1
|
Ramirez JA. Cognitive Decline in Pneumonia: A Neglected Consequence. Arch Bronconeumol 2024:S0300-2896(24)00483-6. [PMID: 39741044 DOI: 10.1016/j.arbres.2024.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/02/2024] [Accepted: 12/05/2024] [Indexed: 01/02/2025]
Affiliation(s)
- Julio A Ramirez
- Norton Infectious Diseases Institute, Norton Healthcare, Louisville, KY, USA; Division of Infectious Diseases, University of Louisville, Louisville, KY, USA.
| |
Collapse
|
2
|
Utembe W, Kamng'ona AW. Inhalation exposure to chemicals, microbiota dysbiosis and adverse effects on humans. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176938. [PMID: 39414049 DOI: 10.1016/j.scitotenv.2024.176938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/21/2024] [Accepted: 10/12/2024] [Indexed: 10/18/2024]
Abstract
As revealed by culture-independent methodologies, disruption of the normal lung microbiota (LM) configuration (LM dysbiosis) is a potential mediator of adverse effects from inhaled chemicals. LM, which consists of microbiota in the upper and lower respiratory tract, is influenced by various factors, including inter alia environmental exposures. LM dysbiosis has been associated with multiple respiratory pathologies such as asthma, lung cancer, idiopathic pulmonary fibrosis (IPF), chronic obstructive pulmonary disease (COPD) and cystic fibrosis (CF). Chemically-induced LM dysbiosis appears to play significant roles in human respiratory diseases, as has been shown for some air pollutants, cigarette smoke and some inhalable chemical antibiotics. Lung microbiota are also linked with the central nervous system (CNS) in the so-called lung-brain axis. Inhaled chemicals that undergo mucociliary clearance may be linked to respiratory conditions through gut microbiota (GM) dysbiosis in the so-called Gut-Lung axis. However, current linkages of various disease states to LM appears to be associative, with causal linkages requiring further studies using more robust approaches, methods and techniques that are different from those applied in studies involving (GM). Most importantly, the sampling techniques determine the level of risk of cross contamination. Furthermore, the development of continuous or semi-continuous systems designed to replicate the lung microbiome will go a long way to further LM dysbiosis studies. These challenges notwithstanding, the preponderance of evidence points to the significant role of LM-mediated chemical toxicity in human disease and conditions.
Collapse
Affiliation(s)
- W Utembe
- Toxicology and Biochemistry Department, National Institute for Occupational Health, National Health Laboratory Services, Johannesburg 2000, South Africa; Environmental Health Division, School of Public Health and Family Medicine, University of Cape Town, Cape Town 7925, South Africa.
| | - A W Kamng'ona
- School of Life Sciences and Allied Health Professions, Kamuzu University of Health Sciences, Blantyre Campus, Mahatma Gandhi Road, Blantyre 312224, Malawi
| |
Collapse
|
3
|
Fallah A, Sedighian H, Kachuei R, Fooladi AAI. Human microbiome in post-acute COVID-19 syndrome (PACS). CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 8:100324. [PMID: 39717208 PMCID: PMC11665312 DOI: 10.1016/j.crmicr.2024.100324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2024] Open
Abstract
The global COVID-19 pandemic, which began in 2019, is still ongoing. SARS-CoV-2, also known as the severe acute respiratory syndrome coronavirus 2, is the causative agent. Diarrhea, nausea, and vomiting are common GI symptoms observed in a significant number of COVID-19 patients. Additionally, the respiratory and GI tracts express high level of transmembrane protease serine 2 (TMPRSS2) and angiotensin-converting enzyme-2 (ACE2), making them primary sites for human microbiota and targets for SARS-CoV-2 infection. A growing body of research indicates that individuals with COVID-19 and post-acute COVID-19 syndrome (PACS) exhibit considerable alterations in their microbiome. In various human disorders, including diabetes, obesity, cancer, ulcerative colitis, Crohn's disease, and several viral infections, the microbiota play a significant immunomodulatory role. In this review, we investigate the potential therapeutic implications of the interactions between host microbiota and COVID-19. Microbiota-derived metabolites and components serve as primary mediators of microbiota-host interactions, influencing host immunity. We discuss the various mechanisms through which these metabolites or components produced by the microbiota impact the host's immune response to SARS-CoV-2 infection. Additionally, we address confounding factors in microbiome studies. Finally, we examine and discuss about a range of potential microbiota-based prophylactic measures and treatments for COVID-19 and PACS, as well as their effects on clinical outcomes and disease severity.
Collapse
Affiliation(s)
- Arezoo Fallah
- Department of Bacteriology and Virology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hamid Sedighian
- Applied Microbiology Research Center, Biomedicine Technologies Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Reza Kachuei
- Molecular Biology Research Center, Biomedicine Technologies Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Abbas Ali Imani Fooladi
- Applied Microbiology Research Center, Biomedicine Technologies Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Kulczyńska-Przybik A, Czupryna P, Adamczuk J, Kruszewska E, Mroczko B, Moniuszko-Malinowska A. Clinical usefulness of the serum levels of neuroinflammatory and lung fibrosis biomarkers in the assessment of cognitive dysfunction in post-COVID19 patients. Sci Rep 2024; 14:25798. [PMID: 39468309 PMCID: PMC11519350 DOI: 10.1038/s41598-024-76630-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 10/15/2024] [Indexed: 10/30/2024] Open
Abstract
A growing body of evidence indicates there is an increasing incidence of cognitive dysfunction in patients after coronavirus disease 2019 (COVID-19) infection. However, still lack diagnostic tools, which allow us to predict prognosis in such cases and improve the stratification of the disease. This study aims to evaluate the usefulness of the biomarkers that could allow to predict the severity and progression of COVID-19 in patients with post-COVID syndrome and cognitive problems. Data regarding clinical history, pre-existing conditions, chest CT scan, and therapy (remdesivir, steroids) were acquired. A total of 44 patients with hospitalized COVID-19, and healthy controls were enrolled in the investigation, and serum blood was obtained. After 6 months of observations, patients with COVID-19 were divided into two groups: first - without post-COVID syndrome and memory complaints, and second - with post-COVID and cognitive problems. Measurements of YKL-40 and MR-pro-ADM were taken in the serum with enzyme immunoassay kits at the time of admission (visit 1) and 6 months after discharge from the hospital (visit 2). Significantly higher concentrations of YKL-40 were found in patients with COVID-19 as compared to healthy individuals (p = 0.016). Moreover, YKL-40 ratio allowed to differentiate patients with and without post-COVID syndrome (median: 0.94 vs. 1.55, p = 0.004). Additionally, COVID-19 patients with dyspnea presented significantly elevated levels of MR-pro-ADM as compared to the group of COVID-19 survivors without dyspnea (p = 0.015). In the group of patients without post-COVID syndrome, the concentrations of YKL-40 and MR-pro-ADM decreased after treatment as compared to levels before therapy (77 vs. 36 ng/ml and 607 vs. 456 pmol/L). However, in patients with post-COVID syndrome and cognitive problems, the levels of both markers did not alter 6 months after hospital discharge in comparison to basal levels. Furthermore, after dexamethasone treatment the YKL-40 concentrations declined significantly (p = 0.003) in patients with COVID-19. This study demonstrated the predictive usefulness of YKL-40 as an indicator of successful treatment in patients with COVID-19 infection allowing risk stratification of hospitalized patients. It seems that indicators of neuroinflammation might have the potential to track development of cognitive complaints, however, it requires further investigations.
Collapse
Affiliation(s)
| | - Piotr Czupryna
- Department of Infectious Diseases and Neuroinfections, Medical University of Bialystok, 15-540, Białystok, Poland
| | - Justyna Adamczuk
- Department of Infectious Diseases and Neuroinfections, Medical University of Bialystok, 15-540, Białystok, Poland
| | - Ewelina Kruszewska
- Department of Infectious Diseases and Neuroinfections, Medical University of Bialystok, 15-540, Białystok, Poland
| | - Barbara Mroczko
- Department of Neurodegeneration Diagnostics, Medical University of Białystok, 15-269, Białystok, Poland
- Department of Biochemical Diagnostics, Medical University of Białystok, 15-269, Białystok, Poland
| | - Anna Moniuszko-Malinowska
- Department of Infectious Diseases and Neuroinfections, Medical University of Bialystok, 15-540, Białystok, Poland
| |
Collapse
|
5
|
Alcala CS, Lane JM, Midya V, Eggers S, Wright RO, Rosa MJ. Exploring the link between the pediatric exposome, respiratory health, and executive function in children: a narrative review. Front Public Health 2024; 12:1383851. [PMID: 39478741 PMCID: PMC11521889 DOI: 10.3389/fpubh.2024.1383851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 09/25/2024] [Indexed: 11/02/2024] Open
Abstract
Asthma is a highly prevalent inflammatory condition, significantly affecting nearly six million U.S. children and impacting various facets of their developmental trajectories including neurodevelopment. Evidence supports a link between pediatric environmental exposures in two key areas: asthma and executive function (E.F.). E.F.s are a collective of higher-order cognitive processes facilitating goal-oriented behaviors. Studies also identify asthma-associated E.F. impairments in children. However, limited research has evaluated the inter-relationships among environmental exposures, asthma, and E.F. in children. This review explored relevant research to identify and connect the potential mechanisms and pathways underlying these dynamic associations. The review suggests that the role of the pediatric exposome may function through (1) several underlying biological pathways (i.e., the lung-brain axis, neuroendocrine system, and hypoxia), which could drive asthma and maladaptive E.F. in children and (2) the relationships between the exposome, asthma, and E.F. is a bidirectional linkage. The review reveals essential synergistic links between asthma and E.F. deficits, highlighting the potential role of the pediatric exposome.
Collapse
Affiliation(s)
- Cecilia S. Alcala
- Department of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Jamil M. Lane
- Department of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Vishal Midya
- Department of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Shoshannah Eggers
- Department of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Epidemiology, University of Iowa College of Public Health, Iowa City, IA, United States
| | - Robert O. Wright
- Department of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Institute for Climate Change, Environmental Health, and Exposomics, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Maria José Rosa
- Department of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Institute for Climate Change, Environmental Health, and Exposomics, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
6
|
Li S, Feng Q, Wang J, Wu B, Qiu W, Zhuang Y, Wang Y, Gao H. A Machine Learning Model Based on CT Imaging Metrics and Clinical Features to Predict the Risk of Hospital-Acquired Pneumonia After Traumatic Brain Injury. Infect Drug Resist 2024; 17:3863-3877. [PMID: 39253609 PMCID: PMC11382661 DOI: 10.2147/idr.s473825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 08/30/2024] [Indexed: 09/11/2024] Open
Abstract
Objective To develop a validated machine learning (ML) algorithm for predicting the risk of hospital-acquired pneumonia (HAP) in patients with traumatic brain injury (TBI). Materials and Methods We employed the Least Absolute Shrinkage and Selection Operator (LASSO) to identify critical features related to pneumonia. Five ML models-Logistic Regression (LR), Extreme Gradient Boosting (XGB), Random Forest (RF), Naive Bayes Classifier (NB), and Support Vector Machine (SVC)-were developed and assessed using the training and validation datasets. The optimal model was selected based on its performance metrics and used to create a dynamic web-based nomogram. Results In a cohort of 858 TBI patients, the HAP incidence was 41.02%. LR was determined to be the optimal model with superior performance metrics including AUC, accuracy, and F1-score. Key predictive factors included Age, Glasgow Coma Score, Rotterdam Score, D-dimer, and the Systemic Immune Response to Inflammation Index (SIRI). The nomogram developed based on these predictors demonstrated high predictive accuracy, with AUCs of 0.818 and 0.819 for the training and validation datasets, respectively. Decision curve analysis (DCA) and calibration curves validated the model's clinical utility and accuracy. Conclusion We successfully developed and validated a high-performance ML algorithm to assess the risk of HAP in TBI patients. The dynamic nomogram provides a practical tool for real-time risk assessment, potentially improving clinical outcomes by aiding in early intervention and personalized patient management.
Collapse
Affiliation(s)
- Shaojie Li
- Department of Neurosurgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, 362000, People's Republic of China
| | - Qiangqiang Feng
- Department of Neurosurgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, 362000, People's Republic of China
| | - Jiayin Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, 362000, People's Republic of China
| | - Baofang Wu
- Department of Neurosurgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, 362000, People's Republic of China
| | - Weizhi Qiu
- Department of Neurosurgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, 362000, People's Republic of China
| | - Yiming Zhuang
- Internal Medicine, Quanzhou Quangang District Hillside Street Community Health Service Center, Quanzhou, Fujian, 362000, People's Republic of China
| | - Yong Wang
- Child and Adolescent Psychiatry, The Third Hospital of Quanzhou, Quanzhou, Fujian, 362000, People's Republic of China
| | - Hongzhi Gao
- Department of Neurosurgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, 362000, People's Republic of China
| |
Collapse
|
7
|
Joof AN, Ren F, Zhou Y, Wang M, Li J, Tan Y. Targeting Mitochondria: Influence of Metabolites on Mitochondrial Heterogeneity. Cell Biochem Funct 2024; 42:e4131. [PMID: 39380166 DOI: 10.1002/cbf.4131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 09/15/2024] [Accepted: 09/18/2024] [Indexed: 10/10/2024]
Abstract
Mitochondria are vital organelles that provide energy for the metabolic processes of cells. These include regulating cellular metabolism, autophagy, apoptosis, calcium ions, and signaling processes. Despite their varying functions, mitochondria are considered semi-independent organelles that possess their own genome, known as mtDNA, which encodes 13 proteins crucial for oxidative phosphorylation. However, their diversity reflects an organism's adaptation to physiological conditions and plays a complex function in cellular metabolism. Mitochondrial heterogeneity exists at the single-cell and tissue levels, impacting cell shape, size, membrane potential, and function. This heterogeneity can contribute to the progression of diseases such as neurodegenerative diseases, metabolic diseases, and cancer. Mitochondrial dynamics enhance the stability of cells and sufficient energy requirement, but these activities are not universal and can lead to uneven mitochondria, resulting in heterogeneity. Factors such as genetics, environmental compounds, and signaling pathways are found to affect these cellular processes and heterogeneity. Additionally, the varying roles of metabolites such as NADH and ATP affect glycolysis's speed and efficiency. An imbalance in metabolites can impair ATP production and redox potential in the mitochondria. Therefore, this review will explore the influence of metabolites in shaping mitochondrial morphology, how these changes contribute to age-related diseases and the therapeutic targets for regulating mitochondrial heterogeneity.
Collapse
Affiliation(s)
- Amie N Joof
- Department of Medical Microbiology, Central South University Changsha, Changsha, Hunan Province, China
| | - Fangyuan Ren
- Department of Obstetrics, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Changsha, China
| | - Yan Zhou
- Department of Obstetrics, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Changsha, China
| | - Mengyu Wang
- Department of Medical Microbiology, Central South University Changsha, Changsha, Hunan Province, China
| | - Jiani Li
- Department of Medical Microbiology, Central South University Changsha, Changsha, Hunan Province, China
| | - Yurong Tan
- Department of Medical Microbiology, Central South University Changsha, Changsha, Hunan Province, China
| |
Collapse
|
8
|
Jameie M, Ahli B, Ghadir S, Azami M, Amanollahi M, Ebadi R, Rafati A, Naser Moghadasi A. The hidden link: How oral and respiratory microbiomes affect multiple sclerosis. Mult Scler Relat Disord 2024; 88:105742. [PMID: 38964239 DOI: 10.1016/j.msard.2024.105742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/16/2024] [Accepted: 06/20/2024] [Indexed: 07/06/2024]
Abstract
BACKGROUND Extensive research has explored the role of gut microbiota in multiple sclerosis (MS). However, the impact of microbial communities in the oral cavity and respiratory tract on MS is an emerging area of investigation. PURPOSE We aimed to review the current literature related to the nasal, oral, and lung microbiota in people with MS (PwMS). METHODS We conducted a narrative review of clinical and preclinical original studies on PubMed that explored the relationship between the bacterial or viral composition of the nasal, lung, and oral microbiota and MS. Additionally, to find relevant studies not retrieved initially, we also searched for references in related review papers, as well as the references cited within the included studies. RESULTS AND CONCLUSIONS Thirteen studies were meticulously reviewed in three sections; oral microbiota (n = 8), nasal microbiota (n = 3), and lung microbiota (n = 2), highlighting considerable alterations in the oral and respiratory microbiome of PwMS compared to healthy controls (HCs). Genera like Aggregatibacter and Streptococcus were less abundant in the oral microbiota of PwMS compared to HCs, while Staphylococcus, Leptotrichia, Fusobacterium, and Bacteroides showed increased abundance in PwMS. Additionally, the presence of specific bacteria, including Streptococcus sanguinis, within the oral microbiota was suggested to influence Epstein-Barr virus reactivation, a well-established risk factor for MS. Studies related to the nasal microbiome indicated elevated levels of specific Staphylococcus aureus toxins, as well as nasal glial cell infection with human herpes virus (HHV)-6 in PwMS. Emerging research on lung microbiome in animal models demonstrated that manipulating the lung microbiome towards lipopolysaccharide-producing bacteria might suppress MS symptoms. These findings open avenues for potential therapeutic strategies. However, further research is crucial to fully understand the complex interactions between the microbiome and MS. This will help identify the most effective timing, bacterial strains, and modulation techniques.
Collapse
Affiliation(s)
- Melika Jameie
- Neuroscience Research Center, Iran University of Medical Sciences, Tehran, Iran; Iranian Center of Neurological Research, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bahareh Ahli
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sara Ghadir
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Mobin Azami
- Student Research Committee, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Mobina Amanollahi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Ebadi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Rafati
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Abdorreza Naser Moghadasi
- Multiple Sclerosis Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
9
|
Hsu HJ, Chang H, Lin CL, Yao WC, Hung CL, Pang SP, Kuo CF, Tsai SY. Increased risk of chronic fatigue syndrome following pneumonia: A population-based Cohort study. J Infect Public Health 2024; 17:102495. [PMID: 39018725 DOI: 10.1016/j.jiph.2024.102495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/30/2024] [Accepted: 07/04/2024] [Indexed: 07/19/2024] Open
Abstract
BACKGROUND Chronic fatigue syndrome (CFS) has been linked to several conditions, including infections, immune system changes, or emotional stress. Our study aimed to assess the risk of CFS after a pneumonia diagnosis using data from National Health Insurance Research Database of Taiwan. METHODS In this nested case-control study, we identified 2,000,000 adult patients from a nationwide population-based health insurance claims database spanning from January 1, 2000, to December 31, 2017. Each case diagnosed with a pathogenic infection was matched with a corresponding control using propensity scores. We excluded individuals under 20 years of age, those with a history of pathogenic infections before the index date, or those with more than one potential pathogen. To estimate hazard ratios (HR) and the adjusted hazard ratio (aHR) with their respective 95 % confidence intervals (CI), we applied univariable and multivariable Cox proportional hazard models. The multivariable analysis incorporated adjustments for age, sex, and comorbidity-related confounders. RESULTS The relationship between infection and the subsequent risk of CFS was assessed using Cox proportional hazards regression analysis. The incidence density rates were 6.13 and 8.70 per 1000 person-years among the non-pulmonary infection and pulmonary infection populations, respectively (adjusted hazard ratio [HR] = 1.4, 95 % confidence interval [CI] 1.32-1.5). Patients infected with Pseudomonas, Klebsiella pneumoniae, Haemophilus influenzae, Streptococcus pneumoniae, and influenza virus exhibited a significantly higher risk of CFS than those without these pathogens (p < 0.05). Additionally, patients with pneumonia had a significantly increased risk of thromboembolism compare with control group (p < 0.05).
Collapse
Affiliation(s)
- Han-Jen Hsu
- Division of Infectious Diseases, Department of Internal Medicine, MacKay Memorial Hospital, No 92, Sec. 2, Zhongshan N Rd, Taipei City, Taiwan
| | - Hsun Chang
- Division of Infectious Diseases, Department of Internal Medicine, MacKay Memorial Hospital, No 92, Sec. 2, Zhongshan N Rd, Taipei City, Taiwan
| | - Cheng-Li Lin
- Management office for Health Data, China Medical University Hospital, No 2, Yude Rd., North Dist., Taichung City, Taiwan; Department of Internal Medicine, Taichung Veterans General Hospital, No 1650, Sec. 4, Taiwan Boulevard, Taichung City, Taiwan
| | - Wei-Cheng Yao
- Department of Anesthesiology and Pain Medicine, Min-Sheng General Hospital, No 168, Jin-Kuo Rd, Tao-Yuan City, Taiwan
| | - Chung-Lieh Hung
- Department of Health Policy and Management, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, 615 N. Wolfe Street, Baltimore, MD 21205, USA
| | - Shin-Pin Pang
- Department of Laboratory Medicine, Mackay Memorial Hospital, No 92, Sec. 2, Zhongshan N Rd., Taipei City, Taiwan
| | - Chien-Feng Kuo
- Division of Infectious Diseases, Department of Internal Medicine, MacKay Memorial Hospital, No 92, Sec. 2, Zhongshan N Rd, Taipei City, Taiwan; Department of Medicine, Mackay Medical College, No 46, Sec. 3, Zhongzheng Rd., Sanzhi Dist, New Taipei City, Taiwan
| | - Shin-Yi Tsai
- Department of Medicine, Mackay Medical College, No 46, Sec. 3, Zhongzheng Rd., Sanzhi Dist, New Taipei City, Taiwan; Department of Laboratory Medicine, Mackay Memorial Hospital, No 92, Sec. 2, Zhongshan N Rd., Taipei City, Taiwan; Institute of Biomedical Sciences, Mackay Medical College, No 46, Sec. 3, Zhongzheng Rd., Sanzhi Dist., New Taipei City, Taiwan; Department of Health Policy and Management, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, 615 N. Wolfe Street, Baltimore, MD 21205, USA; Institute of Long-Term Care, Mackay Medical College, No 46, Sec. 3,Zhongzheng Rd, Sanzhi Dist., New Taipei City, Taiwan.
| |
Collapse
|
10
|
Semmler F, Regis Belisário-Ferrari M, Kulosa M, Kaysser L. The Metabolic Potential of the Human Lung Microbiome. Microorganisms 2024; 12:1448. [PMID: 39065215 PMCID: PMC11278768 DOI: 10.3390/microorganisms12071448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/05/2024] [Accepted: 07/13/2024] [Indexed: 07/28/2024] Open
Abstract
The human lung microbiome remains largely underexplored, despite its potential implications in the pharmacokinetics of inhaled drugs and its involvement in lung diseases. Interactions within these bacterial communities and with the host are complex processes which often involve microbial small molecules. In this study, we employed a computational approach to describe the metabolic potential of the human lung microbiome. By utilizing antiSMASH and BiG-SCAPE software, we identified 1831 biosynthetic gene clusters for the production of specialized metabolites in a carefully compiled genome database of lung-associated bacteria and fungi. It was shown that RiPPs represent the largest class of natural products within the bacteriome, while NRPs constitute the largest class of natural products in the lung mycobiome. All predicted BGCs were further categorized into 767 gene cluster families, and a subsequent network analysis highlighted that these families are widely distributed and contain many uncharacterized members. Moreover, in-depth annotation allowed the assignment of certain gene clusters to putative lung-specific functions within the microbiome, such as osmoadaptation or surfactant synthesis. This study establishes the lung microbiome as a prolific source for secondary metabolites and lays the groundwork for detailed investigation of this unique environment.
Collapse
Affiliation(s)
| | | | | | - Leonard Kaysser
- Department of Pharmaceutical Biology, Institute for Drug Discovery, University of Leipzig, 04317 Leipzig, Germany; (F.S.); (M.R.B.-F.); (M.K.)
| |
Collapse
|
11
|
Cao C, Li Q, Cai D, Yue C, Zhao H. Causal effect of COVID-19 on optic nerve and visual pathway disorders: genetic evidence of lung-brain axis. Front Immunol 2024; 15:1440262. [PMID: 39081310 PMCID: PMC11286426 DOI: 10.3389/fimmu.2024.1440262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 07/04/2024] [Indexed: 08/02/2024] Open
Abstract
Purpose To investigate the potential causal association between COVID-19 exposure and optic nerve and visual pathway disorders through a two-sample bidirectional Mendelian randomization (MR) analysis, and to provide empirical support for the lung-brain axis. Methods This MR analysis utilized publicly accessible summary-level data from genome-wide association studies on COVID-19 (n=158,783) and optic nerve and visual pathway diseases (n=412,181), primarily involving individuals of European descent. The random-effect inverse-variance weighted estimation was applied as the main analytical approach, complemented by MR-Egger, weighted median, and weighted mode methods. The heterogeneity and pleiotropy of the instrumental variables were assessed using Cochran's Q test, leave-one-out sensitivity analysis, MR-Egger intercept test, MR-PRESSO, and funnel plot evaluations. Results In the forward analysis, the inverse-variance weighted method identified a significant causal effect of COVID-19 on optic nerve and visual pathway disorders (odds ratio = 1.697, 95% confidence interval: 1.086-2.652, p = 0.020). Directionally consistent results were also observed with MR-Egger regression, weighted median, and weighted mode approaches. Conversely, the reverse analysis revealed no causal effects of optic nerve and visual pathway disorders on COVID-19 susceptibility. Conclusion Our findings suggest that COVID-19 exposure may increase the risk of developing optic nerve and visual pathway disorders, supporting the lung-brain axis hypothesis. These results underscore the importance of vigilant monitoring of the visual system in patients recovering from COVID-19 and suggest potential avenues for future therapeutic strategies.
Collapse
Affiliation(s)
- Chunge Cao
- Department of Obstetrics and Gynecology, Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qiong Li
- Department of Obstetrics and Gynecology, First People’s Hospital of Chenzhou, Chenzhou, China
| | - Dajun Cai
- Department of Obstetrics and Gynecology, Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chaoyan Yue
- Department of Laboratory Medicine, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Hu Zhao
- Department of Obstetrics and Gynecology, Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
12
|
Jiang T, Zhu K, Kang G, Wu G, Wang L, Tan Y. Infectious viruses and neurodegenerative diseases: The mitochondrial defect hypothesis. Rev Med Virol 2024; 34:e2565. [PMID: 39031738 DOI: 10.1002/rmv.2565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/10/2024] [Accepted: 06/16/2024] [Indexed: 07/22/2024]
Abstract
Global attention is riveted on neurodegenerative diseases due to their unresolved aetiologies and lack of efficacious therapies. Two key factors implicated include mitochondrial impairment and microglial ageing. Several viral infections, including Herpes simplex virus-1 (HSV-1), human immunodeficiency virus (HIV) and Epstein-Barr virus, are linked to heightened risk of these disorders. Surprisingly, numerous studies indicate viruses induce these aforementioned precipitating events. Epstein-Barr virus, Hepatitis C Virus, HIV, respiratory syncytial virus, HSV-1, Japanese Encephalitis Virus, Zika virus and Enterovirus 71 specifically impact mitochondrial function, leading to mitochondrial malfunction. These vital organelles govern various cell activities and, under specific circumstances, trigger microglial ageing. This article explores the role of viral infections in elucidating the pathogenesis of neurodegenerative ailments. Various viruses instigate microglial ageing via mitochondrial destruction, causing senescent microglia to exhibit activated behaviour, thereby inducing neuroinflammation and contributing to neurodegeneration.
Collapse
Affiliation(s)
- Tianshi Jiang
- Department of Medical Microbiology, Central South University Changsha, Changsha, Hunan Province, China
| | - Kaili Zhu
- Department of Medical Microbiology, Central South University Changsha, Changsha, Hunan Province, China
| | - Guangli Kang
- Department of Medical Microbiology, Central South University Changsha, Changsha, Hunan Province, China
| | - Guojun Wu
- Department of Medical Microbiology, Central South University Changsha, Changsha, Hunan Province, China
| | - Lili Wang
- Department of Medical Microbiology, Central South University Changsha, Changsha, Hunan Province, China
| | - Yurong Tan
- Department of Medical Microbiology, Central South University Changsha, Changsha, Hunan Province, China
| |
Collapse
|
13
|
Hoisington AJ, Stearns-Yoder KA, Kovacs EJ, Postolache TT, Brenner LA. Airborne Exposure to Pollutants and Mental Health: A Review with Implications for United States Veterans. Curr Environ Health Rep 2024; 11:168-183. [PMID: 38457036 DOI: 10.1007/s40572-024-00437-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2024] [Indexed: 03/09/2024]
Abstract
PURPOSE OF REVIEW Inhalation of airborne pollutants in the natural and built environment is ubiquitous; yet, exposures are different across a lifespan and unique to individuals. Here, we reviewed the connections between mental health outcomes from airborne pollutant exposures, the biological inflammatory mechanisms, and provide future directions for researchers and policy makers. The current state of knowledge is discussed on associations between mental health outcomes and Clean Air Act criteria pollutants, traffic-related air pollutants, pesticides, heavy metals, jet fuel, and burn pits. RECENT FINDINGS Although associations between airborne pollutants and negative physical health outcomes have been a topic of previous investigations, work highlighting associations between exposures and psychological health is only starting to emerge. Research on criteria pollutants and mental health outcomes has the most robust results to date, followed by traffic-related air pollutants, and then pesticides. In contrast, scarce mental health research has been conducted on exposure to heavy metals, jet fuel, and burn pits. Specific cohorts of individuals, such as United States military members and in-turn, Veterans, often have unique histories of exposures, including service-related exposures to aircraft (e.g. jet fuels) and burn pits. Research focused on Veterans and other individuals with an increased likelihood of exposure and higher vulnerability to negative mental health outcomes is needed. Future research will facilitate knowledge aimed at both prevention and intervention to improve physical and mental health among military personnel, Veterans, and other at-risk individuals.
Collapse
Affiliation(s)
- Andrew J Hoisington
- Veterans Affairs Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Rocky Mountain Regional Veterans Affairs Medical Center (RMR VAMC), Aurora, CO, 80045, USA.
- Military and Veteran Microbiome: Consortium for Research and Education (MVM-CoRE), Aurora, CO, 80045, USA.
- Department of Physical Medicine & Rehabilitation, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
- Department of Systems Engineering and Management, Air Force Institute of Technology, Wright-Patterson AFB, Dayton, OH, 45333, USA.
| | - Kelly A Stearns-Yoder
- Veterans Affairs Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Rocky Mountain Regional Veterans Affairs Medical Center (RMR VAMC), Aurora, CO, 80045, USA
- Military and Veteran Microbiome: Consortium for Research and Education (MVM-CoRE), Aurora, CO, 80045, USA
- Department of Physical Medicine & Rehabilitation, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Elizabeth J Kovacs
- Department of Surgery, Division of GI, Trauma and Endocrine Surgery, and Burn Research Program, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
- Veterans Affairs Research Service, RMR VAMC, Aurora, CO, 80045, USA
| | - Teodor T Postolache
- Veterans Affairs Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Rocky Mountain Regional Veterans Affairs Medical Center (RMR VAMC), Aurora, CO, 80045, USA
- Military and Veteran Microbiome: Consortium for Research and Education (MVM-CoRE), Aurora, CO, 80045, USA
- Mood and Anxiety Program, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- Department of Veterans Affairs, VISN 5 MIRECC, Baltimore, MD, 21201, USA
| | - Lisa A Brenner
- Veterans Affairs Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Rocky Mountain Regional Veterans Affairs Medical Center (RMR VAMC), Aurora, CO, 80045, USA
- Military and Veteran Microbiome: Consortium for Research and Education (MVM-CoRE), Aurora, CO, 80045, USA
- Department of Physical Medicine & Rehabilitation, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
- Departments of Psychiatry & Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| |
Collapse
|
14
|
Hu W, Liu BP, Jia CX. Association and biological pathways between lung function and incident depression: a prospective cohort study of 280,032 participants. BMC Med 2024; 22:160. [PMID: 38616272 PMCID: PMC11017623 DOI: 10.1186/s12916-024-03382-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 04/08/2024] [Indexed: 04/16/2024] Open
Abstract
BACKGROUND Lung health is increasingly recognized as an essential factor in mental health. However, prospective evidence on lung function with incident depression remains to be determined. The study aimed to examine the prospective association between impaired lung function and incident depression and the underlying biological mechanisms. METHODS This prospective cohort study comprised 280,032 non-depressed individuals with valid lung function measurements from the UK Biobank. Lung function was assessed through the forced vital capacity (FVC) or forced expiratory volume in 1 s (FEV1). Cox proportional hazard models were applied to estimate the associations between lung function and incident depression. Mediation analyses were fitted to investigate the potential mediating role of biomarkers and metabolites in the association. RESULTS A total of 9514 participants (3.4%) developed depression during a median follow-up of 13.91 years. Individuals in the highest quartile had a lower risk of depression (FVC % predicted: HR = 0.880, 95% CI = 0.830-0.933; FEV1% predicted: HR = 0.854, 95% CI = 0.805-0.905) compared with those in the lowest quartile of the lung function indices. Additionally, the restricted cubic splines suggested lung function indices had reversed J-shaped associations with incident depression (nonlinear P < 0.05 for FVC % predicted and FEV1% predicted). Impaired lung function yielded similar risk estimates (HR = 1.124, 95% CI = 1.074-1.176). Biomarkers involving systemic inflammation, erythrocytes, and liver and renal function may be potential mediators in the lung function-depression association. CONCLUSIONS This study revealed that the higher risk of developing depression was associated with impaired lung function. Also, the association might be partially mediated by biomarkers including systemic inflammation, erythrocytes, and liver and renal function, though these mediation findings should be interpreted with caution due to potential temporal ambiguity.
Collapse
Affiliation(s)
- Wei Hu
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Bao-Peng Liu
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China.
| | - Cun-Xian Jia
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China.
| |
Collapse
|
15
|
Yuan X, Tan Y, Bajinka O, Jammeh ML, Dukureh A, Obiegbusi CN, Abdelhalim KA, Mohanad M. The connection between epigenetics and gut microbiota-current perspective. Cell Biochem Funct 2024; 42:e3941. [PMID: 38379252 DOI: 10.1002/cbf.3941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/26/2023] [Accepted: 01/12/2024] [Indexed: 02/22/2024]
Abstract
Both the epigenetic changes and gut microbiota (GM) have attracted a growing interest in establishing effective diagnostics and potential therapeutic strategies for a number of diseases. These disorders include metabolic, central nervous system-related diseases, autoimmune, and gastrointestinal infections (GI). Despite the number of studies, there is no extensive review that connects the epigenetics modifications and GM as biomarkers that could confer effective diagnostics and confer treatment options. To this end, this review hopes to give detailed information on connecting the modifications in epigenetic and GM. An updated and detailed information on the connection between the epigenetics factors and GM that influence diseases are given. In addition, the review showed some associations between the epigenetics to the maternal GM and offspring health. Finally, the limitations of the concept and prospects into this new emerging discipline were also looked into. Although this review elucidated on the maternal diet and response to offspring health with respect to GM and epigenetic modifications, there still exist various limitations to this newly emerging discipline. In addition to integrating complementary multi-omics data, longitudinal sampling will aid with the identification of functional mechanisms that may serve as therapeutic targets. To this end, this review gave a detailed perspective into harnessing disease diagnostics, prevention and treatment options through epigenetics and GM.
Collapse
Affiliation(s)
- Xingxing Yuan
- Department of Gastroenterology, Heilongjiang Academy of Traditional Chinese Medicine, Harbin, China
- Department of First Clinical Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yurong Tan
- Department of Medical Microbiology, Central South University Changsha, Changsha, China
- Department of Medical Science, School of Medicine and Allied Health Sciences, University of The Gambia, Banjul, The Gambia
| | - Ousman Bajinka
- Department of Medical Microbiology, Central South University Changsha, Changsha, China
- Department of Medical Science, School of Medicine and Allied Health Sciences, University of The Gambia, Banjul, The Gambia
| | - Modou L Jammeh
- Department of Medical Science, School of Medicine and Allied Health Sciences, University of The Gambia, Banjul, The Gambia
| | - Abubakarr Dukureh
- Department of Medical Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chidera N Obiegbusi
- Department of Medical Science, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Khalid A Abdelhalim
- Industrial Research and Development, Izmir Biomedicine and Genome Center, Izmir, Turkiye
| | - Mahmoud Mohanad
- Department of Medical Microbiology, Central South University Changsha, Changsha, China
| |
Collapse
|
16
|
McGuinness AJ, Loughman A, Foster JA, Jacka F. Mood Disorders: The Gut Bacteriome and Beyond. Biol Psychiatry 2024; 95:319-328. [PMID: 37661007 DOI: 10.1016/j.biopsych.2023.08.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/09/2023] [Accepted: 08/29/2023] [Indexed: 09/05/2023]
Abstract
Knowledge of the microbiome-gut-brain axis has revolutionized the field of psychiatry. It is now well recognized that the gut bacteriome is associated with, and likely influences, the pathogenesis of mental disorders, including major depressive disorder and bipolar disorder. However, while substantial advances in the field of microbiome science have been made, we have likely only scratched the surface in our understanding of how these ecosystems might contribute to mental disorder pathophysiology. Beyond the gut bacteriome, research into lesser explored components of the gut microbiome, including the gut virome, mycobiome, archaeome, and parasitome, is increasingly suggesting relevance in psychiatry. The contribution of microbiomes beyond the gut, including the oral, lung, and small intestinal microbiomes, to human health and pathology should not be overlooked. Increasing both our awareness and understanding of these less traversed fields of research are critical to improving the therapeutic benefits of treatments targeting the gut microbiome, including fecal microbiome transplantation, postbiotics and biogenics, and dietary intervention. Interdisciplinary collaborations integrating systems biology approaches are required to fully elucidate how these different microbial components and distinct microbial niches interact with each other and their human hosts. Excitingly, we may be at the start of the next microbiome revolution and thus one step closer to informing the field of precision psychiatry to improve outcomes for those living with mental illness.
Collapse
Affiliation(s)
- Amelia J McGuinness
- Food and Mood Centre, Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, Australia.
| | - Amy Loughman
- Food and Mood Centre, Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, Australia
| | - Jane A Foster
- Center for Depression Research and Clinical Care, Department of Psychiatry, UT Southwestern Medical Center, Dallas, Texas
| | - Felice Jacka
- Food and Mood Centre, Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, Australia; Centre for Adolescent Health, Murdoch Children's Research Institute, Melbourne, Victoria, Australia; College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia
| |
Collapse
|
17
|
Ruan P, Dai P, Mao Y, Tang Z, He H, Wu G, Qin L, Tan Y. The in vitro and in vivo antiviral effects of IGF1R inhibitors against respiratory syncytial virus infection. J Biomol Struct Dyn 2024:1-12. [PMID: 38299600 DOI: 10.1080/07391102.2024.2309643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 01/18/2024] [Indexed: 02/02/2024]
Abstract
The insulin-like growth factor 1 receptor (IGF1R) was recognized as a pivotal receptor that facilitated the cellular entry of RSV. Small molecule inhibitors designed to target IGF1R exhibited potential as potent antiviral agents. Through virtual screening, we conducted a screening process involving small molecule compounds derived from natural products, aiming to target the IGF1R protein against respiratory syncytial virus infection. The molecular dynamics simulation analysis showed that tannic acid and daptomycin interacted with the IGF1R. The experimental results in vivo and in vitro showed that tannic acid and daptomycin had anti-RSV infection potential through reducing viral loads, inflammation, airway resistance and protecting alveolar integrity. The CC50 values of tannic acid and daptomycin were 6 nM and 0.45 μM, respectively. Novel small-molecule inhibitors targeting the IGF1R, tannic acid and daptomycin, may be effective anti-RSV therapy agents. This study may in future broaden the arsenal of therapeutics for use against RSV infection and lead to more effective care against the virus.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Pinglang Ruan
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China
- Department of Medical Microbiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Pei Dai
- Department of Medical Microbiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- Second Department of Laboratory, Hunan Provincial People's Hospital (The First Affifiliated Hospital of Hunan Normal University), Changsha, Hunan, China
| | - Yu Mao
- Department of Medical Microbiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Zhongxiang Tang
- Department of Medical Microbiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Hanlin He
- Department of Medical Microbiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Guojun Wu
- Department of Medical Microbiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Ling Qin
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yurong Tan
- Department of Medical Microbiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| |
Collapse
|
18
|
Yamada H, Yamazaki Y, Takebayashi Y, Yazawa K, Sasanishi M, Motoda A, Nakamori M, Morino H, Takahashi T, Maruyama H. The long-term effects of heated tobacco product exposure on the central nervous system in a mouse model of prodromal Alzheimer's disease. Sci Rep 2024; 14:227. [PMID: 38167640 PMCID: PMC10761999 DOI: 10.1038/s41598-023-50941-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 12/28/2023] [Indexed: 01/05/2024] Open
Abstract
Heated tobacco products (HTPs) have emerged as novel alternatives to conventional cigarettes (CCs), marketed by the tobacco industry as having a reduced potential for harm. Nevertheless, a significant dearth of information remains regarding the long-term effects of HTPs on the central nervous system (CNS). Here, we sought to shed light on the repercussions of prolonged exposure to HTPs on the CNS, employing a mouse model mimicking prodromal Alzheimer's disease (AD). Our study entailed subjecting App knock-in mice to 16 weeks of HTP exposure, administered 5 days per week, with serum cotinine concentration serving as confirmation of HTP exposure within this model. Histological analysis, aimed at assessing amyloid pathology, unveiled a minimal impact attributable to HTPs. However, exploration of differentially expressed genes in the cerebral cortex, using unadjusted p values, indicated an association between HTP exposure and non-inflammatory pathways, specifically linked to neurohypophyseal and neuropeptide hormone activity within the CNS. Of note, similar results have already been observed after exposure to CCs in vivo. Our study not only contributes insights into the potential non-inflammatory effects of HTPs within the context of AD pathogenesis but also underscores the significance of continued research to comprehend the full scope of their impact on the CNS.
Collapse
Affiliation(s)
- Hidetada Yamada
- Department of Clinical Neuroscience and Therapeutics, Hiroshima University Graduate School of Biomedical Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima, Hiroshima, 734-8551, Japan
| | - Yu Yamazaki
- Department of Clinical Neuroscience and Therapeutics, Hiroshima University Graduate School of Biomedical Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima, Hiroshima, 734-8551, Japan.
| | - Yoshiko Takebayashi
- Department of Clinical Neuroscience and Therapeutics, Hiroshima University Graduate School of Biomedical Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima, Hiroshima, 734-8551, Japan
| | - Kyosuke Yazawa
- Department of Clinical Neuroscience and Therapeutics, Hiroshima University Graduate School of Biomedical Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima, Hiroshima, 734-8551, Japan
- Department of Pharmacotherapy, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Miwako Sasanishi
- Department of Clinical Neuroscience and Therapeutics, Hiroshima University Graduate School of Biomedical Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima, Hiroshima, 734-8551, Japan
| | - Atsuko Motoda
- Department of Clinical Neuroscience and Therapeutics, Hiroshima University Graduate School of Biomedical Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima, Hiroshima, 734-8551, Japan
| | - Masahiro Nakamori
- Department of Clinical Neuroscience and Therapeutics, Hiroshima University Graduate School of Biomedical Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima, Hiroshima, 734-8551, Japan
| | - Hiroyuki Morino
- Department of Clinical Neuroscience and Therapeutics, Hiroshima University Graduate School of Biomedical Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima, Hiroshima, 734-8551, Japan
- Department of Medical Genetics, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Tetsuya Takahashi
- Department of Rehabilitation, Faculty of Rehabilitation, Hiroshima International University, Hiroshima, Japan
| | - Hirofumi Maruyama
- Department of Clinical Neuroscience and Therapeutics, Hiroshima University Graduate School of Biomedical Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima, Hiroshima, 734-8551, Japan
| |
Collapse
|
19
|
Meinhardt J, Streit S, Dittmayer C, Manitius RV, Radbruch H, Heppner FL. The neurobiology of SARS-CoV-2 infection. Nat Rev Neurosci 2024; 25:30-42. [PMID: 38049610 DOI: 10.1038/s41583-023-00769-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/01/2023] [Indexed: 12/06/2023]
Abstract
Worldwide, over 694 million people have been infected with SARS-CoV-2, with an estimated 55-60% of those infected developing COVID-19. Since the beginning of the pandemic in December 2019, different variants of concern have appeared and continue to occur. With the emergence of different variants, an increasing rate of vaccination and previous infections, the acute neurological symptomatology of COVID-19 changed. Moreover, 10-45% of individuals with a history of SARS-CoV-2 infection experience symptoms even 3 months after disease onset, a condition that has been defined as 'post-COVID-19' by the World Health Organization and that occurs independently of the virus variant. The pathomechanisms of COVID-19-related neurological complaints have become clearer during the past 3 years. To date, there is no overt - that is, truly convincing - evidence for SARS-CoV-2 particles in the brain. In this Review, we put special emphasis on discussing the methodological difficulties of viral detection in CNS tissue and discuss immune-based (systemic and central) effects contributing to COVID-19-related CNS affection. We sequentially review the reported changes to CNS cells in COVID-19, starting with the blood-brain barrier and blood-cerebrospinal fluid barrier - as systemic factors from the periphery appear to primarily influence barriers and conduits - before we describe changes in brain parenchymal cells, including microglia, astrocytes, neurons and oligodendrocytes as well as cerebral lymphocytes. These findings are critical to understanding CNS affection in acute COVID-19 and post-COVID-19 in order to translate these findings into treatment options, which are still very limited.
Collapse
Affiliation(s)
- Jenny Meinhardt
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Simon Streit
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Carsten Dittmayer
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Regina V Manitius
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Helena Radbruch
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany.
| | - Frank L Heppner
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany.
- Cluster of Excellence, NeuroCure, Berlin, Germany.
- German Center for Neurodegenerative Diseases (DZNE) Berlin, Berlin, Germany.
| |
Collapse
|
20
|
Evrensel A. Probiotics and Fecal Microbiota Transplantation in Major Depression: Doxa or Episteme? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1456:67-83. [PMID: 39261424 DOI: 10.1007/978-981-97-4402-2_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
In the human body, eukaryotic somatic cells and prokaryotic microorganisms live together. In this state, the body can be viewed as a "superorganism." Symbiotic life with commensal microorganisms can be observed in almost every part of the body. Intestinal microbiota plays an important role in health and disease, and in shaping and regulating neuronal functions from the intrauterine period to the end of life. Microbiota-based treatment opportunities are becoming more evident in both understanding the etiopathogenesis and treatment of neuropsychiatric disorders, especially depression. Antidepressant drugs, which are the first choice in the treatment of depression, also have antimicrobial and immunomodulatory mechanisms of action. From these perspectives, direct probiotics and fecal microbiota transplantation are treatment options to modulate microbiota composition. There are few preclinical and clinical studies on the effectiveness and safety of these applications in depression. The information obtained from these studies may still be at a doxa level. However, the probability that this information will become episteme in the future seems to be increasing.
Collapse
Affiliation(s)
- Alper Evrensel
- Department of Psychiatry, Uskudar University, Istanbul, Turkey.
- NP Brain Hospital, Istanbul, Turkey.
| |
Collapse
|
21
|
Nam JY, Park SJ, Song J, Jeong S, Choi S, Park SM. Association of allergic disease with Parkinson's disease: A nationally representative retrospective cohort study. Allergol Int 2024; 73:107-114. [PMID: 37544850 DOI: 10.1016/j.alit.2023.07.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 07/01/2023] [Accepted: 07/10/2023] [Indexed: 08/08/2023] Open
Abstract
BACKGROUND The association of allergic diseases such as allergic rhinitis, asthma, and atopic dermatitis with Parkinson's disease (PD) risk is yet unclear. In the few preceding studies, a short follow-up duration was followed for a relatively small study population, and lifestyle behaviors were not adjusted for. Therefore, there is a need for large-scale observation studies on the association of allergic disease with PD risk after considering lifestyle behaviors. METHODS The study population consisted of 398,936 participants aged 40 years or older who underwent health screening before 1 January 2005 from the Korean National Health Insurance Service database. Starting from 1 January 2005, all participants were followed up until the date of PD event, death, or 31 December 2019. The adjusted hazard ratios (aHRs) and 95% confidence intervals (CIs) for the risk of PD were calculated using multivariable Cox proportional hazards regression. RESULTS Compared to non-allergic disease participants, allergic disease patients had a higher risk for PD (aHR 1.18, 95% CI 1.07-1.30) and especially, allergic rhinitis patients had a higher risk for PD (aHR 1.14, 95% CI 1.00-1.29). Allergic disease was associated with a higher risk for PD (aHR 1.24, 95% CI 1.01-1.52) among participants who were never smokers, did not consume alcohol, and exercised regularly. CONCLUSIONS Allergic rhinitis was associated with a higher risk for PD compared to participants without allergic rhinitis. This risk-increasing association of allergic rhinitis with PD was preserved even among people with healthy lifestyle behaviors.
Collapse
Affiliation(s)
| | - Sun Jae Park
- Department of Biomedical Sciences, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Jihun Song
- Department of Biomedical Sciences, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Seogsong Jeong
- Department of Biomedical Informatics, CHA University School of Medicine, Seongnam, South Korea
| | - Seulggie Choi
- Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Sang Min Park
- Department of Biomedical Sciences, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea; Department of Family Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea.
| |
Collapse
|
22
|
Uzuegbunam BC, Rummel C, Librizzi D, Culmsee C, Hooshyar Yousefi B. Radiotracers for Imaging of Inflammatory Biomarkers TSPO and COX-2 in the Brain and in the Periphery. Int J Mol Sci 2023; 24:17419. [PMID: 38139248 PMCID: PMC10743508 DOI: 10.3390/ijms242417419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
Inflammation involves the activation of innate immune cells and is believed to play an important role in the development and progression of both infectious and non-infectious diseases such as neurodegeneration, autoimmune diseases, pulmonary and cancer. Inflammation in the brain is marked by the upregulation of translocator protein (TSPO) in microglia. High TSPO levels are also found, for example, in macrophages in cases of rheumatoid arthritis and in malignant tumor cells compared to their relatively low physiological expression. The same applies for cyclooxgenase-2 (COX-2), which is constitutively expressed in the kidney, brain, thymus and gastrointestinal tract, but induced in microglia, macrophages and synoviocytes during inflammation. This puts TSPO and COX-2 in the spotlight as important targets for the diagnosis of inflammation. Imaging modalities, such as positron emission tomography and single-photon emission tomography, can be used to localize inflammatory processes and to track their progression over time. They could also enable the monitoring of the efficacy of therapy and predict its outcome. This review focuses on the current development of PET and SPECT tracers, not only for the detection of neuroinflammation, but also for emerging diagnostic measures in infectious and other non-infectious diseases such as rheumatic arthritis, cancer, cardiac inflammation and in lung diseases.
Collapse
Affiliation(s)
| | - Christoph Rummel
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University Giessen, 35392 Gießen, Germany;
- Center for Mind Brain and Behavior, Universities Giessen and Marburg, 35043 Marburg, Germany;
| | - Damiano Librizzi
- Department of Nuclear Medicine, Philipps University of Marburg, 35043 Marburg, Germany;
| | - Carsten Culmsee
- Center for Mind Brain and Behavior, Universities Giessen and Marburg, 35043 Marburg, Germany;
- Institute of Pharmacology and Clinical Pharmacy, Philipps University of Marburg, 35037 Marburg, Germany
| | | |
Collapse
|
23
|
Mendes de Almeida V, Engel DF, Ricci MF, Cruz CS, Lopes ÍS, Alves DA, d’ Auriol M, Magalhães J, Machado EC, Rocha VM, Carvalho TG, Lacerda LSB, Pimenta JC, Aganetti M, Zuccoli GS, Smith BJ, Carregari VC, da Silva Rosa E, Galvão I, Dantas Cassali G, Garcia CC, Teixeira MM, André LC, Ribeiro FM, Martins FS, Saia RS, Costa VV, Martins-de-Souza D, Hansbro PM, Marques JT, Aguiar ERGR, Vieira AT. Gut microbiota from patients with COVID-19 cause alterations in mice that resemble post-COVID symptoms. Gut Microbes 2023; 15:2249146. [PMID: 37668317 PMCID: PMC10481883 DOI: 10.1080/19490976.2023.2249146] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/19/2023] [Accepted: 08/14/2023] [Indexed: 09/06/2023] Open
Abstract
Long-term sequelae of coronavirus disease (COVID)-19 are frequent and of major concern. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection affects the host gut microbiota, which is linked to disease severity in patients with COVID-19. Here, we report that the gut microbiota of post-COVID subjects had a remarkable predominance of Enterobacteriaceae strains with an antibiotic-resistant phenotype compared to healthy controls. Additionally, short-chain fatty acid (SCFA) levels were reduced in feces. Fecal transplantation from post-COVID subjects to germ-free mice led to lung inflammation and worse outcomes during pulmonary infection by multidrug-resistant Klebsiella pneumoniae. transplanted mice also exhibited poor cognitive performance. Overall, we show prolonged impacts of SARS-CoV-2 infection on the gut microbiota that persist after subjects have cleared the virus. Together, these data demonstrate that the gut microbiota can directly contribute to post-COVID sequelae, suggesting that it may be a potential therapeutic target.
Collapse
Affiliation(s)
- Viviani Mendes de Almeida
- Laboratory of Microbiota and Immunomodulation - Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais - UFMG, Belo Horizonte, Brazil
| | - Daiane F. Engel
- Department of Clinical Analysis, School of Pharmacy, Universidade Federal de Ouro Preto - UFOP, Ouro Preto, Brazil
| | - Mayra F. Ricci
- Laboratory of Microbiota and Immunomodulation - Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais - UFMG, Belo Horizonte, Brazil
| | - Clênio Silva Cruz
- Laboratory of Microbiota and Immunomodulation - Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais - UFMG, Belo Horizonte, Brazil
| | - Ícaro Santos Lopes
- Laboratory of Virus Bioinformatics - Department of Biological Science, Center of Biotechnology and Genetics, Universidade Estadual de Santa Cruz - UESC, Ilhéus, Brazil
| | - Daniele Almeida Alves
- Laboratory of RNA Interference and Antiviral Immunity - Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais - UFMG, Belo Horizonte, Brazil
| | - Mirna d’ Auriol
- Laboratory of Toxicology - Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Universidade Federal de Minas Gerais - UFMG, Belo Horizonte, Brazil
| | - João Magalhães
- Laboratory of Microbiota and Immunomodulation - Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais - UFMG, Belo Horizonte, Brazil
| | - Elayne C. Machado
- Laboratory of Microbiota and Immunomodulation - Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais - UFMG, Belo Horizonte, Brazil
| | - Victor M. Rocha
- Laboratory of Microbiota and Immunomodulation - Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais - UFMG, Belo Horizonte, Brazil
| | - Toniana G. Carvalho
- Laboratory of Neurobiochemistry - Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais - UFMG, Belo Horizonte, Brazil
| | - Larisse S. B. Lacerda
- Center for Research and Development of Drugs - Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais - UFMG, Belo Horizonte, Brazil
| | - Jordane C. Pimenta
- Center for Research and Development of Drugs - Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais - UFMG, Belo Horizonte, Brazil
| | - Mariana Aganetti
- Laboratory of Microbiota and Immunomodulation - Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais - UFMG, Belo Horizonte, Brazil
| | - Giuliana S. Zuccoli
- Laboratory of Neuroproteomics - Department of Biochemistry and Tissue Biology, Institute of Biology, Universidade do Estado de Campinas - UNICAMP, Campinas, Brazil
| | - Bradley J. Smith
- Laboratory of Neuroproteomics - Department of Biochemistry and Tissue Biology, Institute of Biology, Universidade do Estado de Campinas - UNICAMP, Campinas, Brazil
| | - Victor C. Carregari
- Laboratory of Neuroproteomics - Department of Biochemistry and Tissue Biology, Institute of Biology, Universidade do Estado de Campinas - UNICAMP, Campinas, Brazil
| | - Erika da Silva Rosa
- Laboratory of Microbiota and Immunomodulation - Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais - UFMG, Belo Horizonte, Brazil
| | - Izabela Galvão
- Laboratory of Microbiota and Immunomodulation - Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais - UFMG, Belo Horizonte, Brazil
| | - Geovanni Dantas Cassali
- Laboratory of Comparative Pathology - Department of Pathology, Universidade Federal de Minas Gerais - UFMG, Belo Horizonte, Brazil
| | - Cristiana C. Garcia
- Laboratory of Respiratory Viruses and Measles, Instituto Oswaldo Cruz - Fiocruz, Rio de Janeiro, Brazil
| | - Mauro Martins Teixeira
- Center for Research and Development of Drugs - Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais - UFMG, Belo Horizonte, Brazil
| | - Leiliane C. André
- Laboratory of Toxicology - Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Universidade Federal de Minas Gerais - UFMG, Belo Horizonte, Brazil
| | - Fabiola Mara Ribeiro
- Laboratory of Neurobiochemistry - Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais - UFMG, Belo Horizonte, Brazil
| | - Flaviano S. Martins
- Laboratory of Biotherapeutic Agents - Department of Microbiology, Institute of Biological Sciences, Universidade Federal de Minas Gerais - UFMG, Belo Horizonte, Brazil
| | - Rafael Simone Saia
- Laboratory of Intestinal Physiology - Department of Physiology, Ribeirão Preto Medical School, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Vivian Vasconcelos Costa
- Center for Research and Development of Drugs - Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais - UFMG, Belo Horizonte, Brazil
| | - Daniel Martins-de-Souza
- Laboratory of Neuroproteomics - Department of Biochemistry and Tissue Biology, Institute of Biology, Universidade do Estado de Campinas - UNICAMP, Campinas, Brazil
- D’Or Institute for Research and Education, São Paulo, Brazil
- Experimental Medicine Research Cluster, Universidade do Estado de Campinas - UNICAMP, Campinas, Brazil
- National Institute of Biomarkers in Neuropsychiatry, National Council for Scientific and Technological Development, São Paulo, Brazil
| | - Philip M. Hansbro
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Sydney, Australia
| | - João Trindade Marques
- Laboratory of RNA Interference and Antiviral Immunity - Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais - UFMG, Belo Horizonte, Brazil
- CNRS UPR9022, University of Strasbourg, Strasbourg, France
| | - Eric R. G. R. Aguiar
- Laboratory of Virus Bioinformatics - Department of Biological Science, Center of Biotechnology and Genetics, Universidade Estadual de Santa Cruz - UESC, Ilhéus, Brazil
| | - Angélica T. Vieira
- Laboratory of Microbiota and Immunomodulation - Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais - UFMG, Belo Horizonte, Brazil
| |
Collapse
|
24
|
Kim JH, Chung KM, Lee JJ, Choi HJ, Kwon YS. Predictive Modeling and Integrated Risk Assessment of Postoperative Mortality and Pneumonia in Traumatic Brain Injury Patients through Clustering and Machine Learning: Retrospective Study. Biomedicines 2023; 11:2880. [PMID: 38001880 PMCID: PMC10669264 DOI: 10.3390/biomedicines11112880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/15/2023] [Accepted: 10/19/2023] [Indexed: 11/26/2023] Open
Abstract
This study harnessed machine learning to forecast postoperative mortality (POM) and postoperative pneumonia (PPN) among surgical traumatic brain injury (TBI) patients. Our analysis centered on the following key variables: Glasgow Coma Scale (GCS), midline brain shift (MSB), and time from injury to emergency room arrival (TIE). Additionally, we introduced innovative clustered variables to enhance predictive accuracy and risk assessment. Exploring data from 617 patients spanning 2012 to 2022, we observed that 22.9% encountered postoperative mortality, while 30.0% faced postoperative pneumonia (PPN). Sensitivity for POM and PPN prediction, before incorporating clustering, was in the ranges of 0.43-0.82 (POM) and 0.54-0.76 (PPN). Following clustering, sensitivity values were 0.47-0.76 (POM) and 0.61-0.77 (PPN). Accuracy was in the ranges of 0.67-0.76 (POM) and 0.70-0.81 (PPN) prior to clustering and 0.42-0.73 (POM) and 0.55-0.73 (PPN) after clustering. Clusters characterized by low GCS, small MSB, and short TIE exhibited a 3.2-fold higher POM risk compared to clusters with high GCS, small MSB, and short TIE. In summary, leveraging clustered variables offers a novel avenue for predicting POM and PPN in TBI patients. Assessing the amalgamated impact of GCS, MSB, and TIE characteristics provides valuable insights for clinical decision making.
Collapse
Affiliation(s)
- Jong-Ho Kim
- Department of Anesthesiology and Pain Medicine, Chuncheon Sacred Heart Hospital, Hallym University College of Medicine, Chuncheon 24253, Republic of Korea; (J.-H.K.); (J.-J.L.)
- Institute of New Frontier Research Team, Hallym University College of Medicine, Chuncheon 24252, Republic of Korea
| | - Kyung-Min Chung
- Department of Neurosurgery, Chuncheon Sacred Heart Hospital, Hallym University College of Medicine, Chuncheon 24253, Republic of Korea;
| | - Jae-Jun Lee
- Department of Anesthesiology and Pain Medicine, Chuncheon Sacred Heart Hospital, Hallym University College of Medicine, Chuncheon 24253, Republic of Korea; (J.-H.K.); (J.-J.L.)
- Institute of New Frontier Research Team, Hallym University College of Medicine, Chuncheon 24252, Republic of Korea
| | - Hyuk-Jai Choi
- Department of Neurosurgery, Chuncheon Sacred Heart Hospital, Hallym University College of Medicine, Chuncheon 24253, Republic of Korea;
| | - Young-Suk Kwon
- Department of Anesthesiology and Pain Medicine, Chuncheon Sacred Heart Hospital, Hallym University College of Medicine, Chuncheon 24253, Republic of Korea; (J.-H.K.); (J.-J.L.)
- Institute of New Frontier Research Team, Hallym University College of Medicine, Chuncheon 24252, Republic of Korea
| |
Collapse
|
25
|
Ma Q, Yao C, Wu Y, Wang H, Fan Q, Yang Q, Xu J, Dai H, Zhang Y, Xu F, Lu T, Dowling JK, Wang C. Neurological disorders after severe pneumonia are associated with translocation of endogenous bacteria from the lung to the brain. SCIENCE ADVANCES 2023; 9:eadi0699. [PMID: 37851811 PMCID: PMC10584344 DOI: 10.1126/sciadv.adi0699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 09/15/2023] [Indexed: 10/20/2023]
Abstract
Neurological disorders are a common feature in patients who recover from severe acute pneumonia. However, the underlying mechanisms remain poorly understood. Here, we show that the neurological syndromes after severe acute pneumonia are partly attributed to the translocation of endogenous bacteria from the lung to the brain during pneumonia. Using principal components analysis, similarities were found between the brain's flora species and those of the lungs, indicating that the bacteria detected in the brain may originate from the lungs. We also observed impairment of both the lung-blood and brain-blood barriers, allowing endogenous lung bacteria to invade the brain during pneumonia. An elevated microglia and astrocyte activation signature via bacterial infection-related pathways was observed, indicating a bacterial-induced disruption of brain homeostasis. Collectively, we identify endogenous lung bacteria that play a role in altering brain homeostasis, which provides insight into the mechanism of neurological syndromes after severe pneumonia.
Collapse
Affiliation(s)
- Qingle Ma
- Laboratory for Biomaterial and Immunoengineering, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China
| | - Chenlu Yao
- Laboratory for Biomaterial and Immunoengineering, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China
| | - Yi Wu
- Laboratory for Biomaterial and Immunoengineering, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China
| | - Heng Wang
- Laboratory for Biomaterial and Immunoengineering, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China
| | - Qin Fan
- Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) and School of Materials Science and Engineering, Nanjing University of Posts & Telecommunications, Nanjing, P. R. China
| | - Qianyu Yang
- Laboratory for Biomaterial and Immunoengineering, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China
| | - Jialu Xu
- Laboratory for Biomaterial and Immunoengineering, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China
| | - Huaxing Dai
- Laboratory for Biomaterial and Immunoengineering, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China
| | - Yue Zhang
- Laboratory for Biomaterial and Immunoengineering, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China
| | - Fang Xu
- Laboratory for Biomaterial and Immunoengineering, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China
| | - Ting Lu
- Institute of Pharmacology, Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Disease, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Jennifer K. Dowling
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, University of Medical and Health Sciences, Dublin, Ireland
| | - Chao Wang
- Laboratory for Biomaterial and Immunoengineering, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China
| |
Collapse
|
26
|
Yang RZ, Liang M, Lin S, Weng J, Hu JM, Lin SZ, Wu XD, Zeng K. General anesthesia alters the diversity and composition of the lung microbiota in rat. Biomed Pharmacother 2023; 166:115381. [PMID: 37639744 DOI: 10.1016/j.biopha.2023.115381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/08/2023] [Accepted: 08/23/2023] [Indexed: 08/31/2023] Open
Abstract
BACKGROUND The lung microbiome plays a crucial role in human health and disease. Extensive studies have demonstrated that the disturbance of the lung microbiome influences immune response, cognition, and behavior. The goal of this study was to investigate the effect of general anesthetics on lung microbiome. METHODS Eight-week-old male SD rats received a continuous intravenous infusion of propofol or inhalation of isoflurane for 4 h. 16S rRNA gene amplification from BALF samples was used to investigate the changes in the lung microbiome after interventions. We further performed neurobehavioral assessments to find the differential strains' association with behavior disorder after isoflurane anesthesia. RESULTS The absolute and relative quantitation of 16S rRNA sequencing data showed that isoflurane altered the diversity and abundance of the lung microbiome in rats more than propofol. Elusimicrobia increased significantly in the isoflurane group. Both EPM and OFT results showed that rats exhibited depression-like behaviors after inhalation of isoflurane. In addition, significant differences were found in the COG/KO/MetaCyc/KEGG pathway enrichment analyses among the groups. CONCLUSION Continuous inhalation of isoflurane changed the diversity and composition of the lung microbiota in rats, resulting in post-anesthesia depression.
Collapse
Affiliation(s)
- Rui-Zhi Yang
- Department of Anesthesiology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Department of Anesthesiology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Min Liang
- Department of Anesthesiology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Department of Anesthesiology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Song Lin
- Department of Anesthesiology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Department of Anesthesiology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Jing Weng
- Department of Anesthesiology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Department of Anesthesiology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Jia-Min Hu
- Department of Anesthesiology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Department of Anesthesiology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Shi-Zhu Lin
- Department of Anesthesiology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Department of Anesthesiology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Xiao-Dan Wu
- Department of Anesthesiology, Fujian Provincial Hospital, Fuzhou, China.
| | - Kai Zeng
- Department of Anesthesiology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Department of Anesthesiology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China.
| |
Collapse
|
27
|
Rajkumar RP. Examining the Relationships between the Incidence of Infectious Diseases and Mood Disorders: An Analysis of Data from the Global Burden of Disease Studies, 1990-2019. Diseases 2023; 11:116. [PMID: 37754312 PMCID: PMC10528187 DOI: 10.3390/diseases11030116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/27/2023] [Accepted: 09/04/2023] [Indexed: 09/28/2023] Open
Abstract
Mood disorders are among the commonest mental disorders worldwide. Epidemiological and clinical evidence suggests that there are close links between infectious diseases and mood disorders, but the strength and direction of these association remain largely unknown. Theoretical models have attempted to explain this link based on evolutionary or immune-related factors, but these have not been empirically verified. The current study examined cross-sectional and longitudinal associations between the incidence of infectious diseases and mood disorders, while correcting for climate and economic factors, based on data from the Global Burden of Disease Studies, 1990-2019. It was found that major depressive disorder was positively associated with lower respiratory infections, while bipolar disorder was positively associated with upper respiratory infections and negatively associated with enteric and tropical infections, both cross-sectionally and over a period of 30 years. These results suggest that a complex, bidirectional relationship exists between these disorders. This relationship may be mediated through the immune system as well as through the gut-brain and lung-brain axes. Understanding the mechanisms that link these groups of disorders could lead to advances in the prevention and treatment of both.
Collapse
Affiliation(s)
- Ravi Philip Rajkumar
- Department of Psychiatry, Jawaharlal Institute of Postgraduate Medical Education and Research, Pondicherry 605006, India
| |
Collapse
|
28
|
Bajinka O, Tang Z, Mao Y, Qiu X, Darboe A, Tan Y. Respiratory syncytial virus infection disrupts pulmonary microbiota to induce microglia phenotype shift. J Med Virol 2023; 95:e28976. [PMID: 37522339 DOI: 10.1002/jmv.28976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 06/06/2023] [Accepted: 06/19/2023] [Indexed: 08/01/2023]
Abstract
The lung-brain axis is an emerging biological pathway that is being investigated in relation to microbiome medicine. Increasing evidence suggests that pulmonary viral infections can lead to distinct pathological imprints in the brain, so there is a need to explore and understand this mechanism and find possible interventions. This study used respiratory syncytial virus (RSV) infection in mice as a model to establish the potential lung-brain axis phenomenon. We hypothesized that RSV infection could disrupt the lung microbiota, compromise immune barriers, and induce a significant shift in microglia phenotype. One week old mice were randomized into the control, Ampicillin, RSV, and RSV+Ampicillin treated groups (n = 6 each). Seven days after the respective treatments, the mice were anaesthetized. Immunofluorescence and real-time qRT-PCR was used to detect virus. Hematoxylin-eosin staining was used to detect histopathology. Malondialdehyde and superoxide dismutase were used to determine oxidative stress and antioxidant capacity. Real-time qRT-PCR and enzyme-linked immunosorbent assay (ELISA) were used to measure Th differentiation in the lung. Real-time qRT-PCR, ELISA, and confocal immunofluorescence were used to determine the microglia phenotype. 16S DNA technology was used to detect lung microflora. RSV infection induces elevated oxidative stress, reduced antioxidant, and significant dysbacteriosis in the lungs of mice. Pulmonary microbes were found to enhance Th1-type immunoreactivity induced by RSV infection and eventually induced M1-type dominant microglia in the brains of mice. This study was able to establish a correlation between the pulmonary microbiome and brain function. Therefore, we recommend a large sample size study with robust data analysis for the long-term effects of antibiotics and RSV infection on brain physiology.
Collapse
Affiliation(s)
- Ousman Bajinka
- Department of Medical Microbiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- Medicine and Allied Health Sciences, University of The Gambia, Banjul, The Gambia
- Functional Cell Biology International Center for Genetic and Biotechnology (ICGEB), Trieste, Italy
| | - Zhongxiang Tang
- Department of Medical Microbiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Yu Mao
- Department of Medical Microbiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Xiangjie Qiu
- Department of Medical Microbiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Alansana Darboe
- Functional Cell Biology International Center for Genetic and Biotechnology (ICGEB), Trieste, Italy
| | - Yurong Tan
- Department of Medical Microbiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| |
Collapse
|
29
|
Li Y, Li C, Luo T, Yue T, Xiao W, Yang L, Zhang Z, Han F, Long P, Hu Y. Progress in the Treatment of High Altitude Cerebral Edema: Targeting REDOX Homeostasis. J Inflamm Res 2023; 16:2645-2660. [PMID: 37383357 PMCID: PMC10296571 DOI: 10.2147/jir.s415695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/15/2023] [Indexed: 06/30/2023] Open
Abstract
With the increasing of altitude activities from low-altitude people, the study of high altitude cerebral edema (HACE) has been revived. HACE is a severe acute mountain sickness associated with exposure to hypobaric hypoxia at high altitude, often characterized by disturbance of consciousness and ataxia. As for the pathogenesis of HACE, previous studies suggested that it might be related to the disorder of cerebral blood flow, the destruction of blood-brain barrier and the injury of brain parenchyma cells caused by inflammatory factors. In recent years, studies have confirmed that the imbalance of REDOX homeostasis is also involved in the pathogenesis of HACE, which mainly leads to abnormal activation of microglia and destruction of tight junction of vascular endothelial cells through the excessive production of mitochondrial-related reactive oxygen species. Therefore, this review summarizes the role of REDOX homeostasis and the potential of the treatment of REDOX homeostasis in HACE, which is of great significance to expand the understanding of the pathogenesis of HACE. Moreover, it will also be helpful to further study the possible therapy of HACE related to the key link of REDOX homeostasis.
Collapse
Affiliation(s)
- Yubo Li
- School of Clinical Medicine, Chengdu University of TCM, Chengdu, People’s Republic of China
- Basic Medical Laboratory, The General Hospital of Western Theater Command, Chengdu, People’s Republic of China
| | - Chengming Li
- School of Clinical Medicine, Chengdu University of TCM, Chengdu, People’s Republic of China
- Basic Medical Laboratory, The General Hospital of Western Theater Command, Chengdu, People’s Republic of China
| | - Tao Luo
- Department of Ophthalmology, The General Hospital of Western Theater Command, Chengdu, People’s Republic of China
| | - Tian Yue
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, People’s Republic of China
| | - Wenjing Xiao
- Department of Pharmacy, The General Hospital of Western Theater Command, Chengdu, People’s Republic of China
| | - Ling Yang
- School of Clinical Medicine, Chengdu University of TCM, Chengdu, People’s Republic of China
- Basic Medical Laboratory, The General Hospital of Western Theater Command, Chengdu, People’s Republic of China
| | - Zaiyuan Zhang
- College of Medicine, Southwest Jiaotong University, Chengdu, People’s Republic of China
| | - Fei Han
- Department of Ophthalmology, The General Hospital of Western Theater Command, Chengdu, People’s Republic of China
| | - Pan Long
- Department of Ophthalmology, The General Hospital of Western Theater Command, Chengdu, People’s Republic of China
| | - Yonghe Hu
- College of Medicine, Southwest Jiaotong University, Chengdu, People’s Republic of China
| |
Collapse
|
30
|
Seeling KS, Hehl L, Vell MS, Rendel MD, Creasy KT, Trautwein C, Mehler DMA, Keszthelyi D, Schneider KM, Schneider CV. Comorbidities, biomarkers and cause specific mortality in patients with irritable bowel syndrome: A phenome-wide association study. United European Gastroenterol J 2023; 11:458-470. [PMID: 37151116 PMCID: PMC10256994 DOI: 10.1002/ueg2.12397] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 04/02/2023] [Indexed: 05/09/2023] Open
Abstract
BACKGROUND Irritable bowel syndrome (IBS) is one of the most common functional digestive disorders. Our understanding about its comorbidities, biomarkers, or long-term risks is still incomplete. OBJECTIVE To characterize comorbidities and biomarkers for IBS and establish the effect of IBS on overall- and cause specific mortality. METHODS We analyzed data from the population-based cohort of the UK Biobank (UKB) with 493,974 participants, including self-reported physician-diagnosed (n = 20,603) and ICD-10 diagnosed (n = 7656) IBS patients, with a mean follow-up of 11 years. We performed a phenome-wide association study (PheWAS) and competing risk analysis to characterize common clinical features in IBS patients. RESULTS In PheWAS analyses, 260 PheCodes were significantly overrepresented in self-reported physician-diagnosed IBS patients, 633 in patients with ICD-10 diagnosed IBS (ICD-10-IBS), with 221 (40%) overlapping. In addition to gastrointestinal diseases, psychiatric, musculoskeletal, and endocrine/metabolic disorders represented the most strongly associated PheCodes in IBS patients. Self-reported physician-diagnosed IBS was not associated with increased overall mortality and the risk of death from cancer was decreased (hazard ratio [HR] = 0.78 [95% CI = 0.7-0.9]). Lastly, we evaluated changes in serum metabolites in IBS patients and identified glycoprotein acetyls (GlycA) as a potential biomarker in IBS. One standard deviation increase in GlycA raised the risk of self-reported IBS/ICD-10 coded by 9%-20% (odds ratio [OR] = 1.09 [95% CI = 1.1-1.1]/OR = 1.20 [95% CI = 1.1-1.3]) and the risk of overall mortality in ICD-10-IBS patients by 28% (HR = 1.28 [95% CI = 1.1-1.5]). CONCLUSION Our large-scale association study determined IBS patients having an increased risk of several different comorbidities and that GlycA was increased in IBS patients.
Collapse
Affiliation(s)
- Katharina Sophie Seeling
- Medical Clinic IIIGastroenterology, Metabolic Diseases and Intensive CareUniversity Hospital RWTH AachenAachenGermany
| | - Leonida Hehl
- Medical Clinic IIIGastroenterology, Metabolic Diseases and Intensive CareUniversity Hospital RWTH AachenAachenGermany
| | - Mara Sophie Vell
- Medical Clinic IIIGastroenterology, Metabolic Diseases and Intensive CareUniversity Hospital RWTH AachenAachenGermany
| | - Miriam Daphne Rendel
- Medical Clinic IIIGastroenterology, Metabolic Diseases and Intensive CareUniversity Hospital RWTH AachenAachenGermany
| | - Kate Townsend Creasy
- Department of Biobehavioral Health SciencesPerelman School of NursingUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Christian Trautwein
- Medical Clinic IIIGastroenterology, Metabolic Diseases and Intensive CareUniversity Hospital RWTH AachenAachenGermany
| | - David Marc Anton Mehler
- Department of Psychiatry, Psychotherapy and PsychosomaticsUniversity Hospital RWTH AachenAachenGermany
- Institute for Translational PsychiatryUniversity of MünsterMünsterGermany
| | - Daniel Keszthelyi
- Division of Gastroenterology‐HepatologyDepartment of Internal MedicineMaastricht University Medical Center+Maastrichtthe Netherlands
| | - Kai Markus Schneider
- Medical Clinic IIIGastroenterology, Metabolic Diseases and Intensive CareUniversity Hospital RWTH AachenAachenGermany
| | - Carolin Victoria Schneider
- Medical Clinic IIIGastroenterology, Metabolic Diseases and Intensive CareUniversity Hospital RWTH AachenAachenGermany
- The Institute for Translational Medicine and TherapeuticsThe Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| |
Collapse
|
31
|
Kim JH, Lee Y, Kwon YS, Sohn JH. Clinical Implications of the Association between Respiratory and Gastrointestinal Disorders in Migraine and Non-Migraine Headache Patients. J Clin Med 2023; 12:jcm12103434. [PMID: 37240541 DOI: 10.3390/jcm12103434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/02/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Headaches, particularly migraine, are associated with gastrointestinal (GI) disorders. In addition to the gut-brain axis, the lung-brain axis is suspected to be involved in the relationship between pulmonary microbes and brain disorders. Therefore, we investigated possible associations of migraine and non-migraine headaches (nMH) with respiratory and GI disorders using the clinical data warehouse over 11 years. We compared data regarding GI and respiratory disorders, including asthma, bronchitis, and COPD, among patients with migraine, patients with nMH, and controls. In total, 22,444 patients with migraine, 117,956 patients with nMH, and 289,785 controls were identified. After adjustment for covariates and propensity score matching, the odds ratios (ORs) for asthma (1.35), gastroesophageal reflux disorder (1.55), gastritis (1.90), functional GI disorder (1.35), and irritable bowel syndrome (1.76) were significantly higher in patients with migraine than in controls (p = 0.000). The ORs for asthma (1.16) and bronchitis (1.33) were also significantly higher in patients with nMH than in controls (p = 0.0002). When the migraine group was compared with the nMH group, only the OR for GI disorders was statistically significant. Our findings suggest that migraine and nMH are associated with increased risks of GI and respiratory disorders.
Collapse
Affiliation(s)
- Jong-Ho Kim
- Department of Anesthesiology and Pain Medicine, Chuncheon Sacred Heart Hospital, Hallym University College of Medicine, Chuncheon 24253, Republic of Korea
- Institute of New Frontier Research Team, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| | - Yeonkyeong Lee
- Institute of New Frontier Research Team, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| | - Young-Suk Kwon
- Department of Anesthesiology and Pain Medicine, Chuncheon Sacred Heart Hospital, Hallym University College of Medicine, Chuncheon 24253, Republic of Korea
- Institute of New Frontier Research Team, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| | - Jong-Hee Sohn
- Institute of New Frontier Research Team, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
- Department of Neurology, Chuncheon Sacred Heart Hospital, Hallym University College of Medicine, Chuncheon 24253, Republic of Korea
| |
Collapse
|
32
|
Yu J, Hua L, Cao X, Chen Q, Zeng X, Yuan Z, Wang Y. Construction of an individualized brain metabolic network in patients with advanced non-small cell lung cancer by the Kullback-Leibler divergence-based similarity method: A study based on 18F-fluorodeoxyglucose positron emission tomography. Front Oncol 2023; 13:1098748. [PMID: 36969017 PMCID: PMC10036828 DOI: 10.3389/fonc.2023.1098748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 02/13/2023] [Indexed: 03/12/2023] Open
Abstract
BackgroundLung cancer has one of the highest mortality rates of all cancers, and non-small cell lung cancer (NSCLC) accounts for the vast majority (about 85%) of lung cancers. Psychological and cognitive abnormalities are common in cancer patients, and cancer information can affect brain function and structure through various pathways. To observe abnormal brain function in NSCLC patients, the main purpose of this study was to construct an individualized metabolic brain network of patients with advanced NSCLC using the Kullback-Leibler divergence-based similarity (KLS) method.MethodsThis study included 78 patients with pathologically proven advanced NSCLC and 60 healthy individuals, brain 18F-FDG PET images of these individuals were collected and all patients with advanced NSCLC were followed up (>1 year) to confirm their overall survival. FDG-PET images were subjected to individual KLS metabolic network construction and Graph theoretical analysis. According to the analysis results, a predictive model was constructed by machine learning to predict the overall survival of NSLCL patients, and the correlation with the real survival was calculated.ResultsSignificant differences in the degree and betweenness distributions of brain network nodes between the NSCLC and control groups (p<0.05) were found. Compared to the normal group, patients with advanced NSCLC showed abnormal brain network connections and nodes in the temporal lobe, frontal lobe, and limbic system. The prediction model constructed using the abnormal brain network as a feature predicted the overall survival time and the actual survival time fitting with statistical significance (r=0.42, p=0.012).ConclusionsAn individualized brain metabolic network of patients with NSCLC was constructed using the KLS method, thereby providing more clinical information to guide further clinical treatment.
Collapse
Affiliation(s)
- Jie Yu
- Department of Nuclear Medicine, The Fifth Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Lin Hua
- Faculty of Health Sciences, University of Macau, Macau, Macau SAR, China
- Centre for Cognitive and Brain Sciences, University of Macau, Macau, Macau SAR, China
| | - Xiaoling Cao
- Department of Nuclear Medicine, The Fifth Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Qingling Chen
- Department of Nuclear Medicine, The Fifth Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Xinglin Zeng
- Faculty of Health Sciences, University of Macau, Macau, Macau SAR, China
| | - Zhen Yuan
- Faculty of Health Sciences, University of Macau, Macau, Macau SAR, China
- Centre for Cognitive and Brain Sciences, University of Macau, Macau, Macau SAR, China
- *Correspondence: Zhen Yuan, ; Ying Wang,
| | - Ying Wang
- Department of Nuclear Medicine, The Fifth Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Zhuhai, Guangdong, China
- *Correspondence: Zhen Yuan, ; Ying Wang,
| |
Collapse
|
33
|
Ma YH, Shen LX, Li YZ, Leng Y, Yang L, Chen SD, He XY, Zhang YR, Chen RJ, Feng JF, Tan L, Dong Q, Suckling J, David Smith A, Cheng W, Yu JT. Lung function and risk of incident dementia: A prospective cohort study of 431,834 individuals. Brain Behav Immun 2023; 109:321-330. [PMID: 36796705 DOI: 10.1016/j.bbi.2023.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 01/26/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023] Open
Abstract
BACKGROUND Whether lung function prospectively affects cognitive brain health independent of their overlapping factors remains largely unknown. This study aimed to investigate the longitudinal association between decreased lung function and cognitive brain health and to explore underlying biological and brain structural mechanisms. METHODS This population-based cohort included 43,1834 non-demented participants with spirometry from the UK Biobank. Cox proportional hazard models were fitted to estimate the risk of incident dementia for individuals with low lung function. Mediation models were regressed to explore the underlying mechanisms driven by inflammatory markers, oxygen-carrying indices, metabolites, and brain structures. FINDINGS During a follow-up of 3,736,181 person-years (mean follow-up 8.65 years), 5,622 participants (1.30 %) developed all-cause dementia, which consisted of 2,511 Alzheimer's dementia (AD) and 1,308 Vascular Dementia (VD) cases. Per unit decrease in lung function measure was each associated with increased risk for all-cause dementia (forced expiratory volume in 1 s [liter]: hazard ratio [HR, 95 %CI], 1.24 [1.14-1.34], P = 1.10 × 10-07; forced vital capacity [liter]: 1.16 [1.08-1.24], P = 2.04 × 10-05; peak expiratory flow [liter/min]: 1.0013 [1.0010-1.0017], P = 2.73 × 10-13). Low lung function generated similar hazard estimates for AD and VD risks. As underlying biological mechanisms, systematic inflammatory markers, oxygen-carrying indices, and specific metabolites mediated the effects of lung function on dementia risks. Besides, brain grey and white matter patterns mostly affected in dementia were substantially changed with lung function. INTERPRETATION Life-course risk for incident dementia was modulated by individual lung function. Maintaining optimal lung function is useful for healthy aging and dementia prevention.
Collapse
Affiliation(s)
- Ya-Hui Ma
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China; Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, Shanghai, China
| | - Ling-Xiao Shen
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, Shanghai, China
| | - Yu-Zhu Li
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Yue Leng
- Department of Psychiatry, University of California, San Francisco, CA, USA
| | - Liu Yang
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, Shanghai, China
| | - Shi-Dong Chen
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, Shanghai, China
| | - Xiao-Yu He
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, Shanghai, China
| | - Ya-Ru Zhang
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, Shanghai, China
| | - Ren-Jie Chen
- School of Public Health, Fudan University, Shanghai, China
| | - Jian-Feng Feng
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China; Department of Computer Science, University of Warwick, Coventry, United Kingdom; School of Mathematical Sciences, Fudan University, Shanghai, China
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Qiang Dong
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, Shanghai, China
| | - John Suckling
- Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
| | - A David Smith
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, United Kingdom
| | - Wei Cheng
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Jin-Tai Yu
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, Shanghai, China.
| |
Collapse
|
34
|
Akram N, Saeed F, Afzaal M, Shah YA, Qamar A, Faisal Z, Ghani S, Ateeq H, Akhtar MN, Tufail T, Hussain M, Asghar A, Rasheed A, Jbawi EA. Gut microbiota and synbiotic foods: Unveiling the relationship in COVID-19 perspective. Food Sci Nutr 2023; 11:1166-1177. [PMID: 36911846 PMCID: PMC10002946 DOI: 10.1002/fsn3.3162] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 11/14/2022] [Accepted: 11/18/2022] [Indexed: 01/13/2023] Open
Abstract
The Coronavirus disease 2019 (COVID-19) has spread across the globe and is causing widespread disaster. The impact of gut microbiota on lung disease has been widely documented. Diet, environment, and genetics all play a role in shaping the gut microbiota, which can influence the immune system. Improving the gut microbiota profile through customized diet, nutrition, and supplementation has been shown to boost immunity, which could be one of the preventative methods for reducing the impact of various diseases. Poor nutritional status is frequently linked to inflammation and oxidative stress, both of which can affect the immune system. This review emphasizes the necessity of maintaining an adequate level of important nutrients to effectively minimize inflammation and oxidative stress, moreover to strengthen the immune system during the COVID-19 severity. Furthermore, the purpose of this review is to present information and viewpoints on the use of probiotics, prebiotics, and synbiotics as adjuvants for microbiota modification and its effects on COVID-19 prevention and treatment.
Collapse
Affiliation(s)
- Noor Akram
- Department of Food and NutritionGovernment College UniversityFaisalabadPakistan
| | - Farhan Saeed
- Department of Food ScienceGovernment College UniversityFaisalabadPakistan
| | - Muhammad Afzaal
- Department of Food ScienceGovernment College UniversityFaisalabadPakistan
| | - Yasir Abbas Shah
- Department of Food ScienceGovernment College UniversityFaisalabadPakistan
| | - Aiza Qamar
- Department of Nutrition and Health PromotionUniversity of Home Economics LahoreLahorePakistan
| | - Zargham Faisal
- Institute of Food Science and NutritionBahauddin Zakariya University MultanMultanPakistan
| | - Samia Ghani
- Faculty of Pharmaceutical SciencesGovernment College University FaisalabadPunjabPakistan
| | - Huda Ateeq
- Department of Food ScienceGovernment College UniversityFaisalabadPakistan
| | - Muhammad Nadeem Akhtar
- University Institute of Diet and Nutritional SciencesThe University of LahoreLahorePakistan
| | - Tabassum Tufail
- University Institute of Diet and Nutritional SciencesThe University of LahoreLahorePakistan
| | - Muzzamal Hussain
- Department of Food ScienceGovernment College UniversityFaisalabadPakistan
| | - Aasma Asghar
- Department of Food ScienceGovernment College UniversityFaisalabadPakistan
| | - Ammara Rasheed
- Department of Food and NutritionGovernment College UniversityFaisalabadPakistan
| | | |
Collapse
|
35
|
Kang YJ, Xue Y, Shin JH, Cho H. Human mini-brains for reconstituting central nervous system disorders. LAB ON A CHIP 2023; 23:964-981. [PMID: 36644973 DOI: 10.1039/d2lc00897a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Neurological disorders in the central nervous system (CNS) are progressive and irreversible diseases leading to devastating impacts on patients' life as they cause cognitive impairment, dementia, and even loss of essential body functions. The development of effective medicines curing CNS disorders is, however, one of the most ambitious challenges due to the extremely complex functions and structures of the human brain. In this regard, there are unmet needs to develop simplified but physiopathologically-relevant brain models. Recent advances in the microfluidic techniques allow multicellular culture forming miniaturized 3D human brains by aligning parts of brain regions with specific cells serving suitable functions. In this review, we overview designs and strategies of microfluidics-based human mini-brains for reconstituting CNS disorders, particularly Alzheimer's disease (AD), Parkinson's disease (PD), traumatic brain injury (TBI), vascular dementia (VD), and environmental risk factor-driven dementia (ERFD). Afterward, the applications of the mini-brains in the area of medical science are introduced in terms of the clarification of pathogenic mechanisms and identification of promising biomarkers. We also present expanded model systems ranging from the CNS to CNS-connecting organ axes to study the entry pathways of pathological risk factors into the brain. Lastly, the advantages and potential challenges of current model systems are addressed with future perspectives.
Collapse
Affiliation(s)
- You Jung Kang
- Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, Republic of Korea.
- Department of Biophysics, Sungkyunkwan University, Suwon, Republic of Korea
| | - Yingqi Xue
- Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, Republic of Korea.
- Department of Biophysics, Sungkyunkwan University, Suwon, Republic of Korea
| | - Jae Hee Shin
- Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, Republic of Korea.
- Department of Biophysics, Sungkyunkwan University, Suwon, Republic of Korea
| | - Hansang Cho
- Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, Republic of Korea.
- Department of Biophysics, Sungkyunkwan University, Suwon, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, Republic of Korea
| |
Collapse
|
36
|
Liu D, Tang Z, Bajinka O, Dai P, Wu G, Qin L, Tan Y. miR-34b/c-5p/CXCL10 Axis Induced by RSV Infection Mediates a Mechanism of Airway Hyperresponsive Diseases. BIOLOGY 2023; 12:biology12020317. [PMID: 36829591 PMCID: PMC9953223 DOI: 10.3390/biology12020317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/11/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023]
Abstract
Background: RSV is closely correlated with post-infection airway hyperresponsive diseases (AHD), but the mechanism remains unclear. Objective: Due to the pivotal role of miRNAs in AHD, we analyzed the differentially expressed miRNAs (DEmiRs) in RSV-infected patients, asthma patients, and COPD patients from public datasets and explored the mechanisms of association between RSV and AHD. Methods: We obtained miRNA and mRNA databases of patients with RSV infection, as well as miRNA databases of asthma and COPD patients from the GEO database. Through integrated analysis, we screened DEmiRs and DEGs. Further analysis was carried out to obtain the hub genes through the analysis of biological pathways and enrichment pathways of DEGs targeted by DEmiRs and the construction of a protein-protein interaction (PPI) network. Results: The five differential molecules (miR-34b/c-5p, Cd14, Cxcl10, and Rhoh) were verified through in vivo experiments that had the same expression trend in the acute and chronic phases of RSV infection. Following infection of BEAS-2B cells with RSV, we confirmed that RSV infection down-regulated miR-34b/c-5p, and up-regulated the expression levels of CXCL10 and CD14. Furthermore, the results of the dual-luciferase reporter assay showed that CXCL10 was the target of hsa-miR-34c-5p. Conclusions: miR-34b/c-5p/CXCL10 axis mediates a mechanism of AHD.
Collapse
Affiliation(s)
- Dan Liu
- Department of Medical Microbiology, School of Basic Medical Sciences, Central South University, Changsha 410078, China
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Central South University, Changsha 410078, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410078, China
- Hunan Provincial Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Central South University, Changsha 410078, China
| | - Zhongxiang Tang
- Department of Medical Microbiology, School of Basic Medical Sciences, Central South University, Changsha 410078, China
- China-Africa Research Center of Infectious Diseases, Central South University, Changsha 410078, China
| | - Ousman Bajinka
- Department of Medical Microbiology, School of Basic Medical Sciences, Central South University, Changsha 410078, China
- China-Africa Research Center of Infectious Diseases, Central South University, Changsha 410078, China
| | - Pei Dai
- Department of Medical Microbiology, School of Basic Medical Sciences, Central South University, Changsha 410078, China
- China-Africa Research Center of Infectious Diseases, Central South University, Changsha 410078, China
| | - Guojun Wu
- Department of Medical Microbiology, School of Basic Medical Sciences, Central South University, Changsha 410078, China
| | - Ling Qin
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Central South University, Changsha 410078, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410078, China
- Hunan Provincial Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Central South University, Changsha 410078, China
- Correspondence: (L.Q.); (Y.T.)
| | - Yurong Tan
- Department of Medical Microbiology, School of Basic Medical Sciences, Central South University, Changsha 410078, China
- China-Africa Research Center of Infectious Diseases, Central South University, Changsha 410078, China
- Correspondence: (L.Q.); (Y.T.)
| |
Collapse
|
37
|
Dai P, Ruan P, Mao Y, Tang Z, Bajinka O, Wu G, Tan Y. The antiviral efficacies of small-molecule inhibitors against respiratory syncytial virus based on the F protein. J Antimicrob Chemother 2022; 78:169-179. [PMID: 36322459 DOI: 10.1093/jac/dkac370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 10/10/2022] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVES Respiratory syncytial virus (RSV) infection is one of the three most common causes of death in the infants, pre-schoolers, immunocompromised patients and elderly individuals due to many complications and lack of specific treatment. During RSV infection, the fusion protein (F protein) mediates the fusion of the virus envelope with the host cell membrane. Therefore, the F protein is an effective target for viral inhibition. METHODS We identified potential small-molecule inhibitors against RSV-F protein for the treatment of RSV infection using virtual screening and molecular dynamics (MD) simulations. The CCK8 assay was used to determine the cytotoxicity and quantitative RT-PCR and indirect fluorescence assay (IFA) were used to determine the viral replication and RSV-induced inflammation in vitro. An RSV-infected mouse model was established, and viral replication was assayed using real-time quantitative PCR and IFA. Virus-induced complications were also examined using histopathological analysis, airway resistance and the levels of IL-1β, IL-6 and TNF-α. RESULTS The top three potential inhibitors against the RSV-F protein were screened from the FDA-approved drug database. Z65, Z85 and Z74 significantly inhibited viral replication and RSV-induced inflammation. They also significantly alleviated RSV infection and RSV-induced complications in vivo. Z65 and Z85 had no cytotoxicity and better anti-RSV effects than Z74. CONCLUSIONS Z65 and Z85 may be suitable candidates for the treatment of RSV and serve as the basis for the development of new drugs.
Collapse
Affiliation(s)
- Pei Dai
- Department of Medical Microbiology, Xiangya School of Medicine, Central South University, Changsha 410078, Hunan, China.,Second Department of Laboratory, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan 410006, China
| | - Pinglang Ruan
- Department of Medical Microbiology, Xiangya School of Medicine, Central South University, Changsha 410078, Hunan, China
| | - Yu Mao
- Department of Medical Microbiology, Xiangya School of Medicine, Central South University, Changsha 410078, Hunan, China
| | - Zhongxiang Tang
- Department of Medical Microbiology, Xiangya School of Medicine, Central South University, Changsha 410078, Hunan, China
| | - Ousman Bajinka
- Department of Medical Microbiology, Xiangya School of Medicine, Central South University, Changsha 410078, Hunan, China.,School of Basic Medical Sciences, China-Africa Research Centre of Infectious Diseases, Central South University, Changsha 410078, Hunan, China
| | - Guojun Wu
- Department of Medical Microbiology, Xiangya School of Medicine, Central South University, Changsha 410078, Hunan, China
| | - Yurong Tan
- Department of Medical Microbiology, Xiangya School of Medicine, Central South University, Changsha 410078, Hunan, China.,School of Basic Medical Sciences, China-Africa Research Centre of Infectious Diseases, Central South University, Changsha 410078, Hunan, China
| |
Collapse
|
38
|
Mao Y, Bajinka O, Tang Z, Qiu X, Tan Y. Lung-brain axis: Metabolomics and pathological changes in lungs and brain of respiratory syncytial virus-infected mice. J Med Virol 2022; 94:5885-5893. [PMID: 35945613 DOI: 10.1002/jmv.28061] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/04/2022] [Accepted: 08/06/2022] [Indexed: 01/06/2023]
Abstract
The lung-brain axis is an emerging area of study that got its basis from the gut-brain axis biological pathway. Using Respiratory Synctial Virus (RSV) as the model of respiratory viral pathogen, this study aims to establish some biological pathways. After establishing the mice model, the inflammation in lung and brain were assayed using Hematoxylin-eosin staining, indirect immunofluorescence (IFA), and quantitative reverse-transcription polymerase chain reaction. The biological pathways between lung and brain were detected through metabolomics analysis. In lung, RSV infection promoted epithelial shedding and infiltration of inflammatory cells. Also, RSV immunofluorescence and titerss were significantly increased. Moreover, interleukin (IL)-1, IL-6 and tumor necrosis factor-α (TNF-α) were also significantly increased after RSV infection. In brain, the cell structure of hippocampal CA1 area was loose and disordered. Inflammatory cytokines IL-6 and IL-1β expression in the brain also increased, however, TNF-α expression showed no differences among the control and RSV group. We observed an increased expression of microglia biomarker IBA-1 and decreased neuronal biomarker NeuN. In addition, RSV mRNA expression levels were also increased in the brains. 15 metabolites were found upregulated in the RSV group including nerve-injuring metabolite glutaric acid, hydroxyglutaric acid and Spermine. ɑ-Estradiol increased significantly while normorphine decreased significantly at Day 7 of infection among the RSV group. This study established a mouse model for exploring the pathological changes in lungs and brains. There are many biological pathways between lung and brain, including direct translocation of RSV and metabolite pathway.
Collapse
Affiliation(s)
- Yu Mao
- Department of Medical Microbiology, School of Basic and Medical Sciences, Central South University, Changsha, Hunan Provinces, China.,China-Africa Research Center of Infectious Diseases, School of Basic and Medical Sciences, Central South University, Changsha, Hunan, China
| | - Ousman Bajinka
- Department of Medical Microbiology, School of Basic and Medical Sciences, Central South University, Changsha, Hunan Provinces, China.,China-Africa Research Center of Infectious Diseases, School of Basic and Medical Sciences, Central South University, Changsha, Hunan, China.,Department of Medicine, School of Medicine and Allied Health Sciences, University of The Gambia, Serekunda, Gambia
| | - Zhongxiang Tang
- Department of Medical Microbiology, School of Basic and Medical Sciences, Central South University, Changsha, Hunan Provinces, China.,China-Africa Research Center of Infectious Diseases, School of Basic and Medical Sciences, Central South University, Changsha, Hunan, China
| | - Xiangjie Qiu
- Department of Medical Microbiology, School of Basic and Medical Sciences, Central South University, Changsha, Hunan Provinces, China.,China-Africa Research Center of Infectious Diseases, School of Basic and Medical Sciences, Central South University, Changsha, Hunan, China
| | - Yurong Tan
- Department of Medical Microbiology, School of Basic and Medical Sciences, Central South University, Changsha, Hunan Provinces, China.,China-Africa Research Center of Infectious Diseases, School of Basic and Medical Sciences, Central South University, Changsha, Hunan, China
| |
Collapse
|
39
|
Rossi E, Mutti L, Morrione A, Giordano A. Neuro-Immune Interactions in Severe COVID-19 Infection. Pathogens 2022; 11:1256. [PMID: 36365007 PMCID: PMC9699641 DOI: 10.3390/pathogens11111256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 12/15/2022] Open
Abstract
SARS-CoV-2 is a new coronavirus that has affected the world since 2019. Interstitial pneumonia is the most common clinical presentation, but additional symptoms have been reported, including neurological manifestations. Severe forms of infection, especially in elderly patients, present as an excessive inflammatory response called "cytokine storm", which can lead to acute respiratory distress syndrome (ARDS), multiorgan failure and death. Little is known about the relationship between symptoms and clinical outcomes or the characteristics of virus-host interactions. The aim of this narrative review is to highlight possible links between neurological involvement and respiratory damage mediated by pathological inflammatory pathways in SARS-CoV-2 infection. We will focus on neuro-immune interactions and age-related immunity decline and discuss some pathological mechanisms that contribute to negative outcomes in COVID-19 patients. Furthermore, we will describe available therapeutic strategies and their effects on COVID-19 neurological symptoms.
Collapse
Affiliation(s)
- Elena Rossi
- Department of Medicine, Surgery and Neuroscience, University of Siena, 53100 Siena, Italy
| | - Luciano Mutti
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
- Italian Group for Research and Therapy for Mesothelioma (GIMe), 27058 Voghera, Italy
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio, Coppito 2, 67100 L’Aquila, Italy
| | - Andrea Morrione
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
| | - Antonio Giordano
- Department of Medicine, Surgery and Neuroscience, University of Siena, 53100 Siena, Italy
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
| |
Collapse
|
40
|
Wong YS, Osborne NJ. Biodiversity Effects on Human Mental Health via Microbiota Alterations. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:11882. [PMID: 36231182 PMCID: PMC9565733 DOI: 10.3390/ijerph191911882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/12/2022] [Accepted: 09/14/2022] [Indexed: 06/16/2023]
Abstract
The biodiversity hypothesis postulates that the natural environment positively affects human physical and mental health. We evaluate the latest evidence and propose new tools to examine the halobiont environment. We chose to target our review at neuropsychiatric disorders, including depression, anxiety, autism, dementia, multiple sclerosis, etc. because a green prescription (exposure to green spaces) was shown to benefit patients with neuropsychiatric disorders. Specifically, our review consists of three mini reviews on the associations exploring: (1) ecological biodiversity and human microbiota; (2) human microbiota and neuropsychiatric disorders; (3) ecological biodiversity and neuropsychiatric disorders. We conclude that the environment could directly transfer microbes to humans and that human studies support the gut microbiota as part of the pathophysiology of neuropsychiatric disorders. Overall, the results from the three mini reviews consistently support the biodiversity hypothesis. These findings demonstrated the plausibility of biodiversity exerting mental health effects through biophysiological mechanisms instead of psychological mechanisms alone. The idea can be further tested with novel biodiversity measurements and research on the effects of a green prescription.
Collapse
Affiliation(s)
- Yee Sang Wong
- School of Medicine, The University of Queensland, Herston, QLD 4006, Australia
| | - Nicholas John Osborne
- School of Public Health, The University of Queensland, Herston, QLD 4006, Australia
- School of Population Health, University of New South Wales, Sydney, NSW 2052, Australia
- European Centre for Environment and Human Health (ECEHH), University of Exeter Medical School, Knowledge Spa, Royal Cornwall Hospital, Truro TR1 3HD, Cornwall, UK
| |
Collapse
|
41
|
Tran VTA, Lee LP, Cho H. Neuroinflammation in neurodegeneration via microbial infections. Front Immunol 2022; 13:907804. [PMID: 36052093 PMCID: PMC9425114 DOI: 10.3389/fimmu.2022.907804] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 07/01/2022] [Indexed: 11/13/2022] Open
Abstract
Recent epidemiological studies show a noticeable correlation between chronic microbial infections and neurological disorders. However, the underlying mechanisms are still not clear due to the biological complexity of multicellular and multiorgan interactions upon microbial infections. In this review, we show the infection leading to neurodegeneration mediated by multiorgan interconnections and neuroinflammation. Firstly, we highlight three inter-organ communications as possible routes from infection sites to the brain: nose-brain axis, lung-brain axis, and gut-brain axis. Next, we described the biological crosstalk between microglia and astrocytes upon pathogenic infection. Finally, our study indicates how neuroinflammation is a critical player in pathogen-mediated neurodegeneration. Taken together, we envision that antibiotics targeting neuro-pathogens could be a potential therapeutic strategy for neurodegeneration.
Collapse
Affiliation(s)
- Van Thi Ai Tran
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, South Korea
| | - Luke P. Lee
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, South Korea
- Department of Medicine, Harvard Medical School, Brigham and Women’s Hospital, Harvard Institute of Medicine, Harvard University, Boston, MA, United States
- *Correspondence: Hansang Cho, ; Luke P. Lee,
| | - Hansang Cho
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, South Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, South Korea
- *Correspondence: Hansang Cho, ; Luke P. Lee,
| |
Collapse
|
42
|
Abnormal Gene Expression Regulation Mechanism of Myeloid Cell Nuclear Differentiation Antigen in Lung Adenocarcinoma. BIOLOGY 2022; 11:biology11071047. [PMID: 36101427 PMCID: PMC9312870 DOI: 10.3390/biology11071047] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/08/2022] [Accepted: 07/11/2022] [Indexed: 11/16/2022]
Abstract
Lung adenocarcinoma (LA) is the main pathological type of lung cancer with a very low 5-year survival rate. In the present study, after downloading the mRNA, miRNA, and DNA methylation sequencing data from TCGA, combined with the downloaded clinical data, comparative analysis, prognostic analysis, GO and KEGG analysis, GSEA analysis, methylation analysis, transcriptional regulation and post-transcriptional regulation were performed. We found that both methylation and gene expression of MNDA in LA were down-regulated, while high expression of MNDA was associated with good overall survival in LA. To probe the mechanism, further analysis showed that SPI1 was the main transcription factor of MNDA, but it was also down-regulated in LA. At the same time, the expression of eight target miRNAs of MNDA was significantly up-regulated, and the expression of hsa-miR-33a-5p and hsa-miR-33b-5p were verified to directly target MNDA. In conclusion, the abnormal expression of MNDA in LA is the result of the combined effects of transcriptional and post-transcriptional regulation.
Collapse
|
43
|
Barbosa-Amezcua M, Galeana-Cadena D, Alvarado-Peña N, Silva-Herzog E. The Microbiome as Part of the Contemporary View of Tuberculosis Disease. Pathogens 2022; 11:pathogens11050584. [PMID: 35631105 PMCID: PMC9147979 DOI: 10.3390/pathogens11050584] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/03/2022] [Accepted: 05/07/2022] [Indexed: 11/28/2022] Open
Abstract
The study of the microbiome has changed our overall perspective on health and disease. Although studies of the lung microbiome have lagged behind those on the gastrointestinal microbiome, there is now evidence that the lung microbiome is a rich, dynamic ecosystem. Tuberculosis is one of the oldest human diseases, it is primarily a respiratory infectious disease caused by strains from the Mycobacterium tuberculosis Complex. Even today, during the COVID-19 pandemic, it remains one of the principal causes of morbidity and mortality worldwide. Tuberculosis disease manifests itself as a dynamic spectrum that ranges from asymptomatic latent infection to life-threatening active disease. The review aims to provide an overview of the microbiome in the tuberculosis setting, both in patients’ and animal models. We discuss the relevance of the microbiome and its dysbiosis, and how, probably through its interaction with the immune system, it is a significant factor in tuberculosis’s susceptibility, establishment, and severity.
Collapse
Affiliation(s)
- Martín Barbosa-Amezcua
- Laboratorio de Farmacogenómica, Instituto Nacional de Medicina Genomica (INMEGEN), Mexico City 14610, Mexico;
| | - David Galeana-Cadena
- Laboratorio de Inmunobiología y Genética, Instituto Nacional de Enfermedades Respiratorias (INER), Mexico City 14080, Mexico;
| | - Néstor Alvarado-Peña
- Coordinación de Infectología y Microbiología, Instituto Nacional de Enfermedades Respiratorias (INER), Mexico City 14080, Mexico;
| | - Eugenia Silva-Herzog
- Coordinación de Infectología y Microbiología, Instituto Nacional de Enfermedades Respiratorias (INER), Mexico City 14080, Mexico;
- Laboratorio de Vinculación Científica, Facultad de Medicina-Universidad Nacional Autonoma de Mexico-Instituto Nacional de Medicina Genomica (UNAM-INMEGEN), Mexico City 14610, Mexico
- Correspondence:
| |
Collapse
|
44
|
lncRNA STAT4-AS1 Inhibited TH17 Cell Differentiation by Targeting ROR γt Protein. J Immunol Res 2022; 2022:8307280. [PMID: 35528611 PMCID: PMC9071868 DOI: 10.1155/2022/8307280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 04/05/2022] [Indexed: 11/18/2022] Open
Abstract
Objective From our previous study, we obtained long noncoding RNA (lncRNA) STAT4-AS1, which is related to asthma through high-throughput screening. However, we could not determine the specific mechanism involved and in response to this. We further designed this study. Results First, we found that lncRNA STAT4-AS1 was downregulated in T cells from patients with asthma when compared to healthy controls. Next, we confirmed that lncRNA STAT4-AS1 was significantly negatively correlated with T helper 17 (TH17) differentiation in vitro experiments. The decreases of STAT4-AS1 promoted TH17 differentiation, while the increases of STAT4-AS1 inhibited TH17 differentiation. Subsequently, through RNA pull-down, RNA-binding protein immunoprecipitation (RIP), and dual luciferase reporter assay, we found that STAT4-AS1 could inhibit the binding of retinoid-related orphan receptor-γt (RORγt) protein with an IL-17A promoter after binding with RORγt protein. Fluorescence in situ hybridization (FISH) and nuclear-cytoplasmic separation assay showed that STAT4-AS1 is bonded to RORγt in the cytoplasm, preventing RORγt from entering the nucleus. Conclusion Overall, STAT4-AS1 directly targets RORγt protein, inhibits the mutual binding of RORγt and IL-17 gene promoter, and eventually inhibits TH17 differentiation. To this end, STAT4-AS1 as a potential target may confer applications in the clinical treatment and diagnosis of TH17-related diseases.
Collapse
|
45
|
Liu B, Yang Q, Zhao L, Shui H, Si X. Vitamin D receptor gene polymorphism predicts left ventricular hypertrophy in maintenance hemodialysis. BMC Nephrol 2022; 23:32. [PMID: 35033017 PMCID: PMC8761333 DOI: 10.1186/s12882-021-02640-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 12/13/2021] [Indexed: 01/04/2023] Open
Abstract
Background To verify that the single nucleotide polymorphisms (SNP) of vitamin D receptor (VDR) may lead to genetic susceptibility to left ventricular hypertrophy (LVH), the present study was designed to study four SNPs of VDR associated with LVH in maintenance hemodialysis (MHD) patients of Han nationality. Methods 120 MHD patients were recruited at Department of Nephrology, Zhongnan Hospital of Wuhan University to analyze the expression of genotype, allele and haplotype of Fok I, Bsm I, Apa I and Taq I in blood samples, and to explore their correlation with blood biochemical indexes and ventricular remodeling. Results The results showed that the risks of CVD included gender, dialysis time, heart rate, SBP, glycated hemoglobin, calcium, iPTH and CRP concentration. Moreover, LAD, LVDd, LVDs, IVST and LVMI in B allele of Bsm I increased significantly. Fok I, Apa I and Taq I polymorphisms have no significant difference between MHD with LVH and without LVH. Further study showed that VDR expression level decreased significantly in MHD patients with LVH, and the B allele was positively correlated with VDR Expression. Conclusion VDR Bsm I gene polymorphism may predict cardiovascular disease risk of MDH patients, and provided theoretical basis for early detection and prevention of cardiovascular complications.
Collapse
Affiliation(s)
- Bingman Liu
- Department of Nephrology, Zhongnan Hospital of Wuhan University, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China
| | - Qingqing Yang
- Department of Nephrology, Zhongnan Hospital of Wuhan University, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China
| | - Liangyu Zhao
- Department of Nephrology, Zhongnan Hospital of Wuhan University, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China
| | - Hua Shui
- Department of Nephrology, Zhongnan Hospital of Wuhan University, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China
| | - Xiaoyun Si
- Department of Nephrology, Zhongnan Hospital of Wuhan University, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China.
| |
Collapse
|
46
|
Bruno A, Ferrante G, Di Vincenzo S, Pace E, La Grutta S. Leptin in the Respiratory Tract: Is There a Role in SARS-CoV-2 Infection? Front Physiol 2022; 12:776963. [PMID: 35002761 PMCID: PMC8727443 DOI: 10.3389/fphys.2021.776963] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/26/2021] [Indexed: 12/23/2022] Open
Abstract
Leptin is a pleiotropic adipocytokine involved in several physiologic functions, with a known role in innate and adaptive immunity as well as in tissue homeostasis. Long- and short-isoforms of leptin receptors are widely expressed in many peripheral tissues and organs, such as the respiratory tract. Similar to leptin, microbiota affects the immune system and may interfere with lung health through the bidirectional crosstalk called the “gut-lung axis.” Obesity leads to impaired protective immunity and altered susceptibility to pulmonary infections, as those by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Although it is known that leptin and microbiota link metabolism and lung health, their role within the SARS-CoV2 coronavirus disease 2019 (COVID-19) deserves further investigations. This review aimed to summarize the available evidence about: (i) the role of leptin in immune modulation; (ii) the role of gut microbiota within the gut-lung axis in modulating leptin sensitivity; and (iii) the role of leptin in the pathophysiology of COVID-19.
Collapse
Affiliation(s)
- Andreina Bruno
- Institute for Biomedical Research and Innovation, National Research Council, Palermo, Italy
| | - Giuliana Ferrante
- Pediatric Division, Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics, University of Verona, Verona, Italy
| | - Serena Di Vincenzo
- Institute for Biomedical Research and Innovation, National Research Council, Palermo, Italy
| | - Elisabetta Pace
- Institute for Biomedical Research and Innovation, National Research Council, Palermo, Italy
| | - Stefania La Grutta
- Institute for Biomedical Research and Innovation, National Research Council, Palermo, Italy
| |
Collapse
|
47
|
Dai P, Tang Z, Qi M, Liu D, Bajinka O, Tan Y. Dispersion and utilization of lipid droplets mediates respiratory syncytial virus-induced airway hyperresponsiveness. Pediatr Allergy Immunol 2022; 33:e13651. [PMID: 34383332 DOI: 10.1111/pai.13651] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/30/2021] [Accepted: 08/05/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND Respiratory viral infections (RSV) can induce acute asthma attacks, thereby destroying lung function and accelerating the progression of the disease. However, medications in the stable phase of asthma are often not effective for acute attacks induced by viral infections. We aimed to clarify the possible mechanism of viral infection-induced asthma through fatty acid metabolism. METHODS AND RESULTS The airway resistances, inflammatory injuries, and oxidative stress in the RSV-induced animal models were significantly higher than those in the control group at acute phase (7 days) and chronic phase (28 days). Moreover, the concentrations of the medium- and long-chain fatty acids in lung tissue at (28 days) were significantly increased, including 14:0 (myristic acid), 16:0 (palmitic acid, PA), 18:1 (oleic acid, OA), and 18:2 (linoleic acid, LA) using non-targeted metabonomics. Airway epithelial cells treated with RSV showed the reduced expression of FSP27, RAB8A, and PLIN5, which caused the fusion and growth of lipid droplet (LD), and increased expression of the LD dispersion gene perilipin 2. There was also a decrease in PPARγ expression and an increase in the fatty acid catabolism gene PPARα, causing lipid oxidation, free fatty acid releases, and an upsurge in IL-1, IL-2, IL-4, and IL-6 expression, which could be abrogated by GPR40 inhibitor. Treated mice or epithelial cells with C18 fatty acid exhibited inhibition of epithelial proliferation, increases of inflammation, and oxidative damage. CONCLUSIONS RSV promoted lipid dispersion and utilization, causing enlarged oxidative injuries and an upsurge in the pro-inflammatory cytokines, leading to the progression of airway hyperresponsiveness (AHR).
Collapse
Affiliation(s)
- Pei Dai
- Department of Medical Microbiology, Xiangya School of Medicine, Central South University, Changsha, China.,China-Africa Research Centre of Infectious Diseases, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Zhongxiang Tang
- Department of Medical Microbiology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Mingming Qi
- Department of Obstetrics, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Hunan, China
| | - Dan Liu
- Department of Medical Microbiology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Ousman Bajinka
- Department of Medical Microbiology, Xiangya School of Medicine, Central South University, Changsha, China.,China-Africa Research Centre of Infectious Diseases, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Yurong Tan
- Department of Medical Microbiology, Xiangya School of Medicine, Central South University, Changsha, China.,China-Africa Research Centre of Infectious Diseases, School of Basic Medical Sciences, Central South University, Changsha, China
| |
Collapse
|
48
|
Bajinka O, Qi M, Barrow A, Touray AO, Yang L, Tan Y. Pathogenicity of Salmonella During Schistosoma-Salmonella Co-infections and the Importance of the Gut Microbiota. Curr Microbiol 2021; 79:26. [PMID: 34905113 PMCID: PMC8669234 DOI: 10.1007/s00284-021-02718-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 10/21/2021] [Indexed: 11/24/2022]
Abstract
Antibiotic inefficacy in treating bacterial infections is largely studied in the context of developing resistance mechanisms. However, little attention has been paid to combined diseases mechanisms, interspecies pathogenesis and the resulting impact on antimicrobial treatment. This review will consider the co-infections of Salmonella and Schistosoma mansoni. It summarises the protective mechanisms that the pathophysiology of the two infections confer, which leads to an antibiotic protection phenomenon. This review will elucidate the functional characteristics of the gut microbiota in the context of these co-infections, the pathogenicity of these infections in infected mice, and the efficacy of the antibiotics used in treatment of these co-infections over time. Salmonella-Schistosoma interactions and the mechanism for antibiotic protection are not well established. However, antimicrobial drug inefficacy is an existing phenomenon in these co-infections. The treatment of schistosomiasis to ensure the efficacy of antibiotic therapy for bacterial infections should be considered in co-infected patients.
Collapse
Affiliation(s)
- Ousman Bajinka
- Department of Microbiology, Central South University, Changsha, Hunan, China.,China-Africa Research Centre of Infectious Diseases, School of Basic Medical Sciences, Central South University, Changsha, 410078, Hunan, China.,School of Medicine and Allied Health Sciences, University of The Gambia, Banjul, The Gambia
| | - Mingming Qi
- Department of Obstetrics, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, Hunan, China
| | - Amadou Barrow
- Heidelberg Institute of Global Health, University Hospital and Medical Faculty, Heidelberg University, Heidelberg, Germany.,School of Medicine and Allied Health Sciences, University of The Gambia, Banjul, The Gambia
| | - Abdoulie O Touray
- Division of Experimental Medicine, McGill University, Montreal, Canada
| | - Lulu Yang
- Department of Microbiology, Central South University, Changsha, Hunan, China
| | - Yurong Tan
- Department of Microbiology, Central South University, Changsha, Hunan, China. .,China-Africa Research Centre of Infectious Diseases, School of Basic Medical Sciences, Central South University, Changsha, 410078, Hunan, China. .,Department of Microbiology, Xiangya School of Medicine, Central South University, Changsha, 410078, Hunan, China.
| |
Collapse
|
49
|
Luo X, Gong Y, Cai L, Zhang L, Dong X. Chemerin regulates autophagy to participate in polycystic ovary syndrome. J Int Med Res 2021; 49:3000605211058376. [PMID: 34816741 PMCID: PMC8647268 DOI: 10.1177/03000605211058376] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
OBJECTIVE Polycystic ovary syndrome (PCOS) is a prevalent endocrine disorder in women of reproductive age. Chemerin has recently been discovered as a novel adipokine associated with obesity and metabolic syndrome. Excessive autophagy activity and overexpression of autophagy-related genes in follicular granulosa cells are important mechanisms of PCOS. This study aimed to investigate the effect of chemerin on autophagy in PCOS. METHODS A rat model of PCOS was established by subcutaneous injection of testosterone propionate under a high-fat diet. Expression levels of chemerin and its receptor CMKLR1 were determined by real-time polymerase chain reaction and western blot. Proliferation and apoptosis of human granulosa cells in vitro and expression of autophagy-related genes were examined using bafilomycin A1 (autophagy inhibitor) and Torin1 (autophagy inducer). RESULTS Chemerin and CMKLR1 expression were significantly increased in the ovary in a rat model of PCOS. Ectopic expression of chemerin promoted the proliferation and inhibited the apoptosis of COV434 cells. Ectopic expression of chemerin also induced autophagy by inhibiting the phosphoinositide 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) signaling pathway. CONCLUSIONS Chemerin and CMKLR1 were overexpressed in PCOS rats. Chemerin promoted autophagy through inhibiting the PI3K/Akt/mTOR pathway, and may provide a potential target and biomarker of PCOS.
Collapse
Affiliation(s)
- Xiaodong Luo
- Department of Obstetrics and Gynecology, 585250The Second Affiliated Hospital of Chongqing Medical University, The Second Affiliated Hospital of Chongqing Medical University, Yuzhong District, Chongqing, P. R. China
| | - Yangyang Gong
- Department of Obstetrics and Gynecology, 585250The Second Affiliated Hospital of Chongqing Medical University, The Second Affiliated Hospital of Chongqing Medical University, Yuzhong District, Chongqing, P. R. China
| | - Liuyun Cai
- Department of Obstetrics and Gynecology, 585250The Second Affiliated Hospital of Chongqing Medical University, The Second Affiliated Hospital of Chongqing Medical University, Yuzhong District, Chongqing, P. R. China
| | - Lei Zhang
- Department of Obstetrics and Gynecology, 585250The Second Affiliated Hospital of Chongqing Medical University, The Second Affiliated Hospital of Chongqing Medical University, Yuzhong District, Chongqing, P. R. China
| | - Xiaojing Dong
- Department of Obstetrics and Gynecology, 585250The Second Affiliated Hospital of Chongqing Medical University, The Second Affiliated Hospital of Chongqing Medical University, Yuzhong District, Chongqing, P. R. China
| |
Collapse
|
50
|
Li W, Du X, Yang Y, Yuan L, Yang M, Qin L, Wang L, Zhou K, Xiang Y, Qu X, Liu H, Qin X, Xiao G, Liu C. miRNA-34b/c regulates mucus secretion in RSV-infected airway epithelial cells by targeting FGFR1. J Cell Mol Med 2021; 25:10565-10574. [PMID: 34636482 PMCID: PMC8581336 DOI: 10.1111/jcmm.16988] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 08/28/2021] [Accepted: 09/08/2021] [Indexed: 12/16/2022] Open
Abstract
Respiratory syncytial virus (RSV) infection in airway epithelial cells is the main cause of bronchiolitis in children. Excessive mucus secretion is one of the primary symbols in RSV related lower respiratory tract infections (RSV-related LRTI). However, the pathological processes of mucus hypersecretion in RSV-infected airway epithelial cells remains unclear. The current study explores the involvement of miR-34b/miR-34c in mucus hypersecretion in RSV-infected airway epithelial cells by targeting FGFR1. First, miR-34b/miR-34c and FGFR1 mRNA were quantified by qPCR in throat swab samples and cell lines, respectively. Then, the luciferase reporters' assay was designed to verify the direct binding between FGFR1 and miR-34b/miR-34c. Finally, the involvement of AP-1 signalling was assessed by western blot. This study identified that miR-34b/miR-34c was involved in c-Jun-regulated MUC5AC production by targeting FGFR1 in RSV-infected airway epithelial cells. These results provide some useful insights into the molecular mechanisms of mucus hypersecretion which may also bring new potential strategies to improve mucus hypersecretion in RSV disease.
Collapse
Affiliation(s)
- Wenkai Li
- Department of PediatricsHunan Provincial People’s HospitalThe First Affiliated Hospital of Hunan Normal UniversityChangshaChina
| | - Xizi Du
- Centre for Asthma and Respiratory DiseaseSchool of Biomedical Sciences and PharmacyFaculty of Health and MedicineUniversity of Newcastle and Hunter Medical Research InstituteCallaghanNSWAustralia
- Department of Respiratory MedicineNational Clinical Research Center for Respiratory DiseasesXiangya HospitalCentral South UniversityChangshaChina
| | - Yu Yang
- Department of PhysiologySchool of Basic Medicine ScienceCentral South UniversityChangshaChina
| | - Lin Yuan
- Department of PhysiologySchool of Basic Medicine ScienceCentral South UniversityChangshaChina
| | - Ming Yang
- Centre for Asthma and Respiratory DiseaseSchool of Biomedical Sciences and PharmacyFaculty of Health and MedicineUniversity of Newcastle and Hunter Medical Research InstituteCallaghanNSWAustralia
| | - Ling Qin
- Department of Respiratory MedicineNational Clinical Research Center for Respiratory DiseasesXiangya HospitalCentral South UniversityChangshaChina
| | - Leyuan Wang
- Department of PhysiologySchool of Basic Medicine ScienceCentral South UniversityChangshaChina
| | - Kai Zhou
- Department of PhysiologySchool of Basic Medicine ScienceCentral South UniversityChangshaChina
| | - Yang Xiang
- Department of PhysiologySchool of Basic Medicine ScienceCentral South UniversityChangshaChina
| | - Xiangping Qu
- Department of PhysiologySchool of Basic Medicine ScienceCentral South UniversityChangshaChina
| | - Huijun Liu
- Department of PhysiologySchool of Basic Medicine ScienceCentral South UniversityChangshaChina
| | - Xiaoqun Qin
- Department of PhysiologySchool of Basic Medicine ScienceCentral South UniversityChangshaChina
| | - Gelei Xiao
- Department of NeurosurgeryXiangya HospitalCentral South UniversityChangshaChina
| | - Chi Liu
- Department of Respiratory MedicineNational Clinical Research Center for Respiratory DiseasesXiangya HospitalCentral South UniversityChangshaChina
- Department of PhysiologySchool of Basic Medicine ScienceCentral South UniversityChangshaChina
| |
Collapse
|