1
|
Zhu S, Wang X, Jin Y, Peng N, Wei Z, Lian J, Liu S, Ding Y, Zhou X. Dual cryoprotection of gelatin-tea polyphenol microgels on surimi by targeting for ice inhibition and component stabilization. Food Chem 2025; 464:141684. [PMID: 39432946 DOI: 10.1016/j.foodchem.2024.141684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/02/2024] [Accepted: 10/15/2024] [Indexed: 10/23/2024]
Abstract
In this study, the gelatine-polyphenol microgels with dual cryoprotective roles were constructed by regulating the ratio of gelatin to tea polyphenols (1:50-1:250). The physicochemical attributes, ice recrystallization inhibition ability of microgels, and their dosage effects (1 %, 2.5 % and 4 %, w/w) on surimi were investigated. The results indicated that increased gelatin caused the reduced size and enhanced viscosity of microgels. Except for high viscosity and antioxidant activity, the GP-5 group also showed great IRI ability with minimum size distribution (125-214 μm2) of ice crystals. Furthermore, 2.5 G group and S group had a comparable TVB-N (3.81, 4.34 mg/100 g), TBARS (1.18, 1.32 mg/kg), sulfhydryl contents (29.52, 25.48 μmol/g) and Ca2+-ATPase activity (0.44, 0.36 μmolPi/gprot/h). Compared to uneven free water distribution of control group, S and 2.5 G group show more even immobilized-water distribution. Thereafter, the dual cryoprotective functions of microgels in surimi offer valuable insights for the development of effective antifreeze agents.
Collapse
Affiliation(s)
- Shichen Zhu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China; Zhejiang Key Laboratory of Green, Low-carbon and Efficient Development of Marine Fishery Resources, Hangzhou 310014, China; National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, China.
| | - Xuan Wang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China; Zhejiang Key Laboratory of Green, Low-carbon and Efficient Development of Marine Fishery Resources, Hangzhou 310014, China; National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, China
| | - Yan Jin
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China; Zhejiang Key Laboratory of Green, Low-carbon and Efficient Development of Marine Fishery Resources, Hangzhou 310014, China; National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, China
| | - Ningning Peng
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China; Zhejiang Key Laboratory of Green, Low-carbon and Efficient Development of Marine Fishery Resources, Hangzhou 310014, China; National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, China
| | - Zhengpeng Wei
- Ministry of Agriculture Key Laboratory of Frozen Prepared Marine Foods Processing, Qingdao, China
| | - Jing Lian
- Comprehensive Service Center of Market Supervision and Management of Rongcheng, Shandong, China
| | - Shulai Liu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China; Zhejiang Key Laboratory of Green, Low-carbon and Efficient Development of Marine Fishery Resources, Hangzhou 310014, China; National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, China
| | - Yuting Ding
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China; Zhejiang Key Laboratory of Green, Low-carbon and Efficient Development of Marine Fishery Resources, Hangzhou 310014, China; National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, China
| | - Xuxia Zhou
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China; Zhejiang Key Laboratory of Green, Low-carbon and Efficient Development of Marine Fishery Resources, Hangzhou 310014, China; National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, China.
| |
Collapse
|
2
|
Liang J, Chen X, Majura JJ, Tan M, Chen Z, Gao J, Cao W. Insight into the structure-activity relationship of thermal hysteresis activity of cod collagen peptides through peptidomics and bioinformatics approaches. Food Chem 2025; 463:141514. [PMID: 39378722 DOI: 10.1016/j.foodchem.2024.141514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/07/2024] [Accepted: 09/30/2024] [Indexed: 10/10/2024]
Abstract
To elucidate the correlation between variations in thermal hysteresis activity (THA) and the physicochemical properties and structure, antifreeze peptides (AFPs) of isolated fractions (CCP-1 and CCP-2) were characterized on based peptidomics and bioinformatics. The results revealed a positive correlation between the THA of cod collagen antifreeze peptide (CCAFP) and peptide chain length, isoelectric point, and hydrophobic amino acid content. Notably, the THA of CCP-1, which has higher alkaline amino acid content, was 2.60 °C at a concentration of 10 mg/mL, significantly higher than CCP (1.90 °C) and CCP-2 (2.27 °C). Glycine, proline, and valine were the vital amino acids to the formation of hydrogen bonds. Conversely, aspartic and glutamic acids at terminal regions of AFPs tended to introduce kinks in their structures. This distortion reduced binding sites for ice crystals, thereby decreasing their THA, providing a theory for understanding the physicochemical properties and structure of AFPs that influence their THA.
Collapse
Affiliation(s)
- Jiajian Liang
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, China; College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Xiujuan Chen
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, China; College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Julieth Joram Majura
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, China; College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Mingtang Tan
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, China; College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang 524088, China
| | - Zhongqin Chen
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, China; College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang 524088, China
| | - Jialong Gao
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, China; College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang 524088, China
| | - Wenhong Cao
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, China; College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang 524088, China.
| |
Collapse
|
3
|
Ma X, Wang W, Shi H, Kong X, Zhang L. Identification of novel antifreeze peptides from yak skin gelatin ultrasound-assisted enzymatic hydrolysate. ULTRASONICS SONOCHEMISTRY 2024; 111:107102. [PMID: 39433007 PMCID: PMC11533714 DOI: 10.1016/j.ultsonch.2024.107102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/11/2024] [Accepted: 10/11/2024] [Indexed: 10/23/2024]
Abstract
In this paper, a new type of antifreeze peptide was identified from the ultrasonic-assisted enzymolysis product of yak skin. First, the antifreeze peptides were obtained by ultrasonic-assisted enzymolysis of yak skin gelatin. The obtained peptides with 150 W ultrasound treatment could increase the survival rate of Lactobacillus plantarum from 16 % to 60 % after four freeze-thaw cycles. Then, the component with the highest antifreeze activity in the peptides' ultrafiltration product was analyzed by LC-MS/MS to obtain 961 peptides. After screening of antifreeze activity and physical properties, three antifreeze peptide sequences were obtained (S1: GERGGPGGPGPQ, S2: PGGAEGPGRDAQQP, S3: VAPPGAPKKEH). DSC analysis, Lactobacillus plantarum cryoprotection experiments and molecular docking showed that the S1 sequence had the best antifreeze activity. This study provides a new idea for the high-value utilization of yak by-products and a potential candidate for food antifreeze agents.
Collapse
Affiliation(s)
- Xiaotong Ma
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Wenxing Wang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Hongmei Shi
- Gansu Gannan Animal Husbandry and Veterinary Workstation, Gannan 747000, PR China
| | - Xiangying Kong
- Qinghai Haibei Animal Husbandry and Veterinary Science Research Institute, Haibei 812200, PR China
| | - Li Zhang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, PR China.
| |
Collapse
|
4
|
Kim E, Kwon GS, Choi S, Kim SY, Heo KY, Kim YS, Kim CY, Kim S, Jeong JC, Hwang J, Lee JH, Lee JH, Moh SH. Potential role of ice-binding protein in mitochondria-lipid and ATP mechanisms during freezing of plant callus. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 214:108866. [PMID: 39002307 DOI: 10.1016/j.plaphy.2024.108866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 07/15/2024]
Abstract
Plant calli, a perpetually undifferentiated cell culture, have defects in maintaining their genetic fidelity during prolonged tissue culture. Cryopreservation using ice-binding proteins (IBP) is a potential solution. Despite a few studies on cryopreservation using IBPs in plant calli, detailed insights into the intracellular metabolism during freezing, thawing, and re-induction remain sparse. This study investigated and employed IBP from polar yeast Leucosporidium sp. (LeIBP) in the cryopreservation process across diverse taxa, including gymnosperms, monocots, dicots, and woody plants. Molecular-level analyses encompassing reactive oxygen species levels, mitochondrial function, and ATP and lipophilic compounds content were conducted. The results across nine plant species revealed the effects of LeIBP on callus competency post-thawing, along with enhanced survival rates, reactive oxygen species reduction, and restored metabolic activities to the level of those of fresh calli. Moreover, species-specific survival optimization with LeIBP treatments and morphological assessments revealed intriguing extracellular matrix structural changes post-cryopreservation, suggesting a morphological strategy for maintaining the original cellular states and paracrine signaling. This study pioneered the comprehensive application of LeIBP in plant callus cryopreservation, alleviating cellular stress and enhancing competence. Therefore, our findings provide new insights into the identification of optimal LeIBP concentrations, confirmation of genetic conformity post-thawing, and the intracellular metabolic mechanisms of cryopreservation advancements in plant research, thereby addressing the challenges associated with long-term preservation and reducing labor-intensive cultivation processes. This study urges a shift towards molecular-level assessments in cryopreservation protocols for plant calli, advocating a deeper understanding of callus re-induction mechanisms and genetic fidelity post-thawing.
Collapse
Affiliation(s)
- Euihyun Kim
- Plant cell Research Institute of BIO-FD&C Co. Ltd., Incheon, 21990, South Korea
| | - Gi-Sok Kwon
- Plant cell Research Institute of BIO-FD&C Co. Ltd., Incheon, 21990, South Korea
| | - Sunmee Choi
- Plant cell Research Institute of BIO-FD&C Co. Ltd., Incheon, 21990, South Korea
| | - Soo-Yun Kim
- Plant cell Research Institute of BIO-FD&C Co. Ltd., Incheon, 21990, South Korea
| | - Kyeong Yeon Heo
- Plant cell Research Institute of BIO-FD&C Co. Ltd., Incheon, 21990, South Korea
| | - Young Soon Kim
- Korea Research Institute of Bioscience and Biotechnology, South Korea
| | - Cha Young Kim
- Biological Resource Center, Korea Research Institute of Bioscience Biotechnology (KRIBB), Jeongeup, 56212, South Korea
| | - Soyoung Kim
- Biological Resource Center, Korea Research Institute of Bioscience Biotechnology (KRIBB), Jeongeup, 56212, South Korea; Department of Plant Biotechnology, College of Agriculture and Life Science, Chonnam National University, Gwangju, 61186, South Korea
| | - Jae Cheol Jeong
- Biological Resource Center, Korea Research Institute of Bioscience Biotechnology (KRIBB), Jeongeup, 56212, South Korea
| | - Jisub Hwang
- Research Unit of Cryogenic Novel Material, Korea Polar Research Institute, 26, Songdomirae-ro, Yeonsu-gu, Incheon, 21990, South Korea; Department of Polar Sciences, University of Science and Technology, Incheon, 21990, South Korea
| | - Jun Hyuck Lee
- Research Unit of Cryogenic Novel Material, Korea Polar Research Institute, 26, Songdomirae-ro, Yeonsu-gu, Incheon, 21990, South Korea; Department of Polar Sciences, University of Science and Technology, Incheon, 21990, South Korea
| | - Jeong Hun Lee
- Plant cell Research Institute of BIO-FD&C Co. Ltd., Incheon, 21990, South Korea
| | - Sang Hyun Moh
- Plant cell Research Institute of BIO-FD&C Co. Ltd., Incheon, 21990, South Korea.
| |
Collapse
|
5
|
Yang Y, Huang L, Huang Z, Ren Y, Xiong Y, Xu Z, Chi Y. Food-derived peptides unleashed: emerging roles as food additives beyond bioactivities. Crit Rev Food Sci Nutr 2024:1-22. [PMID: 38889067 DOI: 10.1080/10408398.2024.2360074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Innovating food additives stands as a cornerstone for the sustainable evolution of future food systems. Peptides derived from food proteins exhibit a rich array of physicochemical and biological attributes crucial for preserving the appearance, flavor, texture, and nutritional integrity of foods. Leveraging these peptides as raw materials holds great promise for the development of novel food additives. While numerous studies underscore the potential of peptides as food additives, existing reviews predominantly focus on their biotic applications, leaving a notable gap in the discourse around their abiotic functionalities, such as their physicochemical properties. Addressing this gap, this review offers a comprehensive survey of peptide-derived food additives in food systems, accentuating the application of peptides' abiotic properties. It furnishes a thorough exploration of the underlying mechanisms and diverse applications of peptide-derived food additives, while also delineating the challenges encountered and prospects for future applications. This well-time review will set the stage for a deeper understanding of peptide-derived food additives.
Collapse
Affiliation(s)
- Yanli Yang
- Innovation Center for Advanced Brewing Science and Technology, College of Biomass Science and Engineering, Sichuan University, Chengdu, China
| | - Lunjie Huang
- Innovation Center for Advanced Brewing Science and Technology, College of Biomass Science and Engineering, Sichuan University, Chengdu, China
| | - Zhangjun Huang
- National Engineering Research Center, Luzhou Laojiao Co. Ltd, Luzhou, China
- Luzhou Pinchuang Technology Co. Ltd., National Engineering Research Center of Solid-State Brewing, Luzhou, China
| | - Yao Ren
- Innovation Center for Advanced Brewing Science and Technology, College of Biomass Science and Engineering, Sichuan University, Chengdu, China
| | - Yanfei Xiong
- National Engineering Research Center, Luzhou Laojiao Co. Ltd, Luzhou, China
- Luzhou Pinchuang Technology Co. Ltd., National Engineering Research Center of Solid-State Brewing, Luzhou, China
| | - Zhenghong Xu
- Innovation Center for Advanced Brewing Science and Technology, College of Biomass Science and Engineering, Sichuan University, Chengdu, China
| | - Yuanlong Chi
- Innovation Center for Advanced Brewing Science and Technology, College of Biomass Science and Engineering, Sichuan University, Chengdu, China
| |
Collapse
|
6
|
Zhu S, Jin Y, Yu J, Yang W, Lian J, Wei Z, Zhang D, Ding Y, Zhou X. Composition-antifreeze property relationships of gelatin and the corresponding mechanisms. Int J Biol Macromol 2024; 268:131941. [PMID: 38685545 DOI: 10.1016/j.ijbiomac.2024.131941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 04/08/2024] [Accepted: 04/26/2024] [Indexed: 05/02/2024]
Abstract
The inherent functional fractions (gelation and ice-affinitive fractions) of gelatin enable it as a promising cryoprotectant alternative. However, the composition-antifreeze property relationships of gelatin remain to be investigated. In this study, the HW-PSG and LW-PSG fractions of gelatin from fish scales were obtained, according to the critical gelation conditions and ice-binding measurements, respectively. Thermal hysteresis (THA) value, associated with ice nucleation, of LW-PSG was higher than that of HW-PSG. Besides, the relatively low-sized ice crystals (210-550 μm2) indicated that HW-PSG showed strong ice recrystallization inhibition (IRI) ability, compared to other groups. These results suggested that LW-PSG inhibited ice nucleation, while HW-PSG displayed the strong IRI ability. Furthermore, the antifreeze mechanisms were clarified through IRI measurements and molecular dynamics simulation. The minimum size of ice crystals was found for HW-PSG gels with dense microstructure, suggesting the HW-PSG retarded the growth of ice crystals by restricting the migration and phase transformation of water molecules. The hydrogen bond interactions between the ice crystal surface and ASN1294 and PRO1433 residues of LW-PSG, and hydrophobic interactions contributed to inhibiting the nucleation of ice crystals. This study provided some references to further enhance antifreeze performance of gelatin by modulating fragment composition.
Collapse
Affiliation(s)
- Shichen Zhu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China; Zhejiang Key Laboratory of Green, Low-carbon and Efficient Development of Marine Fishery Resources, Hangzhou 310014, China; National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Yan Jin
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China; Zhejiang Key Laboratory of Green, Low-carbon and Efficient Development of Marine Fishery Resources, Hangzhou 310014, China; National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, China
| | - Jiehang Yu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China; Zhejiang Key Laboratory of Green, Low-carbon and Efficient Development of Marine Fishery Resources, Hangzhou 310014, China; National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, China
| | - Wenting Yang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China; Zhejiang Key Laboratory of Green, Low-carbon and Efficient Development of Marine Fishery Resources, Hangzhou 310014, China; National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, China
| | - Jing Lian
- Comprehensive service center of market supervision and management of Rongcheng, Shandong, China
| | - Zhengpeng Wei
- Taixiang Group, Rongcheng Taixiang Food Products Co., Ltd., Ministry of Agriculture, Key Laboratory of Frozen Prepared Marine Foods Processing, Rongcheng 264300, China
| | - Dong Zhang
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Yuting Ding
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China; Zhejiang Key Laboratory of Green, Low-carbon and Efficient Development of Marine Fishery Resources, Hangzhou 310014, China; National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Xuxia Zhou
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China; Zhejiang Key Laboratory of Green, Low-carbon and Efficient Development of Marine Fishery Resources, Hangzhou 310014, China; National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
7
|
Liu M, Li J, Ma H, Qin G, Niu M, Zhang X, Zhang J, Wei Y, Han J, Liang Y, Zhang S, Yin L, Zhu H, Huang Y, Li L, Zheng X, Liu C. Structural and physicochemical characteristics of wheat starch as influenced by freeze-thawed cycles and antifreeze protein from Sabina chinensis (Linn.) Ant. cv. Kaizuca leaves. Food Chem X 2023; 20:100927. [PMID: 38144810 PMCID: PMC10740099 DOI: 10.1016/j.fochx.2023.100927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/28/2023] [Accepted: 10/03/2023] [Indexed: 12/26/2023] Open
Abstract
The effects of freeze-thawed cycles (FTs) and a new antifreeze protein from Sabina chinensis (Linn.) Ant. cv. Kaizuca leaves (ScAFP) on the structure and physicochemical characteristics of wheat starch were studied. The mechanical breaking exerted by ice crystals on starch granules during FTs gradually deepened, sequentially squeezing the surface (2-6 FTs), amorphous region (8 FTs) and crystalline region (10 FTs) of starch granules. These changes led to reduced thermal stability, increased retrogradation tendency, and weakened gel network structure. The addition of ScAFP retarded the damage of ice crystals on starch granule structure and crystal structure during FTs, and significantly reduced the retrogradation tendency. Compared with native starch, the hardness of freeze-thawed starch without and with added ScAFP after 10 FTs decreased by 17.85% and 9.22%, respectively, indicating ScAFP improved the gel texture properties of freeze-thawed starch. This study provides new strategies for improving the quality of frozen starch-based foods.
Collapse
Affiliation(s)
- Mei Liu
- National Engineering Laboratory/Key Laboratory of Henan Province, Henan University of Technology, Zhengzhou 450001, China
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Jie Li
- National Engineering Laboratory/Key Laboratory of Henan Province, Henan University of Technology, Zhengzhou 450001, China
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Hao Ma
- National Engineering Laboratory/Key Laboratory of Henan Province, Henan University of Technology, Zhengzhou 450001, China
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Guolan Qin
- National Engineering Laboratory/Key Laboratory of Henan Province, Henan University of Technology, Zhengzhou 450001, China
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Mengge Niu
- National Engineering Laboratory/Key Laboratory of Henan Province, Henan University of Technology, Zhengzhou 450001, China
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Xiaoyin Zhang
- National Engineering Laboratory/Key Laboratory of Henan Province, Henan University of Technology, Zhengzhou 450001, China
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Jin Zhang
- National Engineering Laboratory/Key Laboratory of Henan Province, Henan University of Technology, Zhengzhou 450001, China
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Yangkun Wei
- National Engineering Laboratory/Key Laboratory of Henan Province, Henan University of Technology, Zhengzhou 450001, China
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Jiajing Han
- National Engineering Laboratory/Key Laboratory of Henan Province, Henan University of Technology, Zhengzhou 450001, China
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Ying Liang
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Shenying Zhang
- National Engineering Laboratory/Key Laboratory of Henan Province, Henan University of Technology, Zhengzhou 450001, China
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Lulu Yin
- National Engineering Laboratory/Key Laboratory of Henan Province, Henan University of Technology, Zhengzhou 450001, China
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Haojia Zhu
- National Engineering Laboratory/Key Laboratory of Henan Province, Henan University of Technology, Zhengzhou 450001, China
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Ying Huang
- National Engineering Laboratory/Key Laboratory of Henan Province, Henan University of Technology, Zhengzhou 450001, China
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Limin Li
- National Engineering Laboratory/Key Laboratory of Henan Province, Henan University of Technology, Zhengzhou 450001, China
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Xueling Zheng
- National Engineering Laboratory/Key Laboratory of Henan Province, Henan University of Technology, Zhengzhou 450001, China
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Chong Liu
- National Engineering Laboratory/Key Laboratory of Henan Province, Henan University of Technology, Zhengzhou 450001, China
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| |
Collapse
|
8
|
Cui P, Shao T, Liu W, Li M, Yu M, Zhao W, Song Y, Ding Y, Liu J. Advanced review on type II collagen and peptide: preparation, functional activities and food industry application. Crit Rev Food Sci Nutr 2023; 64:11302-11319. [PMID: 37459185 DOI: 10.1080/10408398.2023.2236699] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Type II collagen is a homologous super-helical structure consisting of three identical α1(II) chains. It is a major component of animal cartilage, and is widely used in the food industry. Type II collagen can be extracted by acids, salts, enzymes, and via auxiliary methods and can be further hydrolyzed chemically and enzymatically to produce collagen peptides. Recent studies have shown that type II collagen and its polypeptides have good self-assembly properties and important biological activities, such as maintaining cartilage tissue integrity, inducing immune tolerance, stimulating chondrocyte growth and redifferentiation, and providing antioxidant benefits. This review focuses specifically on type II collagen and describes its structure, extraction, and purification, as well as the preparation of type II collagen peptides. In particular, the self-assembly properties and functional activities of type II collagen and collagen peptides are reviewed. In addition, recent research advances in the application of type II collagen and collagen peptides in functional foods, food additives, food coating materials, edible films, and carriers for the food industry are presented. This paper provides more detailed and comprehensive information on type II collagen and peptide for their application.
Collapse
Affiliation(s)
- Pengbo Cui
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Tianlun Shao
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Weilin Liu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, P. R. China
| | - Mengyu Li
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Mingxiao Yu
- Meitek Technology Company Limited, Qingdao, P. R. China
| | - Weixue Zhao
- Meitek Technology Company Limited, Qingdao, P. R. China
| | - Yanzhuo Song
- Meitek Technology Company Limited, Qingdao, P. R. China
| | - Yuting Ding
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Jianhua Liu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, P. R. China
| |
Collapse
|
9
|
Shang S, Wang Y, Jiang P, Fu B, Dong X, Qi L. Progress in the application of novel cryoprotectants for the stabilization of myofibrillar proteins. Crit Rev Food Sci Nutr 2023; 64:9756-9770. [PMID: 37222573 DOI: 10.1080/10408398.2023.2215874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
In this review, the physicochemical and conformational changes of myofibrillar proteins (MPs) of freeze-induced mince-based aquatic foods were comprehensively summarized in depth. Studies have demonstrated that temperature fluctuation and long-time freezing negatively affect food quality, resulting in texture alteration, drip fluid, flavor degradation, and nutrition loss due to MPs denaturation, aggregation, and oxidation. Attempts have been made in ice-recrystallization inhibition, freezing point depression, and ice shape and growth control for better cryopreservation. Moreover, to further minimize the quality deterioration, cryoprotectants were acknowledged to reduce the denaturation and aggregation of the MPs effectively. Recently, interest in novel functional ingredients, including oligosaccharides, protein hydrolysates, and natural polyphenols demonstrated excellent cryoprotective effects while avoiding health concerns and undesirable flavor caused by traditional sugar-based or phosphates-based cryoprotectants. Therefore, the present review provides a systematic overview of these low molecular weight multifunctional substances with a particular sequence and highlights their underlying mechanism in the inhibition of ice recrystallization the stabilization of MPs.
Collapse
Affiliation(s)
- Shan Shang
- Collaborative Innovation Centre of Provincial and Ministerial Co-construction for Seafood Deep Processing, National Engineering Research Center of Seafood, State Key Laboratory of Marine Food Processing and Safety Control, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Yueyue Wang
- Collaborative Innovation Centre of Provincial and Ministerial Co-construction for Seafood Deep Processing, National Engineering Research Center of Seafood, State Key Laboratory of Marine Food Processing and Safety Control, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Pengfei Jiang
- Collaborative Innovation Centre of Provincial and Ministerial Co-construction for Seafood Deep Processing, National Engineering Research Center of Seafood, State Key Laboratory of Marine Food Processing and Safety Control, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Baoshang Fu
- Collaborative Innovation Centre of Provincial and Ministerial Co-construction for Seafood Deep Processing, National Engineering Research Center of Seafood, State Key Laboratory of Marine Food Processing and Safety Control, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Xiuping Dong
- Collaborative Innovation Centre of Provincial and Ministerial Co-construction for Seafood Deep Processing, National Engineering Research Center of Seafood, State Key Laboratory of Marine Food Processing and Safety Control, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Libo Qi
- Collaborative Innovation Centre of Provincial and Ministerial Co-construction for Seafood Deep Processing, National Engineering Research Center of Seafood, State Key Laboratory of Marine Food Processing and Safety Control, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| |
Collapse
|
10
|
Chen X, Wu J, Yang F, Zhou M, Wang R, Huang J, Rong Y, Liu J, Wang S. New insight into the mechanism by which antifreeze peptides regulate the physiological function of Streptococcus thermophilus subjected to freezing stress. J Adv Res 2023; 45:127-140. [PMID: 35599106 PMCID: PMC10006524 DOI: 10.1016/j.jare.2022.05.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 04/14/2022] [Accepted: 05/03/2022] [Indexed: 11/20/2022] Open
Abstract
INTRODUCTION Antifreeze peptides regulate the physiological functions of frozen cells and even their apoptosis; however, the mechanisms by which antifreeze peptides regulate these processes remain unclear, although the interactions between cell membranes and ice are well known to be important in this process. OBJECTIVES Our study aims to investigate how antifreeze peptides regulate cell physiological functions during the freezing process. METHODS We investigated the cryoprotective effect of rsfAFP on the physiological functions of S. thermophilus under freezing stress by measuring cellular metabolism activity, intracellular enzyme activity, cell membrane characterization, and cell apoptosis. The mechanism by which rsfAFP impacts S. thermophilus physiological functions under freezing stress was investigated using multispectral techniques and cryo-TEM. RESULTS We show that a recombinant antifreeze peptide (rsfAFP) interacts with the extracellular capsular polysaccharides and peptidoglycan of Streptococcus thermophilus and ice to cover the outer layer of the membrane, forming a dense protective layer that regulates the molecular structure of extracellular ice crystals, which results in reduced extracellular membrane damage, depressed apoptosis and increased intracellular metabolic activity. This interaction mechanism was indicated by the fact that S. thermophilus better maintained its permeability barrier, membrane fluidity, membrane structural integrity, and cytoplasmic membrane potential during freezing stress with rsfAFP treatment. CONCLUSION These results provide new insights into the mechanism by which rsfAFP regulates frozen cellphysiological functionsand apoptosis under freezing stress.
Collapse
Affiliation(s)
- Xu Chen
- School of Mechanical Science & Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Jinhong Wu
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Fujia Yang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Mi Zhou
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ruibin Wang
- Instrumental Analysis Center, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jianlian Huang
- Key Laboratory of Refrigeration and Conditioning Aquatic Products Processing of Ministry of Agriculture and Rural Affairs, Xiamen 361022, China
| | - Yuzhi Rong
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Jianhua Liu
- International Faculty of Applied Technology, Yibin University, Yibin, Sichuan 644000, China
| | - Shaoyun Wang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, China.
| |
Collapse
|
11
|
Effect of active ice nucleation bacteria on freezing and the properties of surimi during frozen storage. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
12
|
Chen J, Xiao J, Tu J, Yu L, Niu L. The alleviative effect of sweet potato protein hydrolysates on the quality deterioration of frozen dough bread in comparison to trehalose. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
13
|
Pal P, Aich R, Chakraborty S, Jana B. Molecular Factors of Ice Growth Inhibition for Hyperactive and Globular Antifreeze Proteins: Insights from Molecular Dynamics Simulation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:15132-15144. [PMID: 36450094 DOI: 10.1021/acs.langmuir.2c02149] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The molecular mechanism behind the ice growth inhibition by antifreeze proteins (AFPs) is yet to be understood completely. Also, what physical parameters differentiate between the AFP and non-AFP are largely unknown. Thus, to get an atomistic overview of the differential antifreeze activities of different classes of AFPs, we have studied ice growth from different ice surfaces in the presence of a moderately active globular type III AFP and a hyperactive spruce budworm (sbw) AFP. Results are compared with the observations of ice growth simulations in the presence of topologically similar non-AFPs using all-atom molecular dynamics simulations. Simulation data suggest that the ice surface coverage is a critical factor in ice growth inhibition. Due to the presence of an ice binding surface (IBS), AFPs form a high affinity complex with ice, accompanied by a transition of hydration water around the IBS from clathrate-like to ice-like. Several residues around the periphery of the IBS anchor the AFP to the curved ice surface mediated by multiple strong hydrogen bonds, stabilizing the complex immensely. In the high surface coverage regime, the slow unbinding kinetics dominates over the ice growth kinetics and thus facilitates the ice growth inhibition. Due to the non-availability of a proper IBS, non-AFPs form a low-affinity complex with the growing ice surface. As a result, the non-AFPs are continuously repelled by the surface. If the concentration of AFPs is low, then the effective surface coverage is reduced significantly. In this low surface coverage regime, AFPs can also behave like impurities and are engulfed by the growing ice crystal.
Collapse
Affiliation(s)
- Prasun Pal
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Rahul Aich
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Sandipan Chakraborty
- Center for Innovation in Molecular and Pharmaceutical Sciences (CIMPS), Dr. Reddy's Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad 500046, India
| | - Biman Jana
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| |
Collapse
|
14
|
Tirado-Kulieva VA, Miranda-Zamora WR, Hernández-Martínez E, Pantoja-Tirado LR, Bazán-Tantaleán DL, Camacho-Orbegoso EW. Effect of antifreeze proteins on the freeze-thaw cycle of foods: fundamentals, mechanisms of action, current challenges and recommendations for future work. Heliyon 2022; 8:e10973. [PMID: 36262292 PMCID: PMC9573917 DOI: 10.1016/j.heliyon.2022.e10973] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/13/2022] [Accepted: 09/30/2022] [Indexed: 11/19/2022] Open
Abstract
Freezing is widely used in food preservation, but if not carried out properly, ice crystals can multiply (nucleation) or grow (recrystallization) rapidly. This also affects thawing, causing structural damage and affecting overall quality. The objective of this review is to comprehensively study the cryoprotective effect of antifreeze proteins (AFPs), highlighting their role in the freeze-thaw process of food. The properties of AFPs are based on their thermal hysteresis capacity (THC), on the modification of crystal morphology and on the inhibition of ice recrystallization. The mechanism of action of AFPs is based on the adsorption-inhibition theory, but the specific role of hydrogen and hydrophobic bonds/residues and structural characteristics is also detailed. Because of the properties of AFPs, they have been successfully used to preserve the quality of a wide variety of refrigerated and frozen foods. Among the limitations of the use of AFPs, the high cost of production stands out, but currently there are solutions such as the use the production of recombinant proteins, cloning and chemical synthesis. Although in vitro, in vivo and human studies have shown that AFPs are non-toxic, their safety remains a matter of debate. Further studies are recommended to expand knowledge about AFPs, to reduce costs in their large-scale production, to understand their interaction with other food compounds and their possible effects on the consumer.
Collapse
Affiliation(s)
| | | | | | - Lucia Ruth Pantoja-Tirado
- Carrera Profesional de Ingeniería en Industrias Alimentarias, Universidad Nacional Autónoma de Tayacaja Daniel Hernández Morillo, Peru
| | | | | |
Collapse
|
15
|
Analysis of the shape retention ability of antifreeze peptide-based surimi 3D structures: Potential in freezing and thawing cycles. Food Chem 2022; 405:134780. [DOI: 10.1016/j.foodchem.2022.134780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 10/18/2022] [Accepted: 10/25/2022] [Indexed: 11/22/2022]
|
16
|
Chen X, Li X, Yang F, Wu J, Huang D, Huang J, Wang S. Effects and mechanism of antifreeze peptides from silver carp scales on the freeze-thaw stability of frozen surimi. Food Chem 2022; 396:133717. [PMID: 35863175 DOI: 10.1016/j.foodchem.2022.133717] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 06/24/2022] [Accepted: 07/13/2022] [Indexed: 12/24/2022]
Abstract
The objective of this work was to investigate the cryoprotective effects of antifreeze peptides obtained from silver carp scales (ScAFPs) on the freeze-thaw stability of surimi, and to explore the action mechanisms of ScAFPs on frozen surimi. The comprehensive analysis of ice crystal size, myofibril protein oxidation, water retention, surimi gel properties, and rheological properties of surimi after different freeze-thaw cycles were investigated. Results showed that frozen surimi treated with ScAFPs exhibited a higher Ca2+-ATPase activity, salt-soluble protein concentration and sulfhydryl group content, while lower surface hydrophobicity, carbonyl content and disulfide bond content. Moreover, the gel properties and water holding capacity of surimi and surimi gel were improved significantly by regulating the size of ice crystals during freeze-thaw process. These findings indicate that ScAFPs could serviced as a new food ingredient with anti-freezing function for frozen products.
Collapse
Affiliation(s)
- Xu Chen
- MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China; College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, China; Key Laboratory of Refrigeration and Conditioning Aquatic Products Processing of Ministry of Agriculture and Rural Affairs, Xiamen 361022, China
| | - Xiaozhen Li
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, China; Key Laboratory of Refrigeration and Conditioning Aquatic Products Processing of Ministry of Agriculture and Rural Affairs, Xiamen 361022, China
| | - Fujia Yang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Jinhong Wu
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Dan Huang
- Key Laboratory of Refrigeration and Conditioning Aquatic Products Processing of Ministry of Agriculture and Rural Affairs, Xiamen 361022, China; Fujian Anjoy Foods Co. Ltd., Xiamen 361022, China
| | - Jianlian Huang
- Key Laboratory of Refrigeration and Conditioning Aquatic Products Processing of Ministry of Agriculture and Rural Affairs, Xiamen 361022, China; Fujian Anjoy Foods Co. Ltd., Xiamen 361022, China
| | - Shaoyun Wang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, China.
| |
Collapse
|
17
|
Lu N, Ma J, Sun DW. Enhancing physical and chemical quality attributes of frozen meat and meat products: Mechanisms, techniques and applications. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.04.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
18
|
Antifreeze Peptides Preparation from Tilapia Skin and Evaluation of Its Cryoprotective Effect on Lacticaseibacillus rhamnosus. Foods 2022; 11:foods11060857. [PMID: 35327279 PMCID: PMC8953377 DOI: 10.3390/foods11060857] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/14/2022] [Accepted: 03/16/2022] [Indexed: 02/04/2023] Open
Abstract
Antifreeze peptides can protect cell membranes and maintain the cell viability of probiotics under cold stress. Given this, antifreeze peptides were prepared from tilapia processing byproducts of tilapia skin by enzymolysis using the response surface methodology (RSM) method. The cryoprotective effects on Lacticaseibacillus rhamnosus ATCC7469 were investigated. Trypsin was selected as the protease for tilapia skin hydrolysis. The optimal hydrolysis conditions consisted of the amount of enzyme (2200 U/g), solid–liquid ratio (1:10, w/v), reaction temperature (49 °C), and reaction time (6.8 h), and the relative survival rate of L. rhamnosus reached 98.32%. Molecular weight (Mw) distribution and peptide sequences of the antifreeze peptides prepared from tilapia skin (APT) under the optimal conditions were analyzed. APT significantly reduced the leakage of extracellular proteins and protected β-galactosidase and lactate dehydrogenase activities of L. rhamnosus. Compared with the saline group, scanning electron microscopy (SEM) observation showed that cells had a more normal, smooth, and entire surface under the protection of APT. These findings indicate that APT can be a new cryoprotectant in preserving probiotics.
Collapse
|
19
|
Hu R, Zhang M, Liu W, Mujumdar AS, Bai B. Novel synergistic freezing methods and technologies for enhanced food product quality: A critical review. Compr Rev Food Sci Food Saf 2022; 21:1979-2001. [PMID: 35179815 DOI: 10.1111/1541-4337.12919] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/19/2021] [Accepted: 01/04/2022] [Indexed: 11/28/2022]
Abstract
Freezing has a long history as an effective food preservation method, but traditional freezing technologies have quality limitations, such as the potential for water loss and/or shrinkage and/or nutrient loss, etc. in the frozen products. Due to enhanced quality preservation and simpler thawing operation, synergistic technologies for freezing are emerging as the optimal methods for frozen food processing. This article comprehensively reviewed the recently developed synergistic technologies for freezing and pretreatment, for example, ultrasonication, cell alive system freezing, glass transition temperature regulation, high pressure freezing, pulsed electric field pretreatment, osmotic pretreatment, and antifreeze protein pretreatment, etc. The mechanisms and applications of these techniques are outlined briefly here. Though the application of new treatments in freezing is relatively mature, reducing the energy consumption in the application of these new technologies is a key issue for future research. It is also necessary to consider scale-up issues involved in large-scale applications as much of the research effort so far is limited to laboratory or pilot scale. For future development, intelligent freezing should be given more attention. Freezing should automatically identify and respond to different freezing conditions according to the nature of different materials to achieve more efficient freezing. PRACTICAL APPLICATION: This paper provides a reference for subsequent production and research, and analyzes the advantages and disadvantages of different novel synergistic technologies, which points out the direction for subsequent industry development and research. At the same time, it provides new ideas for the freezing industry.
Collapse
Affiliation(s)
- Rui Hu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R. China.,Jiangsu Province International Joint Laboratory on Fresh Food Smart Processing and Quality Monitoring, Jiangnan University, Wuxi, Jiangsu, P. R. China
| | - Min Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R. China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, P. R. China
| | - Wenchao Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R. China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, P. R. China
| | - Arun S Mujumdar
- Department of Bioresource Engineering, Macdonald Campus, McGill University, Ste. Anne decBellevue, Quebec, Canada
| | - Baosong Bai
- Yechun Food Production and Distribution Co., Ltd., Yangzhou, Jiangsu, P. R. China
| |
Collapse
|
20
|
Chen X, Wu J, Li X, Yang F, Huang D, Huang J, Wang S, Guyonnet V. Snow flea antifreeze peptide for cryopreservation of lactic acid bacteria. NPJ Sci Food 2022; 6:10. [PMID: 35115563 PMCID: PMC8813996 DOI: 10.1038/s41538-022-00128-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 01/10/2022] [Indexed: 01/10/2023] Open
Abstract
Cryogenic machining is one of the most commonly used techniques for processing and preserving in food industry, and traditional antifreeze agents cannot regulate the mechanical stress damage caused by ice crystals formed during recrystallization or thawing. In this study, we successfully developed an express system of a novel recombinant snow flea antifreeze peptide (rsfAFP), which has significant ice recrystallization inhibition ability, thermal hysteresis activity and alters ice nucleation, thus regulating extracellular ice crystal morphology and recrystallization. We showed that rsfAFP improved the survival rate, acid-producing ability, freezing stability, and cellular metabolism activity of Streptococcus thermophilus. We further showed that rsfAFP interacts with the membrane and ice crystals to cover the outer layer of cells, forming a dense protective layer that maintains the physiological functions of S. thermophilus under freezing stress. These findings provide the scientific basis for using rsfAFP as an effective antifreeze agent for lactic acid bacteria cryopreservation or other frozen food.
Collapse
Affiliation(s)
- Xu Chen
- College of Biological Science and Engineering, Fuzhou University, 350108, Fuzhou, Fujian, China.,College of Chemical Engineering, Fuzhou University, 350108, Fuzhou, Fujian, China
| | - Jinhong Wu
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Xiaozhen Li
- College of Biological Science and Engineering, Fuzhou University, 350108, Fuzhou, Fujian, China
| | - Fujia Yang
- College of Biological Science and Engineering, Fuzhou University, 350108, Fuzhou, Fujian, China.,College of Chemical Engineering, Fuzhou University, 350108, Fuzhou, Fujian, China
| | - Dan Huang
- Fujian Provincial Key Laboratory of Frozen Processed Aquatic Products, 361022, Xiamen, China.,Fujian Anjoy Food Co. Ltd, 361022, Xiamen, China
| | - Jianlian Huang
- Fujian Provincial Key Laboratory of Frozen Processed Aquatic Products, 361022, Xiamen, China.,Fujian Anjoy Food Co. Ltd, 361022, Xiamen, China
| | - Shaoyun Wang
- College of Biological Science and Engineering, Fuzhou University, 350108, Fuzhou, Fujian, China.
| | - Vincent Guyonnet
- FFI Consulting Ltd, 2488 Lyn Road, Brockville, ON, K6V 5T3, Canada
| |
Collapse
|
21
|
Zhang G, Zhu C, Walayat N, Nawaz A, Ding Y, Liu J. Recent development in evaluation methods, influencing factors and control measures for freeze denaturation of food protein. Crit Rev Food Sci Nutr 2022; 63:5874-5889. [PMID: 34996325 DOI: 10.1080/10408398.2022.2025534] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Frozen storage is most widely adopted preservation method to maintain food freshness and nutritional attributes. However, at low temperature, food is prone to chemical changes such as protein denaturation and lipid oxidation. In this review, we discussed the reasons and influencing factors that cause protein denaturation during freezing, such as freezing rate, freezing temperature, freezing method, etc. From the previous literatures, it was found that frozen storage is commonly used to prevent freeze induced protein denaturation by adding cryoprotectants to food. Some widely used cryoprotectants (for example, sucrose and sorbitol) have been reported with higher sweetness and weaker cryoprotective abilities. Therefore, this article comprehensively discusses the new cryopreservation methods and providing comparative study to the conventional frozen storage. Meanwhile, this article sheds light on the freeze induced alterations, such as change in functional and gelling properties. In addition, this article could be helpful for the prolonged frozen storage of food with minimum quality related changes. Meanwhile, it could also improve the commercial values and consumer satisfaction of frozen food as well.
Collapse
Affiliation(s)
- Gaopeng Zhang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, P.R. China
- Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou, P.R. China
- National R & D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, P.R. China
| | - Chunyan Zhu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, P.R. China
- Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou, P.R. China
- National R & D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, P.R. China
| | - Noman Walayat
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, P.R. China
- Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou, P.R. China
- National R & D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, P.R. China
| | - Asad Nawaz
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou, P.R. China
| | - Yuting Ding
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, P.R. China
- Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou, P.R. China
- National R & D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, P.R. China
| | - Jianhua Liu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, P.R. China
- Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou, P.R. China
- National R & D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, P.R. China
| |
Collapse
|
22
|
Chen X, Wu J, Cai X, Wang S. Production, structure–function relationships, mechanisms, and applications of antifreeze peptides. Compr Rev Food Sci Food Saf 2020; 20:542-562. [DOI: 10.1111/1541-4337.12655] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 09/10/2020] [Accepted: 09/21/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Xu Chen
- College of Biological Science and Technology Fuzhou University Fuzhou Fujian China
- College of Chemical Engineering Fuzhou University Fuzhou Fujian China
| | - Jinhong Wu
- Department of Food Science and Engineering School of Agriculture and Biology Shanghai Jiao Tong University Shanghai China
| | - Xixi Cai
- College of Biological Science and Technology Fuzhou University Fuzhou Fujian China
| | - Shaoyun Wang
- College of Biological Science and Technology Fuzhou University Fuzhou Fujian China
| |
Collapse
|