1
|
Zhuang K, Ding W, Chen X, Yao L, Chen X, Dai J. Characterization of the effect of low-concentration sodium selenite on the microstructure and quality of yeast-leavened steamed bread using X-ray computed tomography. Food Chem 2024; 469:142575. [PMID: 39732073 DOI: 10.1016/j.foodchem.2024.142575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 12/13/2024] [Accepted: 12/17/2024] [Indexed: 12/30/2024]
Abstract
Dough fermentation is an effective method for selenium conversion. This study investigated the effects of low Na2SeO3 concentrations on the morphology, texture, fermentation properties, Se species, Se bioaccessibility, and antioxidant capacity of two types of yeast-leaved steamed bread. The results indicated that Na2SeO3 did not significantly affect the specific volume; but it did result in increased hardness. X-ray computed tomography revealed that the center of steamed bread became denser owing to Na2SeO3, and the porosity was reduced by approximately half at the highest addition level, although the cell number remained relatively unchanged. The fermentation property test demonstrated that Na2SeO3 reduced the gas production rate in dough. The conversion rate of seleno-amino acids increased with the addition of Na2SeO3, reaching a maximum of over 7 %, as did the antioxidant capacity, although the Se bioaccessibility decreased. In conclusion, this Se-enriched steamed bread reveals its potential functional benefits as a staple food.
Collapse
Affiliation(s)
- Kun Zhuang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, School of life and health sciences, Hubei University of Technology, Wuhan, Hubei 430068, PR China; Key Laboratory of Bulk Grain and Oil Deep Processing (Ministry of Education), Department of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Wenping Ding
- Key Laboratory of Bulk Grain and Oil Deep Processing (Ministry of Education), Department of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Xuan Chen
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, School of life and health sciences, Hubei University of Technology, Wuhan, Hubei 430068, PR China; Key Laboratory of Bulk Grain and Oil Deep Processing (Ministry of Education), Department of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Lan Yao
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, School of life and health sciences, Hubei University of Technology, Wuhan, Hubei 430068, PR China
| | - Xiong Chen
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, School of life and health sciences, Hubei University of Technology, Wuhan, Hubei 430068, PR China.
| | - Jun Dai
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, School of life and health sciences, Hubei University of Technology, Wuhan, Hubei 430068, PR China
| |
Collapse
|
2
|
Yang Z, Lian J, Li J, Guo W, Ni L, Lv X. Intestinal Microbiomics and Liver Metabolomics Insights into the Ameliorative Effects of Selenium-Enriched Lactobacillus fermentum FZU3103 on Alcohol-Induced Liver Injury in Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 39658842 DOI: 10.1021/acs.jafc.4c06072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
In this study, we investigated the ameliorative effects of selenium-enriched Lactobacillus fermentum FZU3103 (Lf@Se) and its pathway on alcoholic liver injury (ALI) in mice. The results showed that Lf@Se was superior to Lf and inorganic selenium in alleviating ALI. Oral Lf@Se effectively prevented lipid metabolism disorders, improved liver function, promoted alcohol metabolism, and alleviated liver oxidative damage in mice. 16S amplicons sequencing indicated that Lf@Se intervention modulated intestinal flora homeostasis by increasing (decreasing) the abundance of beneficial bacteria (harmful bacteria), which is associated with the improvement of liver function. Besides, Lf@Se intervention altered the liver metabolic profile, and the characteristic biomarkers were mainly involved in tyrosine metabolism, retinol metabolism, galactose metabolism, and primary bile acid biosynthesis. Additionally, Lf@Se intervention regulated liver gene expression for lipid metabolism and oxidative stress. Western blot analysis revealed increased expression levels of intestinal tight junction proteins after Lf@Se intervention, thereby ameliorating alcohol-induced intestinal barrier damage.
Collapse
Affiliation(s)
- Ziyi Yang
- Institute of Food Science and Technology, College of Biological Science and Technology, Fuzhou University, Fuzhou, Fujian 350108, China
- Food Nutrition and Health Research Center, School of Advanced Manufacturing, Fuzhou University, Jinjiang, Fujian 362200, China
| | - Jingyu Lian
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P. R. China
| | - Jiayi Li
- Institute of Food Science and Technology, College of Biological Science and Technology, Fuzhou University, Fuzhou, Fujian 350108, China
- Food Nutrition and Health Research Center, School of Advanced Manufacturing, Fuzhou University, Jinjiang, Fujian 362200, China
| | - Weiling Guo
- Institute of Food Science and Technology, College of Biological Science and Technology, Fuzhou University, Fuzhou, Fujian 350108, China
- Food Nutrition and Health Research Center, School of Advanced Manufacturing, Fuzhou University, Jinjiang, Fujian 362200, China
| | - Li Ni
- Institute of Food Science and Technology, College of Biological Science and Technology, Fuzhou University, Fuzhou, Fujian 350108, China
- Food Nutrition and Health Research Center, School of Advanced Manufacturing, Fuzhou University, Jinjiang, Fujian 362200, China
| | - Xucong Lv
- Institute of Food Science and Technology, College of Biological Science and Technology, Fuzhou University, Fuzhou, Fujian 350108, China
- Food Nutrition and Health Research Center, School of Advanced Manufacturing, Fuzhou University, Jinjiang, Fujian 362200, China
| |
Collapse
|
3
|
Sendani AA, Farmani M, Kazemifard N, Ghavami SB, Sadeghi A. Molecular mechanisms and therapeutic effects of natural products in inflammatory bowel disease. CLINICAL NUTRITION OPEN SCIENCE 2024; 58:21-42. [DOI: 10.1016/j.nutos.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
|
4
|
Du C, Zhu S, Li Y, Yang T, Huang D. Selenium-enriched yeast, a selenium supplement, improves the rheological properties and processability of dough: From the view of yeast metabolism and gluten alteration. Food Chem 2024; 458:140256. [PMID: 38959802 DOI: 10.1016/j.foodchem.2024.140256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/12/2024] [Accepted: 06/26/2024] [Indexed: 07/05/2024]
Abstract
This study investigated the effect mechanism of selenium (Se)-enriched yeast on the rheological properties of dough from the perspective of yeast metabolism and gluten alteration. As the yeast Se content increased, the gas production rate of Se-enriched yeast slowed down, and dough viscoelasticity decreased. The maximum creep of Se-enriched dough increased by 29%, while the final creep increased by 54%, resulting in a softer dough. Non-targeted metabolomics analyses showed that Se inhibited yeast energy metabolism and promoted the synthesis of stress-resistance related components. Glutathione, glycerol, and linoleic acid contributed to the rheological property changes of the dough. The fractions and molecular weight distribution of protein demonstrated that the increase in yeast Se content resulted in the depolymerization of gluten. The intermolecular interactions, fluorescence spectrum and disulfide bond analysis showed that the disruption of intermolecular disulfide bond induced by Se-enriched yeast metabolites played an important role in the depolymerization of gluten.
Collapse
Affiliation(s)
- Chaodong Du
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Song Zhu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Yue Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Tian Yang
- Analysis and Testing Center, Jiangnan University, Wuxi 214122, China
| | - Dejian Huang
- Department of Food Science and Technology, National University of Singapore, 117542, Singapore
| |
Collapse
|
5
|
Shen Q, Liu Y, Li J, Zhou D. Nano-Selenium Modulates NF-κB/NLRP3 Pathway and Mitochondrial Dynamics to Attenuate Microplastic-Induced Liver Injury. Nutrients 2024; 16:3878. [PMID: 39599664 PMCID: PMC11597756 DOI: 10.3390/nu16223878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 10/27/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND Microplastics (PS-MPs) are a new type of pollutant with definite hepatotoxicity. Selenium, on the other hand, has natural, protective effects on the liver. OBJECTIVES/METHODS The purpose of this experiment is to find out whether nano-selenium (SeNP) can alleviate liver damage caused by microplastics. Initially, we established through in vitro experiments that SeNP has the ability to enhance the growth of healthy mouse liver cells, while microplastics exhibit a harmful impact on normal mouse hepatocyte cell suspensions, leading to a decrease in cell count. Subsequently, through in vivo experiments on male ICR mice, we ascertained that SeNPs alleviated the detrimental impacts of PS-MPs on mouse liver. RESULTS SeNPs hinder the signaling pathway of NF-κB/NLRP3 inflammatory vesicles, which is crucial for reducing inflammation induced by PS-MPs. In terms of their mechanism, SeNPs hinder the abnormalities in mitochondrial fission, biogenesis, and fusion caused by PS-MPs and additionally enhance mitochondrial respiration. This enhancement is crucial in averting disorders in energy metabolism and inflammation. CONCLUSIONS To summarize, the use of SeNPs hindered inflammation by regulating mitochondrial dynamics, thus relieving liver damage caused by PS-MPs in mice. The anticipated outcomes offer new research directions that can be referenced in terms of inflammatory injuries caused by PS-MPs.
Collapse
Affiliation(s)
| | | | - Jiakui Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Q.S.)
| | - Donghai Zhou
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Q.S.)
| |
Collapse
|
6
|
Kavyani B, Ahmadi S, Nabizadeh E, Abdi M. Anti-oxidative activity of probiotics; focused on cardiovascular disease, cancer, aging, and obesity. Microb Pathog 2024; 196:107001. [PMID: 39384024 DOI: 10.1016/j.micpath.2024.107001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 10/01/2024] [Accepted: 10/06/2024] [Indexed: 10/11/2024]
Abstract
By disturbing the prooxidant-antioxidant balance in the cell, a condition called oxidative stress is created, causing severe damage to the nucleic acid, protein, and lipid of the host cell, and as a result, endangers the viability of the host cell. A relationship between oxidative stress and several different diseases such as cardiovascular diseases, cancer, and obesity has been reported. Therefore, maintaining this prooxidant-antioxidant balance is vital for the cell. Probiotics as one of the potent antioxidants have recently received attention. Many health-promoting and beneficial effects of probiotics are known, and it has been found that the consumption of certain strains of probiotics alone or in combination with food exerts antioxidant efficacy and reduces oxidative damage. Studies have reported that certain probiotic strains implement their antioxidant effects by producing metabolites and antioxidant enzymes, increasing the antioxidant capacity, and reducing host oxidant metabolites. Therefore, we aimed to review and summarize the latest anti-oxidative activity of probiotics and its efficacy in aging, cardiovascular diseases, cancer, and obesity.
Collapse
Affiliation(s)
- Batoul Kavyani
- Department of Medical Microbiology (Bacteriology & Virology), Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Somayeh Ahmadi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Edris Nabizadeh
- Imam Khomeini Hospital of Piranshahr City, Urmia University of Medical Sciences, Piranshahr, Iran
| | - Milad Abdi
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
7
|
Zhang S, Ma J, Ma Y, Yi J, Wang B, Wang H, Yang Q, Zhang K, Yan X, Sun D, You J. Engineering Probiotics for Diabetes Management: Advances, Challenges, and Future Directions in Translational Microbiology. Int J Nanomedicine 2024; 19:10917-10940. [PMID: 39493275 PMCID: PMC11530765 DOI: 10.2147/ijn.s492651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 10/08/2024] [Indexed: 11/05/2024] Open
Abstract
Background Diabetes Mellitus (DM) is a substantial health concern worldwide, and its incidence is progressively escalating. Conventional pharmacological interventions frequently entail undesirable side effects, and while probiotics offer benefits, they are hindered by constraints such as diminished stability and effectiveness within the gastrointestinal milieu. Given these complications, the advent of bioengineered probiotics is a promising alternative for DM management. Aim of Review The objective of this review is to provide an exhaustive synthesis of the most recent studies on the use of engineered probiotics in the management of DM. This study aimed to clarify the mechanisms through which these probiotics function, evaluate their clinical effectiveness, and enhance public awareness of their prospective advantages in the treatment of DM. Key Scientific Concepts of Review Scholarly critiques have explored diverse methodologies of probiotic engineering, including physical alteration, bioenrichment, and genetic manipulation. These techniques augment the therapeutic potency of probiotics by ameliorating gut microbiota, fortifying the intestinal barrier, modulating metabolic pathways, and regulating immune responses. Such advancements have established engineered probiotics as a credible therapeutic strategy for DM, potentially providing enhanced results compared to conventional treatments.
Collapse
Affiliation(s)
- Shenghao Zhang
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325035, People’s Republic of China
| | - Jiahui Ma
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325035, People’s Republic of China
| | - Yilei Ma
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325035, People’s Republic of China
| | - Jia Yi
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325035, People’s Republic of China
| | - Beier Wang
- Department of Hepatobiliary-Pancreatic Surgery, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, People’s Republic of China
| | - Hanbing Wang
- Department of Biotechnology, The University of Hong Kong, Hong Kong SAR, 999077, People’s Republic of China
| | - Qinsi Yang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, People’s Republic of China
| | - Kun Zhang
- Chongqing Municipality Clinical Research Center for Endocrinology and Metabolic Diseases, Chongqing University Three Gorges Hospital, Chongqing, 404000, People’s Republic of China
| | - Xiaoqing Yan
- The Chinese-American Research Institute for Diabetic Complications, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, People’s Republic of China
| | - Da Sun
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325035, People’s Republic of China
- Department of Endocrinology, Yiwu Central Hospital, The Affiliated Yiwu hospital of Wenzhou Medical University, Yiwu, 322000, People’s Republic of China
| | - Jinfeng You
- Department of Obstetrics, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People’s Hospital, Quzhou, 324000, People’s Republic of China
| |
Collapse
|
8
|
Zhu L, Long P, Hu M, Wang L, Shao Y, Cheng S, Dong X, He Y. Insight into selenium biofortification and the selenite metabolic mechanism of Monascus ruber M7. Food Chem 2024; 455:139740. [PMID: 38843715 DOI: 10.1016/j.foodchem.2024.139740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/09/2024] [Accepted: 05/17/2024] [Indexed: 07/10/2024]
Abstract
Monascus species are functional fermentation fungi with great potential for selenium (Se) supplementation. This study investigated the effects of Se bio-fortification on the growth, morphology, and biosynthesis of Monascus ruber M7. The results demonstrated a significant increase in the yield of orange and red Monascus pigments (MPs) in red yeast rice (RYR) by 38.52% and 36.57%, respectively, under 20 μg/mL of selenite pressure. Meanwhile, the production of citrinin (CIT), a mycotoxin, decreased from 244.47 μg/g to 175.01 μg/g. Transcriptome analysis revealed significant upregulation of twelve genes involved in MPs biosynthesis, specifically MpigE, MpigF, and MpigN, and downregulation of four genes (mrr3, mrr4, mrr7, and mrr8) associated with CIT biosynthesis. Additionally, three genes encoding cysteine synthase cysK (Log2FC = 1.6), methionine synthase metH (Log2FC = 2.2), and methionyl-tRNA synthetase metG (Log2FC = 1.8) in selenocompound metabolism showed significantly upregulated. These findings provide insights into Se biotransformation and metabolism in filamentous fungi.
Collapse
Affiliation(s)
- Lisha Zhu
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China; Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Pengcheng Long
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Man Hu
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Liling Wang
- College of Food Science and Engineering, Tarim University, Alar 843300, PR China
| | - Yanchun Shao
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Shuiyuan Cheng
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Xingxing Dong
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Yi He
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China; Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China.
| |
Collapse
|
9
|
Qiao L, Chang J, Yang G, Deng T, Liu P, Wang J, Xu C. Prophylactic supplementation with selenium nanoparticles protects against foodborne toxin zearalenone-induced intestinal barrier dysfunction. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116914. [PMID: 39182281 DOI: 10.1016/j.ecoenv.2024.116914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/12/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024]
Abstract
Selenium nanoparticles (SeNPs) have been used as a potential alternative to other forms of selenium in nutritional supplements for the treatment and prevention of inflammatory and oxidative stress-related diseases. Zearalenone (ZEA) is a foodborne mycotoxin present in grains that poses a health threat. Here, we investigated the adverse impacts of ZEA on intestinal homeostasis and explored the protective effects of probiotic-synthesized SeNPs against its damage. Results showed that ZEA reduced mucin and tight junction proteins expression in jejunum, induced inflammatory process and oxidative stress which in turn increased intestinal permeability in mice. ZEA-induced intestinal toxicity was further verified in vitro. Intracellular redox imbalance triggered endoplasmic reticulum (ER) stress in intestinal epithelial cells, which caused structural damage to the ER. Remarkably, SeNPs exhibited a counteractive effect by inducing a decrease in intracellular levels of Inositol 1,4,5-trisphosphate (IP3) and Ca2+, along with a reduction in the expression level of IP3 receptor. SeNPs effectively mitigated ZEA-induced ER stress was related to the increased activity of selenium-dependent antioxidant enzymes and the expression of ER-resident selenoproteins. Furthermore, SeNPs significantly inhibited the activation of PERK/eIF2α/ATF4/CHOP pathway in vitro and in vivo. In addition, SeNPs effectively reversed ZEA-induced gut microbiota dysbiosis and increased the abundance of short-chain fatty acid-producing beneficial bacteria (Alloprevotella and Muribaculaceae). The Spearman correlation analysis suggested that the structure of gut microbiota was closely related to the SeNPs attenuation of ZEA-induced intestinal toxicity. This study provides new insights into ZEA-induced intestinal toxicity and identifies a novel potential nutrient SeNPs to overcome adverse effects.
Collapse
Affiliation(s)
- Lei Qiao
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China; Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jiajing Chang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Ge Yang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Tianjing Deng
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Peiyun Liu
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Jing Wang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.
| | - Chunlan Xu
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China.
| |
Collapse
|
10
|
Li F, Lv B, Zuo J, Nawaz S, Wang Z, Lian L, Yin H, Chen S, Han X, Wang H. Effect of Solid-State Fermentation Products of Lactobacillus plantarum, Candida utilis, and Bacillus coagulans on Growth Performance of Broilers and Prevention of Avian Colibacillosis. Vet Sci 2024; 11:468. [PMID: 39453060 PMCID: PMC11511520 DOI: 10.3390/vetsci11100468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/26/2024] Open
Abstract
This study investigates the impact of the solid-state fermentation products of Lactobacillus plantarum, Candida utilis, and Bacillus coagulans (LCBs) on the growth characteristics, immune function, intestinal morphology, cecum microbial community, and prevention of avian colibacillosis in broilers. One hundred and twenty Hyland Brown broilers (aged one day) were divided randomly into three groups (four replicates of ten broilers per group). (1) The CON group was fed a basal diet. (2) The MOD group was fed a basal diet. On day 40, APEC strain SX02 (1.1 × 105 CFU/g) was administered to the breasts of chickens in this group. (3) The LCBs group was fed a basal diet supplemented with fermentation products (98.5% basal diet + 0.5% Lactobacillus plantarum and Candida utilis solid-state fermentation products + 1.0% Bacillus coagulans solid-state fermentation products). On day 40, the LCBs group received the same treatment as the MOD group. The experiment lasted 43 days. This study found that the average daily gain (ADG) of the LCBs group was significantly higher than that of the MOD group (p < 0.05), indicating that LCBs can significantly increase the ADG of broilers and improve the feed conversion ratio. Furthermore, compared to the MOD group, the heart bacterial load was significantly reduced in the LCBs group (p < 0.05), and the lesions less severe in the heart, liver, and jejunum were observed (p < 0.05). Additionally, the detection of intestinal flora showed a significant increase in the abundance of beneficial bacteria in the cecum of the LCBs group, while the number of Escherichia coli and Shigella decreased significantly. In conclusion, the solid fermentation of Lactobacillus plantarum, Candida utilis, and Bacillus coagulans can improve the growth performance of broilers while also protecting against avian pathogenic Escherichia coli infection. This demonstrates the potential usefulness of these LCBs in feed production.
Collapse
Affiliation(s)
- Fangfang Li
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China; (F.L.); (B.L.)
- Shanghai Veterinary Research Institute, The Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai 200241, China; (J.Z.); (S.N.); (Z.W.); (L.L.)
| | - Bing Lv
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China; (F.L.); (B.L.)
| | - Jiakun Zuo
- Shanghai Veterinary Research Institute, The Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai 200241, China; (J.Z.); (S.N.); (Z.W.); (L.L.)
| | - Saqib Nawaz
- Shanghai Veterinary Research Institute, The Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai 200241, China; (J.Z.); (S.N.); (Z.W.); (L.L.)
| | - Zhihao Wang
- Shanghai Veterinary Research Institute, The Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai 200241, China; (J.Z.); (S.N.); (Z.W.); (L.L.)
| | - Liyan Lian
- Shanghai Veterinary Research Institute, The Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai 200241, China; (J.Z.); (S.N.); (Z.W.); (L.L.)
| | - Huifang Yin
- Engineering Research Center for the Prevention and Control of Animal Original Zoonosis, Fujian Province, College of Life Science, Longyan University, Longyan 364012, China;
| | - Shuming Chen
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China; (F.L.); (B.L.)
| | - Xiangan Han
- Shanghai Veterinary Research Institute, The Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai 200241, China; (J.Z.); (S.N.); (Z.W.); (L.L.)
- Engineering Research Center for the Prevention and Control of Animal Original Zoonosis, Fujian Province, College of Life Science, Longyan University, Longyan 364012, China;
| | - Haidong Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China; (F.L.); (B.L.)
| |
Collapse
|
11
|
Nguyen HT, Pham TT, Nguyen PT, Le-Buanec H, Rabetafika HN, Razafindralambo HL. Advances in Microbial Exopolysaccharides: Present and Future Applications. Biomolecules 2024; 14:1162. [PMID: 39334928 PMCID: PMC11430787 DOI: 10.3390/biom14091162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/13/2024] [Accepted: 09/14/2024] [Indexed: 09/30/2024] Open
Abstract
Microbial exopolysaccharides (EPSs) are receiving growing interest today, owing to their diversity in chemical structure and source, multiple functions, and immense potential applications in many food and non-food industries. Their health-promoting benefits for humans deserve particular attention because of their various biological activities and physiological functions. The aim of this paper is to provide a comprehensive review of microbial EPSs, covering (1) their chemical and biochemical diversity, including composition, biosynthesis, and bacterial sources belonging mainly to lactic acid bacteria (LAB) or probiotics; (2) their technological and analytical aspects, especially their production mode and characterization; (3) their biological and physiological aspects based on their activities and functions; and (4) their current and future uses in medical and pharmaceutical fields, particularly for their prebiotic, anticancer, and immunobiotic properties, as well as their applications in other industrial and agricultural sectors.
Collapse
Affiliation(s)
- Huu-Thanh Nguyen
- Department of Biotechnology, An Giang University, Vietnam National University, 18 Ung Van Khiem, Long Xuyen City 880000, Vietnam
- Vietnam National University Ho Chi Minh, Thu Duc City, HCM City 71308, Vietnam
| | - Thuy-Trang Pham
- Department of Biotechnology, An Giang University, Vietnam National University, 18 Ung Van Khiem, Long Xuyen City 880000, Vietnam
- Vietnam National University Ho Chi Minh, Thu Duc City, HCM City 71308, Vietnam
| | - Phu-Tho Nguyen
- Department of Biotechnology, An Giang University, Vietnam National University, 18 Ung Van Khiem, Long Xuyen City 880000, Vietnam
- Vietnam National University Ho Chi Minh, Thu Duc City, HCM City 71308, Vietnam
| | - Hélène Le-Buanec
- INSERM U976-HIPI Hôpital Saint Louis, 1 Avenue Claude Vellefaux, 75010 Paris, France
| | | | - Hary L Razafindralambo
- ProBioLab, 5004 Namur, Belgium
- TERRA Research Centre, Gembloux Agro-Bio Tech, University of Liege, Avenue de la Faculté 2B, 5030 Gembloux, Belgium
| |
Collapse
|
12
|
Xia K, Gao R, Li L, Wu X, Wu T, Ruan Y, Yin L, Chen C. Transformation of colitis and colorectal cancer: a tale of gut microbiota. Crit Rev Microbiol 2024; 50:653-662. [PMID: 37671830 DOI: 10.1080/1040841x.2023.2254388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/24/2023] [Accepted: 08/28/2023] [Indexed: 09/07/2023]
Abstract
Intestinal inflammation modifies host physiology to promote the occurrence of colorectal cancer (CRC), as seen in colitis-associated CRC. Gut microbiota is crucial in cancer progression, primarily by inducing intestinal chronic inflammatory microenvironment, leading to DNA damage, chromosomal mutation, and alterations in specific metabolite production. Therefore, there is an increasing interest in microbiota-based prevention and treatment strategies, such as probiotics, prebiotics, microbiota-derived metabolites, and fecal microbiota transplantation. This review aims to provide valuable insights into the potential correlations between gut microbiota and colitis-associated CRC, as well as the promising microbiota-based strategies for colitis-associated CRC.
Collapse
Affiliation(s)
- Kai Xia
- Diagnostic and Treatment Center for Refractory Diseases of Abdomen Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Renyuan Gao
- Diagnostic and Treatment Center for Refractory Diseases of Abdomen Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lin Li
- Department of Thyroid and Breast Surgery, Ningbo Medical Center, Li Huili Hospital, Ningbo, China
| | - Xiaocai Wu
- Diagnostic and Treatment Center for Refractory Diseases of Abdomen Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Tianqi Wu
- Diagnostic and Treatment Center for Refractory Diseases of Abdomen Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yu Ruan
- Surgery and Anesthesia Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lu Yin
- Diagnostic and Treatment Center for Refractory Diseases of Abdomen Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Chunqiu Chen
- Diagnostic and Treatment Center for Refractory Diseases of Abdomen Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
13
|
Bai YZ, Zhang Y, Zhang SQ. New horizons for the role of selenium on cognitive function: advances and challenges. Metab Brain Dis 2024; 39:1255-1268. [PMID: 38963634 DOI: 10.1007/s11011-024-01375-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 07/01/2024] [Indexed: 07/05/2024]
Abstract
Cognitive deficits associated with oxidative stress and the dysfunction of the central nervous system are present in some neurodegenerative diseases, such as Alzheimer's disease and Parkinson's disease. Selenium (Se), an essential microelement, exhibits cognition-associated functions through selenoproteins mainly owing to its antioxidant property. Due to the disproportionate distribution of Se in the soil, the amount of Se varies greatly in various foods, resulting in a large proportion of people with Se deficiency worldwide. Numerous cell and animal experiments demonstrate Se deficiency-induced cognitive deficits and Se supplementation-improved cognitive performances. However, human studies yield inconsistent results and the mechanism of Se in cognition still remains elusive, which hinder the further exploration of Se in human cognition. To address the urgent issue, the review summarizes Se-contained foods (plant-based foods, animal-based foods, and Se supplements), brain selenoproteins, mechanisms of Se in cognition (improvement of synaptic plasticity, regulation of Zn2+ level, inhibition of ferroptosis, modulation of autophagy and de novo synthesis of L-serine), and effects of Se on cognitive deficits, as well as consequently sheds light on great potentials of Se in the prevention and treatment of cognitive deficits.
Collapse
Affiliation(s)
- Ya-Zhi Bai
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, 27 Nanwei Road, Beijing, 100050, China
| | - Yongming Zhang
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, 2 East Yinghua Road, Beijing, 100029, China
- National Center for Respiratory Diseases, Beijing, 100029, China
| | - Shuang-Qing Zhang
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, 27 Nanwei Road, Beijing, 100050, China.
| |
Collapse
|
14
|
Song M, Chen J, Si J, Man T, Yao Q, Zhu F, Lv F, Piao Y, Wan Y, Zhu C, Deng S. Selenium Supplementation Sensor Based on Direct Electrochemistry of Urinary Selenosugar and Total Selenium. Anal Chem 2024; 96:12173-12180. [PMID: 39004816 DOI: 10.1021/acs.analchem.4c02391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Emerging point-of-care testing methods are extremely beneficial for personalized assessments of trace element metabolism including selenium (Se). Given the lack of timely evaluation methods for well-received Se fortification, an electrochemical solution was developed based on the recently identified urinary selenosugar (Sel) as a marker. The Se content of crude urine was rapidly determined (∼5 min), and the square-wave voltammetric responses of a Se-selective probe (SeSE) composed of liquid metal amalgam demonstrated comparable performance (e.g., detection limit: 19 nM) to central lab benchtop equipment within the physiological range. Meanwhile, SeSE enabled total urinary Se detection via a mere one-step oxidation. Additionally, SeSE was utilized to jointly assess the apparent internalization and utilization rate of two typical nutrients, selenite and selenomethionine, in a rat nutrition model, demonstrating consistent results with those obtained by HPLC-MS and ICP-MS. Upon systematic standardization directed by Ramaley's theory, SeSE was integrated into a battery-operated portable kit (dubbed "SeEye") with a micro electrochemical drive and tablet PC console for one-stop service trials in a local commercial scenario. This study establishes (1) a nutritive value classifier in a low-cost consumer electronic format and (2) noninvasive diagnostic technology for Se supplementation.
Collapse
Affiliation(s)
- Meiyan Song
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Jialiang Chen
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Jingyi Si
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Tiantian Man
- School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Qunyan Yao
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Fulin Zhu
- School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Fujin Lv
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yuhao Piao
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Ying Wan
- School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Changfeng Zhu
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Shengyuan Deng
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| |
Collapse
|
15
|
Wang K, Huang K, Wang L, Lin X, Tan M, Su W. Microfluidic Strategies for Encapsulation, Protection, and Controlled Delivery of Probiotics. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:15092-15105. [PMID: 38920087 DOI: 10.1021/acs.jafc.4c02973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
Probiotics are indispensable for maintaining the structure of gut microbiota and promoting human health, yet their survivability is frequently compromised by environmental stressors such as temperature fluctuations, pH variations, and mechanical agitation. In response to these challenges, microfluidic technology emerges as a promising avenue. This comprehensive review delves into the utilization of microfluidic technology for the encapsulation and delivery of probiotics within the gastrointestinal tract, with a focus on mitigating obstacles associated with probiotic viability. Initially, it elucidates the design and application of microfluidic devices, providing a precise platform for probiotic encapsulation. Moreover, it scrutinizes the utilization of carriers fabricated through microfluidic devices, including emulsions, microspheres, gels, and nanofibers, with the intent of bolstering probiotic stability. Subsequently, the review assesses the efficacy of encapsulation methodologies through in vitro gastrointestinal simulations and in vivo experimentation, underscoring the potential of microfluidic technology in amplifying probiotic delivery efficiency and health outcomes. In sum, microfluidic technology represents a pioneering approach to probiotic stabilization, offering avenues to cater to consumer preferences for a diverse array of functional food options.
Collapse
Affiliation(s)
- Kuiyou Wang
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning China
- Academy of Food Interdisciplinary Science, Dalian Key Laboratory for Precision Nutrition, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning China
| | - Kexin Huang
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning China
- Academy of Food Interdisciplinary Science, Dalian Key Laboratory for Precision Nutrition, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning China
| | - Li Wang
- Institutes of Biomedical Sciences and the Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Xiangsong Lin
- School of Medical Imageology, Wannan Medical College, Wuhu 241002, China
| | - Mingqian Tan
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning China
- Academy of Food Interdisciplinary Science, Dalian Key Laboratory for Precision Nutrition, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning China
| | - Wentao Su
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning China
- Academy of Food Interdisciplinary Science, Dalian Key Laboratory for Precision Nutrition, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning China
| |
Collapse
|
16
|
Du C, Wang P, Li Y, Cong X, Huang D, Chen S, Zhu S. Investigation of selenium and selenium species in Cardamine violifolia using in vitro digestion coupled with a Caco-2 cell monolayer model. Food Chem 2024; 444:138675. [PMID: 38335688 DOI: 10.1016/j.foodchem.2024.138675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 01/16/2024] [Accepted: 02/02/2024] [Indexed: 02/12/2024]
Abstract
Inadequate Se intake can enhance vulnerability to certain health risks, with supplementation lessening these risks. This study investigated the bioavailability of Se and Se species in five Se compounds and in Se-rich Cardamine violifolia using in vitro digestion coupled with a Caco-2 cell monolayer model, which enabled the study of Se transport and uptake. Translocation results showed that SeCys2 and MeSeCys had high translocation rates in C. violifolia leaves (CVLs). The uptake rate of organic Se increased with time, and MeSeCys exhibited a higher uptake rate than that for SeCys2 and SeMet. The translocation mechanisms of SeMet, Se(IV), and Se(VI) were passive transport, whereas those of SeCys2 and MeSeCys were active transport. The bioavailability of organic Se was higher than that of inorganic Se, with a total Se bioavailability in CVLs of 49.11 %. This study would provide a theoretical basis for the application of C. violifolia in the functional food.
Collapse
Affiliation(s)
- Chaodong Du
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Peiyu Wang
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yue Li
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xin Cong
- Enshi Se-Run Material Engineering Technology Co., Ltd., Enshi, Hubei 445000, China; National R&D Center for Se-Rich Agricultural Products Processing, Wuhan Polytechnic University, Wuhan 430023, China
| | - Dejian Huang
- Department of Food Science and Technology, National University of Singapore, Singapore 117543, Singapore
| | - Shangwei Chen
- Analysis and Testing Center, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Song Zhu
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
17
|
Dou X, Qiao L, Song X, Chang J, Zeng X, Zhu L, Deng T, Yang G, Xu C. Biogenic selenium nanoparticles alleviate intestinal barrier injury in mice through TBC1D15/Fis1/Rab7 pathway. Biomed Pharmacother 2024; 175:116740. [PMID: 38749178 DOI: 10.1016/j.biopha.2024.116740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 06/03/2024] Open
Abstract
Intestinal diseases often stem from a compromised intestinal barrier. This barrier relies on a functional epithelium and proper turnover of intestinal cells, supported by mitochondrial health. Mitochondria and lysosomes play key roles in cellular balance. Our previous researches indicate that biogenic selenium nanoparticles (SeNPs) can alleviate intestinal epithelial barrier damage by enhancing mitochondria-lysosome crosstalk, though the detailed mechanism is unclear. This study aimed to investigate the role of mitochondria-lysosome crosstalk in the protective effect of SeNPs on intestinal barrier function in mice exposed to lipopolysaccharide (LPS). The results showed that LPS exposure increased intestinal permeability in mice, leding to structural and functional damage to mitochondrial and lysosomal. Oral administration of SeNPs significantly upregulated the expression levels of TBC1D15 and Fis1, downregulated the expression levels of Rab7, Caspase-3, Cathepsin B, and MCOLN2, effectively alleviated LPS-induced mitochondrial and lysosomal dysfunction and maintained the intestinal barrier integrity in mice. Furthermore, SeNPs notably inhibited mitophagy caused by adenovirus-associated virus (AAV)-mediated RNA interference the expression of TBC1D15 in the intestine of mice, maintained mitochondrial and lysosomal homeostasis, and effectively alleviated intestinal barrier damage. These results suggested that SeNPs can regulate mitochondria-lysosome crosstalk and inhibit its damage by regulating the TBC1D15/Fis1/Rab7- signaling pathway. thereby alleviating intestinal barrier damage. It lays a theoretical foundation for elucidating the mechanism of mitochondria-lysosome crosstalk in regulating intestinal barrier damage and repair, and provides new ideas and new ways to establish safe and efficient nutritional regulation strategies to prevent and treat intestinal diseases caused by inflammation.
Collapse
Affiliation(s)
- Xina Dou
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Lei Qiao
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Xiaofan Song
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Jiajing Chang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Xiaonan Zeng
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Lixu Zhu
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Tianjing Deng
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Ge Yang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Chunlan Xu
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China.
| |
Collapse
|
18
|
He D, Wu H, Jiang H, Zhang Z, Wang C, Wang D, Wei G. Screening of Selenium/Glutathione-Enriched Candida utilis and Its Anti-inflammatory and Antioxidant Activities in Mice. Biol Trace Elem Res 2024; 202:2786-2796. [PMID: 37773483 DOI: 10.1007/s12011-023-03882-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 09/22/2023] [Indexed: 10/01/2023]
Abstract
This study aimed to screen a mutant of Candida utilis SE-172 with high selenite tolerance and glutathione (GSH) biosynthesis capability via 60Co γ-radiation mutagenesis to prepare selenium (Se)-enriched yeast. The maximal intracellular contents of GSH and organic Se of 22.94 mg/g and 1308.1 μg/g were obtained, respectively, under a batch culture of SE-172. The physiological mechanism underlying increased GSH and organic Se contents in Se/GSH-enriched C. utilis SE-172 was revealed based on assaying activities of γ-glutamylcysteine synthase (γ-GCS) involved in GSH biosynthesis and selenophosphate synthase (SPS) related to organic Se bioconversion, and by determining intracellular ATP and NADH contents and ATP/ADP and NADH/NAD+ ratios associated with energy supply and regeneration. Moreover, the effect of this selenized yeast on anti-inflammatory and antioxidant activities in mice with colitis was investigated. The supplementation of Se/GSH-enriched yeast decreased the dextran sodium sulfate-induced damage to colon tissues, reduced the expression of pro-inflammatory factors [interleukin (IL)-6, IL-1β, and tumor necrosis factor-α (TNF-α)] in serum, increased the antioxidant-related enzyme [superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px)] activities, and decreased the malondialdehyde content in colon. The Se/GSH-enriched C. utilis SE-172 showed potent anti-inflammatory and antioxidant activities in mice with colitis.
Collapse
Affiliation(s)
- Daohong He
- School of Biology and Basic Medical Sciences, Soochow University, 199# Ren'ai Road, Suzhou, 215123, People's Republic of China
| | - Huasheng Wu
- School of Biology and Basic Medical Sciences, Soochow University, 199# Ren'ai Road, Suzhou, 215123, People's Republic of China
| | - Huishu Jiang
- School of Biology and Basic Medical Sciences, Soochow University, 199# Ren'ai Road, Suzhou, 215123, People's Republic of China
| | - Zhen Zhang
- School of Biology and Basic Medical Sciences, Soochow University, 199# Ren'ai Road, Suzhou, 215123, People's Republic of China
| | - Chonglong Wang
- School of Biology and Basic Medical Sciences, Soochow University, 199# Ren'ai Road, Suzhou, 215123, People's Republic of China
| | - Dahui Wang
- School of Biology and Basic Medical Sciences, Soochow University, 199# Ren'ai Road, Suzhou, 215123, People's Republic of China
| | - Gongyuan Wei
- School of Biology and Basic Medical Sciences, Soochow University, 199# Ren'ai Road, Suzhou, 215123, People's Republic of China.
| |
Collapse
|
19
|
Hyrslova I, Kana A, Nesporova V, Mrvikova I, Doulgeraki AI, Lampova B, Doskocil I, Musilova S, Kieliszek M, Krausova G. In vitro digestion and characterization of selenized Saccharomyces cerevisiae, Pichia fermentans and probiotic Saccharomyces boulardii. J Trace Elem Med Biol 2024; 83:127402. [PMID: 38310829 DOI: 10.1016/j.jtemb.2024.127402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/10/2024] [Accepted: 01/26/2024] [Indexed: 02/06/2024]
Abstract
BACKGROUND AND OBJECTIVE Yeasts have the remarkable capability to transform and integrate inorganic selenium into their cellular structures, thereby enhancing its bioavailability and reducing its toxicity. In recent years, yeasts have attracted attention as potential alternative sources of protein. METHODS This study explores the selenium accumulation potential of two less explored yeast strains, namely the probiotic Saccharomyces boulardii CCDM 2020 and Pichia fermentas CCDM 2012, in comparison to the extensively studied Saccharomyces cerevisiae CCDM 272. Our investigation encompassed diverse stress conditions. Subsequently, the selenized yeasts were subjected to an INFOGEST gastrointestinal model. The adherence and hydrophobicity were determined with undigested cells RESULTS: Stress conditions had an important role in influencing the quantity and size of selenium nanoparticles (SeNPs) generated by the tested yeasts. Remarkably, SeMet synthesis was limited to Pichia fermentas CCDM 2012 and S. boulardii CCDM 2020, with S. cerevisiae CCDM 272 not displaying SeMet production at all. Throughout the simulated gastrointestinal digestion, the most substantial release of SeCys2, SeMet, and SeNPs from the selenized yeasts occurred during the intestinal phase. Notably, exception was found in strain CCDM 272, where the majority of particles were released during the oral phase. CONCLUSION The utilization of both traditional and non-traditional selenized yeast types, harnessed for their noted functional attributes, holds potential for expanding the range of products available while enhancing their nutritional value and health benefits.
Collapse
Affiliation(s)
- Ivana Hyrslova
- Department of Microbiology and Technology, Dairy Research Institute Ltd., Prague 160 00, Czech Republic; Department of Microbiology, Nutrition, and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Prague 165 00, Czech Republic.
| | - Antonin Kana
- Department of Analytical Chemistry, University of Chemistry and Technology, Prague 166 28, Czech Republic
| | - Vera Nesporova
- Department of Analytical Chemistry, University of Chemistry and Technology, Prague 166 28, Czech Republic
| | - Iva Mrvikova
- Department of Microbiology and Technology, Dairy Research Institute Ltd., Prague 160 00, Czech Republic; Department of Microbiology, Nutrition, and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Prague 165 00, Czech Republic
| | - Agapi I Doulgeraki
- Laboratory of Food Microbiology and Hygiene, Department of Food Science and Technology, School of Agriculture, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece
| | - Barbora Lampova
- Department of Microbiology, Nutrition, and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Prague 165 00, Czech Republic
| | - Ivo Doskocil
- Department of Microbiology, Nutrition, and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Prague 165 00, Czech Republic
| | - Sarka Musilova
- Department of Microbiology, Nutrition, and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Prague 165 00, Czech Republic
| | - Marek Kieliszek
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159C, 02-776 Warsaw, Poland.
| | - Gabriela Krausova
- Department of Microbiology and Technology, Dairy Research Institute Ltd., Prague 160 00, Czech Republic
| |
Collapse
|
20
|
Chen K, Yang J, Guo X, Han W, Wang H, Zeng X, Wang Z, Yuan Y, Yue T. Microflora structure and functional capacity in Tibetan kefir grains and selenium-enriched Tibetan kefir grains: A metagenomic analysis. Food Microbiol 2024; 119:104454. [PMID: 38225054 DOI: 10.1016/j.fm.2023.104454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/06/2023] [Accepted: 12/18/2023] [Indexed: 01/17/2024]
Abstract
Tibetan kefir grains (TKGs) are a complex protein-lipid-polysaccharide matrix composed of various microorganisms. Microorganisms have the benefit of being effective, secure, and controllable when used for selenium enrichment. In this study, selenium-enriched Tibetan kefir grains (Se-TKGs) were made, and the microbiology composition was analyzed through a metagenomic analysis, to explore the influence of selenium enrichment. The microbial composition of TKGs and Se-TKGs, as well as the probiotic species, quorum sensing system (QS) and functional genes were compared and evaluated. Lactobacillus kefiranofaciens was the most abundant microbial species in both communities. Compared with TKGs, Se-TKGs had a much higher relative abundance of acetic acid bacteria. Lactobacillus helveticus was the most common probiotic species both in TKGs and Se-TKGs. Probiotics with antibacterial and anti-inflammatory properties were more abundant in Se-TKGs. QS analysis revealed that Se-TKGs contained more QS system-associated genes than TKGs. Moreover, Kyoto Encyclopedia of Genes and Genomes analysis revealed that the pathway for human disease ko01501 had the greatest relative abundance in both TKGs and Se-TKGs. Compared with TKGs, Se-TKGs demonstrated a greater relative abundance of different drug resistance-related metabolic pathways. Additionally, linear discriminant analysis effect size was used to examine the biomarkers responsible for the difference between the two groups. In this study, we focused on the microbiological structure of TKGs and Se-TKGs, with the aim of establishing a foundation for a more thorough investigation of Se-TKGs and providing a basis for exploring potential future use.
Collapse
Affiliation(s)
- Ke Chen
- College of Food Science and Engineering, Northwest A & F University, Yangling, 712100, China; College of Food Science and Technology, Northwest University, Xi'an, 710069, China.
| | - Jinyi Yang
- College of Food Science and Engineering, Northwest A & F University, Yangling, 712100, China.
| | - Xinyuan Guo
- College of Food Science and Engineering, Northwest A & F University, Yangling, 712100, China.
| | - Weiyu Han
- College of Food Science and Engineering, Northwest A & F University, Yangling, 712100, China.
| | - Huijuan Wang
- College of Food Science and Engineering, Northwest A & F University, Yangling, 712100, China.
| | - Xuejun Zeng
- College of Food Science and Technology, Northwest University, Xi'an, 710069, China.
| | - Zhouli Wang
- College of Food Science and Engineering, Northwest A & F University, Yangling, 712100, China.
| | - Yahong Yuan
- College of Food Science and Engineering, Northwest A & F University, Yangling, 712100, China; College of Food Science and Technology, Northwest University, Xi'an, 710069, China.
| | - Tianli Yue
- College of Food Science and Engineering, Northwest A & F University, Yangling, 712100, China; College of Food Science and Technology, Northwest University, Xi'an, 710069, China.
| |
Collapse
|
21
|
Wang H, Yang S, Chen Y, Wang Z, Yuan Y, Yue T. Comprehensive distribution and species of selenium in Se-enriched Pichia kudriavzevii 1845. Food Chem 2024; 438:137966. [PMID: 37976881 DOI: 10.1016/j.foodchem.2023.137966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/09/2023] [Accepted: 11/09/2023] [Indexed: 11/19/2023]
Abstract
This study is the first to demonstrate the yeast Pichia kudriavzevii can effectively deliver Se and investigate the distribution and species of Se in Se-enriched P. kudriavzevii. Results showed that P. kudriavzevii can accumulate Se and convert 84.883% of absorbed Se into organic forms, of which 78.338% was incorporated into protein, 1.978% combined with polysaccharides, and 0.456% bound to nucleic acid. Besides, water-soluble, salt-soluble, and alkali-soluble proteins account for 49.398%, 1.867%, and 20.628% of selenoprotein, respectively. The dominant Se species were SeCys2 and MeSeCys. Additionally, Se-enrichment enhanced nutritional value of P. kudriavzevii by increasing the levels of amino acids, iron, and zinc. The activity of key rate-limiting enzyme sephosphate synthetase involved in Se biotransformation was improved after Se enrichment. The extracellular pH results suggest that Se enrichment ability can be further enhanced by elevating pH. These results suggest P. kudriavzevii holds great promise as an effective vehicle for delivering Se.
Collapse
Affiliation(s)
- Huijuan Wang
- College of Food Science and Engineering, Northwest A & F University, Yangling 712100, China; Laboratory of Quality & Safety Risk Assessment for Agri-products (Yangling), Ministry of Agriculture, Yangling 712100, China.
| | - Silong Yang
- College of Food Science and Engineering, Northwest A & F University, Yangling 712100, China; Laboratory of Quality & Safety Risk Assessment for Agri-products (Yangling), Ministry of Agriculture, Yangling 712100, China.
| | - Yue Chen
- College of Food Science and Engineering, Northwest A & F University, Yangling 712100, China; Laboratory of Quality & Safety Risk Assessment for Agri-products (Yangling), Ministry of Agriculture, Yangling 712100, China.
| | - Zhouli Wang
- College of Food Science and Engineering, Northwest A & F University, Yangling 712100, China; Laboratory of Quality & Safety Risk Assessment for Agri-products (Yangling), Ministry of Agriculture, Yangling 712100, China.
| | - Yahong Yuan
- College of Food Science and Engineering, Northwest A & F University, Yangling 712100, China; College of Food Science and Technology, Northwest University, Xi'an 710069, China.
| | - Tianli Yue
- College of Food Science and Engineering, Northwest A & F University, Yangling 712100, China; Laboratory of Quality & Safety Risk Assessment for Agri-products (Yangling), Ministry of Agriculture, Yangling 712100, China; College of Food Science and Technology, Northwest University, Xi'an 710069, China.
| |
Collapse
|
22
|
Chen M, Zhu Z, Wu S, Huang A, Xie Z, Cai J, Huang R, Yu S, Liu M, Zhang J, Tse Y, Wu Q, Wang J, Ding Y. SKN-1 is indispensable for protection against Aβ-induced proteotoxicity by a selenopeptide derived from Cordyceps militaris. Redox Biol 2024; 70:103065. [PMID: 38340636 PMCID: PMC10869277 DOI: 10.1016/j.redox.2024.103065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 01/26/2024] [Accepted: 01/28/2024] [Indexed: 02/12/2024] Open
Abstract
Oxidative stress (OS) and disruption of proteostasis caused by aggregated proteins are the primary causes of cell death in various diseases. Selenopeptides have shown the potential to control OS and alleviate inflammatory damage, suggesting promising therapeutic applications. However, their potential function in inhibiting proteotoxicity is not yet fully understood. To address this gap in knowledge, this study aimed to investigate the effects and underlying mechanisms of the selenopeptide VPRKL(Se)M on amyloid β protein (Aβ) toxicity in transgenic Caenorhabditis elegans. The results revealed that supplementation with VPRKL(Se)M can alleviate Aβ-induced toxic effects in the transgenic C. elegans model. Moreover, the addition of VPRKL(Se)M inhibited the Aβ aggregates formation, reduced the reactive oxygen species (ROS) levels, and ameliorated the overall proteostasis. Importantly, we found that the inhibitory effects of VPRKL(Se)M on Aβ toxicity and activation of the unfolded protein are dependent on skinhead-1 (SKN-1). These findings suggested that VPRKL(Se)M is a potential bioactive agent for modulating SKN-1, which subsequently improves proteostasis and reduces OS. Collectively, the findings from the current study suggests VPRKL(Se)M may play a critical role in preventing protein disorder and related diseases.
Collapse
Affiliation(s)
- Mengfei Chen
- Department of Food Science and Engineering, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China; Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangzhou, 510070, China
| | - Zhenjun Zhu
- Department of Food Science and Engineering, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Shujian Wu
- Department of Food Science and Engineering, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Aohuan Huang
- Department of Food Science and Engineering, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China; Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangzhou, 510070, China
| | - Zhiqing Xie
- Department of Food Science and Engineering, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Jie Cai
- Department of Food Science and Engineering, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China; Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangzhou, 510070, China
| | - Rong Huang
- Department of Food Science and Engineering, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China; Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangzhou, 510070, China
| | - Shubo Yu
- Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangzhou, 510070, China
| | - Ming Liu
- Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangzhou, 510070, China
| | - Jumei Zhang
- Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangzhou, 510070, China
| | - Yuchung Tse
- Core Research Facilities, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Qingping Wu
- Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangzhou, 510070, China
| | - Juan Wang
- College of Food Science, South China Agricultural University, Guangzhou, 510642, China
| | - Yu Ding
- Department of Food Science and Engineering, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
23
|
Lei X, Peng Y, Li Y, Chen Q, Shen Z, Yin W, Lemiasheuski V, Xu S, He J. Effects of selenium nanoparticles produced by Lactobacillus acidophilus HN23 on lipid deposition in WRL68 cells. Bioorg Chem 2024; 145:107165. [PMID: 38367427 DOI: 10.1016/j.bioorg.2024.107165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 01/14/2024] [Accepted: 01/28/2024] [Indexed: 02/19/2024]
Abstract
Selenium is an essential trace element for most organisms, protecting cells from oxidative damage caused by free radicals and serving as an adjunctive treatment for non-alcoholic fatty liver disease (NAFLD). In this study, We used the lactic acid bacterium Lactobacillus acidophilus HN23 to reduce tetra-valent sodium selenite into particulate matter, and analyzed it through inductively coupled plasma mass spectrometry (ICP-MS), scanning electron microscopy (SEM), X-ray diffraction energy dispersive spectrometry (EDS), and Fourier transform infrared spectroscopy (FTIR). We found that it consisted of selenium nanoparticles (SeNPs) with a mass composition of 65.8 % zero-valent selenium and some polysaccharide and polypeptide compounds, with particle sizes ranging from 60 to 300 nm. We also detected that SeNPs were much less toxic to cells than selenite. We further used free fatty acids (FFA)-induced WRL68 fatty liver cell model to study the therapeutic effect of SeNPs on NAFLD. The results show that SeNPs are more effective than selenite in reducing lipid deposition, increasing mitochondrial membrane potential (MMP) and antioxidant capacity of WRL68 cells, which is attributed to the chemical valence state of selenium and organic composition in SeNPs. In conclusion, SeNPs produced by probiotics L. acidophilus had the potential to alleviate NAFLD by reducing hepatocyte lipid deposition and oxidative damage. This study may open a new avenue for SeNPs drug development to treat NAFLD.
Collapse
Affiliation(s)
- Xianglan Lei
- National Key Laboratory of Agricultural Microbiology & Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China; College of Tropical Agricultural Technology, Hainan Vocational University, Haikou 570100, China
| | - Yuxuan Peng
- National Key Laboratory of Agricultural Microbiology & Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China; College of Tropical Agricultural Technology, Hainan Vocational University, Haikou 570100, China; Faculty of Biology, Belarusian State University, 220030 Minsk, Belarus
| | - Yan Li
- International Sakharov Environmental Institute, Belarusian State University, 220030 Minsk, Belarus
| | - Qianyuan Chen
- National Key Laboratory of Agricultural Microbiology & Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhenguo Shen
- College of Tropical Agricultural Technology, Hainan Vocational University, Haikou 570100, China
| | - Wen Yin
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Indus-trial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Viktar Lemiasheuski
- International Sakharov Environmental Institute, Belarusian State University, 220030 Minsk, Belarus; All-Russian Research Institute of Physiology, Biochemistry and Nutrition of Animals - Branch of the Federal Research Center for Animal Husbandry Named After Academy Member L. K. Ernst, Institute, 249013, Borovsk, Russian Federation
| | - Siyang Xu
- National Key Laboratory of Agricultural Microbiology & Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China.
| | - Jin He
- National Key Laboratory of Agricultural Microbiology & Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
24
|
Varvara RA, Vodnar DC. Probiotic-driven advancement: Exploring the intricacies of mineral absorption in the human body. Food Chem X 2024; 21:101067. [PMID: 38187950 PMCID: PMC10767166 DOI: 10.1016/j.fochx.2023.101067] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/10/2023] [Accepted: 12/11/2023] [Indexed: 01/09/2024] Open
Abstract
The interplay between probiotics and mineral absorption is a topic of growing interest due to its great potential for human well-being. Minerals are vital in various physiological processes, and deficiencies can lead to significant health problems. Probiotics, beneficial microorganisms residing in the gut, have recently gained attention for their ability to modulate mineral absorption and mitigate deficiencies. The aim of the present review is to investigate the intricate connection between probiotics and the absorption of key minerals such as calcium, selenium, zinc, magnesium, and potassium. However, variability in probiotic strains, and dosages, alongside the unique composition of individuals in gut microbiota, pose challenges in establishing universal guidelines. An improved understanding of these mechanisms will enable the development of targeted probiotic interventions to optimize mineral absorption and promote human health.
Collapse
Affiliation(s)
- Rodica-Anita Varvara
- Department of Food Science and Technology, Life Science Institute, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Calea Mănăștur 3-5, 400372, Romania
| | - Dan Cristian Vodnar
- Department of Food Science and Technology, Life Science Institute, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Calea Mănăștur 3-5, 400372, Romania
| |
Collapse
|
25
|
Qiao L, Dou X, Song X, Chang J, Yi H, Xu C. Targeting mitochondria with antioxidant nutrients for the prevention and treatment of postweaning diarrhea in piglets. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2023; 15:275-287. [PMID: 38033610 PMCID: PMC10685042 DOI: 10.1016/j.aninu.2023.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 09/27/2023] [Accepted: 09/27/2023] [Indexed: 12/02/2023]
Abstract
Post-weaning diarrhea (PWD) in piglets poses a significant challenge and presents a grave threat to the global swine industry, resulting in considerable financial losses and compromising the welfare of animals. PWD is commonly associated with gut homeostatic imbalance, including oxidative stress, excessive inflammation, and microbiota dysbiosis. Antibiotic use has historically been a common initiative to combat PWD, but concerns about the development of antibiotic resistance have led to increased interest in alternative strategies. Mitochondria are key players in maintaining cellular homeostasis, and their dysfunction is intricately linked to the onset and progression of PWD. Accumulating evidence suggests that targeting mitochondrial function using antioxidant nutrients, such as vitamins, minerals and polyphenolic compounds, may represent a promising approach for preventing and treating PWD. Moreover, nutrients based on antioxidant strategies have been shown to improve mitochondrial function, restore intestinal redox balance, and reduce oxidative damage, which is a key driver of PWD. The present review begins with an overview of the potential interplay between mitochondria and gut homeostasis in the pathogenesis of PWD in piglets. Subsequently, alternative strategies to prevent and treat PWD using antioxidant nutrients to target mitochondria are described and discussed. Ultimately, we delve into potential limitations and suggest future research directions in this field for further advancement. Overall, targeting mitochondria using antioxidant nutrients may be a promising approach to combat PWD and provides a potential nutrition intervention strategy for regulating gut homeostasis of weaned piglets.
Collapse
Affiliation(s)
- Lei Qiao
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Xina Dou
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Xiaofan Song
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Jiajing Chang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Hongbo Yi
- State Key Laboratory of Livestock and Poultry Breeding, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science of Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, 510640, China
| | - Chunlan Xu
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| |
Collapse
|
26
|
Ma N, Lu Y, Wang J, Liang X, Dong S, Zhao L. Role of CdTe quantum dots on peripheral Immunocytes and selenoprotein P: immunotoxicity at the molecular and cellular levels. Toxicol Res (Camb) 2023; 12:1041-1050. [PMID: 38145088 PMCID: PMC10734625 DOI: 10.1093/toxres/tfad095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/12/2023] [Accepted: 09/27/2023] [Indexed: 12/26/2023] Open
Abstract
The extensive product and application of cadmium-quantum dots (Cd-QDs), one kind of semiconductor nanomaterials, lead to prolonged exposure to the environment. Cd-QDs have shown good properties in biomedical and imaging-related fields; the safety of Cd-QDs limits the application of these materials and technologies, however. The systematic distribution of CdTe QDs in organisms has been ascertained in previous studies. Nevertheless, it is relatively less reported about the toxicity of CdTe QDs to immune macromolecules and organs. Based on this, immunocytes (including lymphocyte subsets-CD4+ T and CD8+ T cells, splenocytes) and selenoprotein P (SelP) were chosen as targets for CdTe QDs immunotoxicity studies. Results indicate that CdTe QDs induced cytotoxicity to CD4+ T cells, CD8+ T cells and splenocytes by reducing cell viability and causing apoptosis as CdTe QDs and Cd2+ enter cells. At the molecular level, the direct interaction between CdTe QDs and SelP is proved by multispectral measurements, which demonstrated the alteration of protein structure. The combined results show that CdTe QDs induced adverse effects on the immune system at the cellular and molecular levels. This research contributes to a better understanding of CdTe QDs cause harmful damage to the immune system and provides new strategies for the inhibition and treatment of health damages caused by CdTe QDs.
Collapse
Affiliation(s)
- Nana Ma
- College of Life Science, Institute of Life Science and Green Development, Hebei University, 180# Wusi East Road, Baoding, Hebei 071002, P.R. China
| | - Yudie Lu
- College of Life Science, Institute of Life Science and Green Development, Hebei University, 180# Wusi East Road, Baoding, Hebei 071002, P.R. China
| | - Jing Wang
- School of Environmental and Material Engineering, Yantai University, 30# Qingquan Road, Yantai, Shandong 264005, P.R. China
| | - Xueyou Liang
- Biochemical Department, Baoding University, 180# Wusi East Road, Baoding, Hebei 071000, P.R. China
| | - Sijun Dong
- College of Life Science, Institute of Life Science and Green Development, Hebei University, 180# Wusi East Road, Baoding, Hebei 071002, P.R. China
| | - Lining Zhao
- College of Life Science, Institute of Life Science and Green Development, Hebei University, 180# Wusi East Road, Baoding, Hebei 071002, P.R. China
| |
Collapse
|
27
|
Qiao L, Dou X, Song X, Chang J, Zeng X, Zhu L, Yi H, Xu C. Replacing dietary sodium selenite with biogenic selenium nanoparticles improves the growth performance and gut health of early-weaned piglets. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2023; 15:99-113. [PMID: 38023380 PMCID: PMC10665811 DOI: 10.1016/j.aninu.2023.08.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 12/01/2023]
Abstract
Selenium nanoparticles (SeNPs) are proposed as a safer and more effective selenium delivery system than sodium selenite (Na2SeO3). Here, we investigated the effects of replacing dietary Na2SeO3 with SeNPs synthesized by Lactobacillus casei ATCC 393 on the growth performance and gut health of early-weaned piglets. Seventy-two piglets (Duroc × Landrace × Large Yorkshire) weaned at 21 d of age were divided into the control group (basal diet containing 0.3 mg Se/kg from Na2SeO3) and SeNPs group (basal diet containing 0.3 mg Se/kg from SeNPs) during a 14-d feeding period. The results revealed that SeNPs supplementation increased the average daily gain (P = 0.022) and average daily feed intake (P = 0.033), reduced (P = 0.056) the diarrhea incidence, and improved (P = 0.013) the feed conversion ratio compared with Na2SeO3. Additionally, SeNPs increased jejunal microvilli height (P = 0.006) and alleviated the intestinal barrier dysfunction by upregulating (P < 0.05) the expression levels of mucin 2 and tight junction proteins, increasing (P < 0.05) Se availability, and maintaining mitochondrial structure and function, thereby improving antioxidant capacity and immunity. Furthermore, metabolomics showed that SeNPs can regulate lipid metabolism and participate in the synthesis, secretion and action of parathyroid hormone, proximal tubule bicarbonate reclamation and tricarboxylic acid cycle. Moreover, SeNPs increased (P < 0.05) the abundance of Holdemanella and the levels of acetate and propionate. Correlation analysis suggested that Holdemanella was closely associated with the regulatory effects of SeNPs on early-weaned piglets through participating in lipid metabolism. Overall, replacing dietary Na2SeO3 with biogenic SeNPs could be a potential nutritional intervention strategy to prevent early-weaning syndrome in piglets.
Collapse
Affiliation(s)
- Lei Qiao
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Xina Dou
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Xiaofan Song
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Jiajing Chang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Xiaonan Zeng
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Lixu Zhu
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Hongbo Yi
- State Key Laboratory of Livestock and Poultry Breeding, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science of Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong 510640, China
| | - Chunlan Xu
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| |
Collapse
|
28
|
Ao B, Du Q, Liu D, Shi X, Tu J, Xia X. A review on synthesis and antibacterial potential of bio-selenium nanoparticles in the food industry. Front Microbiol 2023; 14:1229838. [PMID: 37520346 PMCID: PMC10373938 DOI: 10.3389/fmicb.2023.1229838] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 06/29/2023] [Indexed: 08/01/2023] Open
Abstract
Effective control of foodborne pathogen contamination is a significant challenge to the food industry, but the development of new antibacterial nanotechnologies offers new opportunities. Notably, selenium nanoparticles have been extensively studied and successfully applied in various food fields. Selenium nanoparticles act as food antibacterial agents with a number of benefits, including selenium as an essential trace element in food, prevention of drug resistance induction in foodborne pathogens, and improvement of shelf life and food storage conditions. Compared to physical and chemical methods, biogenic selenium nanoparticles (Bio-SeNPs) are safer and more multifunctional due to the bioactive molecules in Bio-SeNPs. This review includes a summarization of (1) biosynthesized of Bio-SeNPs from different sources (plant extracts, fungi and bacteria) and their antibacterial activity against various foodborne bacteria; (2) the antibacterial mechanisms of Bio-SeNPs, including penetration of cell wall, damage to cell membrane and contents leakage, inhibition of biofilm formation, and induction of oxidative stress; (3) the potential antibacterial applications of Bio-SeNPs as food packaging materials, food additives and fertilizers/feeds for crops and animals in the food industry; and (4) the cytotoxicity and animal toxicity of Bio-SeNPs. The related knowledge contributes to enhancing our understanding of Bio-SeNP applications and makes a valuable contribution to ensuring food safety.
Collapse
|
29
|
Kieliszek M, Serrano Sandoval SN. The importance of selenium in food enrichment processes. A comprehensive review. J Trace Elem Med Biol 2023; 79:127260. [PMID: 37421809 DOI: 10.1016/j.jtemb.2023.127260] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 06/28/2023] [Accepted: 07/03/2023] [Indexed: 07/10/2023]
Abstract
Selenium is an essential element that determines the proper life functions of human and animal organisms. The content of selenium in food varies depending on the region and soil conditions. Therefore, the main source is a properly selected diet. However, in many countries, there are shortages of this element in the soil and local food. Too low an amount of this element in food can lead to many adverse changes in the body. The consequence of this may also be the occurrence of numerous potentially life-threatening diseases. Therefore, it is very important to properly introduce methods that condition the supplementation of the appropriate chemical form of this element, especially in areas with deficient selenium content. This review aims to summarize the published literature on the characterization of different types of selenium-enriched foods. At the same time, legal regulations and prospects for the future related to the production of food enriched with this element are presented. It should be noted that there are limitations and concerns with the production of such food due to the narrow safety range between the necessary and the toxic dose of this element. Therefore, selenium has been treated with special care for a very long time. For this reason, the presented mechanisms of production processes related to increasing the scale of selenium supplementation should be constantly monitored. Appropriate monitoring and development of the technological process for the production of selenium-enriched food is very important. Such food should ensure consumer safety and repeatability of the obtained product. Understanding the mechanisms and possibilities of selenium accumulation by plants and animals is one of the most important directions in the development of modern bromatology and the science of supplementation. This is particularly important in the case of rational nutrition and supplementing the human diet with an essential element such as selenium. Food technology is facing these challenges today.
Collapse
Affiliation(s)
- Marek Kieliszek
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159C, 02-776 Warsaw, Poland.
| | - Sayra N Serrano Sandoval
- Tecnologico de Monterrey, Centro de Biotecnología FEMSA, Escuela de Ingeniería y Ciencias, Av. Eugenio Garza Sada 2501 Sur, C.P. 64849 Monterrey, NL, Mexico; Tecnologico de Monterrey, The Institute for Obesity Research, Monterrey, Av. Eugenio Garza Sada 2501 Sur, C.P. 64849 Monterrey, NL, Mexico
| |
Collapse
|
30
|
Hu R, Wang X, Han L, Lu X. The Developments of Surface-Functionalized Selenium Nanoparticles and Their Applications in Brain Diseases Therapy. Biomimetics (Basel) 2023; 8:259. [PMID: 37366854 DOI: 10.3390/biomimetics8020259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/07/2023] [Accepted: 06/12/2023] [Indexed: 06/28/2023] Open
Abstract
Selenium (Se) and its organic and inorganic compounds in dietary supplements have been found to possess excellent pharmacodynamics and biological responses. However, Se in bulk form generally exhibits low bioavailability and high toxicity. To address these concerns, nanoscale selenium (SeNPs) with different forms, such as nanowires, nanorods, and nanotubes, have been synthesized, which have become increasingly popular in biomedical applications owing to their high bioavailability and bioactivity, and are widely used in oxidative stress-induced cancers, diabetes, and other diseases. However, pure SeNPs still encounter problems when applied in disease therapy because of their poor stability. The surface functionalization strategy has become increasingly popular as it sheds light to overcome these limitations in biomedical applications and further improve the biological activity of SeNPs. This review summarizes synthesis methods and surface functionalization strategies employed for the preparation of SeNPs and highlights their applications in treating brain diseases.
Collapse
Affiliation(s)
- Rong Hu
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Xiao Wang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Lu Han
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmaceutics, Ocean University of China, Qingdao 266003, China
| | - Xiong Lu
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| |
Collapse
|
31
|
Dou X, Qiao L, Song X, Chang J, Pi S, Zhang X, Zeng X, Zhu L, Xu C. Biogenic selenium nanoparticles alleviate intestinal epithelial barrier injury by regulating mitochondria-lysosome crosstalk. Food Funct 2023; 14:4891-4904. [PMID: 37144827 DOI: 10.1039/d2fo03992c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The intestinal epithelial barrier plays a fundamental role in human and animal health. Mitochondrial dysfunction can lead to intestinal epithelial barrier damage. The interaction between mitochondria and lysosomes has been proved to regulate each other's dynamics. Our previous studies have demonstrated that biogenic selenium nanoparticles (SeNPs) can alleviate intestinal epithelial barrier injury through regulating mitochondrial autophagy. In this study, we hypothesize that the protective effects of SeNPs against intestinal epithelial barrier dysfunction are associated with mitochondrial-lysosomal crosstalk. The results showed that lipopolysaccharide (LPS) and TBC1D15 siRNA transfection both caused the increase of intestinal epithelial permeability, activation of mitophagy, and mitochondrial and lysosomal dysfunction in porcine jejunal epithelial cells (IPEC-J2). SeNP pretreatment significantly up-regulated the expression levels of TBC1D15 and Fis1, down-regulated Rab7, caspase-3, MCOLN2 and cathepsin B expression levels, reduced cytoplasmic Ca2+ concentration, effectively alleviated mitochondrial and lysosomal dysfunction, and maintained the integrity of the intestinal epithelial barrier in IPEC-J2 cells exposed to LPS. Furthermore, SeNPs obviously reduced cytoplasmic Ca2+ concentration and activated the TBC1D15/Fis/Rab7-mediated signaling pathway, shortened the contact time between mitochondria and lysosomes, inhibited mitophagy, maintained mitochondrial and lysosomal homeostasis, and effectively attenuated intestinal epithelial barrier injury in IPEC-J2 cells transfected with TBC1D15 siRNA. These results indicated that the protective effect of SeNPs on intestinal epithelial barrier injury is closely associated with the TBC1D15/Rab7-mediated mitochondria-lysosome crosstalk signaling pathway.
Collapse
Affiliation(s)
- Xina Dou
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China.
| | - Lei Qiao
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China.
| | - Xiaofan Song
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China.
| | - Jiajing Chang
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China.
| | - Shanyao Pi
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China.
| | - Xinyi Zhang
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China.
| | - Xiaonan Zeng
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China.
| | - Lixu Zhu
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China.
| | - Chunlan Xu
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China.
| |
Collapse
|
32
|
Chen M, Wu Q, Zhu Z, Huang A, Zhang J, Bekhit AEDA, Wang J, Ding Y. Selenium-enriched foods and their ingredients: As intervention for the vicious cycle between autophagy and overloaded stress responses in Alzheimer's disease. Crit Rev Food Sci Nutr 2023; 64:6672-6685. [PMID: 36728929 DOI: 10.1080/10408398.2023.2172547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Dysfunctional autophagy induced by excessive reactive oxygen species (ROS) load and inflammation accelerates the development of Alzheimer's disease (AD). Recently, there has been an increasing interest in selenium-enriched ingredients (SEIs), such as selenoproteins, selenoamino acids and selenosugars, which could improve AD through antioxidant and anti-inflammation, as well as autophagy modulating effects. This review indicates that SEIs eliminate excessive ROS by activating the nuclear translocation of nuclear factor erythroid2-related factor 2 (Nrf2) and alleviate inflammation by inhibiting the mitogen-activated protein kinases (MAPKs)/nuclear factor kappa-B (NF-κB) pathway. Furthermore, they can activate the adenosine 5'-monophosphate-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR) pathway, and subsequently promote amyloid beta (Aβ) clearance and reduce memory impairments. SEIs are ubiquitous in many plants and microorganisms, such as Brassicaceae vegetables, yeast, and mushroom. Enzymatic hydrolysis, as well as physical processing, such as thermal, high pressure and microwave treatment, are the main techniques to modify the properties of dietary selenium. This work highlights the fact that SEIs can inhibit inflammation and oxidative stress and provides evidence that supports the potential use of these dietary materials to be a novel strategy for improving AD.
Collapse
Affiliation(s)
- Mengfei Chen
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, College of Science & Engineering, Jinan University, Guangzhou, China
| | - Qingping Wu
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Zhenjun Zhu
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, College of Science & Engineering, Jinan University, Guangzhou, China
| | - AoHuan Huang
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, College of Science & Engineering, Jinan University, Guangzhou, China
| | - Jumei Zhang
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | | | - Juan Wang
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Yu Ding
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, College of Science & Engineering, Jinan University, Guangzhou, China
| |
Collapse
|
33
|
Zhu H, Bierla K, Tan J, Szpunar J, Chen D, Lobinski R. Effects of the fermentation process on the selenite metabolism and selenium incorporation and speciation in a probiotic Bifidobacterium longum. METALLOMICS : INTEGRATED BIOMETAL SCIENCE 2023; 15:6965834. [PMID: 36583695 DOI: 10.1093/mtomcs/mfac100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 12/19/2022] [Indexed: 12/31/2022]
Abstract
The influence of the fermentation process on selenite metabolism by a probiotic Bifidobacterium longum DD98 and its consequent enrichment in selenium (Se) were studied. The effects of sodium selenite (Na2SeO3) concentration (18-400 μg/ml), feeding time (12, 16, and 24 h), and fermentation stage (secondary and tertiary fermentation) were evaluated by measuring (i) the total Se content and its distribution between the water-soluble metabolome fraction and the water-insoluble fraction; (ii) the total concentrations of the two principal Se compounds produced: selenomethionine (SeMet) and γ-glutamyl-selenomethionine (γ-Glu-SeMet), and (iii) the speciation of Se in the metabolite fraction. The results revealed that the fermentation process notably changed the Se incorporation into metabolites (γ-Glu-SeMet and free SeMet) and proteins (bound-SeMet) in B. longum DD98. In particular, the production of SeMet was negatively correlated to that of γ-Glu-SeMet when no red precipitate was seen in the bacteria. The study offers a tool for the control of the optimization of the fermentation process towards the desired molecular speciation of the incorporated Se and hence contributes to the production of Se-enriched probiotics with good qualities and bioactivities.
Collapse
Affiliation(s)
- Hui Zhu
- State Key Laboratory of Microbial Metabolism, School of Pharmacy, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Minhang District, Shanghai 200240, China.,Universite de Pau et des Pays de l'Adour, CNRS, E2S, Institute of Analytical and Physical Chemistry for the Environment and Materials, IPREM-UMR5254, Hélioparc, 64053 Pau, France
| | - Katarzyna Bierla
- Universite de Pau et des Pays de l'Adour, CNRS, E2S, Institute of Analytical and Physical Chemistry for the Environment and Materials, IPREM-UMR5254, Hélioparc, 64053 Pau, France
| | - Jun Tan
- China State Institute of Pharmaceutical Industry, No. 285 Gebaini Road, Pudong New Area, Shanghai 200120, China
| | - Joanna Szpunar
- Universite de Pau et des Pays de l'Adour, CNRS, E2S, Institute of Analytical and Physical Chemistry for the Environment and Materials, IPREM-UMR5254, Hélioparc, 64053 Pau, France
| | - Daijie Chen
- State Key Laboratory of Microbial Metabolism, School of Pharmacy, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Minhang District, Shanghai 200240, China
| | - Ryszard Lobinski
- Universite de Pau et des Pays de l'Adour, CNRS, E2S, Institute of Analytical and Physical Chemistry for the Environment and Materials, IPREM-UMR5254, Hélioparc, 64053 Pau, France.,Chair of Analytical Chemistry, Warsaw University of Technology, 00-664 Warsaw, Poland
| |
Collapse
|
34
|
Biogenic Selenium Nanoparticles Attenuate Aβ 25-35-Induced Toxicity in PC12 Cells via Akt/CREB/BDNF Signaling Pathway. Neurotox Res 2022; 40:1869-1881. [PMID: 36435923 DOI: 10.1007/s12640-022-00590-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/20/2022] [Accepted: 10/08/2022] [Indexed: 11/27/2022]
Abstract
Deposition of aggregated amyloid beta (Aβ) protein is considered to be a major causative factor that is associated with the development of oxidative stress and neuroinflammation in the pathogenesis of Alzheimer's disease (AD). Selenium nanoparticles (SeNPs) have been experimentally using for treatment of neurological disease due to their low toxicity, high bioavailability, and multiple bioactivities. This study was conducted to investigate the protective effects of biogenic SeNPs by Lactobacillus casei ATCC 393 against Aβ25-35-induced toxicity in PC12 cells and its association with oxidative stress and inflammation. The results showed that SeNPs had no cytotoxicity on PC12 cells. Moreover, SeNPs entered cells through cellular endocytosis, which effectively attenuated Aβ25-35-induced toxicity in PC12 cells. In addition, compared with Aβ25-35 model group, SeNP pretreatment significantly enhanced the antioxidant capacity, inhibited the overproduction of reactive oxygen species (ROS), effectively regulated the inflammatory response, decreased the activity of acetylcholinesterase, significantly reduced the expression level of caspase-1 and the ratio of Bcl-2/Bax, and upregulated the expression level of p53. Furthermore, compared with Aβ25-35 model group, SeNPs effectively promoted the phosphorylation of Akt and cAMP-response element-binding protein (CREB), and upregulated the expression level of brain-derived neurotrophic factor (BDNF). In addition, the Akt inhibitor (AKT inhibitor VIII, AKTi-1/2) could reverse the protective effects of SeNPs on PC12 cells. The Akt agonist (SC79) had a similar effect on PC12 cells as that of SeNPs. Overall, this study demonstrated that biogenic SeNPs can effectively alleviate the Aβ25-35-induced toxicity in PC12 cells via Akt/CREB/BDNF signaling pathway.
Collapse
|
35
|
Chen H, Wang X, Yue Y, Wang X, Zeng X, Guo Q, Yan X, Du G, Yuan Y, Yue T. Enrichment and Distribution of Selenium in Pediococcus acidilactici MRS-7: Impact on Its Biochemical Composition, Microstructure, and Gastrointestinal Survival. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:14877-14885. [PMID: 36382709 DOI: 10.1021/acs.jafc.2c06765] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Lactic acid bacteria can convert selenium (Se) from inorganic to organic and elemental forms, but the distribution and existence form of organic Se in the bacteria are not clear after Se enrichment, and the effects of selenization on the growth and nutritional value of strains also need to be studied. In this study, Pediococcus acidilactici MRS-7 could absorb up to 67% of inorganic Se and convert most of it into organic Se; about 75% of organic Se was selenoprotein, 2.7% was Se-polysaccharide, and 4.6% was Se-nucleic acid. Additionally, Se-enriched treatment increased the levels of amino acids and essential elements in P. acidilactici MRS-7. Finally, after Se enrichment, Se nanoparticles (SeNPs) were found on the surface of P. acidilactici MRS-7, but they had no harmful effect on its morphology, and its survival during gastrointestinal digestion was not affected, indicating that SeP has potential probiotic value in the food industry.
Collapse
Affiliation(s)
- Hong Chen
- College of Food Science and Engineering, Northwest A&F University, Yangling712100, China
- Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling712100, China
| | - Xiaoyu Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling712100, China
- Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling712100, China
| | - Yuan Yue
- Xi'an Gaoxin No.1 High School, Xi'an710000, China
| | - Xin Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling712100, China
- Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling712100, China
| | - Xuejun Zeng
- College of Food Science and Engineering, Northwest A&F University, Yangling712100, China
- Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling712100, China
| | - Qi Guo
- College of Food Science and Engineering, Northwest A&F University, Yangling712100, China
- Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling712100, China
| | - Xiaohai Yan
- College of Food Science and Engineering, Northwest A&F University, Yangling712100, China
- Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling712100, China
| | - Gengan Du
- College of Food Science and Engineering, Northwest A&F University, Yangling712100, China
- Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling712100, China
| | - Yahong Yuan
- College of Food Science and Engineering, Northwest A&F University, Yangling712100, China
- Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling712100, China
| | - Tianli Yue
- College of Food Science and Engineering, Northwest A&F University, Yangling712100, China
- Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling712100, China
- College of Food Science and Technology, Northwest University, Xi'an710000, China
| |
Collapse
|
36
|
Yanez-Lemus F, Moraga R, Smith CT, Aguayo P, Sánchez-Alonzo K, García-Cancino A, Valenzuela A, Campos VL. Selenium Nanoparticle-Enriched and Potential Probiotic, Lactiplantibacillus plantarum S14 Strain, a Diet Supplement Beneficial for Rainbow Trout. BIOLOGY 2022; 11:biology11101523. [PMID: 36290428 PMCID: PMC9598509 DOI: 10.3390/biology11101523] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/03/2022] [Accepted: 10/08/2022] [Indexed: 11/06/2022]
Abstract
Simple Summary Potential probiotic bacteria for aquacultured species should be naturally occurring and non-pathogenic in the native habitat of the host, easy to culture, and able to grow in the intestine of the host. Se nanoparticles (Se0Nps) can be effectively used as a growth promoter, antioxidant, and immunostimulant agent in aquacultured species. Dietary supplementation with probiotics and Se0Nps contributes to the balance of the intestinal microbiota and probiotics have been proposed as an alternative to chemotherapeutants and antibiotics to prevent disease outbreaks, to mitigate the negative effects of stress and to strengthen the antioxidant capacity and the immune system of fish. Our results reported the isolation of a probiotic strain obtained from healthy rainbow trout. The strain was identified as Lactiplantibacillus plantarum species. This strain showed characteristics typically present in probiotics and, concurrently, the capacity to biosynthesize Se0Nps. The supplementation of the rainbow trout fish diet with LABS14-Se0Nps showed a positive effect on innate immune response parameters, oxidative status, well-being, and a better growth performance than the supplementation of the diet with the bacterium LABS14 alone. Therefore, we propose LABS14-Se0Nps as a promising alternative for the nutritional supplementation for rainbow trout or even other salmonids. Abstract Lactic acid bacteria (LAB), obtained from rainbow trout (Oncorhynchus mykiss) intestine, were cultured in MRS medium and probiotic candidates. Concurrently, producers of elemental selenium nanoparticles (Se0Nps) were selected. Probiotic candidates were subjected to morphological characterization and the following tests: antibacterial activity, antibiotic susceptibility, hemolytic activity, catalase, hydrophobicity, viability at low pH, and tolerance to bile salts. Two LAB strains (S4 and S14) satisfied the characteristics of potential probiotics, but only strain S14 reduced selenite to biosynthesize Se0Nps. S14 strain was identified, by 16S rDNA analysis, as Lactiplantibacillus plantarum. Electron microscopy showed Se0Nps on the surface of S14 cells. Rainbow trout diet was supplemented (108 CFU g−1 feed) with Se0Nps-enriched L. plantarum S14 (LABS14-Se0Nps) or L. plantarum S14 alone (LABS14) for 30 days. At days 0, 15, and 30, samples (blood, liver, and dorsal muscle) were obtained from both groups, plus controls lacking diet supplementation. Fish receiving LABS14-Se0Nps for 30 days improved respiratory burst and plasmatic lysozyme, (innate immune response) and glutathione peroxidase (GPX) (oxidative status) activities and productive parameters when compared to controls. The same parameters also improved when compared to fish receiving LABS14, but significant only for plasmatic and muscle GPX. Therefore, Se0Nps-enriched L. plantarum S14 may be a promising alternative for rainbow trout nutritional supplementation.
Collapse
Affiliation(s)
- Francisco Yanez-Lemus
- Environmental Microbiology Laboratory, Department of Microbiology, Faculty of Biological Sciences, Universidad de Concepcion, Concepcion 4070386, Chile
- Escuela de Medicina Veterinaria, Facultad de Recursos Naturales y Medicina Veterinaria, Universidad Santo Tomás, Santiago 8370003, Chile
| | - Rubén Moraga
- Microbiology Laboratory, Faculty of Renewable Natural Resources, Arturo Prat University, Iquique 1100000, Chile
| | - Carlos T. Smith
- Environmental Microbiology Laboratory, Department of Microbiology, Faculty of Biological Sciences, Universidad de Concepcion, Concepcion 4070386, Chile
| | - Paulina Aguayo
- Environmental Microbiology Laboratory, Department of Microbiology, Faculty of Biological Sciences, Universidad de Concepcion, Concepcion 4070386, Chile
- Faculty of Environmental Sciences, EULA-Chile, Universidad de Concepcion, Concepcion 4070386, Chile
- Institute of Natural Resources, Faculty of Veterinary Medicine and Agronomy, Universidad de Las Américas, Sede Concepcion, Chacabuco 539, Concepcion 3349001, Chile
| | - Kimberly Sánchez-Alonzo
- Laboratory of Bacterial Pathogenicity, Department of Microbiology, Faculty of Biological Sciences, Universidad de Concepcion, Concepcion 4070386, Chile
- School of Medical Technology, Faculty of Medicine and Science, Universidad San Sebastian, Concepcion 4080871, Chile
| | - Apolinaria García-Cancino
- Laboratory of Bacterial Pathogenicity, Department of Microbiology, Faculty of Biological Sciences, Universidad de Concepcion, Concepcion 4070386, Chile
| | - Ariel Valenzuela
- Laboratory of Pisciculture and Aquatic Pathology, Department of Oceanography, Faculty of Natural and Oceanographic Sciences, Universidad de Concepcion, Concepcion 4070386, Chile
| | - Víctor L. Campos
- Environmental Microbiology Laboratory, Department of Microbiology, Faculty of Biological Sciences, Universidad de Concepcion, Concepcion 4070386, Chile
- Correspondence: ; Tel.: +56-41-2204144
| |
Collapse
|
37
|
Enhancing the Activity of Carboxymethyl Cellulase Enzyme Using Highly Stable Selenium Nanoparticles Biosynthesized by Bacillus paralicheniformis Y4. Molecules 2022; 27:molecules27144585. [PMID: 35889450 PMCID: PMC9324468 DOI: 10.3390/molecules27144585] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/03/2022] [Accepted: 07/13/2022] [Indexed: 02/01/2023] Open
Abstract
The inorganic selenium is absorbed and utilized inefficiently, and the range between toxicity and demand is narrow, so the application is strictly limited. Selenium nanoparticles have higher bioactivity and biosafety properties, including increased antioxidant and anticancer properties. Thus, producing and applying eco-friendly, non-toxic selenium nanoparticles in feed additives is crucial. Bacillus paralicheniformis Y4 was investigated for its potential ability to produce selenium nanoparticles and the activity of carboxymethyl cellulases. The selenium nanoparticles were characterized using zeta potential analyses, Fourier transform infrared (FTIR) spectroscopy, and scanning electron microscopy (SEM). Additionally, evaluations of the anti-α-glucosidase activity and the antioxidant activity of the selenium nanoparticles and the ethyl acetate extracts of Y4 were conducted. B. paralicheniformis Y4 exhibited high selenite tolerance of 400 mM and the selenium nanoparticles had an average particle size of 80 nm with a zeta potential value of −35.8 mV at a pH of 7.0, suggesting that the particles are relatively stable against aggregation. After 72 h of incubation with 5 mM selenite, B. paralicheniformis Y4 was able to reduce it by 76.4%, yielding red spherical bio-derived selenium nanoparticles and increasing the carboxymethyl cellulase activity by 1.49 times to 8.96 U/mL. For the first time, this study reports that the carboxymethyl cellulase activity of Bacillus paralicheniforis was greatly enhanced by selenite. The results also indicated that B. paralicheniformis Y4 could be capable of ecologically removing selenite from contaminated sites and has great potential for producing selenium nanoparticles as feed additives to enhance the added value of agricultural products.
Collapse
|
38
|
Protective Effects of Selenium Nanoparticle-Enriched Lactococcus lactis NZ9000 against Enterotoxigenic Escherichia coli K88-Induced Intestinal Barrier Damage in Mice. Appl Environ Microbiol 2021; 87:e0163621. [PMID: 34524898 DOI: 10.1128/aem.01636-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Composite microecological agents have received widespread attention due to their advantageous properties, including safety, multiple effects, and low cost. This study was conducted to evaluate the protective effects of selenium (Se) nanoparticle (SeNP)-enriched Lactococcus lactis NZ9000 (L. lactis NZ9000-SeNPs) against enterotoxigenic Escherichia coli (ETEC) K88-induced intestinal barrier damage in C57BL/6 mice. The oral administration of L. lactis NZ9000-SeNPs significantly increased the villus height and the number of goblet cells in the ileum; reduced the levels of serum and ileal interleukin-1β (IL-1β), tumor necrosis factor alpha (TNF-α), and interferon gamma (IFN-γ); and increased the activities of thioredoxin reductase (TrxR) and glutathione peroxidase (GSH-Px) compared with the ETEC K88-infected group not treated with L. lactis NZ9000-SeNPs. In addition, L. lactis NZ9000-SeNPs significantly attenuated the reduction of the expression levels of occludin and claudin-1, dysbiosis of the gut microbiome, and activation of the Toll-like receptor (TLR)/nuclear factor kappa B (NF-κB)-mediated signaling pathway induced by ETEC K88. These findings suggested that L. lactis NZ9000-SeNPs may be a promising and safe Se supplement for food or feed additives. IMPORTANCE The beneficial effects of microecological agents have been widely proven. Se, which is a nutritionally essential trace element for humans and animals, is incorporated into selenoproteins that have a wide range of pleiotropic effects, ranging from antioxidant to anti-inflammatory effects. However, sodium selenite, a common addition form of Se in feed and food, has disadvantages such as strong toxicity and low bioavailability. We investigated the protective effects of L. lactis NZ9000-SeNPs against ETEC K88-induced intestinal barrier injury in C57BL/6 mice. Our results show that L. lactis NZ9000-SeNPs effectively alleviate ETEC K88-induced intestinal barrier dysfunction. This study highlights the importance of developing a promising and safe Se supplement for the substitution of sodium selenite applied in food, feed, and biomedicine.
Collapse
|
39
|
Ullah A, Yin X, Wang F, Xu B, Mirani ZA, Xu B, Chan MWH, Ali A, Usman M, Ali N, Naveed M. Biosynthesis of Selenium Nanoparticles (via Bacillus subtilis BSN313), and Their Isolation, Characterization, and Bioactivities. Molecules 2021; 26:5559. [PMID: 34577029 PMCID: PMC8468162 DOI: 10.3390/molecules26185559] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/06/2021] [Accepted: 09/08/2021] [Indexed: 11/17/2022] Open
Abstract
Among the trace elements, selenium (Se) has great demand as a health supplement. Compared to its other forms, selenium nanoparticles have minor toxicity, superior reactivity, and excellent bioavailability. The present study was conducted to produce selenium nanoparticles (SeNPs) via a biosynthetic approach using probiotic Bacillus subtilis BSN313 in an economical and easy manner. The BSN313 exhibited a gradual increase in Se reduction and production of SeNPs up to 5-200 µg/mL of its environmental Se. However, the capability was decreased beyond that concentration. The capacity for extracellular SeNP production was evidenced by the emergence of red color, then confirmed by a microscopic approach. Produced SeNPs were purified, freeze-dried, and subsequently characterized systematically using UV-Vis spectroscopy, FTIR, Zetasizer, SEM-EDS, and TEM techniques. SEM-EDS analysis proved the presence of selenium as the foremost constituent of SeNPs. With an average particle size of 530 nm, SeNPs were shown to have a -26.9 (mV) zeta potential and -2.11 µm cm/Vs electrophoretic mobility in water. SeNPs produced during both the 24 and 48 h incubation periods showed good antioxidant activity in terms of DPPH and ABST scavenging action at a concentration of 150 µg/mL with no significant differences (p > 0.05). Moreover, 200 µg/mL of SeNPs showed antibacterial reactivity against Escherichia coli ATCC 8739, Staphylococcus aureus ATCC 9027, and Pseudomonas aeruginosa ATCC 25923. In the future, this work will be helpful to produce biogenic SeNPs using probiotic Bacillus subtilis BSN313 as biofactories, with the potential for safe use in biomedical and nutritional applications.
Collapse
Affiliation(s)
- Asad Ullah
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology & Business University (BTBU), Beijing 100048, China; (A.U.); (X.Y.); (B.X.); (M.U.); (N.A.); (M.N.)
- School of Light Industry, Beijing Technology & Business University (BTBU), Beijing 100048, China
- Food and Marine Resources Research Center, Pakistan Council of Scientific and Industrial Research Laboratories Complex, Karachi 75280, Pakistan;
| | - Xian Yin
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology & Business University (BTBU), Beijing 100048, China; (A.U.); (X.Y.); (B.X.); (M.U.); (N.A.); (M.N.)
- School of Light Industry, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Fenghuan Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology & Business University (BTBU), Beijing 100048, China; (A.U.); (X.Y.); (B.X.); (M.U.); (N.A.); (M.N.)
- School of Light Industry, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Bo Xu
- McIntire School of Commerce, University of Virginia, Charlottesville, VA 22903, USA
| | - Zulfiqar Ali Mirani
- Food and Marine Resources Research Center, Pakistan Council of Scientific and Industrial Research Laboratories Complex, Karachi 75280, Pakistan;
| | - Baocai Xu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology & Business University (BTBU), Beijing 100048, China; (A.U.); (X.Y.); (B.X.); (M.U.); (N.A.); (M.N.)
- School of Light Industry, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Malik Wajid Hussain Chan
- Centre of Excellence in Marine Biology, University of Karachi, Karachi 75270, Pakistan; (M.W.H.C.); (A.A.)
| | - Amjad Ali
- Centre of Excellence in Marine Biology, University of Karachi, Karachi 75270, Pakistan; (M.W.H.C.); (A.A.)
| | - Muhammad Usman
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology & Business University (BTBU), Beijing 100048, China; (A.U.); (X.Y.); (B.X.); (M.U.); (N.A.); (M.N.)
| | - Nawazish Ali
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology & Business University (BTBU), Beijing 100048, China; (A.U.); (X.Y.); (B.X.); (M.U.); (N.A.); (M.N.)
- School of Light Industry, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Muhammad Naveed
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology & Business University (BTBU), Beijing 100048, China; (A.U.); (X.Y.); (B.X.); (M.U.); (N.A.); (M.N.)
- School of Light Industry, Beijing Technology & Business University (BTBU), Beijing 100048, China
| |
Collapse
|