1
|
Noman M, Ahmed T, Shahid M, Nazir MM, Azizullah, Li D, Song F. Salicylic acid-doped iron nano-biostimulants potentiate defense responses and suppress Fusarium wilt in watermelon. J Adv Res 2024; 59:19-33. [PMID: 37385342 PMCID: PMC11081969 DOI: 10.1016/j.jare.2023.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/07/2023] [Accepted: 06/25/2023] [Indexed: 07/01/2023] Open
Abstract
INTRODUCTION Chemo- and bio-genic metallic nanoparticles (NPs), as a novel nano-enabled strategy, have demonstrated a great potential in crop health management. OBJECTIVE The current study aimed to explore the efficacy of advanced nanocomposites (NCs), integrating biogenic (bio) metallic NPs and plant immunity-regulating hormones, in crop disease control. METHODS Iron (Fe) NPs were biosynthesized using cell-free supernatant of a Fe-resistant strains, Bacillus marisflavi ZJ-4. Further, salicylic acid-coated bio-FeNPs (SI) NCs were prepared via co-precipitation method under alkaline conditions. Both bio-FeNPs and SINCs were characterized using basic analytical techniques, including Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction analysis, and scanning/transmission electron microscopy. RESULTS Bio-FeNPs and SINCs had variable shapes with average sizes of 72.35 nm and 65.87 nm, respectively. Under greenhouse conditions, bio-FeNPs and SINCs improved the agronomic traits of the watermelon plants, and SINCs outperformed bio-FeNPs, providing the maximum growth promotion of 32.5%. Soil-drenching with bio-FeNPs and SINCs suppressed Fusarium oxysporum f. sp. niveum-caused Fusarium wilt in watermelon, and SINCs provided better protection than bio-FeNPs, through inhibiting the fungal invasive growth within host plants. SINCs improved the antioxidative capacity and primed a systemic acquired resistance (SAR) response via activating the salicylic acid signaling pathway genes. These findings indicate that SINCs can reduce the severity of Fusarium wilt in watermelon by modulating antioxidative capacity and potentiating SAR to restrict in planta fungal invasive growth. CONCLUSION This study provides new insights into the potential of bio-FeNPs and SINCs as biostimulants and bioprotectants for growth promotion and Fusarium wilt suppression, ensuring sustainable watermelon production.
Collapse
Affiliation(s)
- Muhammad Noman
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Temoor Ahmed
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; Xianghu Laboratory, Hangzhou 311231, China
| | - Muhammad Shahid
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad 38000, Pakistan
| | | | - Azizullah
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Dayong Li
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Fengming Song
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
2
|
Babangida AA, Uddin A, Stephen KT, Yusuf BA, Zhang L, Ge D. A Roadmap from Functional Materials to Plant Health Monitoring (PHM). Macromol Biosci 2024; 24:e2300283. [PMID: 37815087 DOI: 10.1002/mabi.202300283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 10/05/2023] [Indexed: 10/11/2023]
Abstract
Soft bioelectronics have great potential for the early diagnosis of plant diseases and the mitigation of adverse outcomes such as reduced crop yields and stunted growth. Over the past decade, bioelectronic interfaces have evolved into miniaturized conformal electronic devices that integrate flexible monitoring systems with advanced electronic functionality. This development is largely attributable to advances in materials science, and micro/nanofabrication technology. The approach uses the mechanical and electronic properties of functional materials (polymer substrates and sensing elements) to create interfaces for plant monitoring. In addition to ensuring biocompatibility, several other factors need to be considered when developing these interfaces. These include the choice of materials, fabrication techniques, precision, electrical performance, and mechanical stability. In this review, some of the benefits plants can derive from several of the materials used to develop soft bioelectronic interfaces are discussed. The article describes how they can be used to create biocompatible monitoring devices that can enhance plant growth and health. Evaluation of these devices also takes into account features that ensure their long-term durability, sensitivity, and reliability. This article concludes with a discussion of the development of reliable soft bioelectronic systems for plants, which has the potential to advance the field of bioelectronics.
Collapse
Affiliation(s)
- Abubakar A Babangida
- Institute of Intelligent Flexible Mechatronics, School of Mechanical Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Azim Uddin
- Institute for Composites Science Innovation (InCSI), School of Materials Science and Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, P. R. China
| | - Kukwi Tissan Stephen
- School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Bashir Adegbemiga Yusuf
- Institute of Intelligent Flexible Mechatronics, School of Mechanical Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Liqiang Zhang
- Institute of Intelligent Flexible Mechatronics, School of Mechanical Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
- Center of Energy Storage Materials & Technology, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid-State Microstructures, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, Jiangsu, 210093, China
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, Wuxi, Jiangsu, 214126, China
| | - Daohan Ge
- Institute of Intelligent Flexible Mechatronics, School of Mechanical Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
| |
Collapse
|
3
|
Ahmed T, Noman M, Gardea-Torresdey JL, White JC, Li B. Dynamic interplay between nano-enabled agrochemicals and the plant-associated microbiome. TRENDS IN PLANT SCIENCE 2023; 28:1310-1325. [PMID: 37453924 DOI: 10.1016/j.tplants.2023.06.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 05/11/2023] [Accepted: 06/02/2023] [Indexed: 07/18/2023]
Abstract
The plant-associated microbiome is known to be a critical component for crop growth, nutrient acquisition, resistance to pathogens, and abiotic stress tolerance. Conventional approaches have been attempted to manipulate the plant-soil microbiome to improve plant performance; however, several issues have arisen, such as collateral negative impacts on microbiota composition. The lack of reliability and robustness of conventional techniques warrants efforts to develop novel alternative strategies. Nano-enabled approaches have emerged as promising platforms for enhancing agricultural sustainability and global food security. Specifically, the use of engineered nanomaterials (ENMs) as nanoscale agrochemicals has great potential to modulate the plant-associated microbiome. We review the dynamic interplay between nano-agrochemicals and the plant-associated microbiome for the safe development and use of nano-enabled microbiome engineering.
Collapse
Affiliation(s)
- Temoor Ahmed
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China; Xianghu Laboratory, Hangzhou 311231, China
| | - Muhammad Noman
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Jorge L Gardea-Torresdey
- Environmental Science and Engineering PhD Program, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Jason C White
- The Connecticut Agricultural Experiment Station, New Haven, CT 06504, USA.
| | - Bin Li
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China.
| |
Collapse
|
4
|
Ahmed T, Lv L, Noman M, Masood HA, Rizwan M, Ijaz M, Hatamleh AA, Al-Dosary MA, Ali HM, Chen J, Li B. Transcriptomic and proteomic profiling reveals toxicity and molecular action mechanisms of bioengineered chitosan‑iron nanocomposites against Xanthomonas oryzae pv. oryzae. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 193:105447. [PMID: 37248016 DOI: 10.1016/j.pestbp.2023.105447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/28/2023] [Accepted: 04/28/2023] [Indexed: 05/31/2023]
Abstract
Bacterial leaf blight (BLB) pathogen, Xanthomonas oryzae pv. oryzae (Xoo) is the most devastating bacterial pathogen, which jeopardizes the sustainable rice (Oryza sativa L.) production system. The use of antibiotics and conventional pesticides has become ineffective due to increased pathogen resistance and associated ecotoxicological concerns. Thus, the development of effective and sustainable antimicrobial agents for plant disease management is inevitable. Here, we investigated the toxicity and molecular action mechanisms of bioengineered chitosan‑iron nanocomposites (BNCs) against Xoo using transcriptomic and proteomic approaches. The transcriptomic and proteomics analyses revealed molecular antibacterial mechanisms of BNCs against Xoo. Transcriptomic data revealed that various processes related to cell membrane biosynthesis, antioxidant stress, DNA damage, flagellar biosynthesis and transcriptional regulator were impaired upon BNCs exposure, which clearly showing the interaction of BNCs to Xoo pathogen. Similarly, proteomic profiling showed that BNCs treatment significantly altered the levels of functional proteins involved in the integral component of the cell membrane, catalase activity, oxidation-reduction process and metabolic process in Xoo, which is consistent with the results of the transcriptomic analysis. Overall, this study suggested that BNCs has great potential to serve as an eco-friendly, sustainable, and non-toxic alternative to traditional agrichemicals to control the BLB disease in rice.
Collapse
Affiliation(s)
- Temoor Ahmed
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Luqiong Lv
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Muhammad Noman
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Hafiza Ayesha Masood
- Department of Plant Breeding and Genetics, University of Agriculture, 38000 Faisalabad, Pakistan
| | - Muhammad Rizwan
- Department of Environmental Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Munazza Ijaz
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Ashraf Atef Hatamleh
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Munirah Abdullah Al-Dosary
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Hayssam M Ali
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Jianping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Bin Li
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, China.
| |
Collapse
|
5
|
Xu M, Zhu S, Wang Q, Chen L, Li Y, Xu S, Gu Z, Shi G, Ding Z. Pivotal biological processes and proteins for selenite reduction and methylation in Ganoderma lucidum. JOURNAL OF HAZARDOUS MATERIALS 2023; 444:130409. [PMID: 36435045 DOI: 10.1016/j.jhazmat.2022.130409] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/13/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
Microbial transformations, especially the reduction and methylation of Se oxyanion, have gained significance in recent years as effective detoxification methods. Ganoderma lucidum is a typical Se enrichment resource that can reduce selenite to elemental Se and volatile Se metabolites under high selenite conditions. However, the detailed biological processes and reduction mechanisms are unclear. In this study, G. lucidum reduced selenite to elemental Se and further aggregated it into Se nanoparticles with a diameter of < 200 nm, simultaneously accompanied by the production of pungent, odorous, and volatile methyl-selenium metabolites. Tandem mass tag-based quantitative proteomic analysis revealed thioredoxin 1, thioredoxin reductase (NADPH), glutathione reductase, 5-methyltetrahydropteroyltriglutamate-homocysteine methyltransferase, and cystathionine gamma-lyase as proteins involved in selenite reduction and methylation. Furthermore, the high expression of proteins associated with cell structures that prompted cell lysis may have facilitated Se release. The upregulation of proteins involved in the defense reactions was also detected, reflecting their roles in the self-defense mechanism. This study provides novel insights into the vital role of G. lucidum in mediating Se transformation in the biogeochemical Se cycle and contributes to the application of fungi in Se bioremediation.
Collapse
Affiliation(s)
- Mengmeng Xu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China
| | - Song Zhu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Qiong Wang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Lei Chen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China
| | - Youran Li
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China
| | - Sha Xu
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China
| | - Zhenghua Gu
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China
| | - Guiyang Shi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China
| | - Zhongyang Ding
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
6
|
Hameed A, Poznanski P, Noman M, Ahmed T, Iqbal A, Nadolska-Orczyk A, Orczyk W. Barley Resistance to Fusarium graminearum Infections: From Transcriptomics to Field with Food Safety Concerns. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:14571-14587. [PMID: 36350344 DOI: 10.1021/acs.jafc.2c05488] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Global climate change and the urgency to transform food crops require substantial breeding efforts to meet the food security challenges. Barley, an important cereal, has remained a preferential host of phytotoxic diseases caused by the Fusarium graminearum that not only severely reduces the crop yield but also compromises its food quality due to the accumulation of mycotoxins. To develop resistance against Fusarium infections, a better understanding of the host-pathogen interaction is inevitable and could be tracked through molecular insights. Here, we focused precisely on the potential gene targets that are exclusive to this devastating pathosystem and could be harnessed for fast breeding of barley. We also discuss the eco-friendly applications of nanobio hybrid and the CRISPR technology for barley protection. This review covers the critical information gaps within the subject and may be useful for the sustainable improvement of barley from the perspective of food and environmental safety concerns.
Collapse
Affiliation(s)
- Amir Hameed
- Plant Breeding and Acclimatization Institute - National Research Institute, Radzików 05-870, Błonie, Poland
| | - Pawel Poznanski
- Plant Breeding and Acclimatization Institute - National Research Institute, Radzików 05-870, Błonie, Poland
| | - Muhammad Noman
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Temoor Ahmed
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Adnan Iqbal
- Plant Breeding and Acclimatization Institute - National Research Institute, Radzików 05-870, Błonie, Poland
| | - Anna Nadolska-Orczyk
- Plant Breeding and Acclimatization Institute - National Research Institute, Radzików 05-870, Błonie, Poland
| | - Wacław Orczyk
- Plant Breeding and Acclimatization Institute - National Research Institute, Radzików 05-870, Błonie, Poland
| |
Collapse
|
7
|
Wang K, Lu X, Lu Y, Wang J, Lu Q, Cao X, Yang Y, Yang Z. Nanomaterials in Animal Husbandry: Research and Prospects. Front Genet 2022; 13:915911. [PMID: 35846144 PMCID: PMC9280890 DOI: 10.3389/fgene.2022.915911] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/31/2022] [Indexed: 11/13/2022] Open
Abstract
Anti-inflammatory, antiviral, and anti-cancer treatments are potential applications of nanomaterials in biology. To explore the latest discoveries in nanotechnology, we reviewed the published literature, focusing on co-assembled nanoparticles for anti-inflammatory and anti-tumor properties, and their applications in animal husbandry. The results show that nanoparticles have significant anti-inflammation and anti-tumor effects, demonstrating broad application prospects in animal breeding. Furthermore, pooled evidence suggests that the mechanism is to have a positive impact on inflammation and tumors through the specific drug loading by indirectly or directly targeting the disease sites. Because the precise regulatory mechanism remains unclear, most studies have focused on regulating particular sites or even specific genes in the nucleus by targeting functional co-assembled nanoparticles. Hence, despite the intriguing scenarios for nanotechnology in farmed animals, most results cannot yet be translated into field applications. Overall, nanomaterials outperformed similar materials in terms of anti-inflammatory and anti-tumor. Nanotechnology also has promising applications in animal husbandry and veterinary care, and its application and development in animal husbandry remain an exciting area of research.
Collapse
Affiliation(s)
- Kun Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture & Agri Product Safety, Ministry of Education, Yangzhou University, Yangzhou, China
| | - Xubin Lu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture & Agri Product Safety, Ministry of Education, Yangzhou University, Yangzhou, China
| | - Yi Lu
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses; College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Jiacheng Wang
- College of Medical, Yangzhou University, Yangzhou, China
| | - Qinyue Lu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture & Agri Product Safety, Ministry of Education, Yangzhou University, Yangzhou, China
| | - Xiang Cao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture & Agri Product Safety, Ministry of Education, Yangzhou University, Yangzhou, China
| | - Yi Yang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses; College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- *Correspondence: Yi Yang, ; Zhangping Yang,
| | - Zhangping Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture & Agri Product Safety, Ministry of Education, Yangzhou University, Yangzhou, China
- *Correspondence: Yi Yang, ; Zhangping Yang,
| |
Collapse
|
8
|
Manzoor N, Ali L, Ahmed T, Noman M, Adrees M, Shahid MS, Ogunyemi SO, Radwan KSA, Wang G, Zaki HEM. Recent Advancements and Development in Nano-Enabled Agriculture for Improving Abiotic Stress Tolerance in Plants. FRONTIERS IN PLANT SCIENCE 2022; 13:951752. [PMID: 35898211 PMCID: PMC9310028 DOI: 10.3389/fpls.2022.951752] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 06/20/2022] [Indexed: 05/07/2023]
Abstract
Abiotic stresses, such as heavy metals (HMs), drought, salinity and water logging, are the foremost limiting factors that adversely affect the plant growth and crop productivity worldwide. The plants respond to such stresses by activating a series of intricate mechanisms that subsequently alter the morpho-physiological and biochemical processes. Over the past few decades, abiotic stresses in plants have been managed through marker-assisted breeding, conventional breeding, and genetic engineering approaches. With technological advancement, efficient strategies are required to cope with the harmful effects of abiotic environmental constraints to develop sustainable agriculture systems of crop production. Recently, nanotechnology has emerged as an attractive area of study with potential applications in the agricultural science, including mitigating the impacts of climate change, increasing nutrient utilization efficiency and abiotic stress management. Nanoparticles (NPs), as nanofertilizers, have gained significant attention due to their high surface area to volume ratio, eco-friendly nature, low cost, unique physicochemical properties, and improved plant productivity. Several studies have revealed the potential role of NPs in abiotic stress management. This review aims to emphasize the role of NPs in managing abiotic stresses and growth promotion to develop a cost-effective and environment friendly strategy for the future agricultural sustainability.
Collapse
Affiliation(s)
- Natasha Manzoor
- Department of Soil and Water Sciences, China Agricultural University, Beijing, China
| | - Liaqat Ali
- University of Agriculture, Faisalabad, Vehari, Pakistan
| | - Temoor Ahmed
- Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Muhammad Noman
- Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Muhammad Adrees
- Department of Environmental Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Shafiq Shahid
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Muscat, Oman
| | | | - Khlode S. A. Radwan
- Plant Pathology Department, Faculty of Agriculture, Minia University, El-Minia, Egypt
| | - Gang Wang
- Department of Soil and Water Sciences, China Agricultural University, Beijing, China
- National Black Soil and Agriculture Research, China Agricultural University, Beijing, China
- *Correspondence: Gang Wang,
| | - Haitham E. M. Zaki
- Horticulture Department, Faculty of Agriculture, Minia University, El-Minia, Egypt
- Applied Biotechnology Department, University of Technology and Applied Sciences-Sur, Sur, Oman
- Haitham E. M. Zaki,
| |
Collapse
|