1
|
Ruivinho C, Gama-Carvalho M. Small non-coding RNAs encoded by RNA viruses: old controversies and new lessons from the COVID-19 pandemic. Front Genet 2023; 14:1216890. [PMID: 37415603 PMCID: PMC10322155 DOI: 10.3389/fgene.2023.1216890] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 06/07/2023] [Indexed: 07/08/2023] Open
Abstract
The recurring outbreaks caused by emerging RNA viruses have fostered an increased interest in the research of the mechanisms that regulate viral life cycles and the pathological outcomes associated with infections. Although interactions at the protein level are well-studied, interactions mediated by RNA molecules are less explored. RNA viruses can encode small non-coding RNAs molecules (sncRNAs), including viral miRNAs (v-miRNAs), that play important roles in modulating host immune responses and viral replication by targeting viral or host transcripts. Starting from the analysis of public databases compiling the known repertoire of viral ncRNA molecules and the evolution of publications and research interests on this topic in the wake of the COVID-19 pandemic, we provide an updated view on the current knowledge on viral sncRNAs, with a focus on v-miRNAs encoded by RNA viruses, and their mechanisms of action. We also discuss the potential of these molecules as diagnostic and prognostic biomarkers for viral infections and the development of antiviral therapies targeting v-miRNAs. This review emphasizes the importance of continued research efforts to characterize sncRNAs encoded by RNA viruses, identifies the most relevant pitfalls in the study of these molecules, and highlights the paradigm changes that have occurred in the last few years regarding their biogenesis, prevalence and functional relevance in the context of host-pathogen interactions.
Collapse
|
2
|
Valverde A, Seal A, Nares S, Shukla D, Naqvi AR. Human herpesvirus-encoded MicroRNA in host-pathogen interaction. Adv Biol Regul 2021; 82:100829. [PMID: 34560402 PMCID: PMC11646283 DOI: 10.1016/j.jbior.2021.100829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/28/2021] [Accepted: 09/13/2021] [Indexed: 11/17/2022]
Abstract
Human herpesviruses (HHV) are ubiquitous, linear dsDNA viruses that establish lifelong latency, disrupted by sporadic reactivation. HHV have evolved diverse ingenious mechanisms to evade robust host defenses. Incorporation of unique stem loop sequences that generate viral microRNAs (v-miRs) exemplifies one such evolutionary adaptation in HHV. These noncoding RNAs can control cellular and viral transcriptomes highlighting their ability in shaping host-HHV interactions. We summarize recent developments in functional characterization of HHV-encoded miRNAs in shaping the outcome of host-pathogen interaction. Non-immunogenic dissemination of v-miRs through exosomes confer added advantage to HHV in incessant modulation of host microenvironment. This review delineates the mechanistic role of v-miRs in facilitating viral persistence and tropism by targeting genes associated with cellular (apoptosis, angiogenesis, cell migration, etc.) and viral life cycle (latency, lytic and reactivation). Burgeoning evidences indicate plausible association of v-miRs in various immune-mediated diseases (nasopharyngeal carcinoma, neurological disorders, periodontal diseases, etc.) and herpesvirus-related malignancies indicating their broad-spectrum impact on host cellular pathways. We propose to exploit tisssue and systemic levels of v-miRs as diagnostic and prognostic markers for cancers and immune-mediated diseases. Therapeutic targeting of v-miRs will advance the promising outcomes of preclinical discoveries to bedside application.
Collapse
Affiliation(s)
- Araceli Valverde
- Department of Periodontics, College of Dentistry, University of Illinois at Chicago, United States
| | - Alexandra Seal
- Department of Periodontics, College of Dentistry, University of Illinois at Chicago, United States
| | - Salvador Nares
- Department of Periodontics, College of Dentistry, University of Illinois at Chicago, United States
| | - Deepak Shukla
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL, United States; Department of Ophthalmology and Visual Sciences, University of Illinois Medical Center, Chicago, IL, United States
| | - Afsar Raza Naqvi
- Department of Periodontics, College of Dentistry, University of Illinois at Chicago, United States.
| |
Collapse
|
3
|
Stutika C, Mietzsch M, Gogol-Döring A, Weger S, Sohn M, Chen W, Heilbronn R. Comprehensive Small RNA-Seq of Adeno-Associated Virus (AAV)-Infected Human Cells Detects Patterns of Novel, Non-Coding AAV RNAs in the Absence of Cellular miRNA Regulation. PLoS One 2016; 11:e0161454. [PMID: 27611072 PMCID: PMC5017669 DOI: 10.1371/journal.pone.0161454] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 08/05/2016] [Indexed: 01/10/2023] Open
Abstract
Most DNA viruses express small regulatory RNAs, which interfere with viral or cellular gene expression. For adeno-associated virus (AAV), a small ssDNA virus with a complex biphasic life cycle miRNAs or other small regulatory RNAs have not yet been described. This is the first comprehensive Illumina-based RNA-Seq analysis of small RNAs expressed by AAV alone or upon co-infection with helper adenovirus or HSV. Several hotspots of AAV-specific small RNAs were detected mostly close to or within the AAV-ITR and apparently transcribed from the newly identified anti-p5 promoter. An additional small RNA hotspot was located downstream of the p40 promoter, from where transcription of non-coding RNAs associated with the inhibition of adenovirus replication were recently described. Parallel detection of known Ad and HSV miRNAs indirectly validated the newly identified small AAV RNA species. The predominant small RNAs were analyzed on Northern blots and by human argonaute protein-mediated co-immunoprecipitation. None of the small AAV RNAs showed characteristics of bona fide miRNAs, but characteristics of alternative RNA processing indicative of differentially regulated AAV promoter-associated small RNAs. Furthermore, the AAV-induced regulation of cellular miRNA levels was analyzed at different time points post infection. In contrast to other virus groups AAV infection had virtually no effect on the expression of cellular miRNA, which underscores the long-established concept that wild-type AAV infection is apathogenic.
Collapse
Affiliation(s)
- Catrin Stutika
- Charité Medical School, Campus Benjamin Franklin, Institute of Virology, Berlin, Germany
| | - Mario Mietzsch
- Charité Medical School, Campus Benjamin Franklin, Institute of Virology, Berlin, Germany
| | | | - Stefan Weger
- Charité Medical School, Campus Benjamin Franklin, Institute of Virology, Berlin, Germany
| | - Madlen Sohn
- Max-Delbrück-Centrum für Molekulare Medizin, Berlin Institute for Medical Systems Biology, Laboratory for Functional Genomics and Systems Biology, Berlin, Germany
| | - Wei Chen
- Max-Delbrück-Centrum für Molekulare Medizin, Berlin Institute for Medical Systems Biology, Laboratory for Functional Genomics and Systems Biology, Berlin, Germany
| | - Regine Heilbronn
- Charité Medical School, Campus Benjamin Franklin, Institute of Virology, Berlin, Germany
- * E-mail:
| |
Collapse
|
4
|
Evolution of the mir-181 microRNA family. Comput Biol Med 2014; 52:82-7. [DOI: 10.1016/j.compbiomed.2014.06.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 04/04/2014] [Accepted: 06/05/2014] [Indexed: 02/02/2023]
|
5
|
Human metapneumovirus infection induces significant changes in small noncoding RNA expression in airway epithelial cells. MOLECULAR THERAPY. NUCLEIC ACIDS 2014; 3:e163. [PMID: 24845106 PMCID: PMC4040629 DOI: 10.1038/mtna.2014.18] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 04/12/2014] [Indexed: 12/14/2022]
Abstract
Small noncoding RNAs (sncRNAs), such as microRNAs (miRNA), virus-derived sncRNAs, and more recently identified tRNA-derived RNA fragments, are critical to posttranscriptional control of genes. Upon viral infection, host cells alter their sncRNA expression as a defense mechanism, while viruses can circumvent host defenses and promote their own propagation by affecting host cellular sncRNA expression or by expressing viral sncRNAs. Therefore, characterizing sncRNA profiles in response to viral infection is an important tool for understanding host–virus interaction, and for antiviral strategy development. Human metapneumovirus (hMPV), a recently identified pathogen, is a major cause of lower respiratory tract infections in infants and children. To investigate whether sncRNAs play a role in hMPV infection, we analyzed the changes in sncRNA profiles of airway epithelial cells in response to hMPV infection using ultrahigh-throughput sequencing. Of the cloned sncRNAs, miRNA was dominant in A549 cells, with the percentage of miRNA increasing in a time-dependent manner after the infection. In addition, several hMPV-derived sncRNAs and corresponding ribonucleases for their biogenesis were identified. hMPV M2-2 protein was revealed to be a key viral protein regulating miRNA expression. In summary, this study revealed several novel aspects of hMPV-mediated sncRNA expression, providing a new perspective on hMPV–host interactions.
Collapse
|
6
|
Harwig A, Das AT, Berkhout B. Retroviral microRNAs. Curr Opin Virol 2014; 7:47-54. [PMID: 24769093 DOI: 10.1016/j.coviro.2014.03.013] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 03/22/2014] [Accepted: 03/26/2014] [Indexed: 12/18/2022]
Abstract
Eukaryotic cells and several DNA viruses encode miRNAs to regulate the expression of specific target genes. It has been controversial whether RNA viruses can encode such miRNAs as miRNA excision may lead to cleavage of the viral RNA genome. We will focus on the retrovirus family, HIV-1 in particular, and discuss the production of virus-encoded miRNAs and their putative function in the viral replication cycle. An intricate scenario of multi-layer virus-host interactions becomes apparent with small RNAs as the regulatory molecules.
Collapse
Affiliation(s)
- Alex Harwig
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | - Atze T Das
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | - Ben Berkhout
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands.
| |
Collapse
|
7
|
Chaudhary A, Mukherjee SK. The role of small RNAs in vaccination. Methods Mol Biol 2014; 1184:479-501. [PMID: 25048141 DOI: 10.1007/978-1-4939-1115-8_26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The concept of vaccination came to light following Edward Jenner's classical observation on milkmaids who were protected against smallpox. However, plants lack the cellular based immunity system and thus it was not appreciated earlier that plants can also be protected from their pathogens. But phenomena like cross-protection, pathogen derived resistance (PDR), viral recovery, etc. in plants suggested that plants have also evolved immunity against their pathogens. The further advances in the field revealed that an endogenous defense system could have multiple prongs. With the advent of RNAi, it was clear that the antiviral immune responses are related to the induction of specific small RNAs. The detection of virus specific small RNAs (vsiRNA) in immunized plants confirmed their roles in the immunity against pathogens. Although many issues related to antiviral mechanisms are yet to be addressed, the existing tools of RNAi can be efficiently used to control the invading viruses in transgenic plants. It is also possible that the microRNA(s) induced in infected plants impart immunity against viral pathogens. So the small RNA molecules play a vital role in defense system and these can be engineered to enhance the immunity against specific viral pathogens.
Collapse
Affiliation(s)
- Ajeet Chaudhary
- Department of Genetics, University of Delhi-South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, 110021, India
| | | |
Collapse
|
8
|
Jiang J, Jiang J, Yang Y, Cao J. Identification of microRNAs potentially involved in male sterility of Brassica campestris ssp. chinensis using microRNA array and quantitative RT-PCR assays. Cell Mol Biol Lett 2013; 18:416-32. [PMID: 23864334 PMCID: PMC6275644 DOI: 10.2478/s11658-013-0097-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Accepted: 07/10/2013] [Indexed: 12/19/2022] Open
Abstract
microRNAs (miRNAs) are a class of newly identified, noncoding, small RNA molecules that negatively regulate gene expression. Many miRNAs are reportedly involved in plant growth, development and stress response processes. However, their roles in the sexual reproduction mechanisms in flowering plants remain unknown. Pollen development is an important process in the life cycle of a flowering plant, and it is closely related to the yield and quality of crop seeds. This study aimed to identify miRNAs involved in pollen development. A microarray assay was conducted using the known complementary sequences of plant miRNAs as probes on inflorescences of a sterile male line (Bcajh97-01A) and a fertile male line (Bcajh97-01B) of the Brassica campestris ssp. chinensis cv. 'Aijiaohuang' genic male sterility sister line system (Bcajh97-01A/B). The results showed that 44 miRNAs were differently expressed in the two lines. Of these, 15 had over 1.5-fold changes in their transcript levels, with 9 upregulated and 6 downregulated miRNAs in inflorescences of 'Bcajh97-01A' sterile line plants. We then focused on 3 of these 15 miRNAs (miR158, miR168 and miR172). Through computational methods, 13 family members were predicted for these 3 miRNAs and 22 genes were predicted to be their candidate target genes. By using 5' modified RACE, 2 target genes of miR168 and 5 target genes of miR172 were identified. Then, qRT-PCR was applied to verify the existence and expression patterns of the 3 miRNAs in the flower buds at five developmental stages. The results were generally consistent with those of the microarray. Thus, this study may give a valuable clue for further exploring the miRNA group that may function during pollen development.
Collapse
Affiliation(s)
- Jianxia Jiang
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, 310058 China
| | - Jingjing Jiang
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, 310058 China
| | - Yafei Yang
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, 310058 China
| | - Jiashu Cao
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, 310058 China
| |
Collapse
|
9
|
The role and clinical implications of microRNAs in hepatocellular carcinoma. SCIENCE CHINA-LIFE SCIENCES 2012; 55:906-19. [PMID: 23108868 DOI: 10.1007/s11427-012-4384-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Accepted: 09/11/2012] [Indexed: 12/12/2022]
Abstract
Hepatocellular carcinoma (HCC) is common and one of the most aggressive of all human cancers. Recent studies have indicated that miRNAs, a class of small noncoding RNAs that regulate gene expression post-transcriptionally, directly contribute to HCC by targeting many critical regulatory genes. Several miRNAs are involved in hepatitis B or hepatitis C virus replication and virus-induced changes, whereas others participate in multiple intracellular signaling pathways that modulate apoptosis, cell cycle checkpoints, and growth-factor-stimulated responses. When disturbed, these pathways appear to result in malignant transformation and ultimately HCC development. Recently, miRNAs circulating in the blood have acted as possible early diagnostic markers for HCC. These miRNA also could serve as indicators with respect to drug efficacy and be prognostic in HCC patients. Such biomarkers would assist stratification of HCC patients and help direct personalized therapy. Here, we summarize recent advances regarding the role of miRNAs in HCC development and progression. Our expectation is that these and ongoing studies will contribute to the understanding of the multiple roles of these small noncoding RNAs in liver tumorigenesis.
Collapse
|
10
|
Sun G. MicroRNAs and their diverse functions in plants. PLANT MOLECULAR BIOLOGY 2012; 80:17-36. [PMID: 21874378 DOI: 10.1007/s11103-011-9817-6] [Citation(s) in RCA: 159] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Accepted: 08/11/2011] [Indexed: 05/18/2023]
Abstract
microRNAs (miRNAs) are an extensive class of newly identified small RNAs, which regulate gene expression at the post-transcriptional level by mRNA cleavage or translation inhibition. Currently, there are 3,070 miRNAs deposited in the public available miRNA database; these miRNAs were obtained from 43 plant species using both computational (comparative genomics) and experimental (direct cloning and deep sequencing) approaches. Like other signaling molecules, plant miRNAs can also be moved from one tissue to another through the vascular system. These mobile miRNAs may play an important role in plant nutrient homeostasis and response to environmental biotic and abiotic stresses. In addition, miRNAs also control a wide range of biological and metabolic processes, including developmental timing, tissue-specific development, and stem cell maintenance and differentiation. Currently, a majority of plant miRNA-related researches are purely descriptive, and provide no further detailed mechanistic insight into miRNA-mediated gene regulation and other functions. To better understand the function and regulatory mechanisms of plant miRNAs, more strategies need to be employed to investigate the functions of miRNAs and their associated signaling pathways and gene networks. Elucidating the evolutionary mechanism of miRNAs is also important. It is possible to develop a novel miRNA-based biotechnology for improving plant yield, quality and tolerance to environmental biotic and abiotic stresses besides focusing on basic genetic studies.
Collapse
Affiliation(s)
- Guiling Sun
- Department of Biology, East Carolina University, Greenville, NC 27858, USA.
| |
Collapse
|
11
|
Tang Z, Zhang L, Xu C, Yuan S, Zhang F, Zheng Y, Zhao C. Uncovering small RNA-mediated responses to cold stress in a wheat thermosensitive genic male-sterile line by deep sequencing. PLANT PHYSIOLOGY 2012; 159:721-38. [PMID: 22508932 PMCID: PMC3375937 DOI: 10.1104/pp.112.196048] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Accepted: 04/15/2012] [Indexed: 05/18/2023]
Abstract
The male sterility of thermosensitive genic male sterile (TGMS) lines of wheat (Triticum aestivum) is strictly controlled by temperature. The early phase of anther development is especially susceptible to cold stress. MicroRNAs (miRNAs) play an important role in plant development and in responses to environmental stress. In this study, deep sequencing of small RNA (smRNA) libraries obtained from spike tissues of the TGMS line under cold and control conditions identified a total of 78 unique miRNA sequences from 30 families and trans-acting small interfering RNAs (tasiRNAs) derived from two TAS3 genes. To identify smRNA targets in the wheat TGMS line, we applied the degradome sequencing method, which globally and directly identifies the remnants of smRNA-directed target cleavage. We identified 26 targets of 16 miRNA families and three targets of tasiRNAs. Comparing smRNA sequencing data sets and TaqMan quantitative polymerase chain reaction results, we identified six miRNAs and one tasiRNA (tasiRNA-ARF [for Auxin-Responsive Factor]) as cold stress-responsive smRNAs in spike tissues of the TGMS line. We also determined the expression profiles of target genes that encode transcription factors in response to cold stress. Interestingly, the expression of cold stress-responsive smRNAs integrated in the auxin-signaling pathway and their target genes was largely noncorrelated. We investigated the tissue-specific expression of smRNAs using a tissue microarray approach. Our data indicated that miR167 and tasiRNA-ARF play roles in regulating the auxin-signaling pathway and possibly in the developmental response to cold stress. These data provide evidence that smRNA regulatory pathways are linked with male sterility in the TGMS line during cold stress.
Collapse
MESH Headings
- Adaptation, Physiological
- Cold Temperature
- Computational Biology
- Flowers/genetics
- Flowers/physiology
- Gene Expression Profiling
- Gene Expression Regulation, Plant
- Genes, Plant
- Indoleacetic Acids/metabolism
- MicroRNAs/metabolism
- Plant Infertility
- Plant Proteins/genetics
- Plant Proteins/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Plant/genetics
- RNA, Plant/metabolism
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- Real-Time Polymerase Chain Reaction
- Sequence Analysis, RNA/methods
- Signal Transduction
- Stress, Physiological
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Triticum/genetics
- Triticum/physiology
Collapse
|
12
|
Arsenault R, Griebel P, Napper S. Peptide arrays for kinome analysis: New opportunities and remaining challenges. Proteomics 2011; 11:4595-609. [DOI: 10.1002/pmic.201100296] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Revised: 09/28/2011] [Accepted: 10/04/2011] [Indexed: 01/08/2023]
|
13
|
Oligomeric nucleic acids as antivirals. Molecules 2011; 16:1271-96. [PMID: 21278679 PMCID: PMC6259927 DOI: 10.3390/molecules16021271] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Revised: 01/12/2011] [Accepted: 01/25/2011] [Indexed: 02/07/2023] Open
Abstract
Based on the natural functions and chemical characteristics of nucleic acids, a variety of novel synthetic drugs and tools to explore biological systems have become available in recent years. To date, a great number of antisense oligonucleotides, RNA interference-based tools, CpG-containing oligonucleotides, catalytic oligonucleotides, decoys and aptamers has been produced synthetically and applied successfully for understanding and manipulating biological processes and in clinical trials to treat a variety of diseases. Their versatility and potency make them equally suited candidates for fighting viral infections. Here, we describe the different types of nucleic acid-based antivirals, their mechanism of action, their advantages and limitations, and their future prospects.
Collapse
|
14
|
Yang Z, Ren F, Liu C, He S, Sun G, Gao Q, Yao L, Zhang Y, Miao R, Cao Y, Zhao Y, Zhong Y, Zhao H. dbDEMC: a database of differentially expressed miRNAs in human cancers. BMC Genomics 2010; 11 Suppl 4:S5. [PMID: 21143814 PMCID: PMC3005935 DOI: 10.1186/1471-2164-11-s4-s5] [Citation(s) in RCA: 189] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Background MicroRNAs (miRNAs) are small noncoding RNAs about 22 nt long that negatively regulate gene expression at the post-transcriptional level. Their key effects on various biological processes, e.g., embryonic development, cell division, differentiation and apoptosis, are widely recognized. Evidence suggests that aberrant expression of miRNAs may contribute to many types of human diseases, including cancer. Here we present a database of differentially expressed miRNAs in human cancers (dbDEMC), to explore aberrantly expressed miRNAs among different cancers. Results We collected the miRNA expression profiles of 14 cancer types, curated from 48 microarray data sets in peer-reviewed publications. The Significance Analysis of Microarrays method was used to retrieve the miRNAs that have dramatically different expression levels in cancers when compared to normal tissues. This database provides statistical results for differentially expressed miRNAs in each data set. A total of 607 differentially expressed miRNAs (590 mature miRNAs and 17 precursor miRNAs) were obtained in the current version of dbDEMC. Furthermore, low-throughput data from the same literature were also included in the database for validation. An easy-to-use web interface was designed for users. Annotations about each miRNA can be queried through miRNA ID or miRBase accession numbers, or can be browsed by different cancer types. Conclusions This database is expected to be a valuable source for identification of cancer-related miRNAs, thereby helping with the improvement of classification, diagnosis and treatment of human cancers. All the information is freely available through http://159.226.118.44/dbDEMC/index.html.
Collapse
Affiliation(s)
- Zhen Yang
- School of Life Science, Fudan University, Shanghai, China.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Ditzler MA, Otyepka M, Šponer J, Walter NG. Molecular dynamics and quantum mechanics of RNA: conformational and chemical change we can believe in. Acc Chem Res 2010; 43:40-7. [PMID: 19754142 PMCID: PMC2808146 DOI: 10.1021/ar900093g] [Citation(s) in RCA: 142] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Structure and dynamics are both critical to RNA’s vital functions in biology. Numerous techniques can elucidate the structural dynamics of RNA, but computational approaches based on experimental data arguably hold the promise of providing the most detail. In this Account, we highlight areas wherein molecular dynamics (MD) and quantum mechanical (QM) techniques are applied to RNA, particularly in relation to complementary experimental studies.
We have expanded on atomic-resolution crystal structures of RNAs in functionally relevant states by applying explicit solvent MD simulations to explore their dynamics and conformational changes on the submicrosecond time scale. MD relies on simplified atomistic, pairwise additive interaction potentials (force fields). Because of limited sampling, due to the finite accessible simulation time scale and the approximated force field, high-quality starting structures are required. Despite their imperfection, we find that currently available force fields empower MD to provide meaningful and predictive information on RNA dynamics around a crystallographically defined energy minimum. The performance of force fields can be estimated by precise QM calculations on small model systems. Such calculations agree reasonably well with the Cornell et al. AMBER force field, particularly for stacking and hydrogen-bonding interactions. A final verification of any force field is accomplished by simulations of complex nucleic acid structures. The performance of the Cornell et al. AMBER force field generally corresponds well with and augments experimental data, but one notable exception could be the capping loops of double-helical stems. In addition, the performance of pairwise additive force fields is obviously unsatisfactory for inclusion of divalent cations, because their interactions lead to major polarization and charge-transfer effects neglected by the force field. Neglect of polarization also limits, albeit to a lesser extent, the description accuracy of other contributions, such as interactions with monovalent ions, conformational flexibility of the anionic sugar−phosphate backbone, hydrogen bonding, and solute polarization by solvent. Still, despite limitations, MD simulations are a valid tool for analyzing the structural dynamics of existing experimental structures. Careful analysis of MD simulations can identify problematic aspects of an experimental RNA structure, unveil structural characteristics masked by experimental constraints, reveal functionally significant stochastic fluctuations, evaluate the structural role of base ionization, and predict structurally and potentially functionally important details of the solvent behavior, including the presence of tightly bound water molecules. Moreover, combining classical MD simulations with QM calculations in hybrid QM/MM approaches helps in the assessment of the plausibility of chemical mechanisms of catalytic RNAs (ribozymes). In contrast, the reliable prediction of structure from sequence information is beyond the applicability of MD tools. The ultimate utility of computational studies in understanding RNA function thus requires that the results are neither blindly accepted nor flatly rejected, but rather considered in the context of all available experimental data, with great care given to assessing limitations through the available starting structures, force field approximations, and sampling limitations. The examples given in this Account showcase how the judicious use of basic MD simulations has already served as a powerful tool to help evaluate the role of structural dynamics in biological function of RNA.
Collapse
Affiliation(s)
- Mark A. Ditzler
- Biophysics, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109-1055
- Department of Chemistry, Single Molecule Analysis Group, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109-1055
| | - Michal Otyepka
- Department of Physical Chemistry, Faculty of Science, Palacky University Olomouc, tr. Svobody 26, 771 46 Olomouc, Czech Republic
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 612 65 Brno, Czech Republic
| | - Jiřì Šponer
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 612 65 Brno, Czech Republic
| | - Nils G. Walter
- Department of Chemistry, Single Molecule Analysis Group, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109-1055
| |
Collapse
|
16
|
Glazov EA, Horwood PF, Assavalapsakul W, Kongsuwan K, Mitchell RW, Mitter N, Mahony TJ. Characterization of microRNAs encoded by the bovine herpesvirus 1 genome. J Gen Virol 2009; 91:32-41. [PMID: 19793906 DOI: 10.1099/vir.0.014290-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Bovine herpesvirus 1 (BoHV-1) is a ubiquitous and important pathogen of cattle worldwide. This study reports the identification of 10 microRNA (miRNA) genes, Bhv1-mir-B1-Bhv1-mir-B10, encoded by the BoHV-1 genome that were processed into 12 detectable mature miRNAs as determined by ultra-high throughput sequencing bioinformatics analyses of small RNA libraries and expression studies. We found that four of the miRNA genes were present as two copies in the BoHV-1 genome, resulting in a total of 14 miRNA encoding loci. Unique features of the BoHV-1 miRNAs include evidence of bidirectional transcription and a close association of two miRNA genes with the origin of replication, including one miRNA that is encoded within the origin of replication. The miRNA gene Bhv1-mir-B5 was encoded on the opposite DNA strand to the latency associated transcript, potentially giving rise to antisense transcripts originating from this locus. The association of herpesvirus miRNAs with latency appears to be a common feature in the alphaherpesviruses. Analyses of the BoHV-5 genome for putative miRNA gene orthologues identified a high degree of evolutionary conservation for nine of the BoHV-1 miRNA genes. The possible roles for BoHV-1 miRNAs in the regulation of known BoHV-1 transcription units and the genetics of the BoHV-1 genotypes are also discussed.
Collapse
Affiliation(s)
- Evgeny A Glazov
- Diamantina Institute for Cancer, Immunology and Metabolic Medicine, The University of Queensland, Princess Alexandra Hospital, Ipswich Road, Woolloongabba, Queensland 4102, Australia
| | | | | | | | | | | | | |
Collapse
|
17
|
Yeung ML, Bennasser Y, Watashi K, Le SY, Houzet L, Jeang KT. Pyrosequencing of small non-coding RNAs in HIV-1 infected cells: evidence for the processing of a viral-cellular double-stranded RNA hybrid. Nucleic Acids Res 2009; 37:6575-86. [PMID: 19729508 PMCID: PMC2770672 DOI: 10.1093/nar/gkp707] [Citation(s) in RCA: 193] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Small non-coding RNAs of 18-25 nt in length can regulate gene expression through the RNA interference (RNAi) pathway. To characterize small RNAs in HIV-1-infected cells, we performed linker-ligated cloning followed by high-throughput pyrosequencing. Here, we report the composition of small RNAs in HIV-1 productively infected MT4 T-cells. We identified several HIV-1 small RNA clones and a highly abundant small 18-nt RNA that is antisense to the HIV-1 primer-binding site (PBS). This 18-nt RNA apparently originated from the dsRNA hybrid formed by the HIV-1 PBS and the 3' end of the human cellular tRNAlys3. It was found to associate with the Ago2 protein, suggesting its possible function in the cellular RNAi machinery for targeting HIV-1.
Collapse
Affiliation(s)
- Man Lung Yeung
- Molecular Virology Section, Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-0460, USA
| | | | | | | | | | | |
Collapse
|
18
|
Lambert MS. Molecular Biosafety. APPLIED BIOSAFETY 2009. [DOI: 10.1177/153567600901400307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
19
|
Abstract
Viruses enter host cells in order to complete their life cycles and have evolved to exploit host cell structures, regulatory factors and mechanisms. The virus and host cell interactions have consequences at multiple levels, spanning from evolution through disease to models and tools for scientific discovery and treatment. Virus-induced human cancers arise after a long duration of time and are monoclonal or oligoclonal in origin. Cancer is therefore a side effect rather than an essential part of viral infections in humans. Still, 15-20% of all human cancers are caused by viruses. A review of tumour virology shows its close integration in cancer research. Viral tools and experimental models have been indispensible for the progress of molecular biology. In particular, retroviruses and DNA tumour viruses have played major roles in our present understanding of the molecular biology of both viruses and the host. Recently, additional complex relationships due to virus and host co-evolution have appeared and may lead to a further understanding of the overall regulation of gene expression programmes in cancer.
Collapse
|
20
|
Silencing viral microRNA as a novel antiviral therapy? J Biomed Biotechnol 2009; 2009:419539. [PMID: 19704916 PMCID: PMC2688686 DOI: 10.1155/2009/419539] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2008] [Accepted: 03/20/2009] [Indexed: 12/16/2022] Open
Abstract
Viruses are intracellular parasites that ensure their existence by converting host cells into viral particle producing entities or into hiding places rendering the virus invisible to the host immune system. Some viruses may also survive by transforming the infected cell into an immortal tumour cell. MicroRNAs are small non-coding transcripts that function as posttranscriptional regulators of gene expression. Viruses encode miRNAs that regulate expression of both cellular and viral genes, and contribute to the pathogenic properties of viruses. Hence, neutralizing the action of viral miRNAs expression by complementary single-stranded oligonucleotides or so-called anti-miRNAs may represent a strategy to combat viral infections and viral-induced pathogenesis. This review describes the miRNAs encoded by human viruses, and discusses the possible therapeutic applications of anti-miRNAs against viral diseases.
Collapse
|