1
|
Zhang L, Nan X, Zhou D, Wang X, Zhu S, Li Q, Jia F, Zhu B, Si Y, Cao S, Ye J. Japanese encephalitis virus NS1 and NS1' protein disrupts the blood-brain barrier through macrophage migration inhibitory factor-mediated autophagy. J Virol 2024; 98:e0011624. [PMID: 38591880 PMCID: PMC11092347 DOI: 10.1128/jvi.00116-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 03/17/2024] [Indexed: 04/10/2024] Open
Abstract
Flaviviruses in the Japanese encephalitis virus (JEV) serogroup, such as JEV, West Nile virus, and St. Louis encephalitis virus, can cause severe neurological diseases. The nonstructural protein 1 (NS1) is a multifunctional protein of flavivirus that can be secreted by infected cells and circulate in the host bloodstream. NS1' is an additional form of NS1 protein with 52 amino acids extension at its carboxy-terminal and is produced exclusively by flaviviruses in the JEV serogroup. In this study, we demonstrated that the secreted form of both NS1 and NS1' can disrupt the blood-brain barrier (BBB) of mice, with NS1' exhibiting a stronger effect. Using the in vitro BBB model, we found that treatment of soluble recombinant JEV NS1 or NS1' protein increases the permeability of human brain microvascular endothelial cells (hBMECs) and leads to the degradation of tight junction proteins through the autophagy-lysosomal pathway. Consistently, NS1' protein exhibited a more pronounced effect compared to NS1 in these cellular processes. Further research revealed that the increased expression of macrophage migration inhibitory factor (MIF) is responsible for triggering autophagy after NS1 or NS1' treatment in hBMECs. In addition, TLR4 and NF-κB signaling was found to be involved in the activation of MIF transcription. Moreover, administering the MIF inhibitor has been shown to decrease viral loads and mitigate inflammation in the brains of mice infected with JEV. This research offers a novel perspective on the pathogenesis of JEV. In addition, the stronger effect of NS1' on disrupting the BBB compared to NS1 enhances our understanding of the mechanism by which flaviviruses in the JEV serogroup exhibit neurotropism.IMPORTANCEJapanese encephalitis (JE) is a significant viral encephalitis worldwide, caused by the JE virus (JEV). In some patients, the virus cannot be cleared in time, leading to the breach of the blood-brain barrier (BBB) and invasion of the central nervous system. This invasion may result in cognitive impairment, behavioral disturbances, and even death in both humans and animals. However, the mechanism by which JEV crosses the BBB remains unclear. Previous studies have shown that the flavivirus NS1 protein plays an important role in causing endothelial dysfunction. The NS1' protein is an elongated form of NS1 protein that is particularly produced by flaviviruses in the JEV serogroup. This study revealed that both the secreted NS1 and NS1' of JEV can disrupt the BBB by breaking down tight junction proteins through the autophagy-lysosomal pathway, and NS1' is found to have a stronger effect compared to NS1 in this process. In addition, JEV NS1 and NS1' can stimulate the expression of MIF, which triggers autophagy via the ERK signaling pathway, leading to damage to BBB. Our findings reveal a new function of JEV NS1 and NS1' in the disruption of BBB, thereby providing the potential therapeutic target for JE.
Collapse
Affiliation(s)
- Luping Zhang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xiaowei Nan
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Dengyuan Zhou
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xugang Wang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Shuo Zhu
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Qiuyan Li
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Fan Jia
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Bibo Zhu
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Youhui Si
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Shengbo Cao
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Jing Ye
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, China
| |
Collapse
|
2
|
Srichawla BS, Manan MR, Kipkorir V, Dhali A, Diebel S, Sawant T, Zia S, Carrion-Alvarez D, Suteja RC, Nurani K, Găman MA. Neuroinvasion of emerging and re-emerging arboviruses: A scoping review. SAGE Open Med 2024; 12:20503121241229847. [PMID: 38711470 PMCID: PMC11072077 DOI: 10.1177/20503121241229847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 01/16/2024] [Indexed: 05/08/2024] Open
Abstract
Background Arboviruses are RNA viruses and some have the potential to cause neuroinvasive disease and are a growing threat to global health. Objectives Our objective is to identify and map all aspects of arbovirus neuroinvasive disease, clarify key concepts, and identify gaps within our knowledge with appropriate future directions related to the improvement of global health. Methods Sources of Evidence: A scoping review of the literature was conducted using PubMed, Scopus, ScienceDirect, and Hinari. Eligibility Criteria: Original data including epidemiology, risk factors, neurological manifestations, neuro-diagnostics, management, and preventive measures related to neuroinvasive arbovirus infections was obtained. Sources of evidence not reporting on original data, non-English, and not in peer-reviewed journals were removed. Charting Methods: An initial pilot sample of 30 abstracts were reviewed by all authors and a Cohen's kappa of κ = 0.81 (near-perfect agreement) was obtained. Records were manually reviewed by two authors using the Rayyan QCRI software. Results A total of 171 records were included. A wide array of neurological manifestations can occur most frequently, including parkinsonism, encephalitis/encephalopathy, meningitis, flaccid myelitis, and Guillain-Barré syndrome. Magnetic resonance imaging of the brain often reveals subcortical lesions, sometimes with diffusion restriction consistent with acute ischemia. Vertical transmission of arbovirus is most often secondary to the Zika virus. Neurological manifestations of congenital Zika syndrome, include microcephaly, failure to thrive, intellectual disability, and seizures. Cerebrospinal fluid analysis often shows lymphocytic pleocytosis, elevated albumin, and protein consistent with blood-brain barrier dysfunction. Conclusions Arbovirus infection with neurological manifestations leads to increased morbidity and mortality. Risk factors for disease include living and traveling in an arbovirus endemic zone, age, pregnancy, and immunosuppressed status. The management of neuroinvasive arbovirus disease is largely supportive and focuses on specific neurological complications. There is a need for therapeutics and currently, management is based on disease prevention and limiting zoonosis.
Collapse
Affiliation(s)
- Bahadar S Srichawla
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | | | - Vincent Kipkorir
- Department of Human Anatomy and Physiology, University of Nairobi, Nairobi, Kenya
| | - Arkadeep Dhali
- Department of Internal Medicine, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Sebastian Diebel
- Department of Family Medicine, Northern Ontario School of Medicine University, Sudbury, ON, Canada
| | - Tirtha Sawant
- Department of Neurology, Spartan Health Sciences University, Spartan Drive St, Saint Lucia
| | - Subtain Zia
- Department of Infectious Diseases, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | | | - Richard C Suteja
- Faculty of Medicine, Udayana University, Kampus Bukit, Jl, Raya Kampus Unud Jimbaran, Kec, Kuta Sel, Kabupaten Badung, Bukit Jimbaran, Bali, Indonesia
| | - Khulud Nurani
- Department of Human Anatomy and Physiology, University of Nairobi, Nairobi, Kenya
| | - Mihnea-Alexandru Găman
- Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, București, Romania
- Bucharest, Romania and Department of Hematology, Center of Hematology and Bone Marrow Transplantation, Fundeni Clinical Institute, București, Romania
| |
Collapse
|
3
|
Reis LAM, Pampolha ABO, do Nascimento BLS, Dias DD, Araújo PADS, da Silva FS, Silva LHDSE, Reis HCF, da Silva EVP, Nunes Neto JP. Genus Culex Linnaeus, 1758 (Diptera: Culicidae) as an Important Potential Arbovirus Vector in Brazil: An Integrative Review. Life (Basel) 2023; 13:2179. [PMID: 38004319 PMCID: PMC10672040 DOI: 10.3390/life13112179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/03/2023] [Accepted: 10/03/2023] [Indexed: 11/26/2023] Open
Abstract
The genus Culex has 817 species subdivided into 28 subgenera. It has a cosmopolitan distribution, being most abundant in countries with a tropical climate. Understanding the ecology and diversity of viruses circulating in the species of this genus is important for understanding their role as arbovirus vectors in Brazil. To conduct an integrative review to identify the importance of the Culex genus as arbovirus vectors in Brazil. A search was carried out for scientific papers in the PubMed, BVSalud, Patuá-IEC and International Catalogue of Arboviruses: including certain other viruses of vertebrates databases. 36 publications describing arbovirus detections in Culex mosquitoes collected in the field in Brazil were evaluated. A total of 42 arbovirus species were detected, as well as studies analyzing the vector competence of C. quinquefasciatus for the transmission of four different arboviruses. The study of the Culex genus and its role as a vector of arboviruses in Brazil is essential for understanding transmission cycles, with the main aim of reducing cases of human infection. Thus, entomovirological surveillance guides the implementation of actions to detect circulating arboviruses among vectors to anticipate measures aimed at preventing or reducing the risk of arbovirus outbreaks in the country.
Collapse
Affiliation(s)
- Lúcia Aline Moura Reis
- Graduate Program in Parasitary Biology in the Amazon Region, Center of Biological and Health Sciences, State University of Pará, Belém 66095-663, Brazil
| | - Ana Beatriz Oliveira Pampolha
- Institute of Biological Sciences, Faculty of Biological Sciences, Federal University of Pará (UFPA), Belém 66075-110, Brazil
| | - Bruna Lais Sena do Nascimento
- Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute—IEC/MS/SVSA, Ananindeua 67030-000, Brazil
| | - Daniel Damous Dias
- Graduate Program in Parasitary Biology in the Amazon Region, Center of Biological and Health Sciences, State University of Pará, Belém 66095-663, Brazil
| | - Pedro Arthur da Silva Araújo
- Graduate Program in Biology of Infectious and Parasitary Agents, Biological Sciences Institute, Federal University of Pará, Belém 66077-830, Brazil
| | - Fábio Silva da Silva
- Graduate Program in Parasitary Biology in the Amazon Region, Center of Biological and Health Sciences, State University of Pará, Belém 66095-663, Brazil
| | - Lucas Henrique da Silva e Silva
- Graduate Program in Parasitary Biology in the Amazon Region, Center of Biological and Health Sciences, State University of Pará, Belém 66095-663, Brazil
| | - Hanna Carolina Farias Reis
- Graduate Program in Parasitary Biology in the Amazon Region, Center of Biological and Health Sciences, State University of Pará, Belém 66095-663, Brazil
| | - Eliana Vieira Pinto da Silva
- Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute—IEC/MS/SVSA, Ananindeua 67030-000, Brazil
| | - Joaquim Pinto Nunes Neto
- Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute—IEC/MS/SVSA, Ananindeua 67030-000, Brazil
| |
Collapse
|
4
|
Zoladek J, Nisole S. Mosquito-borne flaviviruses and type I interferon: catch me if you can! Front Microbiol 2023; 14:1257024. [PMID: 37965539 PMCID: PMC10642725 DOI: 10.3389/fmicb.2023.1257024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 10/11/2023] [Indexed: 11/16/2023] Open
Abstract
Mosquito-borne flaviviruses include many viruses that are important human pathogens, including Yellow fever virus, Dengue virus, Zika virus and West Nile virus. While these viruses have long been confined to tropical regions, they now pose a global public health concern, as the geographical distribution of their mosquito vectors has dramatically expanded. The constant threat of flavivirus emergence and re-emergence underlines the need for a better understanding of the relationships between these viruses and their hosts. In particular, unraveling how these viruses manage to bypass antiviral immune mechanisms could enable the design of countermeasures to limit their impact on human health. The body's first line of defense against viral infections is provided by the interferon (IFN) response. This antiviral defense mechanism takes place in two waves, namely the induction of type I IFNs triggered by viral infection, followed by the IFN signaling pathway, which leads to the synthesis of interferon-stimulated genes (ISGs), whose products inhibit viral replication. In order to spread throughout the body, viruses must race against time to replicate before this IFN-induced antiviral state hinders their dissemination. In this review, we summarize our current knowledge on the multiple strategies developed by mosquito-borne flaviviruses to interfere with innate immune detection and signaling pathways, in order to delay, if not prevent, the establishment of an antiviral response.
Collapse
Affiliation(s)
| | - Sébastien Nisole
- Viral Trafficking, Restriction and Innate Signaling, CNRS, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, Montpellier, France
| |
Collapse
|
5
|
Salas-Rojas M, de Oliveira-Filho EF, Almazán-Marín C, Rodas-Martínez AZ, Aguilar-Setién Á, Drexler JF. Serological evidence for potential yellow fever virus infection in non-human primates, southeastern Mexico. ONE HEALTH OUTLOOK 2023; 5:14. [PMID: 37876014 PMCID: PMC10594671 DOI: 10.1186/s42522-023-00090-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 10/09/2023] [Indexed: 10/26/2023]
Abstract
BACKGROUND Arthropod-borne flaviviruses like dengue virus (DENV) and yellow fever virus (YFV) are major human pathogens. In Latin America, YFV is maintained in sylvatic cycles involving non-human primates (NHP) and forest-dwelling mosquitos. YFV supposedly does not circulate north of Panama. METHODS We conducted a serologic study for flaviviruses and other emerging viruses in NHP from southeastern Mexico. A total of thirty sera of black-handed spider monkeys (Ateles geoffroyi, n = 25), black howler monkeys (Alouatta pigra, n = 3), and mantled howler monkeys (Al. palliata, n = 2) sampled in 2012 and 2018 were screened by an indirect immunofluorescence assay (IFA) to detected IgG antibodies against DENV, YFV, Zika virus (ZIKV), West Nile virus (WNV), Rift Valley fever virus, Crimean-Congo hemorrhagic fever virus, Middle East respiratory syndrome coronavirus, and Zaire Ebola virus, and confirmed by plaque reduction neutralization tests (PRNT90) representing all mosquito-borne flavivirus serocomplexes circulating in the Americas. RESULTS A total of 16 sera (53.3%; 95% CI, 34.3-71.7) showed IFA reactivity to at least one tested flavivirus with end-point titers ranging from 1:100 to 1:1000. No serum reacted with other viruses. Monotypic and high mean PRNT90 endpoint YFV titers of 1:246 were found in 3 black-handed spider monkey sera (10.0%; 95% CI, 2.1-26.5) sampled in 2018 in Tabasco, compared to all other flaviviruses tested. Monotypic endpoint PRNT90 titers of 1:28 for Ilheus virus and 1:22 for WNV in serum of black howler monkeys sampled in 2018 in Tabasco suggested additional flavivirus exposure. CONCLUSIONS Our findings may suggest unnoticed YFV circulation. Intensification of YFV surveillance in NHP and vectors is warranted in Mexico and potentially other areas considered free of yellow fever.
Collapse
Affiliation(s)
- Mónica Salas-Rojas
- UIM en Inmunología, UMAE Hospital de Pediatría, Centro Médico Nacional "Siglo XXI", Instituto Mexicano del Seguro Social, Ciudad de Mexico, México
| | - Edmilson Ferreira de Oliveira-Filho
- Institute of Virology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Cenia Almazán-Marín
- UIM en Inmunología, UMAE Hospital de Pediatría, Centro Médico Nacional "Siglo XXI", Instituto Mexicano del Seguro Social, Ciudad de Mexico, México
| | - Alba Zulema Rodas-Martínez
- División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco, Villahermosa, Tabasco, México
| | - Álvaro Aguilar-Setién
- UIM en Inmunología, UMAE Hospital de Pediatría, Centro Médico Nacional "Siglo XXI", Instituto Mexicano del Seguro Social, Ciudad de Mexico, México
| | - Jan Felix Drexler
- Institute of Virology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Charitéplatz 1, 10117, Berlin, Germany.
- German Centre for Infection Research (DZIF), Associated Partner Site Charité, Berlin, Germany.
| |
Collapse
|
6
|
Olson MF, Brooks C, Kakazu A, Promma P, Sornjai W, Smith DR, Davis TJ. Mosquito surveillance on U.S military installations as part of a Japanese encephalitis virus detection program: 2016 to 2021. PLoS Negl Trop Dis 2023; 17:e0011422. [PMID: 37856569 PMCID: PMC10617694 DOI: 10.1371/journal.pntd.0011422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 10/31/2023] [Accepted: 10/05/2023] [Indexed: 10/21/2023] Open
Abstract
Japanese encephalitis virus (JEV) continues to circulate throughout Southeast Asia and the Western Pacific where approximately 3 billion people in 24 countries are at risk of infection. Surveillance targeting the mosquito vectors of JEV was conducted at four military installations on Okinawa, Japan, between 2016 and 2021. Out of a total of 10,426 mosquitoes from 20 different species, zero were positive for JEV. The most abundant mosquito species collected were Aedes albopictus (36.4%) followed by Culex sitiens (24.3%) and Armigeres subalbatus (19%). Statistically significant differences in mosquito species populations according to location were observed. Changes in land use over time appear to be correlated with the species and number of mosquitoes trapped in each location. JEV appears to be absent from mosquito populations on Okinawa, but further research on domestic pigs and ardeid birds is warranted.
Collapse
Affiliation(s)
- Mark F. Olson
- United States Air Force, Pacific Air Forces, Theater Preventive Medicine Flight, Armed Forces Pacific, United States of America
| | - Caroline Brooks
- United States Air Force, Pacific Air Forces, Theater Preventive Medicine Flight, Armed Forces Pacific, United States of America
| | - Akira Kakazu
- United States Air Force, Pacific Air Forces, Theater Preventive Medicine Flight, Armed Forces Pacific, United States of America
| | - Ploenphit Promma
- Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhon Pathom, Thailand
| | - Wannapa Sornjai
- Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhon Pathom, Thailand
| | - Duncan R. Smith
- Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhon Pathom, Thailand
| | - Timothy J. Davis
- United States Air Force, Pacific Air Forces, Theater Preventive Medicine Flight, Armed Forces Pacific, United States of America
| |
Collapse
|
7
|
Saivish MV, Pacca CC, da Costa VG, de Lima Menezes G, da Silva RA, Nebo L, da Silva GCD, de Aguiar Milhim BHG, da Silva Teixeira I, Henrique T, Mistrão NFB, Hernandes VM, Zini N, de Carvalho AC, Fontoura MA, Rahal P, Sacchetto L, Marques RE, Nogueira ML. Caffeic Acid Has Antiviral Activity against Ilhéus Virus In Vitro. Viruses 2023; 15:494. [PMID: 36851709 PMCID: PMC9961518 DOI: 10.3390/v15020494] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 01/28/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023] Open
Abstract
Ilhéus virus (ILHV) is a neglected mosquito-borne flavivirus. ILHV infection may lead to Ilhéus fever, an emerging febrile disease like dengue fever with the potential to evolve into a severe neurological disease characterized by meningoencephalitis; no specific treatments are available for this disease. This study assessed the antiviral properties of caffeic acid, an abundant component of plant-based food products that is also compatible with the socioeconomic limitations associated with this neglected infectious disease. The in vitro activity of caffeic acid on ILHV replication was investigated in Vero and A549 cell lines using plaque assays, quantitative RT-PCR, and immunofluorescence assays. We observed that 500 µM caffeic acid was virucidal against ILHV. Molecular docking indicated that caffeic acid might interact with an allosteric binding site on the envelope protein.
Collapse
Affiliation(s)
- Marielena Vogel Saivish
- Laboratório de Pesquisas em Virologia, Departamento de Doenças Dermatológicas, Infecciosas e Parasitárias, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto 15090-000, SP, Brazil
- Brazilian Biosciences National Laboratory, Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas 13083-100, SP, Brazil
| | - Carolina Colombelli Pacca
- Laboratório de Pesquisas em Virologia, Departamento de Doenças Dermatológicas, Infecciosas e Parasitárias, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto 15090-000, SP, Brazil
- Laboratório de Estudos Genômicos, Departamento de Biologia, Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista, São José do Rio Preto 15054-000, SP, Brazil
- Faceres Medical School, São José do Rio Preto 15090-000, SP, Brazil
| | - Vivaldo Gomes da Costa
- Laboratório de Estudos Genômicos, Departamento de Biologia, Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista, São José do Rio Preto 15054-000, SP, Brazil
| | - Gabriela de Lima Menezes
- Departamento de Biofísica e Farmacologia, Universidade Federal do Rio Grande do Norte, Natal 59072-970, RN, Brazil
- Unidade Especial de Ciências Exatas, Universidade Federal de Jataí, Jataí 75801-615, GO, Brazil
| | | | - Liliane Nebo
- Unidade Especial de Ciências Exatas, Universidade Federal de Jataí, Jataí 75801-615, GO, Brazil
| | - Gislaine Celestino Dutra da Silva
- Laboratório de Pesquisas em Virologia, Departamento de Doenças Dermatológicas, Infecciosas e Parasitárias, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto 15090-000, SP, Brazil
| | - Bruno Henrique Gonçalves de Aguiar Milhim
- Laboratório de Pesquisas em Virologia, Departamento de Doenças Dermatológicas, Infecciosas e Parasitárias, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto 15090-000, SP, Brazil
| | - Igor da Silva Teixeira
- Laboratório de Pesquisas em Virologia, Departamento de Doenças Dermatológicas, Infecciosas e Parasitárias, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto 15090-000, SP, Brazil
| | - Tiago Henrique
- Laboratório de Marcadores Moleculares e Bioinformática, Departamento de Biologia Molecular, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto 15090-000, SP, Brazil
| | - Natalia Franco Bueno Mistrão
- Laboratório de Pesquisas em Virologia, Departamento de Doenças Dermatológicas, Infecciosas e Parasitárias, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto 15090-000, SP, Brazil
| | - Victor Miranda Hernandes
- Laboratório de Pesquisas em Virologia, Departamento de Doenças Dermatológicas, Infecciosas e Parasitárias, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto 15090-000, SP, Brazil
| | - Nathalia Zini
- Laboratório de Pesquisas em Virologia, Departamento de Doenças Dermatológicas, Infecciosas e Parasitárias, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto 15090-000, SP, Brazil
| | - Ana Carolina de Carvalho
- Brazilian Biosciences National Laboratory, Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas 13083-100, SP, Brazil
| | - Marina Alves Fontoura
- Brazilian Biosciences National Laboratory, Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas 13083-100, SP, Brazil
| | - Paula Rahal
- Laboratório de Estudos Genômicos, Departamento de Biologia, Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista, São José do Rio Preto 15054-000, SP, Brazil
| | - Lívia Sacchetto
- Laboratório de Pesquisas em Virologia, Departamento de Doenças Dermatológicas, Infecciosas e Parasitárias, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto 15090-000, SP, Brazil
| | - Rafael Elias Marques
- Brazilian Biosciences National Laboratory, Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas 13083-100, SP, Brazil
| | - Maurício Lacerda Nogueira
- Laboratório de Pesquisas em Virologia, Departamento de Doenças Dermatológicas, Infecciosas e Parasitárias, Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto 15090-000, SP, Brazil
- Brazilian Biosciences National Laboratory, Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas 13083-100, SP, Brazil
- Department of Pathology, The University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
8
|
Cell Type Variability in the Incorporation of Lipids in the Dengue Virus Virion. Viruses 2022; 14:v14112566. [PMID: 36423175 PMCID: PMC9698084 DOI: 10.3390/v14112566] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/15/2022] [Accepted: 11/18/2022] [Indexed: 11/22/2022] Open
Abstract
A lipid bilayer produced from the host membrane makes up around 20% of the weight of the dengue virus (DENV) virion and is crucial for virus entry. Despite its significance, the virion's lipid composition is still poorly understood. In tandem with lipid profiles of the cells utilised to generate the virions, this work determined a partial lipid profile of DENV virions derived from two cell lines (C6/36 and LLC-MK2). The results showed distinctive profiles between the two cell types. In the mammalian LLC-MK2 cells, 30.8% (73/237 identified lipid species; 31 upregulated, 42 downregulated) of lipid species were altered in response to infection, whilst in insect C6/36 cells only 12.0% (25/208; 19 upregulated, 6 downregulated) of lipid species showed alterations in response to infection. For virions from LLC-MK2 cells, 14 lipids were detected specifically in virions with a further seven lipids being enriched (over mock controls). For virions from C6/36 cells, 43 lipids were detected that were not seen in mock preparations, with a further 16 being specifically enriched (over mock control). These results provide the first lipid description of DENV virions produced in mammalian and mosquito cells, as well as the lipid changes in the corresponding infected cells.
Collapse
|
9
|
Mishra B, Aduri R. The RNA Secondary Structure Analysis Reveals Potential for Emergence of Pathogenic Flaviviruses. FOOD AND ENVIRONMENTAL VIROLOGY 2022; 14:10-29. [PMID: 34694573 DOI: 10.1007/s12560-021-09502-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 10/12/2021] [Indexed: 06/13/2023]
Abstract
The Flavivirus genus is divided into four groups: Mosquito-borne flaviviruses, Tick-borne flaviviruses, no-known vector flaviviruses, and Insect specific flaviviruses. Millions of people are affected worldwide every year due to the flaviviral infections. The 5' UTR of the RNA genome plays a critical role in the biology of flaviviruses. To explore any correlation between the topology of the 5' UTR and pathogenesis, a global scale study of the RNA secondary structure of different groups of flaviviruses has been conducted. We found that most of the pathogenic flaviviruses, irrespective of their mode of transmission, tend to form a Y shaped topology in the Stem loop A of the 5' UTR. Some of the current non-pathogenic flaviviruses were also observed to form Y shaped structure. Based on this study, it has been proposed that the flaviviruses having the Y shaped topology in their 5' UTR regions may have the potential to become pathogenic.
Collapse
Affiliation(s)
- Bibhudutta Mishra
- Department of Biological Sciences, Birla Institute of Technology and Science Pilani, K K Birla Goa campus, Zuarinagar, South Goa, 403726, India
- Department of Zoology, Centurion University of Technology and Management, Bhubaneswar Campus, Khurda, Jatni, 752050, Odisha, India
| | - Raviprasad Aduri
- Department of Biological Sciences, Birla Institute of Technology and Science Pilani, K K Birla Goa campus, Zuarinagar, South Goa, 403726, India.
| |
Collapse
|
10
|
Behar A, Rot A, Altory-Natour A, Davidson I. A two-branched upgrade to demonstrate ITV transmission by blood-sucking insects. J Virol Methods 2021; 296:114229. [PMID: 34245790 DOI: 10.1016/j.jviromet.2021.114229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 06/30/2021] [Accepted: 07/01/2021] [Indexed: 10/20/2022]
Abstract
The enveloped flavivirus Israel turkey meningoencephalitis virus (ITV) causes a neuroparalytic disease in adult turkeys leading to morbidity and mortality. This study reevaluates the role of blood-sucking insects in the transmission of ITV. We demonstrate the crucial importance of two factors in detecting viruses carried by blood-sucking insects: first, enhanced molecular detection of ITV in insects by nested qRT-PCR and second, collection and maintenance of live insects until their molecular examination. These upgrades allowed overcoming the small virus quantities contained in the insects and detecting ITV for the first time in field-collected Culex pipiens.
Collapse
Affiliation(s)
- Adi Behar
- Division of Parasitology, Kimron Veterinary Institute, Beit Dagan, Israel.
| | - Ashael Rot
- Division of Parasitology, Kimron Veterinary Institute, Beit Dagan, Israel
| | | | - Irit Davidson
- Division of Avian Diseases, Kimron Veterinary Institute, Beit Dagan, Israel
| |
Collapse
|
11
|
Leung C. A lesson learnt from the emergence of Zika virus: What flaviviruses can trigger Guillain-Barré syndrome? J Med Virol 2020; 92:2938-2945. [PMID: 32077499 DOI: 10.1002/jmv.25717] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 02/13/2020] [Indexed: 01/06/2023]
Abstract
While Zika virus outbreaks raised the concern about rare viral infections in human, attention should also be paid to other Guillain-Barré syndrome (GBS) inducing viruses. This study aims to search for other flaviviruses likely to be associated with GBS. Amino acid (aa) sequence matching analysis was conducted to identify viruses molecularly similar to the Zika virus and human GBS-related proteins. A systematic review of clinical literature was performed to summarize the clinical findings of the GBS-associated flaviviruses identified in the aa sequence matching analysis. It was found that more than 10 pentapeptides were shared between 9 flaviviruses, Zika virus, and human GBS-related proteins. Twenty-six articles totaling 42 clinical cases were eligible for inclusion in the systematic review concerning the nine flaviviruses identified. While some patients showed signs of encephalitis, 5 out of 42 cases demonstrated typical GBS symptoms. Public health professionals should be aware of other GBS-associated flaviviruses and GBS cases with mild symptoms.
Collapse
Affiliation(s)
- Char Leung
- Deakin University, Burwood, Victoria, Australia
| |
Collapse
|
12
|
Andrographolide and Its 14-Aryloxy Analogues Inhibit Zika and Dengue Virus Infection. Molecules 2020; 25:molecules25215037. [PMID: 33143016 PMCID: PMC7662321 DOI: 10.3390/molecules25215037] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 10/26/2020] [Accepted: 10/27/2020] [Indexed: 11/17/2022] Open
Abstract
Andrographolide is a labdene diterpenoid with potential applications against a number of viruses, including the mosquito-transmitted dengue virus (DENV). In this study, we evaluated the anti-viral activity of three 14-aryloxy analogues (ZAD-1 to ZAD-3) of andrographolide against Zika virus (ZIKV) and DENV. Interestingly, one analogue, ZAD-1, showed better activity against both ZIKV and DENV than the parental andrographolide. A two-dimension (2D) proteomic analysis of human A549 cells treated with ZAD-1 compared to cells treated with andrographolide identified four differentially expressed proteins (heat shock 70 kDa protein 1 (HSPA1A), phosphoglycerate kinase 1 (PGK1), transketolase (TKT) and GTP-binding nuclear protein Ran (Ran)). Western blot analysis confirmed that ZAD-1 treatment downregulated expression of HSPA1A and upregulated expression of PGK1 as compared to andrographolide treatment. These results suggest that 14-aryloxy analogues of andrographolide have the potential for further development as anti-DENV and anti-ZIKV agents.
Collapse
|
13
|
Vieira CJDSP, Andrade CDD, Kubiszeski JR, Silva DJFD, Barreto ES, Massey AL, Canale GR, Bernardo CSS, Levi T, Peres CA, Bronzoni RVDM. Detection of Ilheus virus in mosquitoes from southeast Amazon, Brazil. Trans R Soc Trop Med Hyg 2020; 113:424-427. [PMID: 31050765 DOI: 10.1093/trstmh/trz031] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 03/28/2019] [Accepted: 04/01/2019] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Arbovirus surveillance in field-collected mosquitoes is essential in monitoring virus activity to avoid emergence and outbreaks of arboviruses. METHODS We used reverse transcription polymerase chain reaction methods to search for arbovirus in mosquitoes collected in Brazil's southeast Amazon forest remnants during 2015-2016. RESULTS We detected Iheus virus (ILHV) RNA in Culex declarator, Culex (Melanoconion) and Ochlerotatus serratus mosquitoes. CONCLUSIONS These results indicate ILHV circulation in the studied area, highlighting its potential emergence in human population. More studies are necessary to confirm the roles of these three species in ILHV maintenance.
Collapse
Affiliation(s)
| | - Camila Decol de Andrade
- Instituto de Ciências da Saúde, Universidade Federal de Mato Grosso, 1200 Avenida Alexandre Ferronato, Sinop, Brazil
| | - Janaína Rigotti Kubiszeski
- Instituto de Ciências da Saúde, Universidade Federal de Mato Grosso, 1200 Avenida Alexandre Ferronato, Sinop, Brazil
| | - David José Ferreira da Silva
- Instituto de Ciências da Saúde, Universidade Federal de Mato Grosso, 1200 Avenida Alexandre Ferronato, Sinop, Brazil
| | - Eriana Serpa Barreto
- Instituto de Ciências da Saúde, Universidade Federal de Mato Grosso, 1200 Avenida Alexandre Ferronato, Sinop, Brazil
| | - Aimee Leigh Massey
- College of Agricultural Sciences, Oregon State University, Nash Hall, 2820 SW Campus Way, Corvallis, USA
| | - Gustavo Rodrigues Canale
- Instituto de Ciências Naturais, Humanas e Sociais, Universidade Federal de Mato Grosso, 1200 Avenida Alexandre Ferronato, Sinop, Brazil
| | - Christine Steiner São Bernardo
- Departamento de Ciências Biológicas, Universidade Estadual do Sudoeste da Bahia, Rua José Moreira Sobrinho, Jequié, Brazil
| | - Taal Levi
- College of Agricultural Sciences, Oregon State University, Nash Hall, 2820 SW Campus Way, Corvallis, USA
| | - Carlos Augusto Peres
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, England
| | | |
Collapse
|
14
|
Cunha MS, Luchs A, da Costa AC, Ribeiro GDO, Dos Santos FCP, Nogueira JS, Komninakis SV, Marinho RDSS, Witkin SS, Villanova F, Deng X, Sabino EC, Delwart E, Leal É, Nogueira ML, Maiorka PC. Detection and characterization of Ilheus and Iguape virus genomes in historical mosquito samples from Southern Brazil. Acta Trop 2020; 205:105401. [PMID: 32081658 DOI: 10.1016/j.actatropica.2020.105401] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/10/2020] [Accepted: 02/16/2020] [Indexed: 11/30/2022]
Abstract
In Brazil, flaviviruses have caused massive outbreaks. Surveillance programs designed to monitor virus activity in vectors provides a system for mapping disease distribution and for identifying specific vector species for targeted control. The present study aimed to describe the detection, whole genome characterization and phylogenetic analysis of Ilheus virus (ILHV) and Iguape virus (IGUV) strains obtained from historical mosquito's samples. Twelve isolates of pooled mosquito specimens (inoculated in neonate mouse brain) collected in the state of São Paulo, Brazil, in 1993, 1994 and 1997 were investigated. Viral RNA was extracted and analyzed by qRT-PCR using Flavivirus genus-specific primers. Positive samples were sequenced and underwent phylogenetic analyses. Flavivirus was detected in 50% of the specimens. Positive samples were successfully Sanger sequenced. Three Anopholes cruzii pools collected in 1994 were positive for IGUV. One Culex sp. pool, one Anopheles triannulatus pool, and one Coquillettidia juxtamansonia pool, collected in 1994, were positive for ILHV. Metagenomic sequencing successfully characterize one ILHV and four IGUV full genomes, and revealed a high degree of homology between the Brazilian ILHV and IGUV strains and isolates available in GenBank. Phylogenetic analysis of partial ILHV NS5 gene revealed three distinct lineages (clades), an indication of genetic heterogeneity in strains circulating in Brazil. Nucleotide insertions and a high-level of nucleotide diversity were observed in the NS1 protein and capsid region of IGUV strains, respectively. Detection of ILHV and IGUV in mosquitoes from Southeastern Brazil confirms the historical circulation of these viruses in this area. Furthermore, this first evidence of ILHV in Anopheles triannulatus suggests the potential importance of Anopheles mosquitoes in the IGUV transmission cycle. Genomic and phylogenetic analysis of these viruses provided insights into their diversity and evolution, which are important for the emergence patterns of flaviviruses and their evolutionary trends in Brazil, an endemic country for several arbovirus. in In-depth studies of ILHV and IGUV including vector competence and molecular studies are needed to shed light on their epidemiology and potential risk of future emergence.
Collapse
Affiliation(s)
- Mariana Sequetin Cunha
- Vector-Borne Diseases Laboratory, Virology Center, Adolfo Lutz Institute, São Paulo, Brazil.
| | - Adriana Luchs
- Enteric Diseases Laboratory, Virology Center, Adolfo Lutz Institute, São Paulo, Brazil
| | | | | | | | - Juliana Silva Nogueira
- Vector-Borne Diseases Laboratory, Virology Center, Adolfo Lutz Institute, São Paulo, Brazil
| | - Shirley Vasconcelos Komninakis
- Postgraduate Program in Health Science, Faculty of Medicine of ABC, Santo Andre, Brazil; Retrovirology Laboratory, Federal University of Sao Paulo, Sao Paulo, Brazil
| | | | - Steven S Witkin
- Tropical Medicine Institute of São Paulo, University of São Paulo, São Paulo, Brazil; Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, USA
| | - Fabiola Villanova
- Biological Sciences Institute, Federal University of Para, Belém, Brazil
| | - Xutao Deng
- Vitalant Research Institute, San Francisco, USA; Department of Laboratory Medicine, University of California San Francisco, San Francisco, USA
| | - Ester Cerdeira Sabino
- Tropical Medicine Institute of São Paulo, University of São Paulo, São Paulo, Brazil; School of Medicine, LIM/46, University of São Paulo, Sao Paulo, Brazil
| | - Eric Delwart
- Vitalant Research Institute, San Francisco, USA; Department of Laboratory Medicine, University of California San Francisco, San Francisco, USA
| | - Élcio Leal
- Biological Sciences Institute, Federal University of Para, Belém, Brazil
| | | | - Paulo César Maiorka
- Department of Pathology, School of Veterinary Medicine, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
15
|
Discordant Activity of Kaempferol Towards Dengue Virus and Japanese Encephalitis Virus. Molecules 2020; 25:molecules25051246. [PMID: 32164193 PMCID: PMC7179415 DOI: 10.3390/molecules25051246] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 03/06/2020] [Accepted: 03/08/2020] [Indexed: 11/30/2022] Open
Abstract
Kaempferol, a plant-derived flavonoid, has been reported to have activity against Japanese encephalitis virus (JEV) in BHK-21 cells. To determine the broader utility of this compound, we initially evaluated the activity of kaempferol against JEV and dengue virus (DENV) in HEK293T/17 cells. Results showed no significant antiviral activity against either virus. We subsequently investigated the activity of kaempferol against both JEV and DENV in BHK-21 cells. Results showed a significant inhibition of JEV infection but, surprisingly, a significant enhancement of DENV infection. The effect of kaempferol on both host protein expression and transcription was investigated and both transcriptional and translational inhibitory effects were observed, although a more marked effect was observed on host cell protein expression. Markedly, while GRP78 was increased in DENV infected cells treated with kaempferol, it was not increased in JEV infected cells treated with kaempferol. These results show that cellular alteration induced by one compound can have opposite effects on viruses from the same family, suggesting the presence of distinct replication strategies for these two viruses.
Collapse
|
16
|
Evaluation of the antiviral activity of orlistat (tetrahydrolipstatin) against dengue virus, Japanese encephalitis virus, Zika virus and chikungunya virus. Sci Rep 2020; 10:1499. [PMID: 32001767 PMCID: PMC6992670 DOI: 10.1038/s41598-020-58468-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 01/15/2020] [Indexed: 11/20/2022] Open
Abstract
Many mosquito transmitted viruses of the genera Alphavirus and Flavivirus are human pathogens of significant concern, and there is currently no specific antiviral for any member of these two genera. This study sought to investigate the broad utility of orlistat (tetrahydrolipstatin) in reducing virus infection for several mosquito borne viruses including flaviviruses (dengue virus (DENV; nine isolates analyzed), Japanese encephalitis virus (JEV; one isolate analyzed) and Zika virus (ZIKV; 2 isolates analyzed)) as well as an alphavirus (chikungunya virus; CHIKV; 2 isolates analyzed). Three different treatment regimens were evaluated, namely pre-treatment (only), post-treatment (only) and pre- and post-treatment, and three factors were evaluated, namely level of infection, virus titer and genome copy number. Results showed that all three treatment modalities were able to significantly reduce virus titer for all viruses investigated, with the exception of three isolates of DENV in the pre-treatment only regimen. Pre- and post-treatment was more effective in reducing the level of infection and genome copy number of all viruses investigated than either pre-treatment or post-treatment alone. Collectively, these results suggest orlistat has potential as a broad-spectrum agent against multiple mosquito transmitted viruses.
Collapse
|
17
|
Peters R, Stevenson M. Immunological detection of Zika virus: A summary in the context of general viral diagnostics. J Microbiol Methods 2020. [DOI: 10.1016/bs.mim.2019.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
18
|
Screening for Zika virus RNA in sera of suspected cases: a retrospective cross-sectional study. Virol J 2018; 15:155. [PMID: 30305112 PMCID: PMC6180573 DOI: 10.1186/s12985-018-1070-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 09/27/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Zika virus (ZIKV) became a global human health concern owing to its rapid spread worldwide and its association with congenital and neurological disorders. The current epidemiological profile of arboviruses in Brazil is characterized by widespread co-circulation of Dengue virus, Chikungunya virus, and ZIKV throughout the country. These viruses cause acute diseases frequently with overlapping symptoms, which could result in an inaccurate diagnosis based solely on clinical and epidemiological grounds. Here we conducted a screening for ZIKV RNA in serum samples from patients across Brazil with suspected ZIKV infection. METHODS Using RT-qPCR, we investigated ZIKV RNA in 3001 serum samples. Samples were passively acquired through a private laboratory network, between December 2015 and August 2016, from 27 Brazilian Federative Units. We performed descriptive statistics on demographic variables including sex, age, and geographic location. RESULTS ZIKV was detected in 11.4% (95%CI = 10.3-12.6%) of the sera. ZIKV RNA was detected in sera collected throughout the country, but during the analyzed period, RNA was more frequently detected in samples from the Southeast, Midwest, and North regions (3.9 to 5.8 times higher) when compared to the Northeast and South regions. CONCLUSIONS These data reinforce the importance of laboratory diagnosis, surveillance systems, and further epidemiological studies to understand the dynamics of outbreaks and diseases associated with ZIKV and other arboviruses.
Collapse
|
19
|
Early Events in Japanese Encephalitis Virus Infection: Viral Entry. Pathogens 2018; 7:pathogens7030068. [PMID: 30104482 PMCID: PMC6161159 DOI: 10.3390/pathogens7030068] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 07/31/2018] [Accepted: 08/06/2018] [Indexed: 12/15/2022] Open
Abstract
Japanese encephalitis virus (JEV), a mosquito-borne zoonotic flavivirus, is an enveloped positive-strand RNA virus that can cause a spectrum of clinical manifestations, ranging from mild febrile illness to severe neuroinvasive disease. Today, several killed and live vaccines are available in different parts of the globe for use in humans to prevent JEV-induced diseases, yet no antivirals are available to treat JEV-associated diseases. Despite the progress made in vaccine research and development, JEV is still a major public health problem in southern, eastern, and southeastern Asia, as well as northern Oceania, with the potential to become an emerging global pathogen. In viral replication, the entry of JEV into the cell is the first step in a cascade of complex interactions between the virus and target cells that is required for the initiation, dissemination, and maintenance of infection. Because this step determines cell/tissue tropism and pathogenesis, it is a promising target for antiviral therapy. JEV entry is mediated by the viral glycoprotein E, which binds virions to the cell surface (attachment), delivers them to endosomes (endocytosis), and catalyzes the fusion between the viral and endosomal membranes (membrane fusion), followed by the release of the viral genome into the cytoplasm (uncoating). In this multistep process, a collection of host factors are involved. In this review, we summarize the current knowledge on the viral and cellular components involved in JEV entry into host cells, with an emphasis on the initial virus-host cell interactions on the cell surface.
Collapse
|
20
|
Murray J, Todd KV, Bakre A, Orr-Burks N, Jones L, Wu W, Tripp RA. A universal mammalian vaccine cell line substrate. PLoS One 2017; 12:e0188333. [PMID: 29176782 PMCID: PMC5703543 DOI: 10.1371/journal.pone.0188333] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 11/03/2017] [Indexed: 12/22/2022] Open
Abstract
Using genome-wide small interfering RNA (siRNA) screens for poliovirus, influenza A virus and rotavirus, we validated the top 6 gene hits PV, RV or IAV to search for host genes that when knocked-down (KD) enhanced virus permissiveness and replication over wild type Vero cells or HEp-2 cells. The enhanced virus replication was tested for 12 viruses and ranged from 2-fold to >1000-fold. There were variations in virus-specific replication (strain differences) across the cell lines examined. Some host genes (CNTD2, COQ9, GCGR, NDUFA9, NEU2, PYCR1, SEC16G, SVOPL, ZFYVE9, and ZNF205) showed that KD resulted in enhanced virus replication. These findings advance platform-enabling vaccine technology, the creation of diagnostic cells substrates, and are informative about the host mechanisms that affect virus replication in mammalian cells.
Collapse
Affiliation(s)
- Jackelyn Murray
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States of America
| | - Kyle V. Todd
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States of America
| | - Abhijeet Bakre
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States of America
| | - Nichole Orr-Burks
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States of America
| | - Les Jones
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States of America
| | - Weilin Wu
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States of America
| | - Ralph A. Tripp
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States of America
| |
Collapse
|
21
|
Miorin L, Maestre AM, Fernandez-Sesma A, García-Sastre A. Antagonism of type I interferon by flaviviruses. Biochem Biophys Res Commun 2017; 492:587-596. [PMID: 28576494 PMCID: PMC5626595 DOI: 10.1016/j.bbrc.2017.05.146] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 05/20/2017] [Accepted: 05/24/2017] [Indexed: 12/24/2022]
Abstract
The prompt and tightly controlled induction of type I interferon is a central event of the immune defense against viral infection. Flaviviruses comprise a large family of arthropod-borne positive-stranded RNA viruses, many of which represent a serious threat to global human health due to their high rates of morbidity and mortality. All flaviviruses studied so far have been shown to counteract the host's immune response to establish a productive infection and facilitate viral spread. Here, we review the current knowledge on the main strategies that human pathogenic flaviviruses utilize to escape both type I IFN induction and effector pathways. A better understanding of the specific mechanisms by which flaviviruses activate and evade innate immune responses is critical for the development of better therapeutics and vaccines.
Collapse
Affiliation(s)
- Lisa Miorin
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Ana M Maestre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Ana Fernandez-Sesma
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States.
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States.
| |
Collapse
|
22
|
Magnani DM, Ricciardi MJ, Bailey VK, Gutman MJ, Pedreño-Lopez N, Silveira CGT, Maxwell HS, Domingues A, Gonzalez-Nieto L, Su Q, Newman RM, Pack M, Martins MA, Martinez-Navio JM, Fuchs SP, Rakasz EG, Allen TM, Whitehead SS, Burton DR, Gao G, Desrosiers RC, Kallas EG, Watkins DI. Dengue Virus Evades AAV-Mediated Neutralizing Antibody Prophylaxis in Rhesus Monkeys. Mol Ther 2017; 25:2323-2331. [PMID: 28750738 PMCID: PMC5628771 DOI: 10.1016/j.ymthe.2017.06.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 06/19/2017] [Accepted: 06/22/2017] [Indexed: 10/19/2022] Open
Abstract
Development of vaccines against mosquito-borne Flaviviruses is complicated by the occurrence of antibody-dependent enhancement (ADE), which can increase disease severity. Long-term delivery of neutralizing antibodies (nAbs) has the potential to effectively block infection and represents an alternative to vaccination. The risk of ADE may be avoided by using prophylactic nAbs harboring amino acid mutations L234A and L235A (LALA) in the immunoglobulin G (IgG) constant region. Here, we used recombinant adeno-associated viruses (rAAVs) to deliver the anti-dengue virus 3 (DENV3) nAb P3D05. While the administration of rAAV-P3D05-rhesus immunoglobulin G1 (rhIgG1)-LALA to rhesus macaques engendered DENV3-neutralizing activity in serum, it did not prevent infection. The emergence of viremia following DENV3 challenge was delayed by 3-6 days in the rAAV-treated group, and replicating virus contained the envelope mutation K64R. This neutralization-resistant variant was also confirmed by virus outgrowth experiments in vitro. By delivering P3D05 with unmutated Fc sequences, we further demonstrated that DENV3 also evaded wild-type nAb prophylaxis, and serum viral loads appeared to be higher in the presence of low levels of unmutated P3D05-rhIgG1. Our study shows that a vectored approach for long-term delivery of nAbs with the LALA mutations is promising, but prophylaxis using a single nAb is likely insufficient at preventing DENV infection and replication.
Collapse
Affiliation(s)
- Diogo M Magnani
- Department of Pathology, University of Miami, Miami, FL 33136, USA
| | | | - Varian K Bailey
- Department of Pathology, University of Miami, Miami, FL 33136, USA
| | - Martin J Gutman
- Department of Pathology, University of Miami, Miami, FL 33136, USA
| | | | - Cassia G T Silveira
- Division of Clinical Immunology and Allergy, School of Medicine, University of São Paulo, São Paulo 246903, Brazil
| | - Helen S Maxwell
- Department of Pathology, University of Miami, Miami, FL 33136, USA
| | - Aline Domingues
- Department of Pathology, University of Miami, Miami, FL 33136, USA
| | | | - Qin Su
- The Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA; Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Ruchi M Newman
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Melissa Pack
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | | | | | | | - Eva G Rakasz
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Todd M Allen
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Stephen S Whitehead
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Dennis R Burton
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA; Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Guangping Gao
- The Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA; Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | | | - Esper G Kallas
- Division of Clinical Immunology and Allergy, School of Medicine, University of São Paulo, São Paulo 246903, Brazil
| | - David I Watkins
- Department of Pathology, University of Miami, Miami, FL 33136, USA.
| |
Collapse
|
23
|
Oleic acid Enhances Dengue Virus But Not Dengue Virus-Like Particle Production from Mammalian Cells. Mol Biotechnol 2017; 59:385-393. [DOI: 10.1007/s12033-017-0029-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|