1
|
Jeschke P. New Active Ingredients for Sustainable Modern Chemical Crop Protection in Agriculture. CHEMSUSCHEM 2025; 18:e202401042. [PMID: 39373399 PMCID: PMC11739819 DOI: 10.1002/cssc.202401042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/16/2024] [Indexed: 10/08/2024]
Abstract
Today, the agrochemical industry faces enormous challenges to ensure the sustainable supply of high-quality food, efficient water use, low environmental impact, and the growing world population. The shortage of agrochemicals due to consumer perception, changing needs of farmers and ever-changing regulatory requirements is higher than the number of active ingredients that are placed on the market. The introduction of halogen atoms into an active ingredient molecule offers the opportunity to optimize its physico-chemical properties such as molecular lipophilicity. As early as 2010, around four-fifths of modern agrochemicals on the market contained halogen atoms. In addition, it becomes clear that modern agrochemicals have increasingly complex molecular structures with one or more stereogenic centers in the molecule. Today, almost half of modern agrochemicals are chiral molecules (herbicides, insecticides/acaricides/nematicides ≪ fungicides) and most of them consist of mixtures such as racemic mixtures of enantiomers, followed by mixtures of diastereomers and mixtures of pure enantiomers. Therefore, it is important that halogen-containing substituents or stereogenic centers are considered in the structural optimization of the active ingredients to ultimately develop sustainable agrochemicals in terms of efficacy, ecotoxicology, ease of use and cost-effectiveness.
Collapse
Affiliation(s)
- Peter Jeschke
- Institute of Organic Chemistry and Macromolecular ChemistryHeinrich Heine University DüsseldorfUniversity Street 1D-40225DuesseldorfGermany
| |
Collapse
|
2
|
Shi Q, Moors S, Dawick J, Kavanagh L, Neely T, Tian Y, Dreeßen B, Carrillo JC, Hein H, Boogaard PJ. Metabolism of alcohol ethoxylates (AEs) in rat, hamster, and human hepatocytes and liver S9: a pilot study for metabolic stability, metabolic pathway, and metabolites identification in vitro and in silico. Arch Toxicol 2024; 98:2487-2539. [PMID: 38844554 PMCID: PMC11272826 DOI: 10.1007/s00204-024-03761-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 04/10/2024] [Indexed: 07/26/2024]
Abstract
Alcohol ethoxylates (AEs) are a well-known class of non-ionic surfactants widely used by the personal care market. The aim of this study was to evaluate and characterize the in vitro metabolism of AEs and identify metabolites. Five selected individual homologue AEs (C8EO4, C10EO5, C12EO4, C16EO8, and C18EO3) were incubated using human, rat, and hamster liver S9 fraction and cryopreserved hepatocytes. LC-MS was used to identify metabolites following the incubation of AEs by liver S9 and hepatocytes of all three species. All AEs were metabolized in these systems with a half-life ranging from 2 to 139 min. In general, incubation of AE with human liver S9 showed a shorter half-life compared to rat liver S9. While rat hepatocytes metabolized AEs faster than human hepatocytes. Both hydrophobic alkyl chain and hydrophilic EO head group groups of AEs were found to be target sites of metabolism. Metabolites were identified that show primary hydroxylation and dehydrogenation, followed by O-dealkylation (shortening of EO head groups) and glucuronidation. Additionally, the detection of whole EO groups indicates the cleavage of the ether bond between the alkyl chain and the EO groups as a minor metabolic pathway in the current testing system. Furthermore, no difference in metabolic patterns of each individual homologue AE investigated was observed, regardless of alkyl chain length or the number of EO groups. Moreover, there is an excellent agreement between the in vitro experimental data and the metabolite profile simulations using in silico approaches (OECD QSAR Toolbox). Altogether, these data indicate fast metabolism of all AEs with a qualitatively similar metabolic pathway with some quantitative differences observed in the metabolite profiles. These metabolic studies using different species can provide important reference values for further safety evaluation.
Collapse
Affiliation(s)
- Quan Shi
- Shell Global Solutions International B.V., Carel van Bylandtlaan 16, 2596 HR, The Hague, The Netherlands.
| | - Stefan Moors
- BASF Personal Care and Nutrition GmbH, Henkelstrasse 67, 40589, Düsseldorf, Germany
| | - James Dawick
- Innospec Limited, Innospec Manufacturing Park, Oil G Sites Road Ellesmere Port, Cheshire, CH65 4EY, UK
| | - Lauren Kavanagh
- Innospec Limited, Innospec Manufacturing Park, Oil G Sites Road Ellesmere Port, Cheshire, CH65 4EY, UK
| | - Theresa Neely
- Dr. Knoell Consult Ltd., 22 Cathedral Road, Cardiff, CF11 9IJ, UK
| | - Yuan Tian
- Institute of Ophthalmology, University College London, 11-43 Bath St, London, EC1V 9EL, UK
| | - Birte Dreeßen
- Sasol Germany GmbH, Paul-Baumann-Str. 1, 45772, Marl, Germany
| | - Juan-Carlos Carrillo
- Shell Global Solutions International B.V., Carel van Bylandtlaan 16, 2596 HR, The Hague, The Netherlands
| | - Holger Hein
- Knoell Germany GmbH, Marie-Curie-Straße 8, 51377, Leverkusen, Germany
| | - Peter J Boogaard
- Division of Toxicology, Wageningen University and Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| |
Collapse
|
3
|
Jeschke P. Recent developments in fluorine-containing pesticides. PEST MANAGEMENT SCIENCE 2024; 80:3065-3087. [PMID: 38073050 DOI: 10.1002/ps.7921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 11/28/2023] [Accepted: 12/11/2023] [Indexed: 01/17/2024]
Abstract
To ensure ongoing sustainability, the modern agrochemical industry is faced with enormous challenges. These arise from provision of high-quality food to increasing water use and environmental impact as well as a growing world population. The loss of previous agrochemicals due to consumer perception, changing grower needs and ever-changing regulatory requirements is higher than the number of active ingredients that are being introduced into the crop protection market. Therefore, the development of novel agrochemicals is essential to provide improved efficacy and environmental profiles. In this context, the introduction of fluorine atoms and fluorine-containing motifs into a molecule is an important method to influence its physicochemical properties. These include, for example, small difluoro- and trifluoromethyl, or trifluoromethoxy groups at aryl or heterocyclic aryl moieties but also fragments like 2,2,2-trifluoroethoxycarbonyl, trifluoromethylsulfonyl, trifluoroacetyl, as well as the so far unusal rest like heptafluoro-iso-propyl. This review gives an overview of recent developments of fluorine-containing pesticides launched over the past 7 years and describes a selection of current fluorine-containing development candidates. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Peter Jeschke
- Institute of Organic Chemistry and Macromolecular Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
4
|
Tian X, Yin S, Liu Z, Cao J, Liu X, Qiu Q. Elucidation of the Molecular Mechanism of Compound Danshen Dripping Pills against Angina Pectoris based on Network Pharmacology and Molecular Docking. Curr Pharm Des 2024; 30:1247-1264. [PMID: 38584551 DOI: 10.2174/0113816128287109240321074628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/29/2024] [Accepted: 03/05/2024] [Indexed: 04/09/2024]
Abstract
BACKGROUND Compound Danshen dripping pills (CDDP), a traditional Chinese medicine, has had an extensive application in the treatment of angina pectoris (AP) in China. However, research on the bioactive ingredients and underlying mechanisms of CDDP in AP remains unclear. OBJECTIVE In the present study, we explored the major chemical components and potential molecular mechanisms linked to the anti-angina effects of CDDP through the application of network pharmacology and molecular docking. METHODS The potential targets of active ingredients in CDDP were sourced from the Traditional Chinese Medicine Systems Pharmacology Database (TCMSP) and the Swiss Target Prediction Database (STPD). Additionally, targets related to angina pectoris (AP) were retrieved from various databases, including Gene Cards, DisGeNET, Dis Genet, the Drug Bank database (DBD), and the Therapeutic Target Database (TDD). Protein- protein interaction networks were also established, and core targets were identified based on their topological significance. GO enrichment analysis and KEGG pathway analysis were conducted using the R software. Interactions between active ingredients and potential targets selected through the above process were investigated through molecular docking. RESULTS Seventy-six active ingredients were selected with the following criteria: OB ≥ 30%, DL ≥ 0.18. 383 targets of CDDP and 1488 targets on AP were gathered, respectively. Afterwards, 194 common targets of CDDP and anti-AP targets were defined, of which 12 were core targets. GO enrichment analysis indicated that CDDP acted on AP by response to lipopolysaccharide, regulating the reactive oxygen species and metal ion metabolism, and epithelial cell proliferation. In addition, KEGG enrichment analysis indicated that the signaling pathways were notably enriched in lipid and atherosclerosis, fluid shear stress and atherosclerosis, IL-17 signaling pathway, EGFR tyrosine kinase inhibitor resistance, PI3K-Akt signaling pathway, and TNF signaling pathway. Moreover, the molecular docking manifested excellent binding capacity between the active ingredients and targets on AP. CONCLUSION This study comprehensively illustrated the bioactive, potential targets, and molecular mechanisms of CDDP against AP, offering fresh perspectives into the molecular mechanisms of CDDP in preventing and treating AP.
Collapse
Affiliation(s)
- Xiaocui Tian
- Department of Pharmacy, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Shiqi Yin
- Department of Pharmacy, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- School of Pharmaceutical Sciences, Capital Medical University, Beijing, China
| | - Zhiguang Liu
- Department of Pharmacy, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Jinglin Cao
- Department of Pharmacy, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Xinyu Liu
- Department of Pharmacy, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Qi Qiu
- Department of Pharmacy, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- School of Pharmaceutical Sciences, Capital Medical University, Beijing, China
| |
Collapse
|
5
|
Rajendran D, Chandrasekaran N. Journey of micronanoplastics with blood components. RSC Adv 2023; 13:31435-31459. [PMID: 37901269 PMCID: PMC10603568 DOI: 10.1039/d3ra05620a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/09/2023] [Indexed: 10/31/2023] Open
Abstract
The entry of micro- and nanoplastics (MNPs) into the human body is inevitable. They enter blood circulation through ingestion, inhalation, and dermal contact by crossing the gut-lung-skin barrier (the epithelium of the digestive tract, the respiratory tract, and the cutaneous layer). There are many reports on their toxicities to organs and tissues. This paper presents the first thorough assessment of MNP-driven bloodstream toxicity and the mechanism of toxicity from the viewpoint of both MNP and environmental co-pollutant complexes. Toxic impacts include plasma protein denaturation, hemolysis, reduced immunity, thrombosis, blood coagulation, and vascular endothelial damage, among others, which can lead to life-threatening diseases. Protein corona formation, oxidative stress, cytokine alterations, inflammation, and cyto- and genotoxicity are the key mechanisms involved in toxicity. MNPs change the secondary structure of plasma proteins, thereby preventing their transport functions (for nutrients, drugs, oxygen, etc.). MNPs inhibit erythropoiesis by influencing hematopoietic stem cell proliferation and differentiation. They cause red blood cell and platelet aggregation, as well as increased adherence to endothelial cells, which can lead to thrombosis and cardiovascular disease. White blood cells and immune cells phagocytose MNPs, provoking inflammation. However, research gaps still exist, including gaps regarding the combined toxicity of MNPs and co-pollutants, toxicological studies in human models, advanced methodologies for toxicity analysis, bioaccumulation studies, inflammation and immunological responses, dose-response relationships of MNPs, and the effect of different physiochemical characteristics of MNPs. Furthermore, most studies have analyzed toxicity using prepared MNPs; hence, studies must be undertaken using true-to-life MNPs to determine the real-world scenario. Additionally, nanoplastics may further degrade into monomers, whose toxic effects have not yet been explored. The research gaps highlighted in this review will inspire future studies on the toxicity of MNPs in the vascular/circulatory systems utilizing in vivo models to enable more reliable health risk assessment.
Collapse
Affiliation(s)
- Durgalakshmi Rajendran
- Centre for Nanobiotechnology, Vellore Institute of Technology Vellore 632014 Tamil Nadu India +91 416 2243092 +91 416 2202624
| | - Natarajan Chandrasekaran
- Centre for Nanobiotechnology, Vellore Institute of Technology Vellore 632014 Tamil Nadu India +91 416 2243092 +91 416 2202624
| |
Collapse
|
6
|
Bowen TJ, Southam AD, Hall AR, Weber RJM, Lloyd GR, Macdonald R, Wilson A, Pointon A, Viant MR. Simultaneously discovering the fate and biochemical effects of pharmaceuticals through untargeted metabolomics. Nat Commun 2023; 14:4653. [PMID: 37537184 PMCID: PMC10400635 DOI: 10.1038/s41467-023-40333-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 07/20/2023] [Indexed: 08/05/2023] Open
Abstract
Untargeted metabolomics is an established approach in toxicology for characterising endogenous metabolic responses to xenobiotic exposure. Detecting the xenobiotic and its biotransformation products as part of the metabolomics analysis provides an opportunity to simultaneously gain deep insights into its fate and metabolism, and to associate the internal relative dose directly with endogenous metabolic responses. This integration of untargeted exposure and response measurements into a single assay has yet to be fully demonstrated. Here we assemble a workflow to discover and analyse pharmaceutical-related measurements from routine untargeted UHPLC-MS metabolomics datasets, derived from in vivo (rat plasma and cardiac tissue, and human plasma) and in vitro (human cardiomyocytes) studies that were principally designed to investigate endogenous metabolic responses to drug exposure. Our findings clearly demonstrate how untargeted metabolomics can discover extensive biotransformation maps, temporally-changing relative systemic exposure, and direct associations of endogenous biochemical responses to the internal dose.
Collapse
Affiliation(s)
- Tara J Bowen
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Andrew D Southam
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
- Phenome Centre Birmingham, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Andrew R Hall
- Safety Sciences, Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Ralf J M Weber
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
- Phenome Centre Birmingham, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Gavin R Lloyd
- Phenome Centre Birmingham, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Ruth Macdonald
- Animal Sciences and Technology, Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Amanda Wilson
- Integrated Bioanalysis, Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Amy Pointon
- Safety Sciences, Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Mark R Viant
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
- Phenome Centre Birmingham, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| |
Collapse
|
7
|
Cheng C, Wang Q, Huang Y, Xue Q, Wang Y, Wu P, Liao F, Miao C. Gandouling inhibits hepatic fibrosis in Wilson's disease through Wnt-1/β-catenin signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2023; 311:116445. [PMID: 37015279 DOI: 10.1016/j.jep.2023.116445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 06/19/2023]
Abstract
ETHNOPHARMACOLOGIC SIGNIFICANCE Wilson's disease (WD) hepatic fibrosis is the result of chronic liver injury induced by Cu2+ deposition in the liver. Gandouling (GDL) is a hospital preparation of the First Affiliated Hospital of Anhui University of Chinese Medicine. Previous studies have found that GDL can play an anti-inflammatory, anti-oxidation, and promote Cu2+ excretion, which has a clear anti-WD effect. AIM OF THE STUDY We found that Wnt-1 was significantly up-regulated in the liver tissue of toxic-milk (TX) mouse in the WD gene mutant model, and the monomer components of GDL could combine well with Wnt-1. Therefore, in this work, we used RT-qPCR, Western blot, immunofluorescence, network pharmacology, molecular docking, and related methods to study the effects of GDL on hepatic stellate cell (HSC) activation and Wnt-1/β-catenin pathway in TX mice to clarify the effect of GDL on WD hepatic fibrosis. RESULTS GDL could alleviate hepatic fibrosis, improve liver function, and inhibit the activation of HSC in TX mice. Network pharmacology predicted that the Wnt-1/β-catenin was the target of GDL, and molecular dynamics further revealed that GDL has a good binding ability with Wnt-1 and inhibits the Wnt/β-catenin signaling pathway through Wnt-1. Furthermore, we found that GDL blocked the Wnt-1/β-catenin signaling pathway in the liver of TX mice in vivo. In vitro, serum containing GDL blocked the Cu2+ ion-induced Wnt-1/β-catenin signaling pathway in LX-2 cells. Therefore, GDL blocked the Wnt-1/β-catenin signaling pathway, inhibited HSC activation, and improved WD hepatic fibrosis by binding to Wnt-1. CONCLUSION GDL improves hepatic fibrosis in WD model mice by blocking the Wnt-1/β-catenin signaling pathway, and Wnt-1 may be a new target for the diagnosis and treatment of WD. This reveals a new mechanism of GDL against WD, and promotes the clinical promotion of GDL.
Collapse
Affiliation(s)
- Chenglong Cheng
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China.
| | - Qiang Wang
- Department of Pharmaceutical Preparation, School of Life and Health Sciences, Anhui University of Science and Technology, China.
| | - Yurong Huang
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China.
| | - Qiuyun Xue
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China.
| | - Yuting Wang
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China.
| | - Peng Wu
- Department of Anatomy, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China.
| | - Faxue Liao
- Department of Orthopaedics, The First Affiliated Hospital, Anhui Medical University, Hefei, China; Anhui Public Health Clinical Center, Hefei, China.
| | - Chenggui Miao
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China.
| |
Collapse
|
8
|
Loccisano AE, Freeman E, Doi A, Frericks M, Fegert I, Fabian E, Riffle B. A new approach methodology using kinetically-derived maximum dose levels in risk assessment - A case study with afidopyropen. Regul Toxicol Pharmacol 2023:105429. [PMID: 37277056 DOI: 10.1016/j.yrtph.2023.105429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/26/2023] [Accepted: 06/02/2023] [Indexed: 06/07/2023]
Abstract
We present a case study for afidopyropen (AF; insecticide) to characterize chronic dietary human health risk using a Risk 21-based approach. Our objective is to use a well-tested pesticidal active ingredient (AF) to show how a new approach methodology (NAM), using the kinetically-derived maximum dose (KMD) and with far less animal testing, can reliably identify a health-protective point of departure (PoD) for chronic dietary human health risk assessments (HHRA). Chronic dietary HHRA involves evaluation of both hazard and exposure information to characterize risk. Although both are important, emphasis has been placed on a checklist of required toxicological studies for hazard characterization, with human exposure information only considered after evaluation of hazard data. Most required studies are not used to define the human endpoint for HHRA. The information presented demonstrates a NAM that uses the KMD determined by saturation of a metabolic pathway, which can be used as an alternative POD. In these cases, the full toxicological database may not need to be generated. Demonstration that the compound is not genotoxic and that the KMD is protective of adverse effects in 90-day oral rat and reproductive/developmental studies is sufficient to support the use of the KMD as an alternative POD.
Collapse
Affiliation(s)
| | | | - Adriana Doi
- BASF Corporation Research Triangle Park, NC, 27709, USA
| | - Markus Frericks
- BASF SE Regulatory Toxicology Crop Protection, Limburgerhof, Germany
| | - Ivana Fegert
- BASF SE Regulatory Toxicology Crop Protection, Limburgerhof, Germany
| | - Eric Fabian
- BASF SE Experimental Toxicology and Ecology, Ludwigshafen, Germany
| | - Brandy Riffle
- BASF Corporation Research Triangle Park, NC, 27709, USA.
| |
Collapse
|
9
|
Wolf DC, Bhuller Y, Cope R, Corvaro M, Currie RA, Doe J, Doi A, Hilton G, Mehta J, Saltmiras D, Sewell F, Trainer M, Déglin SE. Transforming the evaluation of agrochemicals. PEST MANAGEMENT SCIENCE 2022; 78:5049-5056. [PMID: 36317936 PMCID: PMC9826516 DOI: 10.1002/ps.7148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/15/2022] [Accepted: 08/26/2022] [Indexed: 06/16/2023]
Abstract
The present agrochemical safety evaluation paradigm is long-standing and anchored in well-established testing and evaluation procedures. However, it does not meet the present-day challenges of rapidly growing populations, food insecurity, and pressures from climate change. To transform the current framework and apply modern evaluation strategies that better support sustainable agriculture, the Health and Environmental Sciences Institute (HESI) assembled a technical committee to reframe the safety evaluation of crop-protection products. The committee is composed of international experts from regulatory agencies, academia, industry and nongovernmental organizations. Their mission is to establish a framework that supports the development of fit-for-purpose agrochemical safety evaluation that is applicable to changing global, as well as local needs and regulatory decisions, and incorporates relevant evolving science. This will be accomplished through the integration of state-of-the-art scientific methods, technologies and data sources, to inform safety and risk decisions, and adapt them to evolving local and global needs. The project team will use a systems-thinking approach to develop the tools that will implement a problem formulation and exposure driven approach to create sustainable, safe and effective crop protection products, and reduce, replace and refine animal studies with fit-for-purpose assays. A new approach necessarily will integrate the most modern tools and latest advances in chemical testing methods to guarantee the robust human and environmental safety and risk assessment of agrochemicals. This article summarizes the challenges associated with the modernization of agrochemical safety evaluation, proposes a potential roadmap, and seeks input and engagement from the broader community to advance this effort. © 2022 Health and Environmental Sciences Institute (HESI). Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
| | - Yadvinder Bhuller
- Executive Director's Office, Pest Management Regulatory AgencyHealth CanadaOttawaONCanada
| | - Rhian Cope
- Australian Pesticides and Veterinary Medicines AuthorityArmidaleNSWAustralia
| | - Marco Corvaro
- Regulatory Toxicology, Human SafetyCorteva AgriscienceRomeItaly
| | - Richard A Currie
- Product Safety Early Stage ResearchSyngenta Crop ProtectionJealotts HillUnited Kingdom
| | - John Doe
- Pharmacy and Biomolecular SciencesLiverpool John Moores UniversityLiverpoolUK
| | - Adriana Doi
- Regulatory Science Crop ProtectionBASF Crop ProtectionResearch Triangle ParkNCUSA
| | - Gina Hilton
- PETA Science Consortium International e.vStuttgartGermany
| | | | | | - Fiona Sewell
- Toxicology and Regulatory SciencesNational Centre for the Replacement Refinement and Reduction of Animals in Research (NC3Rs)LondonUK
| | - Maria Trainer
- Australian Pesticides and Veterinary Medicines AuthorityArmidaleNSWAustralia
| | | |
Collapse
|
10
|
Salazar-Flores J, Lomelí-Martínez SM, Ceja-Gálvez HR, Torres-Jasso JH, Torres-Reyes LA, Torres-Sánchez ED. Impacts of Pesticides on Oral Cavity Health and Ecosystems: A Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:11257. [PMID: 36141526 PMCID: PMC9517265 DOI: 10.3390/ijerph191811257] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/01/2022] [Accepted: 09/03/2022] [Indexed: 06/16/2023]
Abstract
Pesticides are chemical substances used to control, prevent, or destroy agricultural, domestic, and livestock pests. These compounds produce adverse changes in health, and they have been associated with the development of multiple chronic diseases. This study aimed to present a detailed review of the effect of pesticides on the oral cavity and the oral microbiome. In the oral cavity, pesticides alter and/or modify tissues and the microbiome, thereby triggering imbalance in the ecosystem, generating an inflammatory response, and activating hydrolytic enzymes. In particular, the imbalance in the oral microbiome creates a dysbiosis that modifies the number, composition, and/or functions of the constituent microorganisms and the local response of the host. Pesticide exposure alters epithelial cells, and oral microbiota, and disrupts the homeostasis of the oral environment. The presence of pesticides in the oral cavity predisposes the appearance of pathologies such as caries, periodontal diseases, oral cancer, and odontogenic infections. In this study, we analyzed the effect of organochlorines, organophosphates, pyrethroids, carbamates, bipyridyls, and triazineson oral cavity health and ecosystems.
Collapse
Affiliation(s)
- Joel Salazar-Flores
- Department of Medical and Life Sciences, University Center of La Cienega (CUCIENEGA), University of Guadalajara, Ocotlan 47810, Jalisco, Mexico
| | - Sarah M. Lomelí-Martínez
- Department of Medical and Life Sciences, University Center of La Cienega (CUCIENEGA), University of Guadalajara, Ocotlan 47810, Jalisco, Mexico
- Department of Integral Dental Clinics, University Center of Health Sciences (CUCS), University of Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - Hazael R. Ceja-Gálvez
- Institute of Research in Biomedical Sciences, University Center of Health Sciences (CUCS), University of Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - Juan H. Torres-Jasso
- Department of Biological Sciences, University Center of La Costa (CUCOSTA), University of Guadalajara, Puerto Vallarta 48280, Jalisco, Mexico
| | - Luis A. Torres-Reyes
- Department of Molecular Biology and Genomics, University Center of Health Sciences (CUCS), University of Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - Erandis D. Torres-Sánchez
- Department of Medical and Life Sciences, University Center of La Cienega (CUCIENEGA), University of Guadalajara, Ocotlan 47810, Jalisco, Mexico
| |
Collapse
|
11
|
Wang Y, Xiong Y, Garcia EAL, Wang Y, Butch CJ. Drug Chemical Space as a Guide for New Herbicide Development: A Cheminformatic Analysis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:9625-9636. [PMID: 35915870 DOI: 10.1021/acs.jafc.2c01425] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Herbicides are critical resources for meeting agricultural demand. While similar in structure and function to pharmaceuticals, the development of new herbicidal mechanisms of action and new scaffolds against known mechanisms of action has been much slower than in pharmaceutical sciences. We hypothesized that this may be due in part to a relative undersampling of possible herbicidal chemistries and set out to test whether this difference in sampling existed and whether increasing the diversity of possible herbicidal chemistries would be likely to result in more efficacious herbicides. To conduct this work, we first identified databases of commercially available herbicides and clinically approved pharmaceuticals. Using these databases, we created a two-dimensional embedding of the chemical, which provides a qualitative visualization of the degree to which each chemotype is distributed within the combined chemical space and shows a moderate degree of overlap between the two sets. Next, we trained several machine learning models to classify herbicides versus drugs based on physicochemical characteristics. The most accurate of these models has an accuracy of 93% with the key differentiating characteristics being the number of polar hydrogens, number of amide bonds, LogP, and polar surface area. We then used several types of scaffold decomposition to quantitatively evaluate the chemical diversity of each molecular family and showed herbicides to have considerably fewer unique structural fragments. Finally, we used molecular docking as an in silico evaluation of further structural diversification in herbicide development. To this end, we identified herbicides with well-characterized binding sites and modified those scaffolds based on similar structural subunits from the drug dataset not present in any commercial herbicide while using the machine-learned model to ensure that required herbicide properties were maintained. Redocking the original and modified scaffolds of several herbicides showed that even this simple design strategy is capable of yielding new molecules with higher predicted affinity for the target enzymes. Overall, we show that herbicides are distinct from drugs based on physicochemical properties but less diverse in their chemistry in a way not governed by these properties. We also demonstrate in silico that increasing the diversity of herbicide scaffolds has the potential to increase potency, potentially reducing the amount needed in agricultural practice.
Collapse
Affiliation(s)
- Yisheng Wang
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China
| | - Youjin Xiong
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China
| | | | - Yiqing Wang
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China
| | - Christopher J Butch
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China
- Blue Marble Space Institute for Science, Seattle, Washington 98104, United States
| |
Collapse
|
12
|
Wan K, Jiang X, Tang X, Xiao L, Chen Y, Huang C, Zhu F, Wang F, Xu H. Study on Absorption, Distribution, Metabolism, and Excretion Properties of Novel Insecticidal GABA Receptor Antagonist, Pyraquinil, in Diamondback Moth Combining MALDI Mass Spectrometry Imaging and High-Resolution Mass Spectrometry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:6072-6083. [PMID: 35576451 DOI: 10.1021/acs.jafc.2c00468] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A thorough understanding of absorption, distribution, metabolism, and excretion (ADME) of insecticide candidates is essential in insecticide development and structural optimization. Here, ADME of pyraquinil, a novel insecticidal GABA receptor antagonist, in Plutella xylostella larvae during the accumulation phase and depuration phase was investigated separately using a combination of UHPLC-Q-Orbitrap, HPLC-MS/MS, and MALDI-MSI. Five new metabolites of pyraquinil were identified, and a metabolic pathway was proposed. The oxidative metabolite (pyraquinil-sulfone) was identified as the main metabolite and confirmed by its standard. Quantitative results showed that pyraquinil was taken up by the larvae rapidly and then undergone a cytochrome P450s-mediated oxidative transformation into pyraquinil-sulfone. Both fecal excretion and oxidative metabolism were demonstrated to be predominant ways to eliminate pyraquinil in P. xylostella larvae during accumulation, while oxidative metabolism followed by fecal excretion was probably the major pathway during depuration. MALDI-MSI revealed that pyraquinil was homogeneously distributed in the larvae, while pyraquinil-sulfone presented a continuous enrichment in the midgut during accumulation. Conversely, pyraquinil-sulfone located in hemolymph can be preferentially eliminated during depuration, suggesting its tissue tropism. It improves the understanding of the fate of pyraquinil in P. xylostella and provides useful information for insecticidal mechanism elucidation and structural optimization of pyraquinil.
Collapse
Affiliation(s)
- Kai Wan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources and Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510640, China
- Institute of Quality Standard and Monitoring Technology for Agro-products of Guangdong Academy of Agricultural Sciences and Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-products, Guangzhou 510640, China
| | - Xunyuan Jiang
- Institute of Quality Standard and Monitoring Technology for Agro-products of Guangdong Academy of Agricultural Sciences and Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-products, Guangzhou 510640, China
| | - Xuemei Tang
- Institute of Quality Standard and Monitoring Technology for Agro-products of Guangdong Academy of Agricultural Sciences and Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-products, Guangzhou 510640, China
| | - Lu Xiao
- Institute of Quality Standard and Monitoring Technology for Agro-products of Guangdong Academy of Agricultural Sciences and Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-products, Guangzhou 510640, China
| | - Yan Chen
- Institute of Quality Standard and Monitoring Technology for Agro-products of Guangdong Academy of Agricultural Sciences and Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-products, Guangzhou 510640, China
| | - Congling Huang
- Institute of Quality Standard and Monitoring Technology for Agro-products of Guangdong Academy of Agricultural Sciences and Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-products, Guangzhou 510640, China
| | - Fuwei Zhu
- Institute of Quality Standard and Monitoring Technology for Agro-products of Guangdong Academy of Agricultural Sciences and Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-products, Guangzhou 510640, China
| | - Fuhua Wang
- Institute of Quality Standard and Monitoring Technology for Agro-products of Guangdong Academy of Agricultural Sciences and Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-products, Guangzhou 510640, China
| | - Hanhong Xu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources and Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510640, China
| |
Collapse
|
13
|
Bus JS, Gollapudi BB, Hard GC. Methyl-tert-butyl ether (MTBE): integration of rat and mouse carcinogenicity data with mode of action and human and rodent bioassay dosimetry and toxicokinetics indicates MTBE is not a plausible human carcinogen. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2022; 25:135-161. [PMID: 35291916 DOI: 10.1080/10937404.2022.2041516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Methyl-tert-butyl ether (MTBE) is a fuel oxygenate used in non-United States geographies. Multiple health reviews conclude that MTBE is not a human-relevant carcinogen, and this review provides updated mode of action (MOA), exposure, dosimetry and risk perspectives supporting those conclusions. MTBE is non-genotoxic and has large margins of exposure between blood concentrations at the overall rat 400 ppm inhalation NOAEL and blood concentrations in typical workplace or general population exposures. Non-cancer and threshold cancer hazard quotients range from a high of 0.046 for fuel-pump gasoline station attendants and are 100-1,000-fold lower for general population exposures. Cancer risks conservatively assuming genotoxicity for these same scenarios are all less than 1 × 10-6. The onset of MTBE nonlinear toxicokinetics (TK) in rats at inhalation exposures less than 3,000 ppm, a dose that is also not practically achievable in fuel-use scenarios, indicates that high-dose specific male rat kidney and testes (3,000 and 8,000 ppm) and female mouse liver tumors (8000 ppm) are not quantitatively relevant to humans. Mode of action analyses also indicate MTBE male rat kidney tumors, and lesser so female mouse liver tumors, are not qualitatively relevant to humans. Thus, an integrated analysis of the toxicology, exposure/dosimetry, TK, and MOA data indicates that MTBE presents minimal human cancer and non-cancer risks.
Collapse
Affiliation(s)
- James S Bus
- Toxicology and Mechanistic Biology, Exponent Inc, Apex, NC, USA
| | | | | |
Collapse
|
14
|
Yuan Y, Zhang Y, Zheng R, Yuan H, Zhou R, Jia S, Liu J. Elucidating the anti-aging mechanism of Si Jun Zi Tang by integrating network pharmacology and experimental validation in vivo. Aging (Albany NY) 2022; 14:3941-3955. [PMID: 35537009 PMCID: PMC9134961 DOI: 10.18632/aging.204055] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 04/25/2022] [Indexed: 11/25/2022]
Abstract
Si Jun Zi Tang (SJZT) is a classic Traditional Chinese Medicine (TCM) prescription used to treat aging-related diseases. However, the potential molecular mechanisms of the anti-aging effects of the bioactive compounds and their targets remain elusive. In this study, we combined network pharmacology and molecular docking with in vivo experiments to elucidate the anti-aging molecular mechanism of SJZT. A series of network pharmacology strategies were used to predict potential targets and therapeutic mechanisms of SJZT, including compound screening, pathway enrichment analysis and molecular docking studies. Based on the network pharmacology predictions and observation of outward signs of aging, the expression levels of selected genes and proteins and possible key targets were subsequently validated and analysed using qRT-PCR and immunoblotting. Using a data mining approach, 235 effective targets of SJZT and aging were obtained. AKT1, STAT3, JUN, MAPK3, TP53, MAPK1, TNF, RELA, MAPK14 and IL6 were identified as core genes in the Protein-Protein Interaction Networks (PPI) analysis. The results of the effective target Gene Ontology (Go) functional enrichment analysis suggested that SJZT may be involved aging and antiapoptotic biological processes. The Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis indicated that the anti-aging mechanism of SJZT may be associated with the PI3K-AKT and P38 MAPK signalling pathways. Molecular docking analysis suggested that kaempferol and quercetin could fit in the binding pockets of the core targets. In addition, SJZT alleviated the aging symptoms of mice such as osteoporosis and hair loss. In conclusion, the anti-aging effect of SJZT was associated with the inhibition of the PI3K-AKT and P38 MAPK signalling pathways, and these findings were consistent with the network pharmacology prediction.
Collapse
Affiliation(s)
- Yang Yuan
- Laboratory of Molecular Genetics of Aging and Tumor, Medical School, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
| | - Yanghuan Zhang
- Laboratory of Molecular Genetics of Aging and Tumor, Medical School, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
| | - Runzi Zheng
- Laboratory of Molecular Genetics of Aging and Tumor, Medical School, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
| | - Hongjun Yuan
- Laboratory of Molecular Genetics of Aging and Tumor, Medical School, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
| | - Ruoyu Zhou
- Laboratory of Molecular Genetics of Aging and Tumor, Medical School, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
| | - Shuting Jia
- Laboratory of Molecular Genetics of Aging and Tumor, Medical School, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
| | - Jing Liu
- Laboratory of Molecular Genetics of Aging and Tumor, Medical School, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
| |
Collapse
|
15
|
Zhang T, Wei W, Chang S, Liu N, Li H. Integrated Network Pharmacology and Comprehensive Bioinformatics Identifying the Mechanisms and Molecular Targets of Yizhiqingxin Formula for Treatment of Comorbidity With Alzheimer’s Disease and Depression. Front Pharmacol 2022; 13:853375. [PMID: 35548356 PMCID: PMC9081443 DOI: 10.3389/fphar.2022.853375] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
Background: The Yizhiqinxin formula (YZQX) has been used to treat Alzheimer’s disease (AD) or major depression disorder (MDD). However, its specific underlying mechanisms and therapeutic targets remain unclear.Methods: The ingredients and putative targets of YZQX were screened using the TCMSP and Drugbank databases. Next, the GEO database was used to retrieve relevant differentially expressed genes (DEGs) in AD or MDD and normal tissues. The PPI network was established, merged, and further screened to identify the main ingredients and core targets of YZQX against AD and MDD comorbidities. We performed enrichment analysis of core targets to identify biological processes and pathways. Finally, AutoDock software was used to validate the binding affinity between the crucial targets of direct action and their corresponding ingredients.Results: A total of 43 ingredients were identified from YZQX, of which 43 were screened to yield 504 targets. By establishing the PPI network, 92 targets were regarded as targets of YZQX against AD and MDD comorbidities in the core network. Promising targets (HSP90AA1, ESR1, AKT1, VCAM1, EGFR, CDK1, MAPK1, CDK2, MYC, HSPB1, and HSPA5) and signaling pathways (PI3K-Akt signaling pathway, ubiquitin-mediated proteolysis, MAPK signaling pathway, etc.) were filtered and refined to elucidate the underlying mechanism of YZQX against AD and MDD comorbidities. Molecular docking confirmed the ingredients of YZQX (quercetin and kaempferol) could bind well to multiple crucial targets.Conclusion: The ingredients of YZQX, such as quercetin and kaempferol, might treat AD and MDD comorbidities by acting on multiple targets and pathways.
Collapse
Affiliation(s)
- Tingting Zhang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wei Wei
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Surui Chang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Nanyang Liu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Nanyang Liu, ; Hao Li,
| | - Hao Li
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Nanyang Liu, ; Hao Li,
| |
Collapse
|
16
|
Hilton GM, Adcock C, Akerman G, Baldassari J, Battalora M, Casey W, Clippinger AJ, Cope R, Goetz A, Hayes AW, Papineni S, Peffer RC, Ramsingh D, Williamson Riffle B, Sanches da Rocha M, Ryan N, Scollon E, Visconti N, Wolf DC, Yan Z, Lowit A. Rethinking chronic toxicity and carcinogenicity assessment for agrochemicals project (ReCAAP): A reporting framework to support a weight of evidence safety assessment without long-term rodent bioassays. Regul Toxicol Pharmacol 2022; 131:105160. [PMID: 35311659 DOI: 10.1016/j.yrtph.2022.105160] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 03/07/2022] [Accepted: 03/14/2022] [Indexed: 11/17/2022]
Abstract
Rodent cancer bioassays have been long-required studies for regulatory assessment of human cancer hazard and risk. These studies use hundreds of animals, are resource intensive, and certain aspects of these studies have limited human relevance. The past 10 years have seen an exponential growth of new technologies with the potential to effectively evaluate human cancer hazard and risk while reducing, refining, or replacing animal use. To streamline and facilitate uptake of new technologies, a workgroup comprised of scientists from government, academia, non-governmental organizations, and industry stakeholders developed a framework for waiver rationales of rodent cancer bioassays for consideration in agrochemical safety assessment. The workgroup used an iterative approach, incorporating regulatory agency feedback, and identifying critical information to be considered in a risk assessment-based weight of evidence determination of the need for rodent cancer bioassays. The reporting framework described herein was developed to support a chronic toxicity and carcinogenicity study waiver rationale, which includes information on use pattern(s), exposure scenario(s), pesticidal mode-of-action, physicochemical properties, metabolism, toxicokinetics, toxicological data including mechanistic data, and chemical read-across from similar registered pesticides. The framework could also be applied to endpoints other than chronic toxicity and carcinogenicity, and for chemicals other than agrochemicals.
Collapse
Affiliation(s)
- Gina M Hilton
- PETA Science Consortium International e.V., Stuttgart, Germany.
| | - Catherine Adcock
- Health Canada, Pest Management Regulatory Agency, Ottawa, Ontario, Canada
| | - Gregory Akerman
- United States Environmental Protection Agency, Office of Pesticide Programs, Washington DC, USA
| | | | | | - Warren Casey
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | | | - Rhian Cope
- Australian Pesticides and Veterinary Medicines Authority, Armidale, New South Wales, Australia
| | - Amber Goetz
- Syngenta Crop Protection, LLC, Greensboro, NC, USA
| | - A Wallace Hayes
- University of South Florida College of Public Health, Tampa, FL, USA
| | | | | | - Deborah Ramsingh
- Health Canada, Pest Management Regulatory Agency, Ottawa, Ontario, Canada
| | | | | | - Natalia Ryan
- Syngenta Crop Protection, LLC, Greensboro, NC, USA
| | | | | | | | | | - Anna Lowit
- United States Environmental Protection Agency, Office of Pesticide Programs, Washington DC, USA
| |
Collapse
|
17
|
Sun J, Li M, Lin T, Wang D, Chen J, Zhang Y, Mu Q, Su H, Wu N, Liu A, Yu Y, Liu Y, Wang S, Yu X, Guo J, Yu W. Cell cycle arrest is an important mechanism of action of compound Kushen injection in the prevention of colorectal cancer. Sci Rep 2022; 12:4384. [PMID: 35288618 PMCID: PMC8921286 DOI: 10.1038/s41598-022-08336-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 03/08/2022] [Indexed: 12/27/2022] Open
Abstract
Compound Kushen injection (CKI) is the most widely used traditional Chinese medicine preparation for the comprehensive treatment of colorectal cancer (CRC) in China, but its underlying molecular mechanisms of action are still unclear. The present study employed a network pharmacology approach, in which we constructed a "bioactive compound-target-pathway" network. Experimental RNA sequencing (RNA-Seq) analysis was performed to identify a key "bioactive compound-target-pathway" network for subsequent experimental validation. Cell cycle, proliferation, autophagy, and apoptosis assays and a model of azoxymethane/dextran sodium sulfate-induced colorectal carcinogenesis in mice were employed to detect the biological effect of CKI on CRC. Real-time reverse-transcription polymerase chain reaction, Western blot, and immunohistochemistry were performed to verify the selected targets and pathways. We constructed a predicted network that included 82 bioactive compounds, 34 targets, and 33 pathways and further screened an anti-CRC CKI "biological compound (hesperetin 7-O-rutinoside, genistein 7-O-rutinoside, and trifolirhizin)-target (p53 and checkpoint kinase 1 [CHEK1])" network that targeted the "cell cycle pathway". Validation experiments showed that CKI effectively induced the cell-cycle arrest of CRC cells in vitro and suppressed the development of CRC in vivo by downregulating the expression of p53 and CHEK1. Our findings confirmed that inducing cell-cycle arrest by CKI is an important mechanism of its anti-CRC action, which provides a direct and scientific experimental basis for the clinical application of CKI.
Collapse
Affiliation(s)
- Jie Sun
- Department of Central Laboratory and Institute of Clinical Molecular Biology, Peking University People's Hospital, Beijing, China
| | - Mei Li
- Department of Central Laboratory and Institute of Clinical Molecular Biology, Peking University People's Hospital, Beijing, China
| | - Tingru Lin
- Department of Central Laboratory and Institute of Clinical Molecular Biology, Peking University People's Hospital, Beijing, China.,Department of Gastroenterology, Peking University People's Hospital, Beijing, China
| | - Di Wang
- Department of Central Laboratory and Institute of Clinical Molecular Biology, Peking University People's Hospital, Beijing, China
| | - Jingyi Chen
- Department of Gastroenterology, Peking University People's Hospital, Beijing, China
| | - Yu Zhang
- Department of Gastroenterology, Peking University People's Hospital, Beijing, China
| | - Qing Mu
- Department of Central Laboratory and Institute of Clinical Molecular Biology, Peking University People's Hospital, Beijing, China
| | - Huiting Su
- Department of Central Laboratory and Institute of Clinical Molecular Biology, Peking University People's Hospital, Beijing, China
| | - Na Wu
- Department of Central Laboratory and Institute of Clinical Molecular Biology, Peking University People's Hospital, Beijing, China
| | - Aiyu Liu
- Department of Central Laboratory and Institute of Clinical Molecular Biology, Peking University People's Hospital, Beijing, China
| | - Yimeng Yu
- Department of Central Laboratory and Institute of Clinical Molecular Biology, Peking University People's Hospital, Beijing, China
| | - Yulan Liu
- Department of Gastroenterology, Peking University People's Hospital, Beijing, China
| | - Shaojie Wang
- Department of Traditional Chinese Medicine, Peking University People's Hospital, Beijing, China
| | - Xin Yu
- Department of Hepatobiliary Surgery, Peking University People's Hospital, Beijing, China
| | - Jingzhu Guo
- Department of Pediatric, Peking University People's Hospital, Beijing, China.
| | - Weidong Yu
- Department of Central Laboratory and Institute of Clinical Molecular Biology, Peking University People's Hospital, Beijing, China.
| |
Collapse
|
18
|
Yuan H, Wu X, Wang X, Yuan C. Chinese herbal decoction astragalus and angelica exerts its therapeutic effect on renal interstitial fibrosis through the inhibition of MAPK, PI3K-Akt and TNF signaling pathways. Genes Dis 2022; 9:510-521. [PMID: 35224164 PMCID: PMC8843878 DOI: 10.1016/j.gendis.2020.06.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/19/2020] [Accepted: 06/03/2020] [Indexed: 01/03/2023] Open
Abstract
Astragalus and Angelica decoction (A&A) has been clinically used as a classical traditional Chinese medicine (TCM) formula in China for many years for the treatment of kidney diseases, especially renal interstitial fibrosis (RIF). However, the mechanisms underlying the therapeutic effects of A&A on RIF remains poorly understood. In the present study, systematic network pharmacology and effective experimental verification were utilized for the first time to elucidate the pharmacological efficacy and potential mechanism. The outcomes indicated that 22 active components and 87 target genes of A&A were identified and cross-referenced with RIF-associated genes, contributing to confirmation of 74 target genes of A&A for RIF. Pathway and functional enrichment analyses revealed that A&A had substantial effects on MAPK, PI3K-Akt and TNF signaling pathways. In addition, seven core targets with relatively higher betweenness and degree were identified in the constructed Chinese medicine material-chemical component-target-signal pathway network. Moreover, we verified the potential therapeutic effect of A&A in vivo (using a mouse model of RIF), confirming that A&A could effectively protect the kidney by regulating these target genes. The therapeutic effect of A&A on RIF could be attributed to its role in regulating the cell cycle, limiting the apoptosis, and inhibiting the inflammation.
Collapse
Affiliation(s)
- Hao Yuan
- College of Medical Science, China Three Gorges University, Yichang, Hubei 443002, PR China
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, Guangdong 518083, PR China
| | - Xuelian Wu
- College of Medical Science, China Three Gorges University, Yichang, Hubei 443002, PR China
| | - Xiaomin Wang
- Chumeiren Medical Cosmetic Clinic, WuJiaGang District, Yichang, Hubei 443002, PR China
| | - Chengfu Yuan
- College of Medical Science, China Three Gorges University, Yichang, Hubei 443002, PR China
- Corresponding author. College of Medical Science, China Three Gorges University, Yichang, Hubei 443002, PR China. Fax: +86 717 6396818.
| |
Collapse
|
19
|
Affiliation(s)
- Peter Jeschke
- Bayer AG Research & Development, Crop Science Pest Control Chemistry Alfred-Nobel-Str. 50 40789 Monheim Germany
| |
Collapse
|
20
|
Hard GC. Confounders for kidney carcinogenesis in rodent cancer bioassays. J Toxicol Pathol 2022; 35:1-6. [PMID: 35221490 PMCID: PMC8828606 DOI: 10.1293/tox.2021-0000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 09/29/2021] [Indexed: 11/24/2022] Open
Abstract
In the long-term safety testing of chemicals for carcinogenicity the toxicologist needs
to be aware of a number of scenarios where renal tubule tumors, or their precursors, arise
that are not due to a carcinogenic action of the test article. Situations producing false
positive results in the kidney include exacerbation of chronic progressive nephropathy
(CPN) in rats, confusion of atypical tubule hyperplasia (the obligate precursor of renal
tubule tumor) with foci of benign CPN-related renal tubule cell proliferation, inclusion
of spontaneous tumor entities, such as the amphophilic-vacuolar tumor, in the test article
tumor count, the possibility of a link between spontaneous forms of tubule dilatation and
renal tubule tumor formation in mice, and the supposed predictivity of chemically-induced
karyomegaly for renal carcinogenicity in both rats and mice. Examples of these misleading
situations are described and discussed.
Collapse
Affiliation(s)
- Gordon C Hard
- Private Toxicology Consultant, 203 Paku Drive, Tairua 3508, New Zealand
| |
Collapse
|
21
|
Integrating toxicokinetics into toxicology studies and the human health risk assessment process for chemicals: Reduced uncertainty, better health protection. Regul Toxicol Pharmacol 2021; 128:105092. [PMID: 34863906 DOI: 10.1016/j.yrtph.2021.105092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 11/23/2021] [Accepted: 11/29/2021] [Indexed: 01/16/2023]
Abstract
The database of practical examples where toxicokinetic (TK) data has benefitted all stages of the human health risk assessment process are increasingly being published and accepted. This review aimed to highlight and summarise notable examples and to describe the "state of the art" in this field. The overall recommendation is that for any in vivo animal study conducted, measurements of TK should be very carefully considered for inclusion as the numerous benefits this brings continues to grow, particularly during the current march towards animal free toxicology testing and ambitions to eventually conduct human health risk assessments entirely based upon non-animal methods.
Collapse
|
22
|
Bassan A, Alves VM, Amberg A, Anger LT, Auerbach S, Beilke L, Bender A, Cronin MT, Cross KP, Hsieh JH, Greene N, Kemper R, Kim MT, Mumtaz M, Noeske T, Pavan M, Pletz J, Russo DP, Sabnis Y, Schaefer M, Szabo DT, Valentin JP, Wichard J, Williams D, Woolley D, Zwickl C, Myatt GJ. In silico approaches in organ toxicity hazard assessment: current status and future needs in predicting liver toxicity. COMPUTATIONAL TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 20:100187. [PMID: 35340402 PMCID: PMC8955833 DOI: 10.1016/j.comtox.2021.100187] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/15/2023]
Abstract
Hepatotoxicity is one of the most frequently observed adverse effects resulting from exposure to a xenobiotic. For example, in pharmaceutical research and development it is one of the major reasons for drug withdrawals, clinical failures, and discontinuation of drug candidates. The development of faster and cheaper methods to assess hepatotoxicity that are both more sustainable and more informative is critically needed. The biological mechanisms and processes underpinning hepatotoxicity are summarized and experimental approaches to support the prediction of hepatotoxicity are described, including toxicokinetic considerations. The paper describes the increasingly important role of in silico approaches and highlights challenges to the adoption of these methods including the lack of a commonly agreed upon protocol for performing such an assessment and the need for in silico solutions that take dose into consideration. A proposed framework for the integration of in silico and experimental information is provided along with a case study describing how computational methods have been used to successfully respond to a regulatory question concerning non-genotoxic impurities in chemically synthesized pharmaceuticals.
Collapse
Affiliation(s)
- Arianna Bassan
- Innovatune srl, Via Giulio Zanon 130/D, 35129 Padova, Italy
| | - Vinicius M. Alves
- The National Institute of Environmental Health Sciences, Division of the National Toxicology, Program, Research Triangle Park, NC 27709, USA
| | - Alexander Amberg
- Sanofi, R&D Preclinical Safety Frankfurt, Industriepark Hoechst, D-65926 Frankfurt am Main, Germany
| | | | - Scott Auerbach
- The National Institute of Environmental Health Sciences, Division of the National Toxicology, Program, Research Triangle Park, NC 27709, USA
| | - Lisa Beilke
- Toxicology Solutions Inc., San Diego, CA, USA
| | - Andreas Bender
- AI and Data Analytics, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, UK
- Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW
| | - Mark T.D. Cronin
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, L3 3AF, UK
| | | | - Jui-Hua Hsieh
- The National Institute of Environmental Health Sciences, Division of the National Toxicology, Program, Research Triangle Park, NC 27709, USA
| | - Nigel Greene
- Data Science and AI, DSM, IMED Biotech Unit, AstraZeneca, Boston, USA
| | - Raymond Kemper
- Nuvalent, One Broadway, 14th floor, Cambridge, MA, 02142, USA
| | - Marlene T. Kim
- US Food and Drug Administration, Center for Drug Evaluation and Research, Silver Spring, MD, 20993, USA
| | - Moiz Mumtaz
- Office of the Associate Director for Science (OADS), Agency for Toxic Substances and Disease, Registry, US Department of Health and Human Services, Atlanta, GA, USA
| | - Tobias Noeske
- Imaging and Data Analytics, Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Manuela Pavan
- Innovatune srl, Via Giulio Zanon 130/D, 35129 Padova, Italy
| | - Julia Pletz
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, L3 3AF, UK
| | - Daniel P. Russo
- Department of Chemistry, Rutgers University, Camden, NJ 08102, USA
- The Rutgers Center for Computational and Integrative Biology, Camden, NJ 08102, USA
| | - Yogesh Sabnis
- UCB Biopharma SRL, Chemin du Foriest – B-1420 Braine-l’Alleud, Belgium
| | - Markus Schaefer
- Sanofi, R&D Preclinical Safety Frankfurt, Industriepark Hoechst, D-65926 Frankfurt am Main, Germany
| | | | | | - Joerg Wichard
- Bayer AG, Genetic Toxicology, Müllerstr. 178, 13353 Berlin, Germany
| | - Dominic Williams
- Functional & Mechanistic Safety, Clinical Pharmacology & Safety Sciences, AstraZeneca, Darwin Building 310, Cambridge Science Park, Milton Rd, Cambridge CB4 0FZ, UK
| | - David Woolley
- ForthTox Limited, PO Box 13550, Linlithgow, EH49 7YU, UK
| | - Craig Zwickl
- Transendix LLC, 1407 Moores Manor, Indianapolis, IN 46229, USA
| | | |
Collapse
|
23
|
Tan YM, Barton HA, Boobis A, Brunner R, Clewell H, Cope R, Dawson J, Domoradzki J, Egeghy P, Gulati P, Ingle B, Kleinstreuer N, Lowe K, Lowit A, Mendez E, Miller D, Minucci J, Nguyen J, Paini A, Perron M, Phillips K, Qian H, Ramanarayanan T, Sewell F, Villanueva P, Wambaugh J, Embry M. Opportunities and challenges related to saturation of toxicokinetic processes: Implications for risk assessment. Regul Toxicol Pharmacol 2021; 127:105070. [PMID: 34718074 DOI: 10.1016/j.yrtph.2021.105070] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/18/2021] [Accepted: 10/25/2021] [Indexed: 02/08/2023]
Abstract
Top dose selection for repeated dose animal studies has generally focused on identification of apical endpoints, use of the limit dose, or determination of a maximum tolerated dose (MTD). The intent is to optimize the ability of toxicity tests performed in a small number of animals to detect effects for hazard identification. An alternative approach, the kinetically derived maximum dose (KMD), has been proposed as a mechanism to integrate toxicokinetic (TK) data into the dose selection process. The approach refers to the dose above which the systemic exposures depart from being proportional to external doses. This non-linear external-internal dose relationship arises from saturation or limitation of TK process(es), such as absorption or metabolism. The importance of TK information is widely acknowledged when assessing human health risks arising from exposures to environmental chemicals, as TK determines the amount of chemical at potential sites of toxicological responses. However, there have been differing opinions and interpretations within the scientific and regulatory communities related to the validity and application of the KMD concept. A multi-stakeholder working group, led by the Health and Environmental Sciences Institute (HESI), was formed to provide an opportunity for impacted stakeholders to address commonly raised scientific and technical issues related to this topic and, more specifically, a weight of evidence approach is recommended to inform design and dose selection for repeated dose animal studies. Commonly raised challenges related to the use of TK data for dose selection are discussed, recommendations are provided, and illustrative case examples are provided to address these challenges or refute misconceptions.
Collapse
Affiliation(s)
- Yu-Mei Tan
- U.S. Environmental Protection Agency, Office of Pesticide Programs, Durham, NC, USA
| | | | | | - Rachel Brunner
- U.S. Environmental Protection Agency, Office of Pesticide Programs, Durham, NC, USA
| | | | - Rhian Cope
- Australian Pesticides and Veterinary Medicines Authority, Sydney, NSW, Australia
| | - Jeffrey Dawson
- U.S. Environmental Protection Agency, Office of Chemical Safety and Pollution Prevention, Washington, DC, USA
| | | | - Peter Egeghy
- U.S. Environmental Protection Agency, Office of Research & Development, Durham, NC, USA
| | - Pankaj Gulati
- Australian Pesticides and Veterinary Medicines Authority, Sydney, NSW, Australia
| | - Brandall Ingle
- U.S. Environmental Protection Agency, Office of Pesticide Programs, Durham, NC, USA
| | - Nicole Kleinstreuer
- National Toxicology Program, Interagency Center for the Evaluation of Alternative Toxicological Methods, Research Triangle Park, NC, USA
| | - Kelly Lowe
- U.S. Environmental Protection Agency, Office of Pesticide Programs, Washington, DC, USA
| | - Anna Lowit
- U.S. Environmental Protection Agency, Office of Pesticide Programs, Washington, DC, USA
| | - Elizabeth Mendez
- U.S. Environmental Protection Agency, Office of Pesticide Programs, Washington, DC, USA
| | - David Miller
- U.S. Environmental Protection Agency, Office of Pesticide Programs, Washington, DC, USA
| | - Jeffrey Minucci
- U.S. Environmental Protection Agency, Office of Research & Development, Durham, NC, USA
| | - James Nguyen
- U.S. Environmental Protection Agency, Office of Pesticide Programs, Washington, DC, USA
| | - Alicia Paini
- European Commission, Joint Research Centre, Ispra, Italy
| | - Monique Perron
- U.S. Environmental Protection Agency, Office of Pesticide Programs, Washington, DC, USA
| | - Katherine Phillips
- U.S. Environmental Protection Agency, Office of Research & Development, Durham, NC, USA
| | - Hua Qian
- ExxonMobil Biomedical Sciences, Inc., Annandale, NJ, USA
| | | | - Fiona Sewell
- National Centre for the Replacement, Refinement, and Reduction of Animals in Research, London, UK
| | - Philip Villanueva
- U.S. Environmental Protection Agency, Office of Pesticide Programs, Washington, DC, USA
| | - John Wambaugh
- U.S. Environmental Protection Agency, Office of Research & Development, Durham, NC, USA
| | - Michelle Embry
- Health and Environmental Sciences Institute, Washington DC, USA.
| |
Collapse
|
24
|
Singla RK, Sharma P, Dubey AK, Gundamaraju R, Kumar D, Kumar S, Madaan R, Shri R, Tsagkaris C, Parisi S, Joon S, Singla S, Kamal MA, Shen B. Natural Product-Based Studies for the Management of Castration-Resistant Prostate Cancer: Computational to Clinical Studies. Front Pharmacol 2021; 12:732266. [PMID: 34737700 PMCID: PMC8560712 DOI: 10.3389/fphar.2021.732266] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 09/06/2021] [Indexed: 02/05/2023] Open
Abstract
Background: With prostate cancer being the fifth-greatest cause of cancer mortality in 2020, there is a dire need to expand the available treatment options. Castration-resistant prostate cancer (CRPC) progresses despite androgen depletion therapy. The mechanisms of resistance are yet to be fully discovered. However, it is hypothesized that androgens depletion enables androgen-independent cells to proliferate and recolonize the tumor. Objectives: Natural bioactive compounds from edible plants and herbal remedies might potentially address this need. This review compiles the available cheminformatics-based studies and the translational studies regarding the use of natural products to manage CRPC. Methods: PubMed and Google Scholar searches for preclinical studies were performed, while ClinicalTrials.gov and PubMed were searched for clinical updates. Studies that were not in English and not available as full text were excluded. The period of literature covered was from 1985 to the present. Results and Conclusion: Our analysis suggested that natural compounds exert beneficial effects due to their broad-spectrum molecular disease-associated targets. In vitro and in vivo studies revealed several bioactive compounds, including rutaecarpine, berberine, curcumin, other flavonoids, pentacyclic triterpenoids, and steroid-based phytochemicals. Molecular modeling tools, including machine and deep learning, have made the analysis more comprehensive. Preclinical and clinical studies on resveratrol, soy isoflavone, lycopene, quercetin, and gossypol have further validated the translational potential of the natural products in the management of prostate cancer.
Collapse
Affiliation(s)
- Rajeev K. Singla
- Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- iGlobal Research and Publishing Foundation, New Delhi, India
| | - Pooja Sharma
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, India
- Khalsa College of Pharmacy, Amritsar, India
| | | | - Rohit Gundamaraju
- ER Stress and Mucosal Immunology Lab, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, TAS, Australia
| | - Dinesh Kumar
- Department of Pharmaceutical Sciences, Sri Sai College of Pharmacy, Amritsar, India
| | - Suresh Kumar
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, India
| | - Reecha Madaan
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Richa Shri
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, India
| | | | - Salvatore Parisi
- Lourdes Matha Institute of Hotel Management and Catering Technology, Thiruvananthapuram, India
| | - Shikha Joon
- Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- iGlobal Research and Publishing Foundation, New Delhi, India
| | - Shailja Singla
- iGlobal Research and Publishing Foundation, New Delhi, India
| | - Mohammad Amjad Kamal
- West China School of Nursing/Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Enzymoics; Novel Global Community Educational Foundation, Hebersham, NSW, Australia
| | - Bairong Shen
- Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
25
|
Network Pharmacology Combined with Bioinformatics to Investigate the Mechanisms and Molecular Targets of Astragalus Radix-Panax notoginseng Herb Pair on Treating Diabetic Nephropathy. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:9980981. [PMID: 34349833 PMCID: PMC8328704 DOI: 10.1155/2021/9980981] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/12/2021] [Accepted: 07/08/2021] [Indexed: 12/17/2022]
Abstract
Background Astragalus Radix (AR)-Panax notoginseng (PN), a classical herb pair, has shown significant effects in treating diabetic nephropathy (DN). However, the intrinsic mechanism of AR-PN treating DN is still unclear. This study aims to illustrate the mechanism and molecular targets of AR-PN treating DN based on network pharmacology combined with bioinformatics. Materials and Methods The Traditional Chinese Medicine Systems Pharmacology database was used to screen bioactive ingredients of AR-PN. Subsequently, putative targets of bioactive ingredients were predicted utilizing the DrugBank database and converted into genes on UniProtKB database. DN-related targets were retrieved via analyzing published microarray data (GSE30528) from the Gene Expression Omnibus database. Protein-protein interaction networks of AR-PN putative targets and DN-related targets were established to identify candidate targets using Cytoscape 3.8.0. GO and KEGG enrichment analyses of candidate targets were reflected using a plugin ClueGO of Cytoscape. Molecular docking was performed using AutoDock Vina software, and the results were visualized by Pymol software. The diagnostic capacity of hub genes was verified by receiver operating characteristic (ROC) curves. Results Twenty-two bioactive ingredients and 189 putative targets of AR-PN were obtained. Eight hundred and fifty differently expressed genes related to DN were screened. The PPI network showed that 115 candidate targets of AR-PN against DN were identified. GO and KEGG analyses revealed that candidate targets of AR-PN against DN were mainly involved in the apoptosis, oxidative stress, cell cycle, and inflammation response, regulating the PI3K-Akt signaling pathway, cell cycle, and MAPK signaling pathway. Moreover, MAPK1, AKT1, GSK3B, CDKN1A, TP53, RELA, MYC, GRB2, JUN, and EGFR were considered as the core potential therapeutic targets. Molecular docking demonstrated that these core targets had a great binding affinity with quercetin, kaempferol, isorhamnetin, and formononetin components. ROC curve analysis showed that AKT1, TP53, RELA, JUN, CDKN1A, and EGFR are effective in discriminating DN from controls. Conclusions AR-PN against DN may exert its renoprotective effects via various bioactive chemicals and the related pharmacological pathways, involving multiple molecular targets, which may be a promising herb pair treating DN. Nevertheless, these results should be further validated by experimental evidence.
Collapse
|
26
|
Loccisano AE, Freeman E, Riffle B, Doi A, Frericks M, Fegert I, Fabian E. Afidopyropen: Challenges and impact of a toxicokinetic study designed to identify a point of inflection from dose-proportionality. Regul Toxicol Pharmacol 2021; 124:104962. [PMID: 34019964 DOI: 10.1016/j.yrtph.2021.104962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 05/07/2021] [Accepted: 05/13/2021] [Indexed: 11/30/2022]
Abstract
Afidopyropen is an insecticide that acts as a transient receptor potential vanilloid subtype (TRPV) channel modulator in chordotonal organs of target insects and has been assessed for a wide range of toxicity endpoints including chronic toxicity and carcinogenicity in rats and mice. The current study evaluates the toxicokinetic properties of afidopyropen and its plasma metabolites in rats at dose levels where the pharmacokinetics (PK) are linear and nonlinear in an attempt to identify a point of inflection. Based on the results of this study and depending on the analysis method used, the kinetically derived maximum dose (KMD) is estimated to be between 2.5 and 12.5 mg/kg bw/d with linearity observed at doses below 2.5 mg/kg bw/d. A defined point of inflection could not be determined. These data demonstrate that consideration of PK is critical for improving the dose-selection in toxicity studies as well as to enhance human relevance of the interpretation of animal toxicity studies. The study also demonstrates the technical difficulty in obtaining a defined point of inflection from in vivo PK data.
Collapse
Affiliation(s)
| | | | - Brandy Riffle
- BASF Corporation, Research Triangle Park, NC, 27709, USA
| | - Adriana Doi
- BASF Corporation, Research Triangle Park, NC, 27709, USA
| | - Markus Frericks
- BASF SE Experimental Toxicology and Ecology, Ludwigshafen, Germany
| | - Ivana Fegert
- BASF SE Experimental Toxicology and Ecology, Ludwigshafen, Germany
| | - Eric Fabian
- BASF SE Experimental Toxicology and Ecology, Ludwigshafen, Germany.
| |
Collapse
|
27
|
Machino S, Yokoyama Y, Egawa T, Satoh H, Miyajima K, Yoshida M, Asano S, Ozawa S. Case analysis of kinetics investigations in toxicity studies of pesticides to identify the nonlinearity of internal exposure and the influences of nonlinearity on the toxicological interpretation of pesticide residue. Regul Toxicol Pharmacol 2021; 124:104958. [PMID: 33991633 DOI: 10.1016/j.yrtph.2021.104958] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 10/21/2022]
Abstract
The nonlinearity of internal exposure to 8 pesticides was investigated in toxicity studies using kinetics to identify nonlinearity visually and to investigate the influence of nonlinearity on toxicological evaluation. Data were obtained from risk assessment reports published by the Food Safety Commission (FSCJ). Nonlinearity was defined using 2 indicators: the lowest visual inflection point (LVIP) and the second lowest visual inflection point (SVIP) of kinetics by drawing a linear distribution chart. The area under the curve and 24-h urine concentrations were stable parameters used to identify the LVIP/SVIP. The sampling timing affected the blood concentrations, and the LVIP/SVIP was detected for 6 pesticides using the parent compounds or their metabolites as analytes. The subproportional nonlinearity was significant for these pesticides. The LVIP/SVIP values were consistent in the same species up to a 1-year period, but the values showed species-specific differences in several compounds. In all compounds found to be nonlinear, apical outcomes were observed at the SVIP or above. The presence of nonlinearity was recognized by the FSCJ. The recognition influenced their judgment of no-observed-adverse-effect levels (NOAELs) for carcinogenicity or health-based guidance values, indicating the importance of appropriate kinetics to identify the nonlinearity for toxicological evaluation of pesticide residue.
Collapse
Affiliation(s)
- Satoshi Machino
- Food Safety Commission, Cabinet Office of Japan. Akasaka Park Bld. 22F, 5-2-20 Akasaka, Minato-ku, Tokyo, 107-6122, Japan.
| | - Yoko Yokoyama
- Food Safety Commission, Cabinet Office of Japan. Akasaka Park Bld. 22F, 5-2-20 Akasaka, Minato-ku, Tokyo, 107-6122, Japan.
| | - Toyohiro Egawa
- Food Safety Commission, Cabinet Office of Japan. Akasaka Park Bld. 22F, 5-2-20 Akasaka, Minato-ku, Tokyo, 107-6122, Japan.
| | - Hiroshi Satoh
- Faculty of Agriculture, Iwate University. 3-18-8 Ueda, Morioka, Iwate, 020-8550, Japan.
| | - Katsuhiro Miyajima
- Department of Nutritional Science and Food Safety, Faculty of Applied Bio-Science, Tokyo University of Agriculture. 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo, 156-8502, Japan.
| | - Midori Yoshida
- Food Safety Commission, Cabinet Office of Japan. Akasaka Park Bld. 22F, 5-2-20 Akasaka, Minato-ku, Tokyo, 107-6122, Japan.
| | - Satoshi Asano
- Department of Pharmaceutical Science, International University of Health and Welfare. 2600-1 Kitakanemaru, Ohtawara, Tochigi, 324-8501, Japan.
| | - Shogo Ozawa
- School of Pharmacy, Iwate Medical University 2-1-1 Nishitokuta, Yahaba-cho, Shiwa-gun, Iwate, 028-3684, Japan.
| |
Collapse
|
28
|
Multi-target pharmacological mechanisms of Salvia miltiorrhiza against oral submucous fibrosis: A network pharmacology approach. Arch Oral Biol 2021; 126:105131. [PMID: 33894647 DOI: 10.1016/j.archoralbio.2021.105131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 04/11/2021] [Accepted: 04/15/2021] [Indexed: 02/08/2023]
Abstract
OBJECTIVES The herb Salvia miltiorrhiza is used to treat oral submucous fibrosis (OSF); however, the mechanism underlying its efficacy has not been elucidated. As such, a network pharmacology-based approach was applied to investigate the potential mechanisms of Salvia miltiorrhiza against OSF. MATERIALS AND METHODS Potential targets of Salvia miltiorrhiza were collected by Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform, Bioinformatics Analysis Tool for Molecular Mechanism of Traditional Chinese Medicine, and Swiss Target Prediction. Potential targets of OSF were collected from DisGeNET, GeneCards, and National Center for Biotechnology Information Gene database. Salvia miltiorrhiza against OSF targets protein-protein interaction and enrichment analyses network were constructed by Cytoscape and Metascape. RESULTS Twelve active ingredients from Salvia miltiorrhiza and 57 potential OSF-related targets were identified. The constructed network predicted seven potential key targets of Salvia miltiorrhiza for the treatment of OSF. Functional enrichment analysis showed that biological processes such as cellular response to drugs and pathways such as bladder cancer were mainly regulated by the Salvia miltiorrhiza active ingredient targets. Furthermore, the protein-protein interaction network demonstrated that the molecular complex detection components were mainly related to the ErbB signaling pathway, cancer pathways and IL-17 signaling. CONCLUSIONS A network approach was employed to document how Salvia miltiorrhiza active ingredients change various pathways against OSF. Salvia miltiorrhiza active ingredient targets against OSF involved CYP19A1, EGFR, PTPN11, ACHE, TERT, MAPK8 and PGR and were enriched in several signaling pathways.
Collapse
|
29
|
Liu F, Li L, Chen J, Wu Y, Cao Y, Zhong P. A Network Pharmacology to Explore the Mechanism of Calculus Bovis in the Treatment of Ischemic Stroke. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6611018. [PMID: 33778069 PMCID: PMC7972848 DOI: 10.1155/2021/6611018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/15/2021] [Accepted: 02/20/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND Calculus Bovis is a valuable Chinese medicine, which is widely used in the clinical treatment of ischemic stroke. The present study is aimed at investigating its target and the mechanism involved in ischemic stroke treatment by network pharmacology. METHODS Effective compounds of Calculus Bovis were collected using methods of network pharmacology and using the Bioinformatics Analysis Tool for Molecular Mechanism of Traditional Chinese Medicine (BATMAN-TCM) and the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP). Potential compound targets were searched in the TCMSP and SwissTargetPrediction databases. Ischemic stroke-related disease targets were searched in the Drugbank, DisGeNet, OMIM, and TTD databases. These two types of targets were uploaded to the STRING database, and a network of their interaction (PPI) was built with its characteristics calculated, aiming to reveal a number of key targets. Hub genes were selected using a plug-in of the Cytoscape software, and Gene Ontology (GO) biological processes and pathway enrichment analyses of Kyoto Encyclopedia of Genes and Genomes (KEGG) were conducted using the clusterProfiler package of R language. RESULTS Among 12 compounds, deoxycorticosterone, methyl cholate, and biliverdin were potentially effective components. A total of 344 Calculus Bovis compound targets and 590 ischemic stroke targets were found with 92 overlapping targets, including hub genes such as TP53, AKT, PIK2CA, MAPK3, MMP9, and MMP2. Biological functions of Calculus Bovis are associated with protein hydrolyzation, phosphorylation of serine/threonine residues of protein substrates, peptide bond hydrolyzation of peptides and proteins, hydrolyzation of intracellular second messengers, antioxidation and reduction, RNA transcription, and other biological processes. CONCLUSION Calculus Bovis may play a role in ischemic stroke by activating PI3K-AKT and MAPK signaling pathways, which are involved in regulating inflammatory response, cell apoptosis, and proliferation.
Collapse
Affiliation(s)
- Fangchen Liu
- Department of Neurology, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
- Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ling Li
- Institute of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Jian Chen
- Institute of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Ying Wu
- Department of Neurology, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Yongbing Cao
- Institute of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Ping Zhong
- Department of Neurology, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
- Department of Neurology, Shidong Hospital of Yangpu District, Shanghai 200090, China
| |
Collapse
|
30
|
Xia S, Zhong Z, Gao B, Vong CT, Lin X, Cai J, Gao H, Chan G, Li C. The important herbal pair for the treatment of COVID-19 and its possible mechanisms. Chin Med 2021; 16:25. [PMID: 33658066 PMCID: PMC7927769 DOI: 10.1186/s13020-021-00427-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 01/22/2021] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Coronavirus Disease 2019 (COVID-19) is an unprecedented disaster for people around the world. Many studies have shown that traditional Chinese medicine (TCM) are effective in treating COVID-19. However, it is difficult to find the most effective combination herbal pair among numerous herbs, as well as identifying its potential mechanisms. Herbal pair is the main form of a combination of TCM herbs, which is widely used for the treatment of diseases. It can also help us to better understand the compatibility of TCM prescriptions, thus improving the curative effects. The purpose of this article is to explore the compatibility of TCM prescriptions and identify the most important herbal pair for the treatment of COVID-19, and then analyze the active components and potential mechanisms of this herbal pair. METHODS We first systematically sorted the TCM prescriptions recommended by the leading experts for treating COVID-19, and the specific herbs contained in these prescriptions across different stages of the disease. Next, the association rule approach was employed to examine the distribution and compatibility among these TCM prescriptions, and then identify the most important herbal pair. On this basis, we further investigated the active ingredients and potential targets in the selected herbal pair by a network pharmacology approach, and analyzed the potential mechanisms against COVID-19. Finally, the main active compounds in the herbal pair were selected for molecular docking with severe acute respiratory syndrome coronavirus 2 (SARS-COV-2) 3CLpro and angiotensin converting enzyme II (ACE2) for further verification. RESULT We obtained 32 association rules for the herbal combinations in the selection of TCM treatment for COVID-19. The results showed that the combination of Amygdalus Communis Vas (ACV) and Ephedra sinica Stapf (ESS) had the highest confidence degree and lift value, as well as high support degree, which can be used in almost all the stages of COVID-19, so ACV and ESS (AE) were selected as the most important herbal pair. There were 26 active ingredients and 44 potential targets, which might be related to the herbal pair of AE against COVID-19. The main active ingredients of AE against COVID-19 were quercetin, kaempferol, luteolin, while the potential targets were Interleukin 6 (IL-6), Mitogen-activated Protein Kinase 1 (MAPK)1, MAPK8, Interleukin-1β (IL-1β), and Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB) p65 subunit (RELA). The protein-protein interaction (PPI) cluster demonstrated that IL-6 was the seed in the cluster, which plays an important role in connecting other nodes in the PPI network. The potential pathways mainly involved tumor necrosis factor (TNF), Toll-like receptor (TLR), hypoxia-inducible factor-1 (HIF-1), and nucleotide-binding oligomerization domain (NOD)-like receptor (NLRs). The molecular docking results showed that the main active ingredients of AE have good affinity with SARS-COV-2 3CLpro and ACE2, which are consistent with the above analysis. CONCLUSIONS There were 32 association rules in the TCM prescriptions recommended by experts for COVID-19. The combination of ACV and EAS was the most important herbal pair for the treatment of COVID-19. AE might have therapeutic effects against COVID-19 by affecting the inflammatory and immune responses, cell apoptosis, hypoxia damage and other pathological processes through multiple components, targets and pathways.
Collapse
Affiliation(s)
- Shujie Xia
- Research Base of Traditional Chinese Medicine Syndrome, Fujian University of Traditional Chinese Medicine, No.1 Qiuyang Road, Minhou District, 350122, Fuzhou, China
| | - Zhangfeng Zhong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, 999078, Macao, China
| | - Bizhen Gao
- Research Base of Traditional Chinese Medicine Syndrome, Fujian University of Traditional Chinese Medicine, No.1 Qiuyang Road, Minhou District, 350122, Fuzhou, China
| | - Chi Teng Vong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, 999078, Macao, China
| | - Xuejuan Lin
- Research Base of Traditional Chinese Medicine Syndrome, Fujian University of Traditional Chinese Medicine, No.1 Qiuyang Road, Minhou District, 350122, Fuzhou, China
| | - Jin Cai
- Department of Internal Medicine, The Third People's Hospital, Fujian University of Traditional Chinese Medicine, 350108, Fuzhou, China
| | - Hanlu Gao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, 999078, Macao, China
| | - Ging Chan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, 999078, Macao, China.
| | - Candong Li
- Research Base of Traditional Chinese Medicine Syndrome, Fujian University of Traditional Chinese Medicine, No.1 Qiuyang Road, Minhou District, 350122, Fuzhou, China.
| |
Collapse
|
31
|
Qu RY, Nan JX, Yan YC, Chen Q, Ndikuryayo F, Wei XF, Yang WC, Lin HY, Yang GF. Structure-Guided Discovery of Silicon-Containing Subnanomolar Inhibitor of Hydroxyphenylpyruvate Dioxygenase as a Potential Herbicide. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:459-473. [PMID: 33395281 DOI: 10.1021/acs.jafc.0c03844] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
4-Hydroxyphenylpyruvate dioxygenase (HPPD, EC 1.13.11.27) has been recognized as one of the most promising targets in the field of herbicide innovation considering the severity of weed resistance currently. In a persistent effort to develop effective HPPD-inhibiting herbicides, a structure-guided strategy was carried out to perform the structural optimization for triketone-quinazoline-2,4-diones, a novel HPPD inhibitor scaffold first discovered in our lab. Herein, starting from the crystal structure of Arabidopsis thaliana (At)HPPD complexed with 6-(2-hydroxy-6-oxocyclohex-1-ene-1-carbonyl)-1,5-dimethyl-3-(o-tolyl)quinazoline-2,4(1H,3H)-dione (MBQ), three subseries of quinazoline-2,4-dione derivatives were designed and prepared by optimizing the hydrophobic interactions between the side chain of the core structure at the R1 position and the hydrophobic pocket at the active site entrance of AtHPPD. 6-(2-Hydroxy-6-oxocyclohex-1-ene-1-carbonyl)-1,5-dimethyl-3-(3-(trimethylsilyl)prop-2-yn-1-yl)quinazoline-2,4(1H,3H)-dione (60) with the best inhibitory activity against AtHPPD was identified to be the first subnanomolar-range AtHPPD inhibitor (Ki = 0.86 nM), which significantly outperformed that of the lead compound MBQ (Ki = 8.2 nM). Further determination of the crystal structure of AtHPPD in complex with compound 60 (1.85 Å) and the binding energy calculation provided a molecular basis for the understanding of its high efficiency. Additionally, the greenhouse assay indicated that 6-(2-hydroxy-6-oxocyclohex-1-ene-1-carbonyl)-1,5-dimethyl-3-propylquinazoline-2,4(1H,3H)-dione (28) and compound 60 showed acceptable crop safety against peanut and good herbicidal activity with a broad spectrum. Moreover, compound 28 also showed superior selectivity for wheat at the dosage of 120 g ai/ha and favorable herbicidal efficacy toward the gramineous weeds at the dosage of as low as 30 g ai/ha. We believe that compounds 28 and 60 have promising prospects as new herbicide candidates for wheat and peanut fields.
Collapse
Affiliation(s)
- Ren-Yu Qu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Jia-Xu Nan
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Yao-Chao Yan
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Qiong Chen
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Ferdinand Ndikuryayo
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Xue-Fang Wei
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Wen-Chao Yang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Hong-Yan Lin
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Guang-Fu Yang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| |
Collapse
|
32
|
Zhang T, Pan L, Cao Y, Liu N, Wei W, Li H. Identifying the Mechanisms and Molecular Targets of Yizhiqingxin Formula on Alzheimer's Disease: Coupling Network Pharmacology with GEO Database. PHARMACOGENOMICS & PERSONALIZED MEDICINE 2020; 13:487-502. [PMID: 33116763 PMCID: PMC7571582 DOI: 10.2147/pgpm.s269726] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 09/09/2020] [Indexed: 12/16/2022]
Abstract
Background Yizhiqingxin formula (YZQX) is a promising formula for the treatment of Alzheimer’s disease (AD) with significant clinical effects. Here, we coupled a network pharmacology approach with the Gene Expression Omnibus (GEO) database to illustrate comprehensive mechanisms and screen for molecular targets of YZQX for AD treatment. Methods First, active ingredients of YZQX were screened for the Traditional Chinese Medicine Systems Pharmacology (TCMSP) database with the absorption, distribution, metabolism, and excretion (ADME) parameters. Subsequently, putative targets of active ingredients were predicted using the DrugBank database. AD-related targets were retrieved by analyzing published microarray data (accession number GSE5281). Protein–protein interaction (PPI) networks of YZQX putative targets and AD-related targets were constructed visually and merged to identify candidate targets for YZQX against AD using Cytoscape 3.7.2 software. We performed gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis to further clarify the biological functions of the candidate targets. The gene-pathway network was established to filter for key target genes. Results Forty-three active ingredients were identified, and 193 putative target genes were predicted. Seven hundred and ten targets related to AD were screened with |log2 FC| > 1 and P < 0.05. Based on the PPI network, 110 target genes of YZQX against AD were identified. Moreover, 32 related pathways including the PI3K-Akt signaling pathway, MAPK signaling pathway, ubiquitin-mediated proteolysis, apoptosis and the NF-kappa B signaling pathway were significantly enriched. In the gene-pathway network, MAPK1, AKT1, TP53, MDM2, EGFR, RELA, SRC, GRB2, CUL1, and MYC targets are putative core genes for YZQX in AD treatment. Conclusion YZQX against AD may exert its neuroprotective effect via the PI3K-Akt signaling pathway, MAPK signaling pathway, and ubiquitin-mediated proteolysis. YZQX may be a promising drug that can be used in the treatment of AD.
Collapse
Affiliation(s)
- Tingting Zhang
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, ShanDong Province, People's Republic of China.,Department of Geratology, Xiyuan Hospital, China Academy of Chinese Medical Science, Beijing, People's Republic of China
| | - Linlin Pan
- Department of Chinese Medicine Literature and Culture, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People's Republic of China
| | - Yu Cao
- Geriatric Laboratory, Xiyuan Hospital, China Academy of Chinese Medical Science, Beijing, People's Republic of China
| | - Nanyang Liu
- Department of Geratology, Xiyuan Hospital, China Academy of Chinese Medical Science, Beijing, People's Republic of China
| | - Wei Wei
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, ShanDong Province, People's Republic of China.,Department of Geratology, Xiyuan Hospital, China Academy of Chinese Medical Science, Beijing, People's Republic of China
| | - Hao Li
- Department of Geratology, Xiyuan Hospital, China Academy of Chinese Medical Science, Beijing, People's Republic of China
| |
Collapse
|
33
|
Slob W, Zeilmaker MJ, Hoogenveen RT. The Relationship Between Internal and External Dose: Some General Results Based on a Generic Compartmental Model. Toxicol Sci 2020; 177:60-70. [PMID: 32514576 DOI: 10.1093/toxsci/kfaa082] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Statements on how the internal-to-external-dose (IED) relationship looks like are often based on qualitative toxicokinetic arguments. For example, the recently proposed kinetically derived maximum dose (KMD) states that the IED relationship must have an inflection point, due to saturation of underlying processes like metabolism or absorption. However, such statements lack a solid quantitative foundation. Therefore, we derived expressions for the IED relationship for a number of scenarios based on a generic compartmental model involving saturation. The scenarios included repeated or single dose, and saturable metabolism or saturable absorption. For some of these scenarios, an explicit expression for the IED relationship can be derived, for others only implicit expressions can be established, which need to be evaluated numerically. The results show that saturable processes will lead to an IED relationship that is nonlinear over the whole dose range, ie, it can be approximated by a linear relationship at the lower end, whereas the approximation will become gradually poorer with increasing doses. The finding that saturation does not lead to an inflection point in the IED relationship, as assumed in the KMD, implies that the KMD is not a valid approach for selecting the top dose in toxicological studies. An additional use of our results is that the derived explicit expressions of the IED relationship can be fitted to IED data, and, possibly, for extrapolation outside the observed dose range.
Collapse
Affiliation(s)
- Wout Slob
- National Institute for Public Health and the Environment (RIVM), VPZ, 3720 BA Bilthoven, The Netherlands
| | - Marco J Zeilmaker
- National Institute for Public Health and the Environment (RIVM), VPZ, 3720 BA Bilthoven, The Netherlands
| | - Rudolf T Hoogenveen
- National Institute for Public Health and the Environment (RIVM), VPZ, 3720 BA Bilthoven, The Netherlands
| |
Collapse
|
34
|
Cohen SM, Zhongyu Y, Bus JS. Relevance of mouse lung tumors to human risk assessment. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2020; 23:214-241. [PMID: 32452303 DOI: 10.1080/10937404.2020.1763879] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Mouse lung is a common site for chemical tumorigenicity, but the relevance to human risk remains debated. Long-term bioassays need to be assessed for appropriateness of the dose, neither exceeding Maximum Tolerated Dose (MTD) nor Kinetically based Maximum Dose (KMD). An example of the KMD issue is 1,3-dichloropropene (1,3-D), which only produced an increased incidence of lung tumors at a dose exceeding the KMD. In addition, since mouse lung tumors are common (>1% incidence), the appropriate statistical significance is p < .01. Numerous differences exist for mouse lung and tumors compared to humans, including anatomy, respiratory rate, metabolism, tumor histogenesis, and metastatic frequency. The recent demonstration of the critical role of mouse lung specific Cyp2 F2 metabolism in mouse lung carcinogenicity including styrene or fluensulfone indicates that this tumor response is not qualitatively or quantitatively relevant to humans. For non-DNA reactive and non-mutagenic carcinogens, the mode of action involves direct mitogenicity such as for isoniazid, styrene, fluensulfone, permethrin or cytotoxicity with regeneration such as for naphthalene. However, the possibility of mixed mitogenic and cytotoxic modes of action cannot always be excluded. The numerous differences between mouse and human, combined with epidemiologic evidence of no increased cancer risk for several of these chemicals make the relevance of mouse lung tumors for human cancer risk dubious.
Collapse
Affiliation(s)
- Samuel M Cohen
- Havlik-Wall Professor of Oncology, University of Nebraska Medical Center , Omaha, NE, USA
- University of Nebraska Medical Center , Omaha, NE, USA
| | | | | |
Collapse
|
35
|
Heringa MB, Cnubben NH, Slob W, Pronk ME, Muller A, Woutersen M, Hakkert BC. Use of the kinetically-derived maximum dose concept in selection of top doses for toxicity studies hampers proper hazard assessment and risk management. Regul Toxicol Pharmacol 2020; 114:104659. [DOI: 10.1016/j.yrtph.2020.104659] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 04/02/2020] [Accepted: 04/11/2020] [Indexed: 01/02/2023]
|
36
|
Loccisano AE, Bus J, Gollapudi B, Riffle B, Frericks M, Fegert I, Fabian E. Use of toxicokinetic data for afidopyropen to determine the dose levels in developmental toxicity studies. Regul Toxicol Pharmacol 2020; 113:104644. [PMID: 32194133 DOI: 10.1016/j.yrtph.2020.104644] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 02/01/2020] [Accepted: 03/13/2020] [Indexed: 11/19/2022]
Abstract
Afidopyropen is an insecticide that acts as a TRPV channel modulator in chordotonal organs of target insects and has been assessed for a wide range of toxicity endpoints including developmental toxicity in rats and rabbits. The GLP developmental toxicity study in rabbits did not produce evidence of maternal or fetal toxicity at the highest dose tested (32 mg/kg/day) but pharmacokinetics (PK) in pregnant rabbits in this study exhibited onset of PK nonlinearity from 5 mg/kg/day on, as measured by plasma Cmax and AUC. The NOAEL (32 mg/kg/day) is 9000X higher than maximum expected human dietary exposures to afidopyropen; the dose range where nonlinear PK were observed (5-15 mg/kg/day) is 1400-4200X higher. As nonlinearity occurred between 5 and 15 mg/kg/day, 32 mg/kg/day is concluded to be a sufficiently high dose (kinetically derived maximum dose) for a prenatal developmental toxicity study. As recognized by regulatory dose-selection guidance, onset of saturated PK is evidence of excessive biological stress to test animals rendering any effects at such doses of questionable relevance for human risk assessment. These data demonstrate that consideration of PK is critical for improving the dose-selection in developmental toxicity studies to enhance human relevance of animal toxicity studies.
Collapse
Affiliation(s)
| | - James Bus
- Exponent Inc, Alexandria, VA, 22314, USA
| | | | - Brandy Riffle
- BASF Corporation, Research Triangle Park, NC, 27709, USA
| | - Markus Frericks
- BASF SE Experimental Toxicology and Ecology, Ludwigshafen, Germany
| | - Ivana Fegert
- BASF SE Experimental Toxicology and Ecology, Ludwigshafen, Germany
| | - Eric Fabian
- BASF SE Experimental Toxicology and Ecology, Ludwigshafen, Germany.
| |
Collapse
|
37
|
Song Y, Wang H, Pan Y, Liu T. Investigating the Multi-Target Pharmacological Mechanism of Hedyotis diffusa Willd Acting on Prostate Cancer: A Network Pharmacology Approach. Biomolecules 2019; 9:E591. [PMID: 31600936 PMCID: PMC6843553 DOI: 10.3390/biom9100591] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/01/2019] [Accepted: 10/03/2019] [Indexed: 02/06/2023] Open
Abstract
Hedyotis diffusa Willd (HDW) is one of the most well-known herbs used in the treatment of prostate cancer. However, the potential mechanisms of its anti-tumor effects have not been fully explored. Here, we applied a network pharmacology approach to explore the potential mechanisms of HDW against prostate cancer (PCa). We obtained 14 active compounds from HDW and 295 potential PCa related targets in total to construct a network, which indicated that quercetin and ursolic acid served as the main ingredients in HDW. Mitogen-activated Protein Kinase 8 (MAPK8), Interleukin 6 (IL6), Vascular Endothelial Growth Factor A (VEGFA), Signal Transducer and Activator of Transcription 3 (STAT3), Jun Proto-Oncogene (JUN), C-X-C Motif Chemokine Ligand 8 (CXCL8), Interleukin-1 Beta (IL1B), Matrix Metalloproteinase-9 (MMP9), C-C Motif Chemokine Ligand 2 (CCL2), RELA Proto-Oncogene (RELA), and CAMP Responsive Element Binding Protein 1 (CREB1) were identified as key targets of HDW in the treatment of PCa. The protein-protein interaction (PPI) cluster demonstrated that CREB1 was the seed in this cluster, indicating that CREB1 plays an important role in connecting other nodes in the PPI network. This enrichment demonstrated that HDW was highly related to translesion synthesis, unfolded protein binding, regulation of mitotic recombination, phosphatidylinositol and its kinase-mediated signaling, nucleotide excision repair, regulation of DNA recombination, and DNA topological change. The enrichment results also showed that the underlying mechanism of HDW against PCa may be due to its coordinated regulation of several cancer-related pathways, such as angiogenesis, cell differentiation, migration, apoptosis, invasion, and proliferation.
Collapse
Affiliation(s)
- Yanan Song
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China.
- Newborn Medicine, Boston Children's Hospital, Boston, MA 02115, USA.
| | - Haiyan Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Yajing Pan
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Tonghua Liu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China.
| |
Collapse
|
38
|
Sudhakaran SL, Madathil D, Arumugam M, Sundararajan V. Drug Development for Hepatitis C Virus Infection: Machine Learning Applications. GLOBAL VIROLOGY III: VIROLOGY IN THE 21ST CENTURY 2019:117-129. [DOI: 10.1007/978-3-030-29022-1_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
39
|
Van Cott A, Frericks M, Hastings C, Honarvar N, Flick B, Fabian E, van Ravenzwaay B. Uterine adenocarcinoma in the rat induced by afidopyropen. An analysis of the lesion's induction, progression and its relevance to humans. Regul Toxicol Pharmacol 2018; 95:29-51. [DOI: 10.1016/j.yrtph.2018.02.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 01/29/2018] [Accepted: 02/28/2018] [Indexed: 11/16/2022]
|
40
|
The current status of exposure-driven approaches for chemical safety assessment: A cross-sector perspective. Toxicology 2017; 389:109-117. [DOI: 10.1016/j.tox.2017.07.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 07/27/2017] [Accepted: 07/31/2017] [Indexed: 12/20/2022]
|
41
|
Jeschke P. Latest generation of halogen-containing pesticides. PEST MANAGEMENT SCIENCE 2017; 73:1053-1066. [PMID: 28145087 DOI: 10.1002/ps.4540] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 01/27/2017] [Accepted: 01/27/2017] [Indexed: 05/03/2023]
Abstract
Agriculture is confronted with enormous challenges, from production of enough high-quality food to water use, environmental impacts and issues combined with a continually growing world population. Modern agricultural chemistry has to support farmers by providing innovative agrichemicals, used in applied agriculture. In this context, the introduction of halogen atoms into an active ingredient is still an important tool to modulate the properties of new crop protection compounds. Since 2010, around 96% of the launched products (herbicides, fungicides, insecticides/acaricides and nematicides) contain halogen atoms. The launched nematicides contain the largest number of halogen atoms, followed by insecticides/acaricides, herbicides and fungicides. In this context, fungicides and herbicides contain in most cases fluorine atoms, whereas nematicides and insecticides contain in most cases 'mixed' halogen atoms, for example chlorine and fluorine. This review gives an overview of the latest generation of halogen-containing pesticides launched over the past 6 years and describes current halogen-containing development candidates. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Peter Jeschke
- Bayer AG, Crop Science Division, Research & Development, Monheim am Rhein, Germany
| |
Collapse
|
42
|
Neal BH, Bus J, Marty MS, Coady K, Williams A, Staveley J, Lamb JC. Weight-of-the-evidence evaluation of 2,4-D potential for interactions with the estrogen, androgen and thyroid pathways and steroidogenesis. Crit Rev Toxicol 2017; 47:345-401. [PMID: 28303741 DOI: 10.1080/10408444.2016.1272094] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A comprehensive weight-of-the-evidence evaluation of 2,4-dichlorophenoxyacetic acid (2,4-D) was conducted for potential interactions with the estrogen, androgen and thyroid pathways and with steroidogenesis. This assessment was based on an extensive database of high quality in vitro, in vivo ecotoxicological and in vivo mammalian toxicological studies. Epidemiological studies were also considered. Toxicokinetic data provided the basis for determining rational cutoffs above which exposures were considered irrelevant to humans based on exceeding thresholds for saturation of renal clearance (TSRC); extensive human exposure and biomonitoring data support that these boundaries far exceed human exposures and provide ample margins of exposure. 2,4-D showed no evidence of interacting with the estrogen or androgen pathways. 2,4-D interacts with the thyroid axis in rats through displacement of thyroxine from plasma binding sites only at high doses exceeding the TSRC in mammals. 2,4-D effects on steroidogenesis parameters are likely related to high-dose specific systemic toxicity at doses exceeding the TSRC and are not likely to be endocrine mediated. No studies, including high quality studies in the published literature, predict significant endocrine-related toxicity or functional decrements in any species at environmentally relevant concentrations, or, in mammals, at doses below the TSRC that are relevant for human hazard and risk assessment. Overall, there is no basis for concern regarding potential interactions of 2,4-D with endocrine pathways or axes (estrogen, androgen, steroidogenesis or thyroid), and thus 2,4-D is unlikely to pose a threat from endocrine disruption to wildlife or humans under conditions of real-world exposures.
Collapse
Affiliation(s)
- B H Neal
- a Exponent® , Alexandria , VA , USA
| | - J Bus
- a Exponent® , Alexandria , VA , USA
| | - M S Marty
- b Toxicology & Environmental Research and Consulting, The Dow Chemical Company , Midland , MI , USA
| | - K Coady
- b Toxicology & Environmental Research and Consulting, The Dow Chemical Company , Midland , MI , USA
| | | | | | - J C Lamb
- a Exponent® , Alexandria , VA , USA
| |
Collapse
|
43
|
Borghoff SJ, Ring C, Banton MI, Leavens TL. Physiologically based pharmacokinetic model for ethyl tertiary-butyl ether and tertiary-butyl alcohol in rats: Contribution of binding to α2u-globulin in male rats and high-exposure nonlinear kinetics to toxicity and cancer outcomes. J Appl Toxicol 2016; 37:621-640. [PMID: 27885692 PMCID: PMC5434881 DOI: 10.1002/jat.3412] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 10/04/2016] [Accepted: 10/04/2016] [Indexed: 01/17/2023]
Abstract
In cancer bioassays, inhalation, but not drinking water exposure to ethyl tertiary-butyl ether (ETBE), caused liver tumors in male rats, while tertiary-butyl alcohol (TBA), an ETBE metabolite, caused kidney tumors in male rats following exposure via drinking water. To understand the contribution of ETBE and TBA kinetics under varying exposure scenarios to these tumor responses, a physiologically based pharmacokinetic model was developed based on a previously published model for methyl tertiary-butyl ether, a structurally similar chemical, and verified against the literature and study report data. The model included ETBE and TBA binding to the male rat-specific protein α2u-globulin, which plays a role in the ETBE and TBA kidney response observed in male rats. Metabolism of ETBE and TBA was described as a single, saturable pathway in the liver. The model predicted similar kidney AUC0-∞ for TBA for various exposure scenarios from ETBE and TBA cancer bioassays, supporting a male-rat-specific mode of action for TBA-induced kidney tumors. The model also predicted nonlinear kinetics at ETBE inhalation exposure concentrations above ~2000 ppm, based on blood AUC0-∞ for ETBE and TBA. The shift from linear to nonlinear kinetics at exposure concentrations below the concentration associated with liver tumors in rats (5000 ppm) suggests the mode of action for liver tumors operates under nonlinear kinetics following chronic exposure and is not relevant for assessing human risk. Copyright © 2016 The Authors Journal of Applied Toxicology Published by John Wiley & Sons Ltd.
Collapse
|
44
|
Terry C, Hays S, McCoy AT, McFadden LG, Aggarwal M, Rasoulpour RJ, Juberg DR. Implementing a framework for integrating toxicokinetics into human health risk assessment for agrochemicals. Regul Toxicol Pharmacol 2016; 75:89-104. [DOI: 10.1016/j.yrtph.2015.10.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 10/01/2015] [Accepted: 10/04/2015] [Indexed: 01/25/2023]
|
45
|
Jeschke P. Propesticides and their use as agrochemicals. PEST MANAGEMENT SCIENCE 2016; 72:210-225. [PMID: 26449612 DOI: 10.1002/ps.4170] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 09/16/2015] [Accepted: 10/05/2015] [Indexed: 06/05/2023]
Abstract
The synthesis of propesticides is an important concept in design of modern agrochemicals with optimal efficacy, environmental safety, user friendliness and economic variability. Based on increasing knowledge of the biochemistry and genetics of major pest insects, weeds and agricultural pathogens, the search for selectivity has become an ever more important part of pesticide development and can be achieved by appropriate structural modifications of the active ingredient. Propesticides affect the absorption, distribution, metabolism and excretion parameters, which can lead to biological superiority of these modified active ingredients over their non-derivatised analogues. Various selected commercial propesticides testify to the successful utilisation of this concept in the design of agrochemicals. This review describes comprehensively the successful utilisation of propesticides and their role in syntheses of modern agrochemicals, exemplified by selected commercial products coming from different agrochemical areas.
Collapse
|
46
|
Singh SP, Dwivedi N, Raju KSR, Taneja I, Wahajuddin M. Validation of a Rapid and Sensitive UPLC-MS-MS Method Coupled with Protein Precipitation for the Simultaneous Determination of Seven Pyrethroids in 100 µL of Rat Plasma by Using Ammonium Adduct as Precursor Ion. J Anal Toxicol 2016; 40:213-21. [PMID: 26801239 DOI: 10.1093/jat/bkw002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
United States Environmental Protection Agency has recommended estimating pyrethroids' risk using cumulative exposure. For cumulative risk assessment, it would be useful to have a bioanalytical method for quantification of one or several pyrethroids simultaneously in a small sample volume to support toxicokinetic studies. Therefore, in the present study, a simple, sensitive and high-throughput ultraperformance liquid chromatography-tandem mass spectrometry method was developed and validated for simultaneous analysis of seven pyrethroids (fenvalerate, fenpropathrin, bifenthrin, lambda-cyhalothrin, cyfluthrin, cypermethrin and deltamethrin) in 100 µL of rat plasma. A simple single-step protein precipitation method was used for the extraction of target compounds. The total chromatographic run time of the method was 5 min. The chromatographic system used a Supelco C18 column and isocratic elution with a mobile phase consisting of methanol and 5 mM ammonium formate in the ratio of 90 : 10 (v/v). Mass spectrometer (API 4000) was operated in multiple reaction monitoring positive-ion mode using the electrospray ionization technique. The calibration curves were linear in the range of 7.8-2,000 ng/mL with correlation coefficients of ≥ 0.99. All validation parameters such as precision, accuracy, recovery, matrix effect and stability met the acceptance criteria according to the regulatory guidelines. The method was successfully applied to the toxicokinetic study of cypermethrin in rats. To the best of our knowledge, this is the first LC-MS-MS method for the simultaneous analysis of pyrethroids in rat plasma. This validated method with minimal modification can also be utilized for forensic and clinical toxicological applications due to its simplicity, sensitivity and rapidity.
Collapse
Affiliation(s)
- Sheelendra Pratap Singh
- Analytical Chemistry Laboratory and Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
| | - Nistha Dwivedi
- Analytical Chemistry Laboratory and Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
| | - Kanumuri Siva Rama Raju
- Pharmacokinetics and Metabolism Division, CSIR-Central Drug Research Institute, Lucknow 226031, Uttar Pradesh, India
| | - Isha Taneja
- Pharmacokinetics and Metabolism Division, CSIR-Central Drug Research Institute, Lucknow 226031, Uttar Pradesh, India
| | - Mohammad Wahajuddin
- Pharmacokinetics and Metabolism Division, CSIR-Central Drug Research Institute, Lucknow 226031, Uttar Pradesh, India
| |
Collapse
|
47
|
Ducrot V, Ashauer R, Bednarska AJ, Hinarejos S, Thorbek P, Weyman G. Using toxicokinetic-toxicodynamic modeling as an acute risk assessment refinement approach in vertebrate ecological risk assessment. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2016; 12:32-45. [PMID: 25833822 DOI: 10.1002/ieam.1641] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 01/20/2015] [Accepted: 02/24/2015] [Indexed: 05/15/2023]
Abstract
Recent guidance identified toxicokinetic-toxicodynamic (TK-TD) modeling as a relevant approach for risk assessment refinement. Yet, its added value compared to other refinement options is not detailed, and how to conduct the modeling appropriately is not explained. This case study addresses these issues through 2 examples of individual-level risk assessment for 2 hypothetical plant protection products: 1) evaluating the risk for small granivorous birds and small omnivorous mammals of a single application, as a seed treatment in winter cereals, and 2) evaluating the risk for fish after a pulsed treatment in the edge-of-field zone. Using acute test data, we conducted the first tier risk assessment as defined in the European Food Safety Authority (EFSA) guidance. When first tier risk assessment highlighted a concern, refinement options were discussed. Cases where the use of models should be preferred over other existing refinement approaches were highlighted. We then practically conducted the risk assessment refinement by using 2 different models as examples. In example 1, a TK model accounting for toxicokinetics and relevant feeding patterns in the skylark and in the wood mouse was used to predict internal doses of the hypothetical active ingredient in individuals, based on relevant feeding patterns in an in-crop situation, and identify the residue levels leading to mortality. In example 2, a TK-TD model accounting for toxicokinetics, toxicodynamics, and relevant exposure patterns in the fathead minnow was used to predict the time-course of fish survival for relevant FOCUS SW exposure scenarios and identify which scenarios might lead to mortality. Models were calibrated using available standard data and implemented to simulate the time-course of internal dose of active ingredient or survival for different exposure scenarios. Simulation results were discussed and used to derive the risk assessment refinement endpoints used for decision. Finally, we compared the "classical" risk assessment approach with the model-based approach. These comparisons showed that TK and TK-TD models can bring more realism to the risk assessment through the possibility to study realistic exposure scenarios and to simulate relevant mechanisms of effects (including delayed toxicity and recovery). Noticeably, using TK-TD models is currently the most relevant way to directly connect realistic exposure patterns to effects. We conclude with recommendations on how to properly use TK and TK-TD model in acute risk assessment for vertebrates.
Collapse
Affiliation(s)
- Virginie Ducrot
- INRA, UMR0985 Ecologie et Santé des Ecosystèmes, Equipe Ecotoxicologie et Qualité des Milieux Aquatiques, Rennes, France
| | - Roman Ashauer
- Environment Department, University of York, York, United Kingdom
| | - Agnieszka J Bednarska
- Institute of Nature Conservation, Polish Academy of Sciences, Kraków, Poland
- Syngenta, Jealott's Hill International Research Centre, Bracknell, United Kingdom
| | - Silvia Hinarejos
- Sumitomo Chemical Agro Europe, SAS, Saint Didier au Mont d'Or, France
| | - Pernille Thorbek
- Syngenta, Jealott's Hill International Research Centre, Bracknell, United Kingdom
| | - Gabriel Weyman
- Makhteshim-Agan (UK), Thatcham Business Village, Thatcham, Berkshire, United Kingdom
| |
Collapse
|
48
|
Hutchinson TH, Madden JC, Naidoo V, Walker CH. Comparative metabolism as a key driver of wildlife species sensitivity to human and veterinary pharmaceuticals. Philos Trans R Soc Lond B Biol Sci 2015; 369:rstb.2013.0583. [PMID: 25405970 DOI: 10.1098/rstb.2013.0583] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Human and veterinary drug development addresses absorption, distribution, metabolism, elimination and toxicology (ADMET) of the Active Pharmaceutical Ingredient (API) in the target species. Metabolism is an important factor in controlling circulating plasma and target tissue API concentrations and in generating metabolites which are more easily eliminated in bile, faeces and urine. The essential purpose of xenobiotic metabolism is to convert lipid-soluble, non-polar and non-excretable chemicals into water soluble, polar molecules that are readily excreted. Xenobiotic metabolism is classified into Phase I enzymatic reactions (which add or expose reactive functional groups on xenobiotic molecules), Phase II reactions (resulting in xenobiotic conjugation with large water-soluble, polar molecules) and Phase III cellular efflux transport processes. The human-fish plasma model provides a useful approach to understanding the pharmacokinetics of APIs (e.g. diclofenac, ibuprofen and propranolol) in freshwater fish, where gill and liver metabolism of APIs have been shown to be of importance. By contrast, wildlife species with low metabolic competency may exhibit zero-order metabolic (pharmacokinetic) profiles and thus high API toxicity, as in the case of diclofenac and the dramatic decline of vulture populations across the Indian subcontinent. A similar threat looms for African Cape Griffon vultures exposed to ketoprofen and meloxicam, recent studies indicating toxicity relates to zero-order metabolism (suggesting P450 Phase I enzyme system or Phase II glucuronidation deficiencies). While all aspects of ADMET are important in toxicity evaluations, these observations demonstrate the importance of methods for predicting API comparative metabolism as a central part of environmental risk assessment.
Collapse
Affiliation(s)
- Thomas H Hutchinson
- School of Biological Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK
| | - Judith C Madden
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, UK
| | - Vinny Naidoo
- Departmental of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort, Gauteng 0110, South Africa
| | | |
Collapse
|
49
|
Brandon EFA, van Kesteren PCE, van Eijkeren JCH, Tienstra M, Sanchez PL, Tonk ECM, Piersma AH, Bos PMJ. Implementation of toxicokinetics in toxicity studies--Toxicokinetics of 4-methylanisole and its metabolites in juvenile and adult rats. Regul Toxicol Pharmacol 2015; 73:55-64. [PMID: 26140820 DOI: 10.1016/j.yrtph.2015.06.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 06/16/2015] [Accepted: 06/25/2015] [Indexed: 10/23/2022]
Abstract
The current risk assessment of compounds is generally based on external exposure and effect relationships. External doses are often not representative for internal exposure concentrations. The aim of this study was to show how the implementation of toxicokinetics in a scheduled toxicity study contributes to improved data interpretation without additional use of animals and to the three goals of the 3R principles for animal testing. Toxicokinetic analyses were implemented in a rat developmental immunotoxicity study with 4-methylanisole without interfering with the outcome of the study and without the use of additional animals. 4-Methylanisole and its metabolites were analysed in plasma of adult rats and in pups at postnatal day 10. 4-Methylanisole has a short half-life in adult animals and the plasma concentrations increased more than proportional with increasing dose. The metabolic profile appeared to be different at low dose as compared to high dose. This information on the dose-proportionality of the internal exposure is crucial for the interpretation of the toxicity data and helps to identify the toxic agent and the appropriate dose metric. The metabolism was similar in adult and juvenile animals. Large inter-individual variability in adult animals, as observed for 4-methylanisole, may hamper dose-response analyses of the results. In addition, 4-metylanisole was excreted via milk, but concentrations in the juvenile animals appeared to be 20- to 100-fold lower than via direct gavage exposure. The toxicokinetic parameters support the data interpretation, among others by providing better insight into internal exposures. Subsequently, it will help to prevent testing of irrelevant exposure scenarios and exposure concentrations. Overall, implementation of kinetics with limited effort provides useful information to support the interpretation of toxicological data and can contribute to reduction and refinement of animal testing.
Collapse
Affiliation(s)
- Esther F A Brandon
- National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720 BA Bilthoven, The Netherlands
| | - Petra C E van Kesteren
- National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720 BA Bilthoven, The Netherlands
| | - Jan C H van Eijkeren
- National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720 BA Bilthoven, The Netherlands
| | - Marc Tienstra
- RIKILT Wageningen UR, P.O. Box 230, 6700 AE Wageningen, The Netherlands
| | | | - Elisa C M Tonk
- National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720 BA Bilthoven, The Netherlands
| | - Aldert H Piersma
- National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720 BA Bilthoven, The Netherlands.
| | - Peter M J Bos
- National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720 BA Bilthoven, The Netherlands
| |
Collapse
|
50
|
Saghir SA. Rethinking guideline toxicity testing. Regul Toxicol Pharmacol 2015; 72:423-8. [DOI: 10.1016/j.yrtph.2015.05.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 05/05/2015] [Accepted: 05/08/2015] [Indexed: 11/28/2022]
|