1
|
Yuan X, Ouedraogo SY, Jammeh ML, Simbiliyabo L, Jabang JN, Jaw M, Darboe A, Tan Y, Bajinka O. Can microbiota gut-brain axis reverse neurodegenerative disorders in human? Ageing Res Rev 2025; 104:102664. [PMID: 39818235 DOI: 10.1016/j.arr.2025.102664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 01/06/2025] [Accepted: 01/13/2025] [Indexed: 01/18/2025]
Abstract
The trillions of microbial populations residing in the gut have recently shown that they can be used as a remedy for various diseases. The gut microbiota-brain-axis interface is one unique pathway that the microbiota demonstrates its medicinal value. This medicinal value is further seen when there is a decline in gut microbial diversity (dysbiosis). Dysbiosis leads to neurodegenerative disorders (NDDs). The objective of this review is to ascertain the clinical significance of gut microbiota induced therapeutic strategies. While navigating this important area of interest, we will elucidate the research gaps, the prospects and the potential reverse interventions of the studied NDDs. In addition to our previous work, relevant literature published in English were searched and retrieved from the PubMed database. The 'gut microbiota and Neurodegenerative disorders' were used as keywords during the search period. The Filters applied are: Abstract, Full text, Meta-Analysis, Randomized Controlled Trial, Reviews, in the last 5 years. The articles were analyzed in our unrelenting quest to make sense of the prospects and research gap in gut microbiota-brain-axis. This chapter is a result of this meticulous work. More convincing data from researches on gut microbiota-brain-axis are required to provide clinical significance including neuroimaging studies. Addressing the structural (pathological footprints) and the functional changes (diseases manifestation) involving gut microbiota-brain-axis require a holistic approach. While the pharmacological therapies such as chemotherapeutic and chemobiotic treatment approaches come with low success rates, non-pharmacological interventions are found to be more useful in reversing NDDs. The inability to detect NDDs at an early stage in their clinical history, makes preventive medicinal approaches the must needed and best intervention strategy. Gut-driven treatments have a lot to offer in the management of refractory neurologic diseases.
Collapse
Affiliation(s)
- Xingxing Yuan
- First Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin 150040, China; Department of Gastroenterology, Heilongjiang Academy of Traditional Chinese Medicine, Harbin 150006, China
| | - Serge Yannick Ouedraogo
- Medical Science and Technology Innovation Center, Shandong Key Laboratory of Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, Shandong 250117, China
| | - Modou Lamin Jammeh
- School of Medicine and Allied Health Sciences, University of The Gambia, Gambia
| | - Lucette Simbiliyabo
- Department of Medical Microbiology, Central South University, Changsha, Hunan Provinces, China
| | - John Nute Jabang
- School of Medicine and Allied Health Sciences, University of The Gambia, Gambia
| | - Mariam Jaw
- School of Medicine and Allied Health Sciences, University of The Gambia, Gambia
| | - Alansana Darboe
- Vaccine & Immunity Theme, Infant Immunology, Medical Research Council Unit The Gambia at London School of Hygiene & Tropical Medicine (MRCG@LSHTM), Gambia
| | - Yurong Tan
- Department of Medical Microbiology, Central South University, Changsha, Hunan Provinces, China.
| | - Ousman Bajinka
- Medical Science and Technology Innovation Center, Shandong Key Laboratory of Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, Shandong 250117, China; School of Medicine and Allied Health Sciences, University of The Gambia, Gambia; Department of Medical Microbiology, Central South University, Changsha, Hunan Provinces, China.
| |
Collapse
|
2
|
Guo B, Zhang W, Zhang J, Zou J, Dong N, Liu B. Euglena gracilis polysaccharide modulated gut dysbiosis of obese individuals via acetic acid in an in vitro fermentation model. Food Res Int 2025; 199:115385. [PMID: 39658176 DOI: 10.1016/j.foodres.2024.115385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 11/04/2024] [Accepted: 11/14/2024] [Indexed: 12/12/2024]
Abstract
Gut dysbiosis is a characteristic feature of obesity and targeting gut microbiota presents a promising approach to attenuate obesity. Euglena gracilis polysaccharide (EGP) has emerged as a potential prebiotic capable of promoting health-beneficial bacteria. However, its effects on the gut dysbiosis of obese individuals remain unclear. This study investigated the impacts of EGP on gut microbiota from both non-obese and obese individuals using an in vitro fermentation model. Results showed that EGP significantly altered the gut microbiota composition and metabolism. Specifically, EGP improved the relative abundance of Paeniclostridium, Clostridium_sensu_stricto_1 and Paraclostridium of the non-obese individuals and Providencia, Enterococcus and Bacteroides of the obese individuals. Metabolomics results showed EGP significantly altered the lipid metabolism especially in the obese group with enriched bile secretion and cholesterol metabolism pathways. Noting that acetic acid was significantly increased in both groups, these acetic acid favorable microbiota from non-obese individuals was collected with acetic acid supplementation. Transplantation of these acetic acid-induced microbiota (AAiM) notably improved the richness and diversity of fecal microbiota of the obese individuals, enhancing the growth of probiotics like Bacteroides and Bifidobacterium. Consequently, AAiM significantly restructured macronutrients (including amino acids, carbohydrates and lipids) metabolism of the gut microbiota from obese individuals. Altogether, this study underscores the potential of EGP and acetic acid favorable microbiota in manipulating obesity-associated gut dysbiosis via acetic acid production.
Collapse
Affiliation(s)
- Bingbing Guo
- College of Chemistry and Life Science, Beijing University of Technology, Beijing, China
| | - Weihao Zhang
- College of Chemistry and Life Science, Beijing University of Technology, Beijing, China
| | - Jingyi Zhang
- College of Chemistry and Life Science, Beijing University of Technology, Beijing, China
| | - Jingwen Zou
- College of Chemistry and Life Science, Beijing University of Technology, Beijing, China
| | - Ningning Dong
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University/National Clinical Research Center of Gastrointestinal Disease/Beijing Digestive Disease Center/Beijing Key Laboratory for Precancerous Lesion of Digestive Diseases, Beijing, China
| | - Bin Liu
- School of Life Sciences, Yantai University, Yantai, China; Shenzhen Key Laboratory of Food Nutrition and Health, Institute for Innovative Development of Food Industry, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, China.
| |
Collapse
|
3
|
Saadh MJ, Mustafa AN, Mustafa MA, S RJ, Dabis HK, Prasad GVS, Mohammad IJ, Adnan A, Idan AH. The role of gut-derived short-chain fatty acids in Parkinson's disease. Neurogenetics 2024; 25:307-336. [PMID: 39266892 DOI: 10.1007/s10048-024-00779-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 08/29/2024] [Indexed: 09/14/2024]
Abstract
The emerging function of short-chain fatty acids (SCFAs) in Parkinson's disease (PD) has been investigated in this article. SCFAs, which are generated via the fermentation of dietary fiber by gut microbiota, have been associated with dysfunction of the gut-brain axis and, neuroinflammation. These processes are integral to the development of PD. This article examines the potential therapeutic implications of SCFAs in the management of PD, encompassing their capacity to modulate gastrointestinal permeability, neuroinflammation, and neuronal survival, by conducting an extensive literature review. As a whole, this article emphasizes the potential therapeutic utility of SCFAs as targets for the management and treatment of PD.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan.
| | | | - Mohammed Ahmed Mustafa
- School of Pharmacy-Adarsh Vijendra Institute of Pharmaceutical Sciences, Shobhit University, Gangoh, Uttar Pradesh, 247341, India
- Department of Pharmacy, Arka Jain University, Jamshedpur, Jharkhand, 831001, India
| | - Renuka Jyothi S
- Department of Biotechnology and Genetics, School of Sciences, JAIN (Deemed to Be University), Bangalore, Karnataka, India
| | | | - G V Siva Prasad
- Department of Chemistry, Raghu Engineering College, Visakhapatnam, Andhra, Pradesh-531162, India
| | - Imad Jassim Mohammad
- College of Health and Medical Technology, National University of Science and Technology, Dhi Qar, 64001, Iraq
| | - Ahmed Adnan
- Medical Technical College, Al-Farahidi University, Baghdad, Iraq
| | | |
Collapse
|
4
|
Wang Z, Xia H, Feng T, Aibibuli A, Zhang M, Yang X. The role of HLA-DR on plasmacytoid dendritic cells in mediating the effects of Butyrivibrio gut microbiota on Parkinson's disease. Neurol Sci 2024; 45:3809-3815. [PMID: 38499889 DOI: 10.1007/s10072-024-07467-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 03/12/2024] [Indexed: 03/20/2024]
Abstract
BACKGROUND Parkinson's disease (PD) is viewed as a progressively deteriorating neurodegenerative disorder, the exact etiology of which remains not fully deciphered to this date. The gut microbiota could play a crucial role in PD development by modulating the human immune system. OBJECTIVE This study aims to explore the relationship between gut microbiota and PD, focusing on how immune characteristics may both directly and indirectly influence their interaction. METHODS Utilizing cumulative data from genome-wide association studies (GWAS), our research conducted a two-sample Mendelian randomization (MR) analysis to clarify the association between the gut microbiome and PD. Additionally, by employing a two-step MR approach, we assessed the impact of gut microbiota on PD development via immune characteristics and quantified HLA-DR mediation effect on plasmacytoid dendritic cells (pDCs). RESULTS We discovered significant associations between PD and microbiota, comprising one class, one order, two families, and two genera. Furthermore, we explored the extent to which HLA-DR on pDCs mediates the effect of Butyrivibrio gut microbiota on PD. CONCLUSION Our study emphasizes the complex interactions between the gut microbiota, immune characteristics, and PD. The relationships and intermediary roles identified in our research provide important insights for developing potential therapies that target the gut microbiome to alleviate symptoms in PD patients.
Collapse
Affiliation(s)
- Zihao Wang
- Key Laboratory of the Second Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Huan Xia
- Key Laboratory of the Second Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Tingting Feng
- Key Laboratory of the Second Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Adilai Aibibuli
- Key Laboratory of the Second Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Mingyang Zhang
- Key Laboratory of the Second Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Xinling Yang
- Department of Neurology, Second Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China.
| |
Collapse
|
5
|
Abdalla MMI. Insulin resistance as the molecular link between diabetes and Alzheimer's disease. World J Diabetes 2024; 15:1430-1447. [PMID: 39099819 PMCID: PMC11292327 DOI: 10.4239/wjd.v15.i7.1430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/08/2024] [Accepted: 05/06/2024] [Indexed: 07/08/2024] Open
Abstract
Diabetes mellitus (DM) and Alzheimer's disease (AD) are two major health concerns that have seen a rising prevalence worldwide. Recent studies have indicated a possible link between DM and an increased risk of developing AD. Insulin, while primarily known for its role in regulating blood sugar, also plays a vital role in protecting brain functions. Insulin resistance (IR), especially prevalent in type 2 diabetes, is believed to play a significant role in AD's development. When insulin signalling becomes dysfunctional, it can negatively affect various brain functions, making individuals more susceptible to AD's defining features, such as the buildup of beta-amyloid plaques and tau protein tangles. Emerging research suggests that addressing insulin-related issues might help reduce or even reverse the brain changes linked to AD. This review aims to explore the rela-tionship between DM and AD, with a focus on the role of IR. It also explores the molecular mechanisms by which IR might lead to brain changes and assesses current treatments that target IR. Understanding IR's role in the connection between DM and AD offers new possibilities for treatments and highlights the importance of continued research in this interdisciplinary field.
Collapse
Affiliation(s)
- Mona Mohamed Ibrahim Abdalla
- Department of Human Biology, School of Medicine, International Medical University, Bukit Jalil 57000, Kuala Lumpur, Malaysia
| |
Collapse
|
6
|
Chakraborty P, Gamage HKAH, Laird AS. Butyrate as a potential therapeutic agent for neurodegenerative disorders. Neurochem Int 2024; 176:105745. [PMID: 38641025 DOI: 10.1016/j.neuint.2024.105745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/08/2024] [Accepted: 04/16/2024] [Indexed: 04/21/2024]
Abstract
Maintaining an optimum microbial community within the gastrointestinal tract is intricately linked to human metabolic, immune and brain health. Disturbance to these microbial populations perturbs the production of vital bioactive compounds synthesised by the gut microbiome, such as short-chain fatty acids (SCFAs). Of the SCFAs, butyrate is known to be a major source of energy for colonocytes and has valuable effects on the maintenance of intestinal epithelium and blood brain barrier integrity, gut motility and transit, anti-inflammatory effects, and autophagy induction. Inducing endogenous butyrate production is likely to be beneficial for gut-brain homeostasis and for optimal neuronal function. For these reasons, butyrate has gained interest as a potential therapy for not only metabolic and immunological disorders, but also conditions related to the brain, including neurodegenerative diseases. While direct and indirect sources of butyrate, including prebiotics, probiotics, butyrate pro-drugs and glucosidase inhibitors, offer a promising therapeutic avenue, their efficacy and dosage in neurodegenerative conditions remain largely unknown. Here, we review current literature on effects of butyrate relevant to neuronal function, the impact of butyrate in a range of neurodegenerative diseases and related treatments that may have potential for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Prapti Chakraborty
- Macquarie University Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, Australia
| | - Hasinika K A H Gamage
- School of Natural Sciences, Macquarie University, NSW, 2109, Australia; ARC Training Centre for Facilitated Advancement of Australia's Bioactives, Macquarie University, NSW, 2109, Australia
| | - Angela S Laird
- Macquarie University Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, Australia.
| |
Collapse
|