1
|
Balamurugan BS, Marimuthu MMC, Sundaram VA, Saravanan B, Chandrababu P, Chopra H, Malik T. Micro nutrients as immunomodulators in the ageing population: a focus on inflammation and autoimmunity. Immun Ageing 2024; 21:88. [PMID: 39731136 DOI: 10.1186/s12979-024-00492-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 12/18/2024] [Indexed: 12/29/2024]
Abstract
Immunosenescence, the slow degradation of immune function over time that is a hallmark and driver of aging, makes older people much more likely to be killed by common infections (such as flu) than young adults, but it also contributes greatly to rates of chronic inflammation in later life. Such micro nutrients are crucial for modulating effective immune responses and their deficiencies have been associated with dysfunctional immunity in the elderly. In this review, we specifically focused on the contribution of major micro nutrients (Vitamins A, D and E, Vitamin C; Zinc and Selenium) as immunomodulators in ageing population especially related to inflame-ageing process including autoimmunity. This review will cover these hologenomic interactions, including how micro nutrients can modulate immune cell function and/or cytokine production to benefit their hosts with healthy mucous-associated immunity along with a sustainable immunologic homeostasis. For example, it points out the modulatory effects of vitamin D on both innate and adaptive immunity, with a specific focus on its ability to suppress pro-inflammatory cytokines synthesis while enhancing regulatory T-cell function. In the same context, also zinc is described as important nutrient for thymic function and T-cell differentiation but exhibits immunomodulatory functions by decreasing inflammation. In addition, the review will go over how micro nutrient deficiencies increase systemic chronic low-grade inflammation and, inflammaging as well as actually enhance autoimmune pathologies in old age. It assesses the potential role of additional targeted nutritional supplementation with micro nutrients to counteract these effects, promoting wider immune resilience in older adults. This review collates the current evidence and highlights the role of adequate micro nutrient intake on inflammation and autoimmunity during ageing, providing plausible origins for nutritional interventions to promote healthy immune aging.
Collapse
Affiliation(s)
- Bhavani Sowndharya Balamurugan
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | | | - Vickram Agaram Sundaram
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, India.
| | - Bharath Saravanan
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Prasanth Chandrababu
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Hitesh Chopra
- Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India
| | - Tabarak Malik
- Department of Biomedical Sciences, Institute of Health, Jimma University, Jimma, 378, Oromia, Ethiopia.
- Division of Research & Development, Lovely Professional University, Phagwara, 144411, Punjab, India.
| |
Collapse
|
2
|
Huang Y, Peng S, Zeng R, Yao H, Feng G, Fang J. From probiotic chassis to modification strategies, control and improvement of genetically engineered probiotics for inflammatory bowel disease. Microbiol Res 2024; 289:127928. [PMID: 39405668 DOI: 10.1016/j.micres.2024.127928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 10/05/2024] [Accepted: 10/05/2024] [Indexed: 11/02/2024]
Abstract
With the rising morbidity of inflammatory bowel disease (IBD) year by year, conventional therapeutic drugs with systemic side effects are no longer able to meet the requirements of patients. Probiotics can improve gut microbiota, enhance intestinal barrier function, and regulate mucosal immunity, making them a potential complementary or alternative therapy for IBD. To compensate for the low potency of probiotics, genetic engineering technology has been widely used to improve their therapeutic function. In this review, we systematically summarize the genetically engineered probiotics used for IBD treatment, including probiotic chassis, genetic modification strategies, methods for controlling probiotics, and means of improving efficacy. Finally, we provide prospects on how genetically engineered probiotics can be extended to clinical applications.
Collapse
Affiliation(s)
- Yuewen Huang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Shan Peng
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Rong Zeng
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Hao Yao
- Changsha IMADEK Intelligent Technology Co., LTD, Changsha 410081, China
| | - Guangfu Feng
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China.
| | - Jun Fang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
3
|
Elhalik MA, Mekky AE, Khedr M, Suleiman WB. Antineoplastic with DNA fragmentation assay and anti-oxidant, anti-inflammatory with gene expression activity of Lactobacillus plantarum isolated from local Egyptian milk products. BMC Microbiol 2024; 24:443. [PMID: 39472774 PMCID: PMC11520475 DOI: 10.1186/s12866-024-03576-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 10/09/2024] [Indexed: 11/02/2024] Open
Abstract
Many lactic acid bacteria (LAB), known for their human health benefits, are derived from milk and utilized in biotherapeutic applications or for producing valuable nutraceuticals. However, the specific role of milk-associated LAB in biotherapeutics remains underexplored. To address this, eight milk product samples were randomly selected from the Egyptian market, diluted, and then cultured anaerobically on MRS agar. Subsequently, 16 suspected LAB isolates were recovered and underwent rapid preliminary identification. Among these isolates, the Lactobacillus plantarum strain with accession number (OQ547261.1) was identified due to its strong antioxidant activity depending on the DPPH assay, L. plantarum displayed notable antioxidant activities of 71.8% and 93.8% at concentrations of 125-1000 µg/mL, respectively. While ascorbic acid showed lower concentrations of 7.81, 3.9, and 1.95 µg/mL which showed activities of 45.1%, 34.2%, and 27.2%, respectively. The anti-inflammatory efficacy of L. plantarum was evaluated based on its capability to prevent hemolysis induced by hypotonic conditions. At a concentration of 1000 µg/mL, L. plantarum could reduce hemolysis by 97.7%, nearly matching the 99.5% inhibition rate achieved by the standard drug, indomethacin, at an identical concentration. Moreover, L. plantarum exhibited high hemolytic activity at 100 µg/mL (14.3%), which decreased to 1.4% at 1000 µg/mL. The abundance of phenolic acids and flavonoids was determined by high-performance liquid chromatography (HPLC) in L. plantarum. Real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR) demonstrated that L. plantarum increased gene expression of the inflammatory marker TLR2 by 133%, and cellular oxidation markers SOD1 and SOD2 by 65% and 74.2%, respectively, while suppressing CRP expression by 33.3%. These results underscore L. plantarum's exceptional anti-inflammatory and antioxidant activities. Furthermore, L. plantarum induces cancer cell death through necrotic nuclear DNA fragmentation. These findings suggest that L. plantarum is not only suitable for nutraceutical production but also holds potential as a probiotic strain. Future research should focus on enhancing the capacity of this strain across various industries and fostering innovation in multiple fields.
Collapse
Affiliation(s)
- Mohamed A Elhalik
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr City, Cairo, 11884, Egypt
| | - Alsayed E Mekky
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr City, Cairo, 11884, Egypt
| | - Mohamed Khedr
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr City, Cairo, 11884, Egypt
| | - Waleed B Suleiman
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr City, Cairo, 11884, Egypt.
| |
Collapse
|
4
|
Ibarlucea-Jerez M, Monnoye M, Chambon C, Gérard P, Licandro H, Neyraud E. Fermented food consumption modulates the oral microbiota. NPJ Sci Food 2024; 8:55. [PMID: 39174559 PMCID: PMC11341675 DOI: 10.1038/s41538-024-00298-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 07/26/2024] [Indexed: 08/24/2024] Open
Abstract
Fermented food consumption is recommended for health and environmental purposes. While it is known to impact gut microbiota, further investigation is needed to establish connections with the oral microbiota. For this purpose, we investigated the effect of daily consumption of a model cheese containing 3 Lactic Acid Bacteria (LAB) species on the oral microbiota of rats following a 3-week diet. Cheese consumption transiently modifies the oral microbiota and leads to a transient persistence of LAB in the oral cavity of 1/3 of the animals. The origin of this variability was partly explained by an overrepresentation of salivary proteins involved in the response to oxidative stress in animals without LAB persistence. These findings highlight the significance of fermented foods in shaping the diversity of the oral microbiota. Additionally, they suggest that variations in the salivary proteome among individuals may influence the permissiveness of the oral microbiota towards exogenous microorganisms.
Collapse
Affiliation(s)
- M Ibarlucea-Jerez
- Centre des Sciences du Goût et de l'Alimentation, CNRS, INRAE, Institut Agro, Université de Bourgogne, Dijon, France
- UMR A 02.102 Procédés Alimentaires et Microbiologiques (PAM), Institut Agro Dijon, Univ. Bourgogne Franche-Comté, Dijon, France
| | - M Monnoye
- Institut MICALIS, INRAE, AgroParisTech, Univ. Paris-Saclay, Jouy-en-Josas, France
| | - C Chambon
- Plateforme d'Exploration du Métabolisme Composante Protéomique (PFEMcp), INRAE, Saint-Genès Champanelle, France
- UR0370 Qualité des Produits Animaux (QuaPA), INRAE, Saint-Genès Champanelle, France
| | - P Gérard
- Institut MICALIS, INRAE, AgroParisTech, Univ. Paris-Saclay, Jouy-en-Josas, France
| | - H Licandro
- UMR A 02.102 Procédés Alimentaires et Microbiologiques (PAM), Institut Agro Dijon, Univ. Bourgogne Franche-Comté, Dijon, France
| | - E Neyraud
- Centre des Sciences du Goût et de l'Alimentation, CNRS, INRAE, Institut Agro, Université de Bourgogne, Dijon, France.
| |
Collapse
|
5
|
Rocchetti MT, Russo P, De Simone N, Capozzi V, Spano G, Fiocco D. Immunomodulatory Activity on Human Macrophages by Cell-Free Supernatants to Explore the Probiotic and Postbiotic Potential of Lactiplantibacillus plantarum Strains of Plant Origin. Probiotics Antimicrob Proteins 2024; 16:911-926. [PMID: 37202651 PMCID: PMC11126452 DOI: 10.1007/s12602-023-10084-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/02/2023] [Indexed: 05/20/2023]
Abstract
Upon dietary administration, probiotic microorganisms can reach as live cells the human gut, where they interact with the microbiota and host cells, thereby exerting a beneficial impact on host functions, mainly through immune-modulatory activities. Recently, attention has been drawn by postbiotics, i.e. non-viable probiotic microbes, including their metabolic products, which possess biological activities that benefit the host. Lactiplantibacillus plantarum is a bacterial species that comprises recognised probiotic strains. In this study, we investigated in vitro the probiotic (and postbiotic) potential of seven L. plantarum strains, including five newly isolated from plant-related niches. The strains were shown to possess some basic probiotic attributes, including tolerance to the gastrointestinal environment, adhesion to the intestinal epithelium and safety. Besides, their cell-free culture supernatants modulated cytokine patterns in human macrophages in vitro, promoting TNF-α gene transcription and secretion, while attenuating the transcriptional activation and secretion of both TNF-α and IL-8 in response to a pro-inflammatory signal, and enhancing the production of IL-10. Some strains induced a high IL-10/IL-12 ratio that may correlate to an anti-inflammatory capacity in vivo. Overall, the investigated strains are good probiotic candidates, whose postbiotic fraction exhibits immunomodulatory properties that need further in vivo studies. The main novelty of this work consists in the polyphasic characterisation of candidate beneficial L. plantarum strains obtained from relatively atypical plant-associated niches, by an approach that explores both probiotic and postbiotic potentials, in particular studying the effect of microbial culture-conditioned media on cytokine pattern, analysed at both transcriptional and secretion level in human macrophages.
Collapse
Affiliation(s)
| | - Pasquale Russo
- Department of Food, Environmental and Nutritional Sciences, University of Milan, Milan, Italy
| | - Nicola De Simone
- Department of Agriculture Food Natural Science Engineering (DAFNE), University of Foggia, Foggia, Italy
| | - Vittorio Capozzi
- Institute of Sciences of Food Production, National Research Council (CNR) of Italy, C/O CS-DAT, Foggia, Italy
| | - Giuseppe Spano
- Department of Agriculture Food Natural Science Engineering (DAFNE), University of Foggia, Foggia, Italy
| | - Daniela Fiocco
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy.
| |
Collapse
|
6
|
Chen X, Moreno LL, Tang X, Gasaly N, Schols HA, de Vos P. A novel "microbiota-host interaction model" to study the real-time effects of fermentation of non-digestible carbohydrate (NDCs) on gut barrier function. Curr Res Food Sci 2024; 8:100736. [PMID: 38681527 PMCID: PMC11052908 DOI: 10.1016/j.crfs.2024.100736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/20/2024] [Accepted: 04/11/2024] [Indexed: 05/01/2024] Open
Abstract
In this study, an in vitro co-culture model using an electric cell-substrate impedance sensing system (ECIS) for testing the impact of real-time fermentation of non-digestible carbohydrates (NDCs) by the intestinal microbiota on gut barrier function was established. We applied Lactobacillus plantarum WCFS1 as a model intestinal bacterium and alginate-pectin as immobilization polymers as well as a source of NDCs to determine the impact of pectin fermentation on the barrier function of T84 gut epithelial cells. In the first design, L. plantarum WCFS1 was encapsulated in an alginate capsule followed by embedding in an agar layer to mimic a firm mucus layer that might be present in the colon. In this experimental design, the presence of the agar layer interfered with the transepithelial electrical resistance (TEER) measurement of T84 cells. Subsequently, we removed the agar layer and used encapsulated bacteria in an alginate gel and found that the TEER measurement was adequate. The encapsulation of the L. plantarum WCFS1 does avoid direct contact with cells. Also, the encapsulation system allows higher amounts of packing densities of L. plantarum WCFS1 in a limited space which can limit the oxygen concentration within the capsule and therefore create anaerobic conditions. To test this design, T84 cells were co-incubated with L. plantarum alginate-capsules supplemented with graded loads of fermentable pectin (0, 4, and 8 mg/ml per capsule) to investigate the effect of pectin fermentation on gut barrier function. We observed that as the pectin content in the L. plantarum capsules increased, pectin showed a gradually stronger protective effect on the TEER of the gut epithelium. This could partly be explained by enhanced SCFA production as both lactate and acetate were enhanced in L. plantarum containing alginate capsules with 8 mg/ml pectin. Overall, this newly designed in vitro co-culture model allows for studying the impact of bacteria-derived fermentation products but also for studying the direct effects of NDCs on gut barrier function in a relatively high-throughput way.
Collapse
Affiliation(s)
- Xiaochen Chen
- Immunoendocrinology, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Luis Llanos Moreno
- Laboratory of Food Chemistry, Wageningen University & Research, Wageningen, the Netherlands
| | - Xin Tang
- Immunoendocrinology, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Naschla Gasaly
- Immunoendocrinology, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- Laboratory of Innate Immunity, Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Henk A. Schols
- Laboratory of Food Chemistry, Wageningen University & Research, Wageningen, the Netherlands
| | - Paul de Vos
- Immunoendocrinology, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| |
Collapse
|
7
|
OKANO A, TANAKA S, YAMADA K, HASHIMOTO N, WATANABE J. Mechanisms of interleukin-10 induction in murine spleen and RAW264 cells by Latilactobacillus curvatus K4G4 isolated from fermented Brassica rapa L. BIOSCIENCE OF MICROBIOTA, FOOD AND HEALTH 2024; 43:227-233. [PMID: 38966044 PMCID: PMC11220328 DOI: 10.12938/bmfh.2023-073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 02/18/2024] [Indexed: 07/06/2024]
Abstract
Lactic acid bacteria (LAB) are commonly used in fermented foods, and some LAB modulate the immune response. We aimed to investigate the mechanism by which LAB isolates from fermented Brassica rapa L. induce the production of anti-inflammatory interleukin (IL)-10 by the murine spleen and RAW264 cells. Spleen cells from BALB/c mice or the mouse macrophage cell line RAW264 were cultured with heat-killed LAB isolated from fermented B. rapa L., and the IL-10 level in the supernatant was measured. Latilactobacillus curvatus K4G4 provided the most potent IL-10 induction among 13 isolates. Cell wall components of K4G4 failed to induce IL-10, while treatment of the bacteria with RNase A under a high salt concentration altered K4G4 induction of IL-10 by spleen cells. In general, a low salt concentration diminished the IL-10 induction by all strains, including K4G4. In addition, chloroquine pretreatment and knock down of toll-like receptor 7 through small interfering RNA suppressed K4G4 induction of IL-10 production by RAW264 cells. Our results suggest that single-stranded RNA from K4G4 is involved, via endosomal toll-like receptor 7, in the induction of IL-10 production by macrophages. K4G4 is a promising candidate probiotic strain that modulates the immune response by inducing IL-10 from macrophages.
Collapse
Affiliation(s)
- Aki OKANO
- Department of Life and Food Sciences, Obihiro University of
Agriculture and Veterinary Medicine, Inadacho, Obihiro, Hokkaido 080-8555, Japan
| | - Sachi TANAKA
- Academic Assembly (Institute of Agriculture), Shinshu
University, Minami-Minowa, Nagano 399-4598, Japan
| | - Kazuha YAMADA
- Department of Life and Food Sciences, Obihiro University of
Agriculture and Veterinary Medicine, Inadacho, Obihiro, Hokkaido 080-8555, Japan
| | - Naoto HASHIMOTO
- Department of Life and Food Sciences, Obihiro University of
Agriculture and Veterinary Medicine, Inadacho, Obihiro, Hokkaido 080-8555, Japan
| | - Jun WATANABE
- Department of Life and Food Sciences, Obihiro University of
Agriculture and Veterinary Medicine, Inadacho, Obihiro, Hokkaido 080-8555, Japan
| |
Collapse
|
8
|
Hu R, Yang T, Ai Q, Shi Y, Ji Y, Sun Q, Tong B, Chen J, Wang Z. Autoinducer-2 promotes the colonization of Lactobacillus rhamnosus GG to improve the intestinal barrier function in a neonatal mouse model of antibiotic-induced intestinal dysbiosis. J Transl Med 2024; 22:177. [PMID: 38369503 PMCID: PMC10874557 DOI: 10.1186/s12967-024-04991-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 02/12/2024] [Indexed: 02/20/2024] Open
Abstract
BACKGROUND Human health is seriously threatened by antibiotic-induced intestinal disorders. Herein, we aimed to determine the effects of Autoinducer-2 (AI-2) combined with Lactobacillus rhamnosus GG (LGG) on the intestinal barrier function of antibiotic-induced intestinal dysbiosis neonatal mice. METHODS An antibiotic-induced intestinal dysbiosis neonatal mouse model was created using antibiotic cocktails, and the model mice were randomized into the control, AI-2, LGG, and LGG + AI-2 groups. Intestinal short-chain fatty acids and AI-2 concentrations were detected by mass spectrometry and chemiluminescence, respectively. The community composition of the gut microbiota was analyzed using 16S rDNA sequencing, and biofilm thickness and bacterial adhesion in the colon were assessed using scanning electron microscopy. Transcriptome RNA sequencing of intestinal tissues was performed, and the mRNA and protein levels of HCAR2 (hydroxycarboxylic acid receptor 2), claudin3, and claudin4 in intestinal tissues were determined using quantitative real-time reverse transcription PCR and western blotting. The levels of inflammatory factors in intestinal tissues were evaluated using enzyme-linked immunosorbent assays (ELISAs). D-ribose, an inhibitor of AI-2, was used to treat Caco-2 cells in vitro. RESULTS Compared with the control, AI-2, and LGG groups, the LGG + AI-2 group showed increased levels of intestinal AI-2 and proportions of Firmicutes and Lacticaseibacillus, but a reduced fraction of Proteobacteria. Specifically, the LGG + AI-2 group had considerably more biofilms and LGG on the colon surface than those of other three groups. Meanwhile, the combination of AI-2 and LGG markedly increased the concentration of butyric acid and promoted Hcar2, claudin3 and claudin4 expression levels compared with supplementation with LGG or AI-2 alone. The ELISAs revealed a significantly higher tumor necrosis factor alpha (TNF-α) level in the control group than in the LGG and LGG + AI-2 groups, whereas the interleukin 10 (IL-10) level was significantly higher in the LGG + AI-2 group than in the other three groups. In vitro, D-ribose treatment dramatically suppressed the increased levels of Hcar2, claudin3, and claudin4 in Caco-2 cells induced by AI-2 + LGG. CONCLUSIONS AI-2 promotes the colonization of LGG and biofilm formation to improve intestinal barrier function in an antibiotic-induced intestinal dysbiosis neonatal mouse model.
Collapse
Affiliation(s)
- Riqiang Hu
- Children Nutrition Research Center, Chongqing Key Laboratory of Child Neurodevelopmental and Cognitive Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Chongqing, China
| | - Ting Yang
- Children Nutrition Research Center, Chongqing Key Laboratory of Child Neurodevelopmental and Cognitive Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Chongqing, China
| | - Qing Ai
- Department of Neonatology, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Yuan Shi
- Department of Neonatology, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Yanchun Ji
- Department of Neonatology, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Qian Sun
- Department of Neonatology, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Bei Tong
- Children Nutrition Research Center, Chongqing Key Laboratory of Child Neurodevelopmental and Cognitive Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Chongqing, China
| | - Jie Chen
- Children Nutrition Research Center, Chongqing Key Laboratory of Child Neurodevelopmental and Cognitive Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Chongqing, China.
| | - Zhengli Wang
- Children Nutrition Research Center, Chongqing Key Laboratory of Child Neurodevelopmental and Cognitive Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Chongqing, China.
- Department of Neonatology, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.
- Jiangxi Hospital Affiliated Children's Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
9
|
Li X, Chen S, Zhao L, Zeng X, Liu Y, Li C, Yang Q. Effect of lactic acid bacteria by different concentrations of copper based on non-target metabolomic analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:107568-107579. [PMID: 37737949 DOI: 10.1007/s11356-023-29925-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 09/13/2023] [Indexed: 09/23/2023]
Abstract
Copper (Cu) is an essential element for mammals, but excess intake can have detrimental health consequences. However, Cu is no longer present in the "Limit of Contaminants in Foods" promulgated in 2022. The potential impact of different Cu (II) concentrations on human health remains unclear. In this study, a strain of lactic acid bacteria (LAB), namely, Lactiplantibacillus plantarum CICC 23121 (L23121), was selected as a prebiotic indicator strain to indirectly assess the effects of food-limited Cu (II) concentrations (issued by Tolerance limit of copper in foods in 1994) on the functions of intestinal microbes. We used non-target metabolomics, automatic growth curve detector, scanning electron microscopy (SEM), and Fourier transform infrared spectroscopy (FTIR) to investigate the effects of Cu (II) on L23121. The study revealed shows that the 50% minimum inhibitory concentration (MIC50) of Cu (II) for most lactic acid bacteria was 4 mg/L. At low Cu (II) concentrations (≤ 4 mg/L), the pentose phosphate pathway and pyrimidine metabolism of the lactic acid bacteria were affected, resulting in a decrease in the content of beneficial secondary metabolites and a significant decrease in the cell activity. As Cu (II) concentrations increase (≥ 6 mg/L), the key amino acid and lipid metabolisms were affected, leading to the inhibition of growth and primary metabolite production of the bacteria. Under high concentration of Cu (II) (6 mg/L), the surface adhesion of the bacteria was distorted and covered with significantly large particles, and the functional groups of the cells were significantly shifted. As a probiotic, the abundance of lactic acid bacteria in the intestine is significantly reduced, which will inevitably seriously damage intestinal homeostasis. Thus, to protect human intestinal microbes' health, it is recommended to limit the concentration of Cu in food to less than 4 mg/L.
Collapse
Affiliation(s)
- Xinlei Li
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Shiyue Chen
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Lili Zhao
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Xiangpeng Zeng
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Yanyan Liu
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Chaochuang Li
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Qingxiang Yang
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China.
- Henan International Joint Laboratory of Agricultural Microbial Ecology and Technology, Henan Normal University, Xinxiang, 453007, China.
| |
Collapse
|
10
|
Ruiz MJ, García MD, Canalejo LMM, Krüger A, Padola NL, Etcheverría AI. Antimicrobial activity of Lactiplantibacillus plantarum against shiga toxin-producing Escherichia coli. J Appl Microbiol 2023; 134:lxad202. [PMID: 37660235 DOI: 10.1093/jambio/lxad202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/15/2023] [Accepted: 08/31/2023] [Indexed: 09/04/2023]
Abstract
AIMS The aim of the present work was to characterize the Lactiplantibacillus sp. LP5 strain, isolated from pork production, and identify bacteriocin-like inhibitory substances produced by this strain. METHODS AND RESULTS In this study, LP5 was identified by species-specific PCR and 16S rRNA sequencing. Additionally, bacterial growth kinetics, antimicrobial activity, the detection of genes related to plantaricin production, and the genetic expression of plantaricins were determined. Lactiplantibacillus sp. LP5 was identified as Lactiplantibacillus plantarum. The well-diffusion test using cell-free supernatants (CFS), neutralized CFS, CFS treated with catalase, and CFS treated with proteinase K showed that inhibitory effects on a Shiga toxin-producing Escherichia coli (STEC) strain were produced by bacteriocins. The PCR technique allowed the detection of genes encoding E/F plantaricins, as well as J/K and whole genome sequencing, and bacteriocin mining analysis allowed us to confirm the presence of these plantaricins. CONCLUSIONS We can conclude that the inhibitory effect of L. plantarum LP5 isolated from pigs against the STEC EDL933 strain could be associated with the bacteriocins production and represents a potential use as a probiotic strain.
Collapse
Affiliation(s)
- María Julia Ruiz
- Department of Animal Health and Preventive Medicine, Veterinary Research Centre (CIVETAN), CONICET-CICPBA, Faculty of Veterinary Sciences, National University of the Centre of the Province of Buenos Aires, Tandil CP7000, Buenos Aires, Argentina
| | - Mauro Daniel García
- Department of Animal Health and Preventive Medicine, Veterinary Research Centre (CIVETAN), CONICET-CICPBA, Faculty of Veterinary Sciences, National University of the Centre of the Province of Buenos Aires, Tandil CP7000, Buenos Aires, Argentina
| | - Luis Manuel Medina Canalejo
- Food Science and Technology Department, International Agrifood Campus of Excellence, Charles Darwin Annex Building, Campus de Rabanales, University of Córdoba, Cordoba, Spain
| | - Alejandra Krüger
- Department of Animal Health and Preventive Medicine, Veterinary Research Centre (CIVETAN), CONICET-CICPBA, Faculty of Veterinary Sciences, National University of the Centre of the Province of Buenos Aires, Tandil CP7000, Buenos Aires, Argentina
| | - Nora Lía Padola
- Department of Animal Health and Preventive Medicine, Veterinary Research Centre (CIVETAN), CONICET-CICPBA, Faculty of Veterinary Sciences, National University of the Centre of the Province of Buenos Aires, Tandil CP7000, Buenos Aires, Argentina
| | - Analía Inés Etcheverría
- Department of Animal Health and Preventive Medicine, Veterinary Research Centre (CIVETAN), CONICET-CICPBA, Faculty of Veterinary Sciences, National University of the Centre of the Province of Buenos Aires, Tandil CP7000, Buenos Aires, Argentina
| |
Collapse
|
11
|
Sugimoto A, Numaguchi T, Chihama R, Takenaka Y, Sato Y. Identification of novel lactic acid bacteria with enhanced protective effects against influenza virus. PLoS One 2023; 18:e0273604. [PMID: 37556447 PMCID: PMC10411811 DOI: 10.1371/journal.pone.0273604] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 03/10/2023] [Indexed: 08/11/2023] Open
Abstract
Lactic acid bacteria (LAB) exert health-beneficial effects by regulating innate immunity in the intestinal tract. Due to growing health awareness, the demand for LAB and studies have focused on identifying beneficial LAB strains is increasing, especially those that stimulate innate immunity. In this study, the LAB strain D279 (NITE_BP-03645, Latilactobacillus sakei) was isolated from among 741 LAB strains that were analyzed for their ability to induce interleukin 12 (IL-12) production and was subsequently characterized. D279 induced the highest expression of IL-12 among the screened LABs. Furthermore, D279 significantly activated antiviral genes and preferentially induced interferon (IFN)λ expression in vitro, which plays a critical role in the epithelial tissue, thereby conferring strong anti-influenza potency without inflammation. However, it decreased the IFNα levels. The administration of pasteurized D279 to mice resulted in strong anti-influenza potency, with higher natural killer (NK) cell activity and a lower viral load in the lung than in the control. Importantly, none of the D279-administered mice were sacrificed during the viral infection tests. These results suggest that D279 administration confers beneficial effects by regulating innate immunity and that it may be relevant for commercial use in the future.
Collapse
Affiliation(s)
- Atsushi Sugimoto
- Niigata Research Laboratory, Mitsubishi Gas Chemical Company, Inc., Niigata, Japan
| | - Tomoe Numaguchi
- Niigata Research Laboratory, Mitsubishi Gas Chemical Company, Inc., Niigata, Japan
| | - Ryota Chihama
- Niigata Research Laboratory, Mitsubishi Gas Chemical Company, Inc., Niigata, Japan
| | - Yuto Takenaka
- Niigata Research Laboratory, Mitsubishi Gas Chemical Company, Inc., Niigata, Japan
| | - Yuuki Sato
- Niigata Research Laboratory, Mitsubishi Gas Chemical Company, Inc., Niigata, Japan
| |
Collapse
|
12
|
Huang TT, Yan PP, Liu YN, Di J, Shi QJ, Cao YX, Cao L. The effects of sodium sulfite on Helicobacter pylori by establishing a hypoxic environment. Toxicol Appl Pharmacol 2023; 470:116549. [PMID: 37164296 DOI: 10.1016/j.taap.2023.116549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 05/05/2023] [Accepted: 05/07/2023] [Indexed: 05/12/2023]
Abstract
Helicobacter pylori (H. pylori) is an obligate microaerobion and does not survive in low oxygen. Sodium sulfite (SS) reacts and consume oxygen in solutions. The present study aimed to investigate the effects of SS on H. pylori. The effects of SS on oxygen concentrations in solutions and on H. pylori in vivo and in vitro were examined, and the mechanisms involved were explored. The results showed that SS decreased the oxygen concentration in water and artificial gastric juice. In Columbia blood agar and special peptone broth, SS concentration-dependently inhibited the proliferation of H. pylori ATCC43504 and Sydney strain-1 in Columbia blood agar or special peptone broth, and dose-dependently decreased the number of H. pylori in Mongolian gerbils and Kunming mouse infection models. The H. pylori was relapsed in 2 weeks withdrawal and the recurrence in the SS group was lower than that in the positive triple drug group. These effects were superior to positive triple drugs. After SS treatments, the cell membrane and cytoplasm structure of H. pylori were disrupted. SS-induced oxygen-free environment initially blocked aerobic respiration, triggered oxidative stress, disturbed energy production. In conclusion, SS consumes oxygen and creates an oxygen-free environment in which H. pylori does not survive. The present study provides a new strategy and perspective for the clinical treatment of H. pylori infectious disease.
Collapse
Affiliation(s)
- Ting-Ting Huang
- Department of Pharmacology, School of Basic Medical Science, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
| | - Ping-Ping Yan
- Department of Pharmacology, School of Basic Medical Science, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
| | - Yan-Ni Liu
- Department of Pharmacology, School of Basic Medical Science, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
| | - Jia Di
- Nuclear Medicine Department, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi, China
| | - Qiao-Juan Shi
- Experimental Animal Center, Hangzhou Medical College, Hangzhou 310013, Zhejiang, China
| | - Yong-Xiao Cao
- Department of Pharmacology, School of Basic Medical Science, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China.
| | - Lei Cao
- Precision Medical Institute, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China.
| |
Collapse
|
13
|
Zhang D, Zhang J, Kalimuthu S, Liu J, Song ZM, He BB, Cai P, Zhong Z, Feng C, Neelakantan P, Li YX. A systematically biosynthetic investigation of lactic acid bacteria reveals diverse antagonistic bacteriocins that potentially shape the human microbiome. MICROBIOME 2023; 11:91. [PMID: 37101246 PMCID: PMC10134562 DOI: 10.1186/s40168-023-01540-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 03/31/2023] [Indexed: 05/12/2023]
Abstract
BACKGROUND Lactic acid bacteria (LAB) produce various bioactive secondary metabolites (SMs), which endow LAB with a protective role for the host. However, the biosynthetic potentials of LAB-derived SMs remain elusive, particularly in their diversity, abundance, and distribution in the human microbiome. Thus, it is still unknown to what extent LAB-derived SMs are involved in microbiome homeostasis. RESULTS Here, we systematically investigate the biosynthetic potential of LAB from 31,977 LAB genomes, identifying 130,051 secondary metabolite biosynthetic gene clusters (BGCs) of 2,849 gene cluster families (GCFs). Most of these GCFs are species-specific or even strain-specific and uncharacterized yet. Analyzing 748 human-associated metagenomes, we gain an insight into the profile of LAB BGCs, which are highly diverse and niche-specific in the human microbiome. We discover that most LAB BGCs may encode bacteriocins with pervasive antagonistic activities predicted by machine learning models, potentially playing protective roles in the human microbiome. Class II bacteriocins, one of the most abundant and diverse LAB SMs, are particularly enriched and predominant in the vaginal microbiome. We utilized metagenomic and metatranscriptomic analyses to guide our discovery of functional class II bacteriocins. Our findings suggest that these antibacterial bacteriocins have the potential to regulate microbial communities in the vagina, thereby contributing to the maintenance of microbiome homeostasis. CONCLUSIONS Our study systematically investigates LAB biosynthetic potential and their profiles in the human microbiome, linking them to the antagonistic contributions to microbiome homeostasis via omics analysis. These discoveries of the diverse and prevalent antagonistic SMs are expected to stimulate the mechanism study of LAB's protective roles for the microbiome and host, highlighting the potential of LAB and their bacteriocins as therapeutic alternatives. Video Abstract.
Collapse
Affiliation(s)
- Dengwei Zhang
- Department of Chemistry and The Swire Institute of Marine Science, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Jian Zhang
- Department of Chemistry and The Swire Institute of Marine Science, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Shanthini Kalimuthu
- Division of Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Jing Liu
- Department of Chemistry and The Swire Institute of Marine Science, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Zhi-Man Song
- Department of Chemistry and The Swire Institute of Marine Science, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Bei-Bei He
- Department of Chemistry and The Swire Institute of Marine Science, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Peiyan Cai
- Department of Chemistry and The Swire Institute of Marine Science, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Zheng Zhong
- Department of Chemistry and The Swire Institute of Marine Science, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Chenchen Feng
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Prasanna Neelakantan
- Division of Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Yong-Xin Li
- Department of Chemistry and The Swire Institute of Marine Science, The University of Hong Kong, Pokfulam Road, Hong Kong, China.
| |
Collapse
|
14
|
In Vitro Screening of Antiviral Activity of Lactic Acid Bacteria Isolated from Traditional Fermented Foods. MICROBIOLOGY RESEARCH 2023. [DOI: 10.3390/microbiolres14010026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023] Open
Abstract
Studies of newly isolated strains of lactic acid bacteria (LAB) are a good basis for expanding the potential for their applications in functional foods, probiotic food supplements, and other probiotic products. They exhibit various functional properties, including such with antiviral activity. Probiotic strains can manifest their antiviral effects by various mechanisms, including direct interaction with viruses, production of antiviral compounds, or immune system modulation. Ten newly isolated LAB strains from traditional fermented food products have been tested for the determination of their antiviral activity. This study was performed to evaluate the effect of cell-free supernatants (CFSs) from the studied strains for the effect on viral replication of Human alphaherpesvirus—HHV-1 and HHV-2 as well as for direct virucidal activity. The CFSs of the LAB strains were used in non-toxic concentrations of 25%, 6.25%, and 1.6%. No direct virucidal activity was observed in tested CFSs, but five of the strains observed a well-defined effect of viral replication inhibition with the selective index (SI) from 4.40 to >54. For two of these five strains, Lactobacillus delbrueckii subsp. bulgaricus KZM 2-11-3 and Lactiplantibacillus plantarum KC 5-12 strong activity against HHV-2 with a selective index (SI) over 45 was detected, which is a good basis for further research.
Collapse
|
15
|
Wan Z, Zheng J, Zhu Z, Sang L, Zhu J, Luo S, Zhao Y, Wang R, Zhang Y, Hao K, Chen L, Du J, Kan J, He H. Intermediate role of gut microbiota in vitamin B nutrition and its influences on human health. Front Nutr 2022; 9:1031502. [PMID: 36583209 PMCID: PMC9792504 DOI: 10.3389/fnut.2022.1031502] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/28/2022] [Indexed: 12/14/2022] Open
Abstract
Vitamin B consists of a group of water-soluble micronutrients that are mainly derived from the daily diet. They serve as cofactors, mediating multiple metabolic pathways in humans. As an integrated part of human health, gut microbiota could produce, consume, and even compete for vitamin B with the host. The interplay between gut microbiota and the host might be a crucial factor affecting the absorbing processes of vitamin B. On the other hand, vitamin B supplementation or deficiency might impact the growth of specific bacteria, resulting in changes in the composition and function of gut microbiota. Together, the interplay between vitamin B and gut microbiota might systemically contribute to human health. In this review, we summarized the interactions between vitamin B and gut microbiota and tried to reveal the underlying mechanism so that we can have a better understanding of its role in human health.
Collapse
Affiliation(s)
- Zhijie Wan
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, China
| | | | | | - Lan Sang
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, China
| | - Jinwei Zhu
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, China
| | - Shizheng Luo
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, China
| | - Yixin Zhao
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, China
| | - Ruirui Wang
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, China
| | - Yicui Zhang
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, China
| | - Kun Hao
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, China
| | - Liang Chen
- Nutrilite Health Institute, Shanghai, China
| | - Jun Du
- Nutrilite Health Institute, Shanghai, China
| | - Juntao Kan
- Nutrilite Health Institute, Shanghai, China
| | - Hua He
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
16
|
Zhu X, Li H, Zhou L, Jiang H, Ji M, Chen J. Evaluation of the gut microbiome alterations in healthy rats after dietary exposure to different synthetic ZnO nanoparticles. Life Sci 2022; 312:121250. [PMID: 36455650 DOI: 10.1016/j.lfs.2022.121250] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/23/2022] [Accepted: 11/25/2022] [Indexed: 11/30/2022]
Abstract
AIMS Although synthetic ZnO nanoparticles (Nano-ZnO) as an alternative of ZnO compounds have been extensively used such as in livestock production, the increased consuming of Nano-ZnO has raised considerable concerns in environmental pollution and public health. Because of the low digestion of Nano-ZnO, the systematic studies on their interactions with gut microbiota remain to be clarified. MATERIALS AND METHODS Nano-ZnOs were prepared by co-precipitation (ZnO-cp) and high temperature thermal decomposition (ZnO-td) as well as the commercial type (ZnO-s). Transmission electron microscopy (TEM) was used to monitor the morphology of Nano-ZnO. CCK-8 assay was used for cytotoxicity evaluation. Total antioxidant capacity assay, total superoxide dismutase assay, and lipid peroxidation assay were used to evaluate oxidative states of rats. 16S rRNA was used to study the impact of Nano-ZnO on the rat gut microbiome. KEY FINDINGS Both ZnO-cp and ZnO-td exhibited low cytotoxicity while ZnO-s and ZnO-td exhibited prominent antibacterial activities. After a 28-day oral feeding with 1000 mg/kg Zn at dietary dosage, ZnO-s showed slight effect on causing oxidative stress in comparison with that of ZnO-cp and ZnO-td. Results of 16S rRNA sequencing analysis indicated that ZnO-td as a promising short-term nano-supplement can increase probiotics abundances like strains belonged to the genus Lactobacillus and provide the antipathogenic effect. SIGNIFICANCE The results of the gut microbiome alteration by synthetic Nano-ZnO not only provide solution to exposure monitoring of environmental hazard, but rationalize their large-scale manufacture as alternative additive in the food chain.
Collapse
Affiliation(s)
- Xinyi Zhu
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Henghui Li
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Liuzhu Zhou
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Huijun Jiang
- School of Pharmacy, Nanjing Medical University, 211166 Nanjing, China
| | - Minghui Ji
- School of Nursing, Nanjing Medical University, Nanjing 211166, China
| | - Jin Chen
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Jiangsu Province Engineering Research Center of Antibody Drug, Key Laboratory of Antibody Technique of National Health Commission, Nanjing Medical University, Nanjing 211166, China; The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, 211166 Nanjing, China.
| |
Collapse
|
17
|
Zhao Y, Li Z, Zhao L, Wang J, Wang F, Zhang Q, Wang X, Sang Y, Zhan J, He J, Li N, Kang X, Chen J, Wang R. Two novel lactic acid bacteria, Limosilactobacillus fermentum MN-LF23 and Lactobacillus gasseri MN-LG80, inhibited Helicobacter pylori infection in C57BL/6 mice. Food Funct 2022; 13:11061-11069. [PMID: 36197065 DOI: 10.1039/d2fo02034c] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
Helicobacter pylori (H. pylori) is one of the most prevalent pathogens globally, and long-term infection causes various gastrointestinal diseases such as gastritis and even cancer. In the present study, we screened dozens of lactic acid bacteria for the efficacy to inhibit H. pylori growth in vitro, and tested the therapeutic effects of candidate strains in vivo. The results showed that Limosilactobacillus fermentum MN-LF23 (LF23) and Lactobacillus gasseri MN-LG80 (LG80) significantly reduced the abundance of Helicobacter by 90% and 83% in the infected mice, respectively, and decreased the levels of serum urease and H. pylori-specific IgG. Both bacterial strains tended to ameliorate H. pylori infection-induced gastric mucosa damage and lymphocyte infiltration, and reduced levels of serum inflammatory cytokines such as TNF-α, IL-1β, and IL-6. In addition, their culture supernatants also showed a therapeutic effect, as efficient as the bacterial cells. Furthermore, both strains significantly regulated gastric microbiota profile, and their supernatants restored the diversity of gastric microbiota. LF23 increased the abundance of Lactobacillus murinus and reduced the abundance of Desulfovibrio, whereas LG80 increased the abundance of Lactobacillus reuteri and reduced the abundance of Bilophila. Both LF23 and LG80 enriched beneficial commensals such as Faecalibaculum rodentium, and reduced detrimental bacteria such as H. pylori and Lachnoclostridium. In conclusion, we identified two novel lactic acid bacteria L. fermentum MN-LF23 and L. gasseri MN-LG80 that can remarkably inhibit H. pylori infection.
Collapse
Affiliation(s)
- Yuyang Zhao
- College of Food Science and Nutritional Engineering, Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, China Agricultural University, Beijing 100083, China
| | - Zhipeng Li
- R&D Center, Inner Mongolia Mengniu Dairy (Group) Co. Ltd., Huhhot, 011500, Inner Mongolia, China.
- Shanghai Mengniu Biotechnology R&D Co., Ltd., 201210, Shanghai, China
| | - Liang Zhao
- College of Food Science and Nutritional Engineering, Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, China Agricultural University, Beijing 100083, China
| | - Jian Wang
- College of Food Science and Nutritional Engineering, Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, China Agricultural University, Beijing 100083, China
| | - Fan Wang
- R&D Center, Inner Mongolia Mengniu Dairy (Group) Co. Ltd., Huhhot, 011500, Inner Mongolia, China.
- Shanghai Mengniu Biotechnology R&D Co., Ltd., 201210, Shanghai, China
| | - Qi Zhang
- College of Food Science and Nutritional Engineering, Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, China Agricultural University, Beijing 100083, China
| | - Xiaoyu Wang
- College of Food Science and Nutritional Engineering, Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, China Agricultural University, Beijing 100083, China
| | - Yue Sang
- Hebei Engineering Research Center of Animal Product, Sanhe 065200, China
| | - Jing Zhan
- Department of Nutrition and Health, China Agricultural University, Beijing 100190, China.
| | - Jingjing He
- Department of Nutrition and Health, China Agricultural University, Beijing 100190, China.
| | - Ning Li
- R&D Center, Inner Mongolia Mengniu Dairy (Group) Co. Ltd., Huhhot, 011500, Inner Mongolia, China.
| | - Xiaohong Kang
- R&D Center, Inner Mongolia Mengniu Dairy (Group) Co. Ltd., Huhhot, 011500, Inner Mongolia, China.
- Shanghai Mengniu Biotechnology R&D Co., Ltd., 201210, Shanghai, China
| | - Jianguo Chen
- R&D Center, Inner Mongolia Mengniu Dairy (Group) Co. Ltd., Huhhot, 011500, Inner Mongolia, China.
- Shanghai Mengniu Biotechnology R&D Co., Ltd., 201210, Shanghai, China
| | - Ran Wang
- Department of Nutrition and Health, China Agricultural University, Beijing 100190, China.
| |
Collapse
|
18
|
Sun X, Shi J, Kong L, Shen Q, Zeng X, Wu Z, Guo Y, Pan D. Recent insights into the hepatoprotective effects of lactic acid bacteria in alcoholic liver disease. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
19
|
Peng X, Ed-Dra A, Yue M. Whole genome sequencing for the risk assessment of probiotic lactic acid bacteria. Crit Rev Food Sci Nutr 2022; 63:11244-11262. [PMID: 35694810 DOI: 10.1080/10408398.2022.2087174] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Probiotic bacteria exhibit beneficial effects on human and/or animal health, and have been widely used in foods and fermented products for decades. Most probiotics consist of lactic acid bacteria (LAB), which are used in the production of various food products but have also been shown to have the ability to prevent certain diseases. With the expansion of applications for probiotic LAB, there is an increasing concern with regard to safety, as cases with adverse effects, i.e., severe infections, transfer of antimicrobial resistance genes, etc., can occur. Currently, in vitro assays remain the primary way to assess the properties of LAB. However, such methodologies are not meeting the needs of strain risk assessment on a high-throughput scale, in the context of the evolving concept of food safety. Analyzing the complete genetic information, including potential virulence genes and other determinants with a negative impact on health, allows for assessing the safe use of the product, for which whole-genome sequencing (WGS) of individual LAB strains can be employed. Genomic data can also be used to understand subtle differences in the strain level important for beneficial effects, or protect patents. Here, we propose that WGS-based bioinformatics analyses are an ideal and cost-effective approach for the initial in silico microbial risk evaluation, while the technique may also increase our understanding of LAB strains for food safety and probiotic property evaluation.
Collapse
Affiliation(s)
- Xianqi Peng
- Department of Veterinary Medicine & Institute of Preventive Veterinary Sciences, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | | | - Min Yue
- Department of Veterinary Medicine & Institute of Preventive Veterinary Sciences, College of Animal Sciences, Zhejiang University, Hangzhou, China
- Hainan Institute of Zhejiang University, Sanya, China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, China
| |
Collapse
|
20
|
Alqazlan N, Astill J, Raj S, Sharif S. Strategies for enhancing immunity against avian influenza virus in chickens: A review. Avian Pathol 2022; 51:211-235. [PMID: 35297706 DOI: 10.1080/03079457.2022.2054309] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Poultry infection with avian influenza viruses (AIV) is a continuous source of concern for poultry production and human health. Uncontrolled infection and transmission of AIV in poultry increases the potential for viral mutation and reassortment, possibly resulting in the emergence of zoonotic viruses. To this end, implementing strategies to disrupt the transmission of AIVs in poultry, including a wide array of traditional and novel methods, is much needed. Vaccination of poultry is a targeted approach to reduce clinical signs and shedding in infected birds. Strategies aimed at enhancing the effectiveness of AIV vaccines are multi-pronged and include methods directed towards eliciting immune responses in poultry. Strategies include producing vaccines of greater immunogenicity via vaccine type and adjuvant application and increasing bird responsiveness to vaccines by modification of the gastrointestinal tract (GIT) microbiome and dietary interventions. This review provides an in-depth discussion of recent findings surrounding novel AIV vaccines for poultry, including reverse genetics vaccines, vectors, protein vaccines and virus like particles, highlighting their experimental efficacy among other factors such as safety and potential for use in the field. In addition to the type of vaccine employed, vaccine adjuvants also provide an effective way to enhance AIV vaccine efficacy, therefore, research on different types of vaccine adjuvants and vaccine adjuvant delivery strategies is discussed. Finally, the poultry gastrointestinal microbiome is emerging as an important factor in the effectiveness of prophylactic treatments. In this regard, current findings on the effects of the chicken GIT microbiome on AIV vaccine efficacy are summarized here.
Collapse
Affiliation(s)
- Nadiyah Alqazlan
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Jake Astill
- Artemis Technologies Inc., Guelph, ON, N1L 1E3, Canada
| | - Sugandha Raj
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Shayan Sharif
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, N1G 2W1, Canada
| |
Collapse
|
21
|
Xiang JY, Chi YY, Han JX, Shi X, Cai Y, Xiang H, Xie Q. Intestinal Microbiota Contributes to the Improvement of Alcoholic Hepatitis in Mice Treated With Schisandra chinensis Extract. Front Nutr 2022; 9:822429. [PMID: 35252302 PMCID: PMC8894320 DOI: 10.3389/fnut.2022.822429] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/10/2022] [Indexed: 12/12/2022] Open
Abstract
Alcoholic hepatitis (AH) has a high short-term mortality rate. Schisandra chinensis has the potential to ameliorate liver damage and be a source of prebiotics. We aimed to investigate whether Schisandra chinensis extract (SCE) can improve AH and the role of the small intestinal and cecal microbiota and their metabolites. UHPLC-QE-MS was used to analyze the chemical components of SCE. The chronic-plus-binge ethanol feeding model was used to induce AH in mice. 1H NMR was used to analyze intestinal metabolites. 16S rRNA-based high throughput sequencing was used to evaluate the effects of SCE on intestinal microbiota (IM). Intestinal microbiota transplantation was used to explore the role of IM in SCE treatment of AH. SCE ameliorated AH non-dose-dependently. SCE effectively improved liver inflammation and oxidative/nitrosative stress, strengthened intestinal barrier function, and regulated the composition of IM and the content of short-chain fatty acids (SCFAs) in AH mice. Samples from in vivo and in vitro SCE-altered IM improved liver status and regulated the IM. The administration of Lactobacillus plantarum and Bifidobacterium breve ameliorated AH to some extent. The administration of Enterococcus faecalis and Klebsiella oxytoca had partial beneficial effects on AH. Collectively, IM and metabolites were closely associated with the improvement of SCE on AH. The possible microbe targets were the growth inhibition of Escherichia-Shigella and the expansion of SCFA producers, such as Lactobacillus and Bifidobacterium. Schisandra chinensis can be considered as a safe and effective dietary supplement for the prevention and improvement of AH.
Collapse
Affiliation(s)
- Jun-Yan Xiang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
- School of Life Sciences, Jilin University, Changchun, China
| | - Yan-Yu Chi
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
- School of Life Sciences, Jilin University, Changchun, China
| | - Jin-Xin Han
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
- School of Life Sciences, Jilin University, Changchun, China
| | - Xinyu Shi
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
- School of Life Sciences, Jilin University, Changchun, China
| | - Yong Cai
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
- School of Life Sciences, Jilin University, Changchun, China
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
- Resources and Applied Microbiology Laboratory, Institute of Changbai Mountain Resource and Health, Jilin University, Fusong, China
- *Correspondence: Yong Cai
| | - Hongyu Xiang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
- School of Life Sciences, Jilin University, Changchun, China
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
- Resources and Applied Microbiology Laboratory, Institute of Changbai Mountain Resource and Health, Jilin University, Fusong, China
- Hongyu Xiang
| | - Qiuhong Xie
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
- School of Life Sciences, Jilin University, Changchun, China
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
- Resources and Applied Microbiology Laboratory, Institute of Changbai Mountain Resource and Health, Jilin University, Fusong, China
- Qiuhong Xie
| |
Collapse
|
22
|
Effect of medium composition on cell envelope proteinase production by Lactobacillus plantarum LP69. ACTA UNIVERSITATIS CIBINIENSIS. SERIES E: FOOD TECHNOLOGY 2021. [DOI: 10.2478/aucft-2021-0024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Cell envelope proteases (CEPs) can break down milk protein into peptides with different functions, which are of great benefit to human health. Therefore, the high-yield CEPs of Lactobacillus plantarum have the potential to produce functional dairy products. In previous experiments, we found that Na2HPO4, inulin, casein peptone and leucine have significant effects on CEP production by Lactobacillus plantarum LP69. So we proceeded to optimize the composition of the CEP-producing culture medium of L. plantarum through Box-Behnken design and response surface methodology. The protease activity, protein content and specific activity of CEPs produced by L. plantarum by inulin (0.2, 0.3, 0.4 %), casein peptone (0.4, 0.6, 0.8 %), Na2HPO4 (0.50, 0.52, 0.54 %) and leucine (14, 16, 18 mg/L) were evaluated. The optimal ratio of medium is 0.4 % inulin, 0.66 % casein peptone, 0.5 % Na2HPO4 and 14.04 mg/L Leucine. The final enzyme activity reached (24.46±0.81) U/mL, and the specific activity reached (1.41±0.46) U/mg.
Collapse
|
23
|
Zhou D, Zhao Y, Li J, Ravichandran V, Wang L, Huang Q, Chen C, Ni H, Yin J. Effects of Phytic Acid-Degrading Bacteria on Mineral Element Content in Mice. Front Microbiol 2021; 12:753195. [PMID: 34880838 PMCID: PMC8645864 DOI: 10.3389/fmicb.2021.753195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/18/2021] [Indexed: 11/13/2022] Open
Abstract
Trace minerals are extremely important for balanced nutrition, growth, and development in animals and humans. Phytic acid chelation promotes the use of probiotics in nutrition. The phytic acid-degrading strain Lactococcus lactis psm16 was obtained from swine milk by enrichment culture and direct plate methods. In this study, we evaluated the effect of the strain psm16 on mineral element content in a mouse model. Mice were divided into four groups: basal diet, 1% phytic acid, 1% phytic acid + psm16, 1% phytic acid + 500 U/kg commercial phytase. Concentrations of acetic acid, propionic acid, butyric acid, and total short-chain fatty acids were significantly increased in the strain psm16 group compared to the phytic acid group. The concentrations of copper (p = 0.021) and zinc (p = 0.017) in liver, calcium (p = 0.000), manganese (p = 0.000), and zinc (p = 0.000) in plasma and manganese (p = 0.010) and zinc (p = 0.022) in kidney were significantly increased in psm16 group, while copper (p = 0.007) and magnesium (p = 0.001) were significantly reduced. In conclusion, the addition of phytic acid-degrading bacteria psm16 into a diet including phytic acid can affect the content of trace elements in the liver, kidney, and plasma of mice, counteracting the harmful effects of phytic acid.
Collapse
Affiliation(s)
- Diao Zhou
- Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Hunan Normal University, Changsha, China
| | - Ying Zhao
- Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Hunan Normal University, Changsha, China
| | - Jing Li
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Hunan Research Center of Livestock and Poultry Sciences, South Central Experimental Station of Animal Nutrition and Feed Science in the Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Vinothkannan Ravichandran
- State Key Laboratory of Microbial Technology, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Qingdao, China
| | - Leli Wang
- Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Hunan Normal University, Changsha, China
| | - Qiuyun Huang
- Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Hunan Normal University, Changsha, China
| | - Cang Chen
- Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Hunan Normal University, Changsha, China
| | - Hengjia Ni
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Hunan Research Center of Livestock and Poultry Sciences, South Central Experimental Station of Animal Nutrition and Feed Science in the Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Jia Yin
- Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Hunan Normal University, Changsha, China
| |
Collapse
|
24
|
Huang H, Peng F, Li J, Liu Z, Xie M, Xiong T. Isolation and characteristics of lactic acid bacteria with antibacterial activity against Helicobacter pylori. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101446] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|