgers University, New Brunswick, New Jersey 08901, United States
| |
Collapse
|