1
|
Liu M, Wu MX, Gong FF, Sun ZM, Li Y, Huan F, Chen GX, Liu QM, Liu H, Liu GM. Optimized carbonylation treatment of Litopenaeus vannamei matrix decreased its immunoreactivity and improved edible quality, simultaneously. Food Chem 2025; 464:141614. [PMID: 39423529 DOI: 10.1016/j.foodchem.2024.141614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 10/21/2024]
Abstract
The study aimed to investigate how carbonylation affects the immunoreactivity and edible quality of the Litopenaeus vannamei matrix. The carbonylation treatment conditions of the shrimp matrix were optimized. Firstly, the treatment condition is optimized with 1.0 mmol/L malonaldehyde at 37 °C, 12 h. The optimized carbonylated shrimp showed lower immunoreactivity, carbonyl group, and free amino acids. Then the edible quality was evaluated, optimized carbonylated shrimp matrix presented better digestibility and the continuous digestion products showed lower immunoreactivity. Optimized carbonylated shrimp for the other sensory indicators showed better texture properties and an inviting appearance. Looser microstructure by scanning electron microscopy contributed to the higher digestibility, lower immunoreactivity, and better edible quality for optimized carbonylated shrimp matrix. Besides, more potentially modified amino acid residues exposed on the allergen surface may be the other reason. In conclusion, optimized carbonylation treatment reduced the immunoreactivity and improved the edible quality of shrimp.
Collapse
Affiliation(s)
- Meng Liu
- School of Marine Biology, Xiamen Ocean Vocational College, Applied Technology Engineering Center of Fujian Provincial Higher Education for Marine Resource Protection and Ecological Governance, Xiamen Key Laboratory of Intelligent Fishery, Xiamen, Fujian 361100, China; College of Ocean Food and Biological Engineering, Jimei University, 43 Yindou Road, Xiamen, Fujian 361021, China
| | - Ming-Xuan Wu
- College of Ocean Food and Biological Engineering, Jimei University, 43 Yindou Road, Xiamen, Fujian 361021, China
| | - Fei-Fei Gong
- School of Marine Biology, Xiamen Ocean Vocational College, Applied Technology Engineering Center of Fujian Provincial Higher Education for Marine Resource Protection and Ecological Governance, Xiamen Key Laboratory of Intelligent Fishery, Xiamen, Fujian 361100, China
| | - Zhao-Min Sun
- School of Marine Biology, Xiamen Ocean Vocational College, Applied Technology Engineering Center of Fujian Provincial Higher Education for Marine Resource Protection and Ecological Governance, Xiamen Key Laboratory of Intelligent Fishery, Xiamen, Fujian 361100, China
| | - Ying Li
- School of Marine Biology, Xiamen Ocean Vocational College, Applied Technology Engineering Center of Fujian Provincial Higher Education for Marine Resource Protection and Ecological Governance, Xiamen Key Laboratory of Intelligent Fishery, Xiamen, Fujian 361100, China
| | - Fei Huan
- College of Ocean Food and Biological Engineering, Jimei University, 43 Yindou Road, Xiamen, Fujian 361021, China
| | - Gui-Xia Chen
- Women and Children's Hospital Affiliated to Xiamen University, Xiamen, Fujian 361003, China
| | - Qing-Mei Liu
- College of Ocean Food and Biological Engineering, Jimei University, 43 Yindou Road, Xiamen, Fujian 361021, China
| | - Hong Liu
- College of Ocean Food and Biological Engineering, Jimei University, 43 Yindou Road, Xiamen, Fujian 361021, China
| | - Guang-Ming Liu
- School of Marine Biology, Xiamen Ocean Vocational College, Applied Technology Engineering Center of Fujian Provincial Higher Education for Marine Resource Protection and Ecological Governance, Xiamen Key Laboratory of Intelligent Fishery, Xiamen, Fujian 361100, China; College of Ocean Food and Biological Engineering, Jimei University, 43 Yindou Road, Xiamen, Fujian 361021, China.
| |
Collapse
|
2
|
Zeng J, Ma F, Zhai L, Du C, Zhao J, Li Z, Wang J. Recent advance in sesame allergens: Influence of food processing and their detection methods. Food Chem 2024; 448:139058. [PMID: 38531299 DOI: 10.1016/j.foodchem.2024.139058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/14/2024] [Accepted: 03/15/2024] [Indexed: 03/28/2024]
Abstract
Sesame (Sesamum indicum L.) is a valuable oilseed crop with numerous nutritional benefits containing a diverse range of bioactive compounds. However, sesame is also considered an allergenic food that triggers various mild to severe adverse reactions (e.g., anaphylaxis). Strict dietary avoidance of sesame components is the best option to protect the sensitized consumers. Sesame or sesame-derived foods are always consumed after certain food processing operations, which would cause a considerable impact on the structure of sesame proteins, changing their sensitization capacity and detectability. In the review, the molecular structure properties, and immunological characteristics of the sesame allergens were described. Meanwhile, the influence of food processing techniques on sesame proteins and the relevant detection techniques used for the sesame allergens quantification are also emphasized critically. Hopefully, this review could provide valuable insight into the development and management for the new "Big Eight" sesame allergen in food industry.
Collapse
Affiliation(s)
- Jianhua Zeng
- School of Food Engineering, Anhui Provincial Key Laboratory of Functional Agriculture and Functional Foods, Associated Discipline Key Laboratory of Whole Grain Nutrition and High-Value Utilization, Anhui Science and Technology University, No.9, Donghua Road, Fengyang, Anhui Province 233100, China; College of Food Science and Engineering, Ocean University of China, No.5, Yushan Road, Qingdao, Shandong Province 266003, China
| | - Feifei Ma
- School of Food Engineering, Anhui Provincial Key Laboratory of Functional Agriculture and Functional Foods, Associated Discipline Key Laboratory of Whole Grain Nutrition and High-Value Utilization, Anhui Science and Technology University, No.9, Donghua Road, Fengyang, Anhui Province 233100, China; Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Sciences, University of Vigo, Ourense 32004, Spain
| | - Ligong Zhai
- School of Food Engineering, Anhui Provincial Key Laboratory of Functional Agriculture and Functional Foods, Associated Discipline Key Laboratory of Whole Grain Nutrition and High-Value Utilization, Anhui Science and Technology University, No.9, Donghua Road, Fengyang, Anhui Province 233100, China
| | - Chuanlai Du
- School of Food Engineering, Anhui Provincial Key Laboratory of Functional Agriculture and Functional Foods, Associated Discipline Key Laboratory of Whole Grain Nutrition and High-Value Utilization, Anhui Science and Technology University, No.9, Donghua Road, Fengyang, Anhui Province 233100, China
| | - Jinlong Zhao
- School of Food Engineering, Anhui Provincial Key Laboratory of Functional Agriculture and Functional Foods, Associated Discipline Key Laboratory of Whole Grain Nutrition and High-Value Utilization, Anhui Science and Technology University, No.9, Donghua Road, Fengyang, Anhui Province 233100, China.
| | - Zhenxing Li
- College of Food Science and Engineering, Ocean University of China, No.5, Yushan Road, Qingdao, Shandong Province 266003, China
| | - Jin Wang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, No. 87 Dingjiaqiao Rd., Nanjing, Jiangsu Province 210009, China
| |
Collapse
|
3
|
Wang Y, Zhao J, Jiang L, Zhang L, Raghavan V, Wang J. A comprehensive review on novel synthetic foods: Potential risk factors, detection strategies, and processing technologies. Compr Rev Food Sci Food Saf 2024; 23:e13371. [PMID: 38853463 DOI: 10.1111/1541-4337.13371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 04/18/2024] [Accepted: 05/04/2024] [Indexed: 06/11/2024]
Abstract
Nowadays, the food industry is facing challenges due to the simultaneous rise in global warming, population, and food consumption. As the integration of synthetic biology and food science, novel synthetic foods have obtained high attention to address these issues. However, these novel foods may cause potential risks related to human health. Four types of novel synthetic foods, including plant-based foods, cultured meat, fermented foods, and microalgae-based foods, were reviewed in the study. The original food sources, consumer acceptance, advantages and disadvantages of these foods were discussed. Furthermore, potential risk factors, such as nutritional, biological, and chemical risk factors, associated with these foods were described and analyzed. Additionally, the current detection methods (e.g., enzyme-linked immunosorbent assay, biosensors, chromatography, polymerase chain reaction, isothermal amplification, and microfluidic technology) and processing technologies (e.g., microwave treatment, ohmic heating, steam explosion, high hydrostatic pressure, ultrasound, cold plasma, and supercritical carbon dioxide) were reviewed and discussed critically. Nonetheless, it is crucial to continue innovating and developing new detection and processing technologies to effectively evaluate these novel synthetic foods and ensure their safety. Finally, approaches to enhance the quality of these foods were briefly presented. It will provide insights into the development and management of novel synthetic foods for food industry.
Collapse
Affiliation(s)
- Yuxin Wang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, China
| | - Jinlong Zhao
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, China
| | - Lan Jiang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, China
| | - Lili Zhang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, China
| | - Vijaya Raghavan
- Department of Bioresource Engineering, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
| | - Jin Wang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, China
| |
Collapse
|
4
|
Zhao J, Camus-Ela M, Zhang L, Wang Y, Rennie GH, Wang J, Raghavan V. A comprehensive review on mango allergy: Clinical relevance, causative allergens, cross-reactivity, influence of processing techniques, and management strategies. Compr Rev Food Sci Food Saf 2024; 23:e13304. [PMID: 38343296 DOI: 10.1111/1541-4337.13304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 01/08/2024] [Accepted: 01/11/2024] [Indexed: 02/15/2024]
Abstract
Mangoes (Mangifera indica) are widely prized for their abundant nutritional content and variety of beneficial bioactive compounds and are popularly utilized in various foods, pharmaceuticals, and cosmetics industries. However, it is important to note that certain proteins present in mango can trigger various allergic reactions, ranging from mild oral allergy syndrome to severe life-threatening anaphylaxis. The immunoglobulin E-mediated hypersensitivity of mango is mainly associated with three major allergenic proteins: Man i 1 (class IV chitinase), Man i 2 (pathogenesis-related-10 protein; Bet v 1-related protein), and Man i 4 (profilin). Food processing techniques can significantly affect the structure of mango allergens, reducing their potential to cause allergies. However, it is worth mentioning that complete elimination of mango allergen immunoreactivity has not been achieved. The protection of individuals sensitized to mango should be carefully managed through an avoidance diet, immediate medical care, and long-term oral immunotherapy. This review covers various aspects related to mango allergy, including prevalence, pathogenesis, symptoms, and diagnosis. Furthermore, the characterization of mango allergens and their potential cross-reactivity with other fruits, vegetables, plant pollen, and seeds were discussed. The review also highlights the effects of food processing on mango and emphasizes the available strategies for managing mango allergy.
Collapse
Affiliation(s)
- Jinlong Zhao
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, China
- School of Food Engineering, Anhui Science and Technology University, Fengyang, China
| | - Mukeshimana Camus-Ela
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, China
| | - Lili Zhang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, China
| | - Yuxin Wang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, China
| | - Gardiner Henric Rennie
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, China
| | - Jin Wang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, China
| | - Vijaya Raghavan
- Department of Bioresource Engineering, Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
5
|
Zhao J, Liu Y, Xu L, Sun L, Chen G, Wang H, Zhang Z, Lin H, Li Z. Influence of linoleic acid on the immunodetection of shrimp (Litopenaeus vannamei) tropomyosin and the mechanism investigation via multi-spectroscopic and molecular modeling techniques. Food Chem 2024; 434:137339. [PMID: 37699311 DOI: 10.1016/j.foodchem.2023.137339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 06/25/2023] [Accepted: 08/28/2023] [Indexed: 09/14/2023]
Abstract
The effect of linoleic acid (LA) on the IgG/IgE recognition, in vitro digestibility and immunodetection of shrimp tropomyosin (TM) was investigated. Subsequently, the simultaneous binding of LA-TM was explored using multi-spectroscopic and molecular modeling techniques. Our findings reveled that the addition of LA significantly reduced TM's IgG/IgE immunoreactivity, digestibility, and immunodetection. Further analysis using multi-spectroscopic and molecular modeling techniques indicated that while TM's secondary structure remained largely unchanged, its 3-D structure showed significant alterations such as increased particle size and hydrophobic surface area, and a higher number of buried hydrophobic residues exposed due to the binding of LA to TM. These structural changes rendered it difficult for target antibodies and digestive enzymes to interact with related epitopes and cleavage sites buried inside the molecule. The results obtained in this study provide valuable insights into the molecular mechanism of poor immunodetection caused by food matrix interference.
Collapse
Affiliation(s)
- Jinlong Zhao
- College of Food Science and Engineering, Ocean University of China, No.5, Yushan Road, Qingdao City, Shandong Province 266003, China; Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, No. 87 Dingjiaqiao Rd., Nanjing, Jiangsu Province, 210009, China
| | - Yuhai Liu
- Dawning International Information Industry Co., Ltd., No.169, Songling Road, Qingdao City, Shandong Province, 266101, PR China
| | - Lili Xu
- Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, No.202 Gongye North Road, Jinan 250100, China
| | - Lirui Sun
- School of Public Health, Qingdao University, Ning Xia Road 308, Qingdao 266071, China
| | - Guanzhi Chen
- Department of Dermatology, The Affiliated Hospital of Qingdao University, No.16, Jiangsu Road, Qingdao City, Shandong Province 266003, China
| | - Hao Wang
- College of Food Science and Engineering, Ocean University of China, No.5, Yushan Road, Qingdao City, Shandong Province 266003, China
| | - Ziye Zhang
- College of Food Science and Engineering, Ocean University of China, No.5, Yushan Road, Qingdao City, Shandong Province 266003, China
| | - Hong Lin
- College of Food Science and Engineering, Ocean University of China, No.5, Yushan Road, Qingdao City, Shandong Province 266003, China
| | - Zhenxing Li
- College of Food Science and Engineering, Ocean University of China, No.5, Yushan Road, Qingdao City, Shandong Province 266003, China.
| |
Collapse
|
6
|
Zou H, Wang H, Zhang Z, Lin H, Li Z. Immune regulation by fermented milk products: the role of the proteolytic system of lactic acid bacteria in the release of immunomodulatory peptides. Crit Rev Food Sci Nutr 2023; 64:10498-10516. [PMID: 37341703 DOI: 10.1080/10408398.2023.2225200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2023]
Abstract
Food allergies have emerged as a pressing health concern in recent years, largely due to food resources and environmental changes. Dairy products fermented by lactic acid bacteria play an essential role in mitigating allergic diseases. Lactic acid bacteria have been found to possess a distinctive proteolytic system comprising a cell envelope protease (CEP), transporter system, and intracellular peptidase. Studying the impact of different Lactobacillus proteolytic systems on the destruction of milk allergen epitopes and their potential to alleviate allergy symptoms by releasing peptides containing immune regulatory properties is a valuable and auspicious research approach. This paper summarizes the proteolytic systems of different species of lactic acid bacteria, especially the correlation between CEPs and the epitopes from milk allergens. Furthermore, the mechanism of immunomodulatory peptide release was also concluded. Finally, further research on the proteolytic system of lactic acid bacteria will provide additional clinical evidence for the possible treatment and/or prevention of allergic diseases with specific fermented milk/dairy products in the future.
Collapse
Affiliation(s)
- Hao Zou
- College of Food Science and Engineering, Ocean University of China, Qigndao, P.R. China
| | - Hao Wang
- College of Food Science and Engineering, Ocean University of China, Qigndao, P.R. China
| | - Ziye Zhang
- College of Food Science and Engineering, Ocean University of China, Qigndao, P.R. China
| | - Hong Lin
- College of Food Science and Engineering, Ocean University of China, Qigndao, P.R. China
| | - Zhenxing Li
- College of Food Science and Engineering, Ocean University of China, Qigndao, P.R. China
| |
Collapse
|
7
|
Chen YX, He XR, Yang SQ, Huan F, Li DX, Yang Y, Chen GX, Liu GM. IgE Epitope Analysis and Hypo-Immunoreactivity Derivative of Arginine Kinase in Mantis Shrimp ( Oratosquilla oratoria). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37289596 DOI: 10.1021/acs.jafc.3c01549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
As the main allergenic food, shrimp can trigger allergic reactions in various degrees. In this study, arginine kinase (AK) was identified as an allergen in Oratosquilla oratoria by LC-MS/MS. The open reading frame of AK was obtained, which included 356 amino acids, and recombinant AK (rAK) was expressed in Escherichia coli. The results of immunological analysis and circular dichroism showed that rAK displayed similar IgG-/IgE-binding activity and structure as native AK. Besides, five IgE linear epitopes of AK were verified by serological analysis, on the basis of which an epitope-deleted derivative was obtained and named as mAK-L. It has been shown that mAK-L displayed hypo-immunoreactivity compared to rAK, and the contents of secondary structures were different. In conclusion, these discoveries enrich the overall understanding of crustacean allergens and epitopes and set the foundations for food allergy diagnosis and immunotherapy.
Collapse
Affiliation(s)
- Ye-Xin Chen
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, Fujian 361021, China
| | - Xin-Rong He
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, Fujian 361021, China
| | - Shi-Qiang Yang
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, Fujian 361021, China
| | - Fei Huan
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, Fujian 361021, China
| | - Dong-Xiao Li
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, Fujian 361021, China
| | - Yang Yang
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, Fujian 361021, China
- College of Environment and Public Health, Xiamen Huaxia University, 288 Tianma Road, Xiamen, Fujian 361024, China
| | - Gui-Xia Chen
- Women and Children's Hospital Affiliated to Xiamen University, Xiamen, Fujian 361000, China
| | - Guang-Ming Liu
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, Fujian 361021, China
| |
Collapse
|
8
|
Lu J, Luan H, Wang C, Zhang L, Shi W, Xu S, Jin Y, Lu Y. Molecular and allergenic properties of natural hemocyanin from Chinese mitten crab (Eriocheir sinensis). Food Chem 2023; 424:136422. [PMID: 37229897 DOI: 10.1016/j.foodchem.2023.136422] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/13/2023] [Accepted: 05/17/2023] [Indexed: 05/27/2023]
Abstract
Hemocyanin in crustaceans is an allergen for humans. However, little information was available on its molecular, structural and allergenic properties. In this study, the purified natural protein was identified as Eriocheir sinensis HC by LC-MS/MS, which was allergenic because its reaction with the serum IgE of crustacean patients. Results of the molecular properties showed that, HC was resistant to trypsin digestion, but not a heat-stable protein. Boiling (55.05 ± 3.50 %) and steaming (66.84 ± 1.65 %) induced an increase in β-sheet and decreased allergenicity of HC. By comparing the amino acid sequences of eight crustaceans, HC was found to be highly conserved. Five epitopes of HC were identified and validated by murine sensitization model, and two of them (P3 and P10) were exactly as the predicted by six types of bioinformatics. Multiple bioinformatics analysis combining with murine sensitization model seemed to be effective way for identification of allergenic epitopes.
Collapse
Affiliation(s)
- Jiada Lu
- Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation (Ministry of Agriculture and Rural Affairs), College of Food Science and Technology, Shanghai Ocean University, No. 999, Huchenghuan Road, Shanghai 201306, PR China; Shanghai Engineering Researching Center of Aquatic-Product Processing & Preservation, Shanghai 201306, PR China.
| | - Hongwei Luan
- Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation (Ministry of Agriculture and Rural Affairs), College of Food Science and Technology, Shanghai Ocean University, No. 999, Huchenghuan Road, Shanghai 201306, PR China; Shanghai Engineering Researching Center of Aquatic-Product Processing & Preservation, Shanghai 201306, PR China.
| | - Change Wang
- Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation (Ministry of Agriculture and Rural Affairs), College of Food Science and Technology, Shanghai Ocean University, No. 999, Huchenghuan Road, Shanghai 201306, PR China; Shanghai Engineering Researching Center of Aquatic-Product Processing & Preservation, Shanghai 201306, PR China
| | - Lili Zhang
- Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation (Ministry of Agriculture and Rural Affairs), College of Food Science and Technology, Shanghai Ocean University, No. 999, Huchenghuan Road, Shanghai 201306, PR China; Shanghai Engineering Researching Center of Aquatic-Product Processing & Preservation, Shanghai 201306, PR China
| | - Wenzheng Shi
- Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation (Ministry of Agriculture and Rural Affairs), College of Food Science and Technology, Shanghai Ocean University, No. 999, Huchenghuan Road, Shanghai 201306, PR China; National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Shanghai 201306, PR China.
| | - Shuang Xu
- Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation (Ministry of Agriculture and Rural Affairs), College of Food Science and Technology, Shanghai Ocean University, No. 999, Huchenghuan Road, Shanghai 201306, PR China; Shanghai Engineering Researching Center of Aquatic-Product Processing & Preservation, Shanghai 201306, PR China
| | - Yinzhe Jin
- Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation (Ministry of Agriculture and Rural Affairs), College of Food Science and Technology, Shanghai Ocean University, No. 999, Huchenghuan Road, Shanghai 201306, PR China; Engineering Research Center of Food Thermal-Processing Technology (Shanghai), Shanghai 201306, PR China
| | - Ying Lu
- Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation (Ministry of Agriculture and Rural Affairs), College of Food Science and Technology, Shanghai Ocean University, No. 999, Huchenghuan Road, Shanghai 201306, PR China; Shanghai Engineering Researching Center of Aquatic-Product Processing & Preservation, Shanghai 201306, PR China.
| |
Collapse
|
9
|
Zhao J, Zeng J, Liu Y, Lin H, Gao X, Wang H, Zhang Z, Lin H, Li Z. Understanding the Mechanism of Increased IgG/IgE Reactivity but Decreased Immunodetection Recovery in Thermally Induced Shrimp ( Litopenaeus vannamei) Tropomyosin via Multispectroscopic and Molecular Dynamics Simulation Techniques. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:3444-3458. [PMID: 36750428 DOI: 10.1021/acs.jafc.2c08221] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Despite the fact that tropomyosin (TM) has highly stable structural characteristics, thermal processing can adversely influence its immunodetection, and the mechanism involved has not been elucidated. Purified TM was heated at various temperatures, and then the IgG/IgE-binding capacity and immunodetection recovery were determined; meanwhile, the structural alterations were analyzed via spectroscopic and molecular dynamics simulation techniques. The obtained results demonstrated that heat-treated TM showed significantly increased IgG/IgE reactivity, confirmed by indirect ELISA and immunoblotting analysis, which might be attributed to the increased structural flexibility, and thus allowed TM to be recognized IgG/IgE easily. However, these structural alterations during thermal processing would contribute to the masking of some epitopes located in TM's surface due to the presence of curled or folded conformation with a considerable reduction of the solvent-accessible surface and radius of gyration, which primarily caused immunodetection recovery reduction in the sandwich ELISA (sELISA) test. The number of antigen binding sites might play a crucial role in a sandwich immunodetection system for sensitive and precise analysis in processed foods.
Collapse
Affiliation(s)
- Jinlong Zhao
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao City 266003, Shandong Province, PR China
| | - Jianhua Zeng
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao City 266003, Shandong Province, PR China
| | - Yuhai Liu
- Dawning International Information Industry Co., Ltd., No.169, Songling Road, Qingdao City 266101, Shandong Province, PR China
| | - Hang Lin
- Department of Allergy, The Affiliated Hospital of Qingdao University, No.16, Jiangsu Road, Qingdao City 266003, Shandong Province, PR China
| | - Xiang Gao
- Department of Allergy, The Affiliated Hospital of Qingdao University, No.16, Jiangsu Road, Qingdao City 266003, Shandong Province, PR China
| | - Hao Wang
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao City 266003, Shandong Province, PR China
| | - Ziye Zhang
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao City 266003, Shandong Province, PR China
| | - Hong Lin
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao City 266003, Shandong Province, PR China
| | - Zhenxing Li
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao City 266003, Shandong Province, PR China
| |
Collapse
|