1
|
Xu Y, Lin Y, Yu M, Zhou K. The nucleus accumbens in reward and aversion processing: insights and implications. Front Behav Neurosci 2024; 18:1420028. [PMID: 39184934 PMCID: PMC11341389 DOI: 10.3389/fnbeh.2024.1420028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/26/2024] [Indexed: 08/27/2024] Open
Abstract
The nucleus accumbens (NAc), a central component of the brain's reward circuitry, has been implicated in a wide range of behaviors and emotional states. Emerging evidence, primarily drawing from recent rodent studies, suggests that the function of the NAc in reward and aversion processing is multifaceted. Prolonged stress or drug use induces maladaptive neuronal function in the NAc circuitry, which results in pathological conditions. This review aims to provide comprehensive and up-to-date insights on the role of the NAc in motivated behavior regulation and highlights areas that demand further in-depth analysis. It synthesizes the latest findings on how distinct NAc neuronal populations and pathways contribute to the processing of opposite valences. The review examines how a range of neuromodulators, especially monoamines, influence the NAc's control over various motivational states. Furthermore, it delves into the complex underlying mechanisms of psychiatric disorders such as addiction and depression and evaluates prospective interventions to restore NAc functionality.
Collapse
Affiliation(s)
| | | | | | - Kuikui Zhou
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, China
| |
Collapse
|
2
|
Brice-Tutt AC, Montgomery DS, Kramer CM, Novotny PM, Malphurs WL, Sharma A, Caudle RM, Bruijnzeel AW, Setlow B, Neubert JK, Murphy NP. An ethogram analysis of cutaneous thermal pain sensitivity and oxycodone reward-related behaviors in rats. Sci Rep 2023; 13:10482. [PMID: 37380739 PMCID: PMC10307779 DOI: 10.1038/s41598-023-36729-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 06/08/2023] [Indexed: 06/30/2023] Open
Abstract
Inter-relationships between pain sensitivity, drug reward, and drug misuse are of considerable interest given that many analgesics exhibit misuse potential. Here we studied rats as they underwent a series of pain- and reward-related tests: cutaneous thermal reflex pain, induction and extinction of conditioned place preference to oxycodone (0.56 mg/kg), and finally the impact of neuropathic pain on reflex pain and reinstatement of conditioned place preference. Oxycodone induced a significant conditioned place preference that extinguished throughout repeated testing. Correlations identified of particular interest included an association between reflex pain and oxycodone-induced behavioral sensitization, and between rates of behavioral sensitization and extinction of conditioned place preference. Multidimensional scaling analysis followed by k-clustering identified three clusters: (1) reflex pain, rate of behavioral sensitization and rate of extinction of conditioned place preference (2) basal locomotion, locomotor habituation, acute oxycodone-stimulated locomotion and rate of change in reflex pain during repeated testing, and (3) magnitude of conditioned place preference. Nerve constriction injury markedly enhanced reflex pain but did not reinstate conditioned place preference. These results suggest that high rates of behavioral sensitization predicts faster rates of extinction of oxycodone seeking/reward, and suggest that cutaneous thermal reflex pain may be predictive of both.
Collapse
Affiliation(s)
| | | | - Cassidy M Kramer
- Departments of Orthodontics, University of Florida, Gainesville, FL, USA
| | - Peter M Novotny
- Departments of Orthodontics, University of Florida, Gainesville, FL, USA
| | - Wendi L Malphurs
- Departments of Orthodontics, University of Florida, Gainesville, FL, USA
| | - Abhisheak Sharma
- Department of Pharmaceutics, University of Florida, Gainesville, FL, USA
| | - Robert M Caudle
- Department of Oral and Maxillofacial Surgery, University of Florida, Gainesville, FL, USA
| | - Adriaan W Bruijnzeel
- Department of Psychiatry, University of Florida, Gainesville, FL, USA
- Center for Addiction Research and Education, University of Florida, Gainesville, FL, USA
| | - Barry Setlow
- Department of Psychiatry, University of Florida, Gainesville, FL, USA
- Center for Addiction Research and Education, University of Florida, Gainesville, FL, USA
| | - John K Neubert
- Departments of Orthodontics, University of Florida, Gainesville, FL, USA
| | - Niall P Murphy
- Departments of Orthodontics, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
3
|
Liachenko S, Chelonis J, Paule MG, Li M, Sadovova N, Talpos JC. The effects of long-term methylphenidate administration and withdrawal on progressive ratio responding and T 2 MRI in the male rhesus monkey. Neurotoxicol Teratol 2022; 93:107119. [PMID: 35970252 DOI: 10.1016/j.ntt.2022.107119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 08/03/2022] [Accepted: 08/08/2022] [Indexed: 11/16/2022]
Abstract
Methylphenidate is a frequently prescribed drug treatment for Attention-Deficit/Hyperactivity Disorder. However, methylphenidate has a mode of action similar to amphetamine and cocaine, both powerful drugs of abuse. There is lingering concern over the long-term safety of methylphenidate, especially in a pediatric population, where the drug may be used for years. We performed a long-term evaluation of the effects of chronic methylphenidate use on a behavioral measure of motivation in male rhesus monkeys. Animals were orally administered a sweetened methylphenidate solution (2.5 or 12.5 mg/kg, twice a day, Mon-Fri) or vehicle during adolescence and into adulthood. These animals were assessed on a test of motivation (progressive ratio responding), during methylphenidate treatment, and after cessation of use. Moreover, animals were evaluated with quantitative T2 MRI about one year after cessation of use. During the administration phase of the study animals treated with a clinically relevant dose of methylphenidate generally had a higher rate of responding than the control group, while the high dose group generally had a lower rate of responding. These differences were not statistically significant. In the month after cessation of methylphenidate, responding in both experimental groups dropped compared to their previous level of performance (p = 0.19 2.5 mg/kg, p = 0.06 12.5 mg/kg), and responding in the control animals was unchanged (p = 0.81). While cessation of methylphenidate was associated with an acute reduction in responding, group differences were not observed in the following months. These data suggest that methylphenidate did not have a significant impact on responding, but withdrawal from methylphenidate did cause a temporary change in motivation. No changes in T2 MRI values were detected when measured about one year after cessation of treatment. These data suggest that long-term methylphenidate use does not have a negative effect on a measure of motivation or brain function / microstructure as measured by quantitative T2 MRI. However, cessation of use might be associated with temporary cognitive changes, specifically alteration in motivation. Importantly, this study modeled use in healthy individuals, and results may differ if the same work was repeated in a model of ADHD.
Collapse
Affiliation(s)
- Serguei Liachenko
- Division of Neurotoxicology, National Center for Toxicological Research, 3900 NCTR Road, Jefferson, AR 72079, USA
| | - John Chelonis
- Division of Neurotoxicology, National Center for Toxicological Research, 3900 NCTR Road, Jefferson, AR 72079, USA
| | - Merle G Paule
- Division of Neurotoxicology, National Center for Toxicological Research, 3900 NCTR Road, Jefferson, AR 72079, USA
| | - Mi Li
- Division of Neurotoxicology, National Center for Toxicological Research, 3900 NCTR Road, Jefferson, AR 72079, USA
| | - Natalya Sadovova
- Division of Neurotoxicology, National Center for Toxicological Research, 3900 NCTR Road, Jefferson, AR 72079, USA
| | - John C Talpos
- Division of Neurotoxicology, National Center for Toxicological Research, 3900 NCTR Road, Jefferson, AR 72079, USA.
| |
Collapse
|
4
|
Calabrese EJ, Mattson MP, Dhawan G, Kapoor R, Calabrese V, Giordano J. Hormesis: A potential strategic approach to the treatment of neurodegenerative disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2020; 155:271-301. [PMID: 32854857 DOI: 10.1016/bs.irn.2020.03.024] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This review describes neuroprotective effects mediated by pre- and post-conditioning-induced processes that act via the quantitative features of the hormetic dose response. These lead to the development of acquired resilience that can protect neuronal systems from endogenous and exogenous stresses and insult. Particular attention is directed to issues of dose optimization, inter-individual variation, and potential ways to further study and employ hormetic-based preconditioning approaches in medical and public health efforts to treat and prevent neurodegenerative disease.
Collapse
Affiliation(s)
- Edward J Calabrese
- Department of Environmental Health Sciences, University of Massachusetts, Amherst, MA, United States.
| | - Mark P Mattson
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Gaurav Dhawan
- Human Research Protection Office, Research Compliance, University of Massachusetts, Hadley, MA, United States
| | - Rachna Kapoor
- Saint Francis Hospital and Medical Center Hartford, Hartford, CT, United States
| | - Vittorio Calabrese
- Department of Biomedical & Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| | - James Giordano
- Departments of Neurology & Biochemistry, Georgetown University Medical Center, Washington, DC, United States
| |
Collapse
|
5
|
Lin Z, Chen Y, Li J, Xu Z, Wang H, Lin J, Ye X, Zhao Z, Shen Y, Zhang Y, Zheng S, Rao Y. Pharmacokinetics of N-ethylpentylone and its effect on increasing levels of dopamine and serotonin in the nucleus accumbens of conscious rats. Addict Biol 2020; 25:e12755. [PMID: 30985062 DOI: 10.1111/adb.12755] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 03/12/2019] [Accepted: 03/18/2019] [Indexed: 11/29/2022]
Abstract
N-Ethylpentylone (NEP) is one of the most confiscated synthetic cathinones in the world. However, its pharmacology and pharmacokinetics remain largely unknown. In this study, the pharmacokentics of NEP in rat nucleus accumbens (NAc) was assessed via brain microdialysis after the intraperitoneal (ip) administration of NEP (20 or 50 mg/kg). The concentrations of dopamine (DA) and serotonin (5-HT) and their metabolites, including 3,4-dihydroxyphenylacetic acid (DOPAC), 3-methoxytyramine (3-MT), and 5-hydroxyindoleacetic acid (5-HIAA), were simultaneously monitored to elucidate the pharmacological effect of NEP. In addition, the plasma levels of NEP were also assessed. The pharmacokinetics of NEP showed a dose-related pattern, with NEP rapidly passing through the blood-brain barrier and reaching a maximum concentration (Cmax ) at approximately 40-minutes postdose. Approximately 4% of plasma NEP was distributed to the NAc, and considering a homogeneous brain distribution, over 90% of plasma NEP was potentially distributed to the brain. High values of area under curve (AUC) and mean residence time (MRT) of NEP were observed in both the NAc and plasma, indicating large and long-lasting effects. NEP elicited dose-related increases in microdialysate DA and 5-HT and increased the concentration of 3-MT in a dose-related manner. However, the rate of DA converted into 3-MT was unaffected. NEP had a negative effect on the rates of which DA and 5-HT were transformed into DOPAC and 5-HIAA, respectively. In summary, NEP rapidly entered the NAc and showed a long-lasting effect. In addition, DA increased more significantly than 5-HT, indicating a large potential for NEP abuse.
Collapse
Affiliation(s)
- Zebin Lin
- Department of Forensic Medicine, School of Basic Medical SciencesFudan University China
- Department of Biochemistry and Molecular Biology, School of Basic Medical SciencesFudan University China
| | - Yuancheng Chen
- Institute of Antibiotics, Huashan HospitalFudan University China
| | - Jiaolun Li
- Department of Forensic Medicine, School of Basic Medical SciencesFudan University China
| | - Zhiru Xu
- State Key Lab of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical IndustryChina State Institute of Pharmaceutical Industry China
| | - Hao Wang
- Department of Forensic Medicine, School of Basic Medical SciencesFudan University China
| | - Junyi Lin
- Department of Forensic Medicine, School of Basic Medical SciencesFudan University China
| | - Xing Ye
- Department of Forensic Medicine, School of Basic Medical SciencesFudan University China
| | - Ziqin Zhao
- Department of Forensic Medicine, School of Basic Medical SciencesFudan University China
| | - Yiwen Shen
- Department of Forensic Medicine, School of Basic Medical SciencesFudan University China
| | - Yurong Zhang
- Shanghai Institute of Forensic ScienceShanghai Key Laboratory of Crime Scene Evidence China
| | - Shuiqing Zheng
- Shanghai Institute of Forensic ScienceShanghai Key Laboratory of Crime Scene Evidence China
| | - Yulan Rao
- Department of Forensic Medicine, School of Basic Medical SciencesFudan University China
| |
Collapse
|
6
|
Gabrielsson J, Andersson R, Jirstrand M, Hjorth S. Dose-Response-Time Data Analysis: An Underexploited Trinity. Pharmacol Rev 2018; 71:89-122. [DOI: 10.1124/pr.118.015750] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
7
|
Pantano F, Tittarelli R, Mannocchi G, Pacifici R, di Luca A, Busardò FP, Marinelli E. Neurotoxicity Induced by Mephedrone: An up-to-date Review. Curr Neuropharmacol 2018; 15:738-749. [PMID: 27908258 PMCID: PMC5771050 DOI: 10.2174/1570159x14666161130130718] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 06/02/2016] [Accepted: 10/03/2016] [Indexed: 11/22/2022] Open
Abstract
Mephedrone is a β-ketoamphetamine belonging to the family of synthetic cathinones, an emerging class of designer drugs known for their hallucinogenic and psychostimulant properties as well as for their abuse potential. The aim of this review was to examine the emerging scientific literature on the possible mephedrone-induced neurotoxicity, yet not well defined due to the limited number of experimental studies, mainly carried on animal models. Relevant scientific articles were identified from international literature databases (Medline, Scopus, etc.) using the keywords: “Mephedrone”, “4-MMC,” “neurotoxicity,” “neuropharmacology”, “patents”, “monoamine transporters” and “neurochemical effects”. Of the 498 sources initially found, only 36 papers were suitable for the review. Neurotoxic effect of mephedrone on 5-HT and DA systems remains controversial. Although some studies in animal models reported no damage to DA nerve endings in the striatum and no significant changes in brain monoamine levels, some others suggested a rapid reduction in 5-HT and DA transporter function. Persistent serotonergic deficits were observed after binge like treatment in a warm environment and in both serotonergic and dopaminergic nerve endings at high ambient temperature. Oxidative stress cytotoxicity and an increase in frontal cortex lipid peroxidation were also reported. In vitro cytotoxic properties were also observed, suggesting that mephedrone may act as a reductant agent and can also determine changes in mitochondrial respiration. However, due to the differences in the design of the experiments, including temperature and animal model used, the results are difficult to compare. Further studies on toxicology and pharmacology of mephedrone are therefore necessary to establish an appropriate treatment for substance abuse and eventual consequences for public health.
Collapse
Affiliation(s)
- Flaminia Pantano
- Unit of Forensic Toxicology (UoFT), Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Sapienza University of Rome, Rome. Italy
| | - Roberta Tittarelli
- Unit of Forensic Toxicology (UoFT), Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Sapienza University of Rome, Rome. Italy
| | - Giulio Mannocchi
- Unit of Forensic Toxicology (UoFT), Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Sapienza University of Rome, Rome. Italy
| | - Roberta Pacifici
- Drug Abuse and Doping Unit, Department of Therapeutic Research and Medicines Evaluation, Istituto Superiore di Sanità, Rome. Italy
| | - Alessandro di Luca
- Drug Abuse and Doping Unit, Department of Therapeutic Research and Medicines Evaluation, Istituto Superiore di Sanità, Rome. Italy
| | - Francesco Paolo Busardò
- Unit of Forensic Toxicology (UoFT), Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Sapienza University, Viale Regina Elena 336, 00161 Rome, Italy. Italy
| | - Enrico Marinelli
- Unit of Forensic Toxicology (UoFT), Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Sapienza University of Rome, Rome. Italy
| |
Collapse
|
8
|
Gauvin DV, Zimmermann ZJ, Baird TJ. Method of data interpretation for the determination of abuse liability in rodent self-administration studies under the FDA guidance document. J Pharmacol Toxicol Methods 2017; 86:44-59. [PMID: 28315739 DOI: 10.1016/j.vascn.2017.03.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 03/03/2017] [Accepted: 03/14/2017] [Indexed: 10/20/2022]
Abstract
All new molecular entities that enter the CNS and exert an activity in the brain must be assessed for abuse liability prior to a New Drug Application approval by the US Food and Drug Administration. One element of the screening process is the assessment of the reinforcing properties of the drug candidate using the regulatory-preferred species, the rat. We describe one method of data review from the standard rat IV SA study design that can be used to conclude the relative abuse liability of the new drug entity. While we do not claim the process as the only way to review or interpret the data, we believe the steps described highlight a process that the pharmaceutical development team can use as a starting point for a discussion during study protocol development.
Collapse
Affiliation(s)
- David V Gauvin
- Neurobehavioral Sciences Department, MPI Research, Inc., 54943 North Main Street, Mattawan, MI 49071, USA.
| | - Zachary J Zimmermann
- Neurobehavioral Sciences Department, MPI Research, Inc., 54943 North Main Street, Mattawan, MI 49071, USA; Department of Psychology, Western Michigan University, MPI Research Inc., Kalamazoo, 54943 North Main Street, Mattawan, MI 49071, USA.
| | - Theodore J Baird
- Drug Safety, MPI Research, Inc., 54943 North Main Street, Mattawan, MI 49071, USA.
| |
Collapse
|
9
|
Tyrkkö E, Andersson M, Kronstrand R. The Toxicology of New Psychoactive Substances: Synthetic Cathinones and Phenylethylamines. Ther Drug Monit 2016; 38:190-216. [PMID: 26587869 DOI: 10.1097/ftd.0000000000000263] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND New psychoactive substances (NPSs) are substitutes for classical drugs of abuse and there are now compounds available from all groups of classical drugs of abuse. During 2014, the number of synthetic cathinones increased dramatically and, together with phenylethylamines, they dominate the NPS markets in the European Union. In total, 31 cathinones and 9 phenylethylamines were encountered in 2014. The aim of this article was to summarize the existing knowledge about the basic pharmacology, metabolism, and human toxicology of relevant synthetic cathinones and phenylethylamines. Compared with existing reviews, we have also compiled the existing case reports from both fatal and nonfatal intoxications. METHODS We performed a comprehensive literature search using bibliographic databases PubMed and Web of Science, complemented with Google Scholar. The focus of the literature search was on original articles, case reports, and previously published review articles published in 2014 or earlier. RESULTS The rapid increase of NPSs is a growing concern and sets new challenges not only for societies in drug prevention and legislation but also in clinical and forensic toxicology. In vivo and in vitro studies have demonstrated that the pharmacodynamic profile of cathinones is similar to that of other psychomotor stimulants. Metabolism studies show that cathinones and phenylethylamines are extensively metabolized; however, the parent compound is usually detectable in human urine. In vitro studies have shown that many cathinones and phenylethylamines are metabolized by CYP2D6 enzymes. This indicates that these drugs may have many possible drug-drug interactions and that genetic polymorphism may influence their toxicity. However, the clinical and toxicological relevance of CYP2D6 in adverse effects of cathinones and phenylethylamines is questionable, because these compounds are metabolized by other enzymes as well. The toxidromes commonly encountered after ingestion of cathinones and phenylethylamines are mainly of sympathomimetic and hallucinogenic character with a risk of excited delirium and life-threatening cardiovascular effects. CONCLUSIONS The acute and chronic toxicity of many NPSs is unknown or very sparsely investigated. There is a need for evidence-based-treatment recommendations for acute intoxications and a demand for new strategies to analyze these compounds in clinical and forensic cases.
Collapse
Affiliation(s)
- Elli Tyrkkö
- Department of Forensic Genetics and Forensic Toxicology, National Board of Forensic Medicine, Linköping, Sweden
| | | | | |
Collapse
|
10
|
Calabrese V, Giordano J, Ruggieri M, Berritta D, Trovato A, Ontario M, Bianchini R, Calabrese E. Hormesis, cellular stress response, and redox homeostasis in autism spectrum disorders. J Neurosci Res 2016; 94:1488-1498. [DOI: 10.1002/jnr.23893] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 07/18/2016] [Accepted: 08/01/2016] [Indexed: 01/09/2023]
Affiliation(s)
- V. Calabrese
- Department of Biomedical and Biotechnological Sciences, School of Medicine; University of Catania; Catania Italy
| | - J. Giordano
- Department of Clinical and Experimental Medicine, School of Medicine; University of Catania; Catania Italy
| | - M. Ruggieri
- Departments of Neurology and Biochemistry and Neuroethics Studies Program, Pellegrino Center for Clinical Bioethics; Georgetown University Medical Center; Washington DC
| | - D. Berritta
- Department of Biomedical and Biotechnological Sciences, School of Medicine; University of Catania; Catania Italy
| | - A. Trovato
- Department of Biomedical and Biotechnological Sciences, School of Medicine; University of Catania; Catania Italy
| | - M.L. Ontario
- Department of Biomedical and Biotechnological Sciences, School of Medicine; University of Catania; Catania Italy
| | - R. Bianchini
- Departments of Neurology and Biochemistry and Neuroethics Studies Program, Pellegrino Center for Clinical Bioethics; Georgetown University Medical Center; Washington DC
- Service of Child Neuropsychiatry, ASP Siracusa, Italy
| | - E.J. Calabrese
- Environmental Health Sciences Division, School of Public Health; University of Massachusetts; Amherst Massachusetts
| |
Collapse
|
11
|
French A, Ali Agha M, Mitra A, Yanagawa A, Sellier MJ, Marion-Poll F. Drosophila Bitter Taste(s). Front Integr Neurosci 2015; 9:58. [PMID: 26635553 PMCID: PMC4658422 DOI: 10.3389/fnint.2015.00058] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 10/30/2015] [Indexed: 11/13/2022] Open
Abstract
Most animals possess taste receptors neurons detecting potentially noxious compounds. In humans, the ligands which activate these neurons define a sensory space called “bitter”. By extension, this term has been used in animals and insects to define molecules which induce aversive responses. In this review, based on our observations carried out in Drosophila, we examine how bitter compounds are detected and if bitter-sensitive neurons respond only to molecules bitter to humans. Like most animals, flies detect bitter chemicals through a specific population of taste neurons, distinct from those responding to sugars or to other modalities. Activating bitter-sensitive taste neurons induces aversive reactions and inhibits feeding. Bitter molecules also contribute to the suppression of sugar-neuron responses and can lead to a complete inhibition of the responses to sugar at the periphery. Since some bitter molecules activate bitter-sensitive neurons and some inhibit sugar detection, bitter molecules are represented by two sensory spaces which are only partially congruent. In addition to molecules which impact feeding, we recently discovered that the activation of bitter-sensitive neurons also induces grooming. Bitter-sensitive neurons of the wings and of the legs can sense chemicals from the gram negative bacteria, Escherichia coli, thus adding another biological function to these receptors. Bitter-sensitive neurons of the proboscis also respond to the inhibitory pheromone, 7-tricosene. Activating these neurons by bitter molecules in the context of sexual encounter inhibits courting and sexual reproduction, while activating these neurons with 7-tricosene in a feeding context will inhibit feeding. The picture that emerges from these observations is that the taste system is composed of detectors which monitor different “categories” of ligands, which facilitate or inhibit behaviors depending on the context (feeding, sexual reproduction, hygienic behavior), thus considerably extending the initial definition of “bitter” tasting.
Collapse
Affiliation(s)
- Alice French
- Evolution, Génomes, Comportement & Ecologie, CNRS, IRD, Université Paris-Sud, Université Paris-Saclay Gif-sur-Yvette, France
| | - Moutaz Ali Agha
- Evolution, Génomes, Comportement & Ecologie, CNRS, IRD, Université Paris-Sud, Université Paris-Saclay Gif-sur-Yvette, France
| | - Aniruddha Mitra
- Evolution, Génomes, Comportement & Ecologie, CNRS, IRD, Université Paris-Sud, Université Paris-Saclay Gif-sur-Yvette, France
| | - Aya Yanagawa
- Evolution, Génomes, Comportement & Ecologie, CNRS, IRD, Université Paris-Sud, Université Paris-Saclay Gif-sur-Yvette, France ; Research Institute for Sustainable Humanosphere, Kyoto University Uji City, Japan
| | - Marie-Jeanne Sellier
- Evolution, Génomes, Comportement & Ecologie, CNRS, IRD, Université Paris-Sud, Université Paris-Saclay Gif-sur-Yvette, France
| | - Frédéric Marion-Poll
- Evolution, Génomes, Comportement & Ecologie, CNRS, IRD, Université Paris-Sud, Université Paris-Saclay Gif-sur-Yvette, France ; AgroParisTech Paris, France
| |
Collapse
|
12
|
Abstract
Psychostimulants are a diverse group of substances that cause an increase in psychomotor activity at least in part through their actions on catecholaminergic systems including the dopaminergic mesolimbic pathways. Animal models used to study addiction are based on the psychomotor stimulant theory of addiction. The basics of this theory are that the reinforcing effects and the addition liabilities of the drugs can be predicted from their ability to induce psychomotor activation. This approach focuses on the ability of the drugs to directly control the animal's behavior and to induce psychomotor stimulation, and is consistent with the behavioral definition of addiction and behavioral sensitization. Animal experiments have the advantage over clinical studies of lower variation and fewer confounding effects.
Collapse
|
13
|
Synthetic cathinones: “A khat and mouse game”. Toxicol Lett 2014; 229:349-56. [DOI: 10.1016/j.toxlet.2014.06.020] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 06/09/2014] [Accepted: 06/10/2014] [Indexed: 11/17/2022]
|
14
|
Cousin MA, Ebbert JO, Wiinamaki AR, Urban MD, Argue DP, Ekker SC, Klee EW. Larval zebrafish model for FDA-approved drug repositioning for tobacco dependence treatment. PLoS One 2014; 9:e90467. [PMID: 24658307 PMCID: PMC3962344 DOI: 10.1371/journal.pone.0090467] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Accepted: 02/03/2014] [Indexed: 12/18/2022] Open
Abstract
Cigarette smoking remains the most preventable cause of death and excess health care costs in the United States, and is a leading cause of death among alcoholics. Long-term tobacco abstinence rates are low, and pharmacotherapeutic options are limited. Repositioning medications approved by the U.S. Food and Drug Administration (FDA) may efficiently provide clinicians with new treatment options. We developed a drug-repositioning paradigm using larval zebrafish locomotion and established predictive clinical validity using FDA-approved smoking cessation therapeutics. We evaluated 39 physician-vetted medications for nicotine-induced locomotor activation blockade. We further evaluated candidate medications for altered ethanol response, as well as in combination with varenicline for nicotine-response attenuation. Six medications specifically inhibited the nicotine response. Among this set, apomorphine and topiramate blocked both nicotine and ethanol responses. Both positively interact with varenicline in the Bliss Independence test, indicating potential synergistic interactions suggesting these are candidates for translation into Phase II clinical trials for smoking cessation.
Collapse
Affiliation(s)
- Margot A. Cousin
- Mayo Addiction Research Center, Mayo Clinic, Rochester, Minnesota, United States of America
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Jon O. Ebbert
- Mayo Addiction Research Center, Mayo Clinic, Rochester, Minnesota, United States of America
- Nicotine Dependence Center, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Amanda R. Wiinamaki
- Mayo Addiction Research Center, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Mark D. Urban
- Mayo Addiction Research Center, Mayo Clinic, Rochester, Minnesota, United States of America
| | - David P. Argue
- Mayo Addiction Research Center, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Stephen C. Ekker
- Mayo Addiction Research Center, Mayo Clinic, Rochester, Minnesota, United States of America
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Eric W. Klee
- Mayo Addiction Research Center, Mayo Clinic, Rochester, Minnesota, United States of America
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
15
|
Marusich JA, Lefever TW, Novak SP, Blough BE, Wiley JL. Prediction and Prevention of Prescription Drug Abuse: Role of Preclinical Assessment of Substance Abuse Liability. METHODS REPORT (RTI PRESS) 2013:1-14. [PMID: 24008590 PMCID: PMC3759972 DOI: 10.3768/rtipress.2013.op.0014.1307] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/28/2013] [Indexed: 11/12/2022]
Abstract
In 2011, the prevalence of prescription drug abuse exceeded that of any other illicit drug except marijuana. Consequently, efforts to curtail abuse of new medications should begin during the drug development process, where abuse liability can be identified and addressed before a candidate medication has widespread use. The first step in this process is scheduling with the Drug Enforcement Agency so that legal access is appropriately restricted, dependent upon levels of abuse risk and medical benefit. To facilitate scheduling, the Food and Drug Administration (FDA) has published guidance for industry that describes assessment of abuse liability. The purpose of this paper is to review methods that may be used to satisfy the FDA's regulatory requirements for animal behavioral and dependence pharmacology. Methods include psychomotor activity, self-administration (an animal model of the rewarding effects of a drug), drug discrimination (an animal model of the subjective effects of a drug), and evaluation of tolerance and dependence. Data from tests conducted at RTI with known drugs of abuse illustrate typical results, and demonstrate that RTI is capable of performing these tests. While using preclinical data to predict abuse liability is an imperfect process, it has substantial predictive validity. The ultimate goal is to increase consumer safety through appropriate scheduling of new medications.
Collapse
|
16
|
Carter A, DuRant S, Hepp G, Hopkins W. Thermal Challenge Severity Differentially Influences Wound Healing in Wood Duck (Aix sponsa) Ducklings. ACTA ACUST UNITED AC 2013; 319:422-9. [DOI: 10.1002/jez.1805] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Revised: 12/27/2012] [Accepted: 04/18/2013] [Indexed: 11/09/2022]
Affiliation(s)
- A.W. Carter
- Department of Fish and Wildlife Conservation; Blacksburg; Virginia
| | - S.E. DuRant
- Department of Fish and Wildlife Conservation; Blacksburg; Virginia
| | - G.R. Hepp
- School of Forestry and Wildlife Sciences; Auburn; Alabama
| | - W.A. Hopkins
- Department of Fish and Wildlife Conservation; Blacksburg; Virginia
| |
Collapse
|
17
|
Marusich JA, Grant KR, Blough BE, Wiley JL. Effects of synthetic cathinones contained in "bath salts" on motor behavior and a functional observational battery in mice. Neurotoxicology 2012; 33:1305-13. [PMID: 22922498 DOI: 10.1016/j.neuro.2012.08.003] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Revised: 08/13/2012] [Accepted: 08/13/2012] [Indexed: 11/18/2022]
Abstract
Synthetic stimulants commonly sold as "bath salts" are an emerging abuse problem in the U.S. Users have shown paranoia, delusions, and self-injury. Previously published in vivo research has been limited to only two components of bath salts (mephedrone and methylone). The purpose of the present study was to evaluate in vivo effects of several synthetic cathinones found in bath salts and to compare them to those of cocaine (COC) and methamphetamine (METH). Acute effects of methylenedioxyphyrovalerone (MDPV), mephedrone, methylone, methedrone, 3-fluoromethcathinone (3-FMC), 4-fluoromethcathinone (4-FMC), COC, and METH were examined in male ICR mice on locomotor activity, rotorod, and a functional observational battery (FOB). All drugs increased locomotor activity, with different compounds showing different potencies and time courses in locomotor activity. 3-FMC and methylone decreased performance on the rotorod. The FOB showed that in addition to typical stimulant induced effects, some synthetic cathinones produced ataxia, convulsions, and increased exploration. These results suggest that individual synthetic cathinones differ in their profile of effects, and differ from known stimulants of abuse. Effects of 3-FMC, 4-FMC, and methedrone indicate these synthetic cathinones share major pharmacological properties with the ones that have been banned (mephedrone, MDPV, methylone), suggesting that they may be just as harmful.
Collapse
Affiliation(s)
- Julie A Marusich
- Discovery and Analytical Sciences RTI International, Research Triangle Park, NC 27709, USA.
| | | | | | | |
Collapse
|
18
|
Abstract
This chapter explores the historical foundations of hormesis, including the underlying reasons for its marginalization during most of the twentieth century and factors that are contributing to its resurgence and acceptance within the toxicological and pharmacological communities. Special consideration is given to the quantitative features of the hormetic dose response, as well as its capacity for generalization. Based on subsequent comparisons with other leading dose-response models, the hormesis dose response consistently provides more accurate predictions in the below threshold zone. It is expected that the hormetic dose response will become progressively more useful to the fields of toxicology, pharmacology, risk assessment, and the life sciences in general, especially where low-dose effects are of interest.
Collapse
|
19
|
Calabrese V, Cornelius C, Dinkova-Kostova AT, Calabrese EJ, Mattson MP. Cellular stress responses, the hormesis paradigm, and vitagenes: novel targets for therapeutic intervention in neurodegenerative disorders. Antioxid Redox Signal 2010; 13:1763-811. [PMID: 20446769 PMCID: PMC2966482 DOI: 10.1089/ars.2009.3074] [Citation(s) in RCA: 619] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Revised: 04/27/2010] [Accepted: 05/01/2010] [Indexed: 12/22/2022]
Abstract
Despite the capacity of chaperones and other homeostatic components to restore folding equilibrium, cells appear poorly adapted for chronic oxidative stress that increases in cancer and in metabolic and neurodegenerative diseases. Modulation of endogenous cellular defense mechanisms represents an innovative approach to therapeutic intervention in diseases causing chronic tissue damage, such as in neurodegeneration. This article introduces the concept of hormesis and its applications to the field of neuroprotection. It is argued that the hormetic dose response provides the central underpinning of neuroprotective responses, providing a framework for explaining the common quantitative features of their dose-response relationships, their mechanistic foundations, and their relationship to the concept of biological plasticity, as well as providing a key insight for improving the accuracy of the therapeutic dose of pharmaceutical agents within the highly heterogeneous human population. This article describes in mechanistic detail how hormetic dose responses are mediated for endogenous cellular defense pathways, including sirtuin and Nrf2 and related pathways that integrate adaptive stress responses in the prevention of neurodegenerative diseases. Particular attention is given to the emerging role of nitric oxide, carbon monoxide, and hydrogen sulfide gases in hormetic-based neuroprotection and their relationship to membrane radical dynamics and mitochondrial redox signaling.
Collapse
|
20
|
Abstract
This paper summarizes numerous conceptual and experimental advances over the past two decades in the study of hormesis. Hormesis is now generally accepted as a real and reproducible biological phenomenon, being highly generalized and independent of biological model, endpoint measured and chemical class/physical stressor. The quantitative features of the hormetic dose response are generally highly consistent, regardless of the model and mechanism, and represent a quantitative index of biological plasticity at multiple levels of biological organization. The hormetic dose-response model has been demonstrated to make far more accurate predictions of responses in low dose zones than either the threshold or linear at low dose models. Numerous therapeutic agents widely used by humans are based on the hormetic dose response and its low dose stimulatory characteristics. It is expected that as low dose responses come to dominate toxicological research that risk assessment practices will incorporate hormetic concepts in the standard setting process.
Collapse
Affiliation(s)
- Edward J Calabrese
- Department of Public Health, Environmental Health Sciences Division, University of Massachusetts, Amherst, MA, USA.
| |
Collapse
|
21
|
Abstract
AIM Nabilone is a synthetic cannabinoid prescription drug approved in Canada since 1981 to treat chemotherapy-induced nausea and vomiting. In recent years, off-label use of nabilone for chronic pain management has increased, and physicians have begun to express concerns about nabilone becoming a drug of abuse. This study evaluates the evidence for abuse of nabilone, which is currently ill-defined. STUDY DESIGN Scientific literature, popular press and internet databases were searched extensively for evidence of nabilone abuse. Focused interviews with medical professionals and law enforcement agencies across Canada were also conducted. FINDINGS The scientific literature and popular press reviews found very little reference to nabilone abuse. Nabilone is perceived to produce more undesirable side effects, to have a longer onset of action and to be more expensive than smoked cannabis. The internet review revealed rare and isolated instances of recreational use of nabilone. The database review yielded little evidence of nabilone abuse, although nabilone seizures and thefts have occurred in Canada in the past few years, especially in Ontario. Most law enforcement officers reported no instances of nabilone abuse or diversion, and the drug has no known street value. Medical professionals reported that nabilone is not perceived to be a matter of concern with respect to its abuse potential. CONCLUSIONS Reports of nabilone abuse are extremely rare. However, follow-up of patients using nabilone for therapeutic purposes is prudent and should include assessment of tolerance and dependence. Prospective studies are also needed to definitively address the issue of nabilone abuse.
Collapse
Affiliation(s)
- Mark A Ware
- Pain Clinic, McGill University Health Centre, Montreal, Quebec H3G 1A4, Canada.
| | | |
Collapse
|
22
|
Getting the dose–response wrong: why hormesis became marginalized and the threshold model accepted. Arch Toxicol 2009; 83:227-47. [DOI: 10.1007/s00204-009-0411-5] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2008] [Accepted: 02/09/2009] [Indexed: 12/16/2022]
|