1
|
Salana S, Verma V. Review of in vitro studies evaluating respiratory toxicity of aerosols: impact of cell types, chemical composition, and atmospheric processing. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024; 26:1922-1954. [PMID: 39291816 DOI: 10.1039/d4em00475b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
In recent decades, several cell-based and acellular methods have been developed to evaluate ambient particulate matter (PM) toxicity. Although cell-based methods provide a more comprehensive assessment of PM toxicity, their results are difficult to comprehend due to the diversity in cellular endpoints, cell types, and assays and the interference of PM chemical components with some of the assays' techniques. In this review, we attempt to clarify some of these issues. We first discuss the morphological and immunological differences among various macrophage and epithelial cells, belonging to the respiratory systems of human and murine species, used in the in vitro studies evaluating PM toxicity. Then, we review the current state of knowledge on the role of different PM chemical components and the relevance of atmospheric processing and aging of aerosols in the respiratory toxicity of PM. Our review demonstrates the need to adopt more physiologically relevant cellular models such as epithelial (or endothelial) cells instead of macrophages for oxidative stress measurement. We suggest limiting macrophages for investigating other cellular responses (e.g., phagocytosis, inflammation, and DNA damage). Unlike monocultures (of macrophages and epithelial cells), which are generally used to study the direct effects of PM on a given cell type, the use of co-culture systems should be encouraged to investigate a more comprehensive effect of PM in the presence of other cells. Our review has identified two major groups of toxic PM chemical species from the existing literature, i.e., metals (Fe, Cu, Mn, Cr, Ni, and Zn) and organic compounds (PAHs, ketones, aliphatic and chlorinated hydrocarbons, and quinones). However, the relative toxicities of these species are still a matter of debate. Finally, the results of the existing studies investigating the effect of aging on PM toxicity are ambiguous, with varying results due to different cell types, different aging conditions, and the presence/absence of specific oxidants. More systematic studies are necessary to understand the role of different SOA precursors, interactions between different PM components, and aging conditions in the overall toxicity of PM. We anticipate that our review will guide future investigations by helping researchers choose appropriate cell models, resulting in a more meaningful interpretation of cell-based assays and thus ultimately leading to a better understanding of the health effects of PM exposure.
Collapse
Affiliation(s)
- Sudheer Salana
- Department of Civil and Environmental Engineering, University of Illinois at Urbana Champaign, Urbana, 61801, USA.
| | - Vishal Verma
- Department of Civil and Environmental Engineering, University of Illinois at Urbana Champaign, Urbana, 61801, USA.
| |
Collapse
|
2
|
Saibene M, Serchi T, Bonfanti P, Colombo A, Nelissen I, Halder R, Audinot JN, Pelaz B, Soliman MG, Parak WJ, Mantecca P, Gutleb AC, Cambier S. The use of a complex tetra-culture alveolar model to study the biological effects induced by gold nanoparticles with different physicochemical properties. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 106:104353. [PMID: 38163529 DOI: 10.1016/j.etap.2023.104353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 12/19/2023] [Indexed: 01/03/2024]
Abstract
A substantial increase in engineered nanoparticles in consumer products has been observed, heightening human and environmental exposure. Inhalation represents the primary route of human exposure, necessitating a focus on lung toxicity studies. However, to avoid ethical concerns the use of in vitro models is an efficient alternative to in vivo models. This study utilized an in vitro human alveolar barrier model at air-liquid-interface with four cell lines, for evaluating the biological effects of different gold nanoparticles. Exposure to PEGylated gold nanospheres, nanorods, and nanostars did not significantly impact viability after 24 h, yet all AuNPs induced cytotoxicity in the form of membrane integrity impairment. Gold quantification revealed cellular uptake and transport. Transcriptomic analysis identified gene expression changes, particularly related to the enhancement of immune cells. Despite limited impact, distinct effects were observed, emphasizing the influence of nanoparticles physicochemical parameters while demonstrating the model's efficacy in investigating particle biological effects.
Collapse
Affiliation(s)
- Melissa Saibene
- EH Group, SUSTAIN Unit, ERIN Department, Luxembourg Institute of Science and Technology, Luxembourg; Polaris Research Centre, DISAT, University of Milano-Bicocca, Italy
| | - Tommaso Serchi
- EH Group, SUSTAIN Unit, ERIN Department, Luxembourg Institute of Science and Technology, Luxembourg
| | | | - Anita Colombo
- Polaris Research Centre, DISAT, University of Milano-Bicocca, Italy
| | - Inge Nelissen
- Health Unit, Flemish Institute for Technological Research (VITO nv), Mol, Belgium
| | - Rashi Halder
- Sequencing platform, LCSB, University of Luxembourg, Luxembourg
| | - Jean-Nicolas Audinot
- AINA Group, SIPT Unit, MRT Department, Luxembourg Institute of Science and Technology, Luxembourg
| | - Beatriz Pelaz
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela, Spain; Departamento de Química Inorgánica, Grupo de Física de Coloides y Polímeros, Universidade de Santiago de Compostela, Spain
| | - Mahmoud G Soliman
- Center for Hybrid Nanostructures, University of Hamburg, Germany; Chemistry Department, RCSI, Ireland; Physics Department, Faculty of Science, Al-Azhar University, Egypt
| | - Wolfgang J Parak
- Center for Hybrid Nanostructures, University of Hamburg, Germany; The Hamburg Centre for Ultrafast Imaging, Germany
| | - Paride Mantecca
- Polaris Research Centre, DISAT, University of Milano-Bicocca, Italy
| | - Arno C Gutleb
- EH Group, SUSTAIN Unit, ERIN Department, Luxembourg Institute of Science and Technology, Luxembourg
| | - Sebastien Cambier
- EH Group, SUSTAIN Unit, ERIN Department, Luxembourg Institute of Science and Technology, Luxembourg.
| |
Collapse
|
3
|
Petpiroon N, Netkueakul W, Sukrak K, Wang C, Liang Y, Wang M, Liu Y, Li Q, Kamran R, Naruse K, Aueviriyavit S, Takahashi K. Development of lung tissue models and their applications. Life Sci 2023; 334:122208. [PMID: 37884207 DOI: 10.1016/j.lfs.2023.122208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 10/04/2023] [Accepted: 10/23/2023] [Indexed: 10/28/2023]
Abstract
The lungs are important organs that play a critical role in the development of specific diseases, as well as responding to the effects of drugs, chemicals, and environmental pollutants. Due to the ethical concerns around animal testing, alternative methods have been sought which are more time-effective, do not pose ethical issues for animals, do not involve species differences, and provide easy investigation of the pathobiology of lung diseases. Several national and international organizations are working to accelerate the development and implementation of structurally and functionally complex tissue models as alternatives to animal testing, particularly for the lung. Unfortunately, to date, there is no lung tissue model that has been accepted by regulatory agencies for use in inhalation toxicology. This review discusses the challenges involved in developing a relevant lung tissue model derived from human cells such as cell lines, primary cells, and pluripotent stem cells. It also introduces examples of two-dimensional (2D) air-liquid interface and monocultured and co-cultured three-dimensional (3D) culture techniques, particularly organoid culture and 3D bioprinting. Furthermore, it reviews development of the lung-on-a-chip model to mimic the microenvironment and physiological performance. The applications of lung tissue models in various studies, especially disease modeling, viral respiratory infection, and environmental toxicology will be also introduced. The development of a relevant lung tissue model is extremely important for standardizing and validation the in vitro models for inhalation toxicity and other studies in the future.
Collapse
Affiliation(s)
- Nalinrat Petpiroon
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Woranan Netkueakul
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Kanokwan Sukrak
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand; Department of Environmental Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand; Thailand Network Center on Air Quality Management: TAQM, Chulalongkorn University, Bangkok 10330, Thailand
| | - Chen Wang
- Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-Cho, Kita-Ward, Okayama 700-8558, Japan
| | - Yin Liang
- Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-Cho, Kita-Ward, Okayama 700-8558, Japan
| | - Mengxue Wang
- Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-Cho, Kita-Ward, Okayama 700-8558, Japan
| | - Yun Liu
- Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-Cho, Kita-Ward, Okayama 700-8558, Japan
| | - Qiang Li
- Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-Cho, Kita-Ward, Okayama 700-8558, Japan
| | - Rumaisa Kamran
- Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-Cho, Kita-Ward, Okayama 700-8558, Japan
| | - Keiji Naruse
- Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-Cho, Kita-Ward, Okayama 700-8558, Japan
| | - Sasitorn Aueviriyavit
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand.
| | - Ken Takahashi
- Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-Cho, Kita-Ward, Okayama 700-8558, Japan.
| |
Collapse
|
4
|
Nannu Shankar S, Mital K, Le E, Lewis GS, Eiguren-Fernandez A, Sabo-Attwood T, Wu CY. Assessment of Scanning Mobility Particle Sizer (SMPS) for online monitoring of delivered dose in an in vitro aerosol exposure system. Toxicol In Vitro 2023; 92:105650. [PMID: 37463634 PMCID: PMC10714344 DOI: 10.1016/j.tiv.2023.105650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 06/02/2023] [Accepted: 07/12/2023] [Indexed: 07/20/2023]
Abstract
Real-time monitoring of dosimetry is critical to mitigating the constraints of offline measurements. To address this need, the use of the Scanning Mobility Particle Sizer (SMPS) to estimate the dose delivered through the Dosimetric Aerosol in Vitro Inhalation Device (DAVID) was assessed. CuO nanoparticles suspended in ethanol at different concentrations (0.01-10 mg/mL) were aerosolized using a Collison nebulizer and diluted with air at a ratio of either 1:3 (setup 1) or 1:18 (setup 2). From the aerosol volume concentrations measured by the SMPS, density of CuO (6.4 g/cm3), collection time (5-30 min), flow rate (0.5 LPM) and deposition area (0.28 cm2), the mass doses (DoseSMPS) were observed to increase exponentially over time and ranged from 0.02 ± 0.001 to 84.75 ± 3.49 μg/cm2. The doses calculated from the Cu concentrations determined by Inductively Coupled Plasma-Optical Emission Spectrometry (ICP-OES) (DoseICP) also increased exponentially over time (0.01 ± 0.01-97.25 ± 1.30 μg/cm2). Regression analysis between DoseICP and DoseSMPS showed R2 ≥ 0.90 for 0.1-10 mg/mL. As demonstrated, the SMPS can be used to monitor the delivered dose in real-time, and controlled delivery of mass doses with a 226-fold range can be attained in ≤30 min in DAVID by adjusting the nebulizer concentration, dilution air and time.
Collapse
Affiliation(s)
- Sripriya Nannu Shankar
- Department of Environmental Engineering Sciences, University of Florida, Gainesville, USA.
| | - Kiran Mital
- Department of Mechanical & Aerospace Engineering, University of Florida, Gainesville, USA
| | - Eric Le
- Department of Chemical Engineering, University of Florida, Gainesville, USA
| | | | | | - Tara Sabo-Attwood
- Department of Environmental and Global Health, University of Florida, Gainesville, USA
| | - Chang-Yu Wu
- Department of Environmental Engineering Sciences, University of Florida, Gainesville, USA; Department of Chemical, Environmental, and Materials Engineering, University of Miami, Coral Gables, USA.
| |
Collapse
|
5
|
Bessa MJ, Brandão F, Rosário F, Moreira L, Reis AT, Valdiglesias V, Laffon B, Fraga S, Teixeira JP. Assessing the in vitro toxicity of airborne (nano)particles to the human respiratory system: from basic to advanced models. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2023; 26:67-96. [PMID: 36692141 DOI: 10.1080/10937404.2023.2166638] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Several studies have been conducted to address the potential adverse health risks attributed to exposure to nanoscale materials. While in vivo studies are fundamental for identifying the relationship between dose and occurrence of adverse effects, in vitro model systems provide important information regarding the mechanism(s) of action at the molecular level. With a special focus on exposure to inhaled (nano)particulate material toxicity assessment, this review provides an overview of the available human respiratory models and exposure systems for in vitro testing, advantages, limitations, and existing investigations using models of different complexity. A brief overview of the human respiratory system, pathway and fate of inhaled (nano)particles is also presented.
Collapse
Affiliation(s)
- Maria João Bessa
- Departamento de Saúde Ambiental, Instituto Nacional de Saúde Doutor Ricardo Jorge, Porto, Portugal
- EPIUnit, Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal
- Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Fátima Brandão
- Departamento de Saúde Ambiental, Instituto Nacional de Saúde Doutor Ricardo Jorge, Porto, Portugal
- EPIUnit, Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal
- Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Fernanda Rosário
- Departamento de Saúde Ambiental, Instituto Nacional de Saúde Doutor Ricardo Jorge, Porto, Portugal
- EPIUnit, Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal
- Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Porto, Portugal
| | - Luciana Moreira
- Departamento de Saúde Ambiental, Instituto Nacional de Saúde Doutor Ricardo Jorge, Porto, Portugal
- EPIUnit, Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal
- Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Porto, Portugal
| | - Ana Teresa Reis
- Departamento de Saúde Ambiental, Instituto Nacional de Saúde Doutor Ricardo Jorge, Porto, Portugal
- EPIUnit, Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal
- Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Porto, Portugal
| | - Vanessa Valdiglesias
- Departamento de Biología, Universidade da Coruña, Grupo NanoToxGen, Centro Interdisciplinar de Química e Bioloxía - CICA, A Coruña, Spain
- Instituto de Investigación Biomédica de A Coruña (INIBIC), A Coruña, Spain
| | - Blanca Laffon
- Instituto de Investigación Biomédica de A Coruña (INIBIC), A Coruña, Spain
- Departamento de Psicología, Universidade da Coruña, Grupo DICOMOSA, Centro Interdisciplinar de Química e Bioloxía - CICA, A Coruña, Spain
| | - Sónia Fraga
- Departamento de Saúde Ambiental, Instituto Nacional de Saúde Doutor Ricardo Jorge, Porto, Portugal
- EPIUnit, Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal
- Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Porto, Portugal
- Department of Biomedicine, Unit of Pharmacology and Therapeutics, Faculty of Medicine, University of Porto, Porto, Portugal
| | - João Paulo Teixeira
- Departamento de Saúde Ambiental, Instituto Nacional de Saúde Doutor Ricardo Jorge, Porto, Portugal
- EPIUnit, Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal
- Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Porto, Portugal
| |
Collapse
|
6
|
Di Cristo L, Sabella S. Cell Cultures at the Air-Liquid Interface and Their Application in Cancer Research. Methods Mol Biol 2023; 2645:41-64. [PMID: 37202611 DOI: 10.1007/978-1-0716-3056-3_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Air-liquid interface (ALI) cell cultures are considered a valid tool for the replacement of animals in biomedical research. By mimicking crucial features of the human in vivo epithelial barriers (e.g., lung, intestine, and skin), ALI cell cultures enable proper structural architectures and differentiated functions of normal and diseased tissue barriers. Thereby, ALI models realistically resemble tissue conditions and provide in vivo-like responses. Since their implementation, they are routinely used in several applications, from toxicity testing to cancer research, receiving an appreciable level of acceptance (in some cases a regulatory acceptance) as attractive testing alternatives to animals. In this chapter, an overview of the ALI cell cultures will be presented together with their application in cancer cell culture, highlighting the potential advantages and disadvantages of the model.
Collapse
Affiliation(s)
- Luisana Di Cristo
- D3 PharmaChemistry, Nanoregulatory Group, Italian Institute of Technology, Genoa, Italy.
| | - Stefania Sabella
- D3 PharmaChemistry, Nanoregulatory Group, Italian Institute of Technology, Genoa, Italy
| |
Collapse
|
7
|
Kaur K, Mohammadpour R, Sturrock A, Ghandehari H, Reilly C, Paine R, Kelly KE. Comparison of biological responses between submerged, pseudo-air-liquid interface, and air-liquid interface exposure of A549 and differentiated THP-1 co-cultures to combustion-derived particles. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2022; 57:540-551. [PMID: 35722658 PMCID: PMC9354920 DOI: 10.1080/10934529.2022.2083429] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 06/10/2023]
Abstract
Air liquid interface (ALI) exposure systems are gaining interest, and studies suggest enhanced response of lung cells exposed to particles at ALI as compared to submerged exposure, although the results have been somewhat inconsistent. Previous studies have used monocultures and measured particle deposition using assumptions including consistent particle deposition, particle density, and shape. This study exposed co-cultures of A549 and differentiated THP-1 cells to flame-generated particles using three exposure methods: ALI, pseudo-ALI, and submerged. The dose at ALI was measured directly, reducing the need for assumptions about particle properties and deposition. For all exposure methods an enhanced pro-inflammatory response (TNFα) and Cytochrome P450 (CYP1A1) gene expression, compared to their corresponding negative controls, was observed. ALI exposure induced a significantly greater TNFα response compared to submerged exposure. The submerged exposures exhibited greater induction of CYP1A1 than other exposure methods, although not statistically significant. Some of the factors behind the observed difference in responses for the three exposure methods include differences in physicochemical properties of particles in suspending media, delivered dose, and potential contribution of gas-phase species to cellular response in ALI exposure. However, given the difficulty and expense of ALI exposures, submerged exposure may still provide relevant information for particulate exposures.
Collapse
Affiliation(s)
- Kamaljeet Kaur
- Department of Chemical Engineering, University of Utah, Salt Lake City, UT, USA
| | - Raziye Mohammadpour
- Utah Center for Nanomedicine, University of Utah, Salt Lake City, UT, USA
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT, USA
| | - Anne Sturrock
- Division of Pulmonary and Critical Care Medicine, University of Utah, Salt Lake City, UT, USA
| | - Hamidreza Ghandehari
- Utah Center for Nanomedicine, University of Utah, Salt Lake City, UT, USA
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT, USA
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
| | - Christopher Reilly
- Utah Center for Nanomedicine, University of Utah, Salt Lake City, UT, USA
- Department of Pharmacology and Toxicology and Center for Human Toxicology, University of Utah, Salt Lake City, UT, USA
| | - Robert Paine
- Division of Pulmonary and Critical Care Medicine, University of Utah, Salt Lake City, UT, USA
| | - Kerry E. Kelly
- Department of Chemical Engineering, University of Utah, Salt Lake City, UT, USA
- Utah Center for Nanomedicine, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
8
|
Halappanavar S, Mallach G. Adverse outcome pathways and in vitro toxicology strategies for microplastics hazard testing. CURRENT OPINION IN TOXICOLOGY 2021. [DOI: 10.1016/j.cotox.2021.09.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
9
|
In Vitro Toxicity of Industrially Relevant Engineered Nanoparticles in Human Alveolar Epithelial Cells: Air-Liquid Interface versus Submerged Cultures. NANOMATERIALS 2021; 11:nano11123225. [PMID: 34947574 PMCID: PMC8703991 DOI: 10.3390/nano11123225] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/19/2021] [Accepted: 11/23/2021] [Indexed: 12/14/2022]
Abstract
Diverse industries have already incorporated within their production processes engineered nanoparticles (ENP), increasing the potential risk of worker inhalation exposure. In vitro models have been widely used to investigate ENP toxicity. Air-liquid interface (ALI) cell cultures have been emerging as a valuable alternative to submerged cultures as they are more representative of the inhalation exposure to airborne nano-sized particles. We compared the in vitro toxicity of four ENP used as raw materials in the advanced ceramics sector in human alveolar epithelial-like cells cultured under submerged or ALI conditions. Submerged cultures were exposed to ENP liquid suspensions or to aerosolised ENP at ALI. Toxicity was assessed by determining LDH release, WST-1 metabolisation and DNA damage. Overall, cells were more sensitive to ENP cytotoxic effects when cultured and exposed under ALI. No significant cytotoxicity was observed after 24 h exposure to ENP liquid suspensions, although aerosolised ENP clearly affected cell viability and LDH release. In general, all ENP increased primary DNA damage regardless of the exposure mode, where an increase in DNA strand-breaks was only detected under submerged conditions. Our data show that at relevant occupational concentrations, the selected ENP exert mild toxicity to alveolar epithelial cells and exposure at ALI might be the most suitable choice when assessing ENP toxicity in respiratory models under realistic exposure conditions.
Collapse
|
10
|
Halappanavar S, Nymark P, Krug HF, Clift MJD, Rothen-Rutishauser B, Vogel U. Non-Animal Strategies for Toxicity Assessment of Nanoscale Materials: Role of Adverse Outcome Pathways in the Selection of Endpoints. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2007628. [PMID: 33559363 DOI: 10.1002/smll.202007628] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/08/2021] [Indexed: 06/12/2023]
Abstract
Faster, cheaper, sensitive, and mechanisms-based animal alternatives are needed to address the safety assessment needs of the growing number of nanomaterials (NM) and their sophisticated property variants. Specifically, strategies that help identify and prioritize alternative schemes involving individual test models, toxicity endpoints, and assays for the assessment of adverse outcomes, as well as strategies that enable validation and refinement of these schemes for the regulatory acceptance are needed. In this review, two strategies 1) the current nanotoxicology literature review and 2) the adverse outcome pathways (AOPs) framework, a systematic process that allows the assembly of available mechanistic information concerning a toxicological response in a simple modular format, are presented. The review highlights 1) the most frequently assessed and reported ad hoc in vivo and in vitro toxicity measurements in the literature, 2) various AOPs of relevance to inhalation toxicity of NM that are presently under development, and 3) their applicability in identifying key events of toxicity for targeted in vitro assay development. Finally, using an existing AOP for lung fibrosis, the specific combinations of cell types, exposure and test systems, and assays that are experimentally supported and thus, can be used for assessing NM-induced lung fibrosis, are proposed.
Collapse
Affiliation(s)
- Sabina Halappanavar
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, K1A0K9, Canada
- Department of Biology, University of Ottawa, Ottawa, K1N6N5, Canada
| | - Penny Nymark
- Institute of Environmental Medicine, Karolinska Institute, Nobels väg 13, Stockholm, 17177, Sweden
| | - Harald F Krug
- NanoCASE GmbH, St. Gallerstr. 58, Engelburg, 9032, Switzerland
| | - Martin J D Clift
- Institute of Life Science, Swansea University Medical School, Swansea University, Singleton Park, Swansea, Wales, SA2 8PP, UK
| | | | - Ulla Vogel
- National Research Centre for the Working Environment, Lersø Parkallé 105, Copenhagen, DK-2100, Denmark
- DTU Health Tech, Technical University of Denmark, Lyngby, DK-2800 Kgs., Denmark
| |
Collapse
|
11
|
Lovén K, Dobric J, Bölükbas DA, Kåredal M, Tas S, Rissler J, Wagner DE, Isaxon C. Toxicological effects of zinc oxide nanoparticle exposure: an in vitro comparison between dry aerosol air-liquid interface and submerged exposure systems. Nanotoxicology 2021; 15:494-510. [PMID: 33576698 DOI: 10.1080/17435390.2021.1884301] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Engineered nanomaterials (ENMs) are increasingly produced and used today, but health risks due to their occupational airborne exposure are incompletely understood. Traditionally, nanoparticle (NP) toxicity is tested by introducing NPs to cells through suspension in the growth media, but this does not mimic respiratory exposures. Different methods to introduce aerosolized NPs to cells cultured at the air-liquid-interface (ALI) have been developed, but require specialized equipment and are associated with higher cost and time. Therefore, it is important to determine whether aerosolized setups induce different cellular responses to NPs than traditional ones, which could provide new insights into toxicological responses of NP exposure. This study evaluates the response of human alveolar epithelial cells (A549) to zinc oxide (ZnO) NPs after dry aerosol exposure in the Nano Aerosol Chamber for In Vitro Toxicity (NACIVT) system as compared to conventional, suspension-based exposure: cells at ALI or submerged. Similar to other studies using nebulization of ZnO NPs, we found that dry aerosol exposure of ZnO NPs via the NACIVT system induced different cellular responses as compared to conventional methods. ZnO NPs delivered at 1.0 µg/cm2 in the NACIVT system, mimicking occupational exposure, induced significant increases in metabolic activity and release of the cytokines IL-8 and MCP-1, but no differences were observed using traditional exposures. While factors associated with the method of exposure, such as differing NP aggregation, may contribute toward the different cellular responses observed, our results further encourage the use of more physiologically realistic exposure systems for evaluating airborne ENM toxicity.
Collapse
Affiliation(s)
- Karin Lovén
- NanoLund, Lund University, Lund, Sweden.,Ergonomics and Aerosol Technology, Lund University, Lund, Sweden
| | - Julia Dobric
- Ergonomics and Aerosol Technology, Lund University, Lund, Sweden
| | - Deniz A Bölükbas
- Lung Bioengineering and Regeneration, Department of Experimental Medical Sciences, Lund University, Lund, Sweden.,Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden.,Stem Cell Centre, Lund University, Lund, Sweden
| | - Monica Kåredal
- NanoLund, Lund University, Lund, Sweden.,Occupational and Environmental Medicine, Laboratory Medicine, Lund University, Lund, Sweden
| | - Sinem Tas
- Lung Bioengineering and Regeneration, Department of Experimental Medical Sciences, Lund University, Lund, Sweden.,Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden.,Stem Cell Centre, Lund University, Lund, Sweden
| | - Jenny Rissler
- NanoLund, Lund University, Lund, Sweden.,Ergonomics and Aerosol Technology, Lund University, Lund, Sweden.,Bioeconomy and Health, RISE Research Institutes of Sweden, Lund, Sweden
| | - Darcy E Wagner
- Lung Bioengineering and Regeneration, Department of Experimental Medical Sciences, Lund University, Lund, Sweden.,Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden.,Stem Cell Centre, Lund University, Lund, Sweden
| | - Christina Isaxon
- NanoLund, Lund University, Lund, Sweden.,Ergonomics and Aerosol Technology, Lund University, Lund, Sweden
| |
Collapse
|
12
|
Secondo LE, Sagona JA, Calderón L, Wang Z, Plotnik D, Senick J, Sorensen-Allacci M, Wener R, Andrews CJ, Mainelis G. Estimating Lung Deposition of Fungal Spores Using Actual Airborne Spore Concentrations and Physiological Data. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:1852-1863. [PMID: 33476134 PMCID: PMC10794981 DOI: 10.1021/acs.est.0c05540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Exposure to bioaerosols has been implicated in adverse respiratory symptoms, infectious diseases, and bioterrorism. Although these particles have been measured within residential and occupational settings in multiple studies, the deposition of bioaerosol particles within the human respiratory system has been only minimally explored. This paper uses real-world environmental measurement data of total fungal spores using Air-o-Cell cassettes in 16 different apartments and residents' physiological data in those apartments to predict respiratory deposition of the spores. The airborne spore concentrations were measured during the spring, summer, and fall. The respiratory deposition of five most prevalent spore genera-Ascospores, Aspergillus, Basidiospores, Cladosporium, and Myxomycetes-was predicted using three empirical models: the Multiple Path Particle Dosimetry model, using both the Yeh and age-specific versions, and the Bioaerosol Adaptation of the International Committee on Radiological Protection's Lung deposition model. The predicted total deposited number of spores was highest for Ascospores and Cladosporium. While the majority of spores deposit were in the extrathoracic region, there is a significant deposition for both Aspergillus and Cladosporium in the alveolar region, potentially leading to the development of aspergillosis or allergic asthma. Although the dose-response relationship is unknown, the estimate of the actual spore deposition could be the first step in determining such a relationship.
Collapse
Affiliation(s)
- Lynn E. Secondo
- Environmental and Occupational Health Science Institute, Rutgers University, Piscataway, NJ 08854 USA
- Department of Environmental Sciences, Rutgers University, New Brunswick, NJ 08901 USA
| | - Jessica A. Sagona
- Department of Environmental Sciences, Rutgers University, New Brunswick, NJ 08901 USA
| | - Leonardo Calderón
- Department of Environmental Sciences, Rutgers University, New Brunswick, NJ 08901 USA
| | - Zuocheng Wang
- Department of Environmental Sciences, Rutgers University, New Brunswick, NJ 08901 USA
| | - Deborah Plotnik
- Edward J. Bloustein School of Planning and Public Policy, Rutgers University, New Brunswick, NJ 08901 USA
| | - Jennifer Senick
- Edward J. Bloustein School of Planning and Public Policy, Rutgers University, New Brunswick, NJ 08901 USA
| | - MaryAnn Sorensen-Allacci
- Edward J. Bloustein School of Planning and Public Policy, Rutgers University, New Brunswick, NJ 08901 USA
| | - Richard Wener
- Department of Technology, Culture & Society, Polytechnic Institute of New York University, 6 MetroTech Center, Brooklyn, NY 11201, USA
| | - Clinton J. Andrews
- Edward J. Bloustein School of Planning and Public Policy, Rutgers University, New Brunswick, NJ 08901 USA
| | - Gediminas Mainelis
- Department of Environmental Sciences, Rutgers University, New Brunswick, NJ 08901 USA
| |
Collapse
|
13
|
Kaur K, Overacker D, Ghandehari H, Reilly C, Paine R, Kelly KE. Determining real-time mass deposition with a quartz crystal microbalance in an electrostatic, parallel-flow, air-liquid interface exposure system. JOURNAL OF AEROSOL SCIENCE 2021; 151:105653. [PMID: 33012843 PMCID: PMC7529104 DOI: 10.1016/j.jaerosci.2020.105653] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In vitro studies are the first step toward understanding the biological effects of particulate matter. As a more realistic exposure strategy than submerged culture approaches, air-liquid interface (ALI) in vitro exposure systems are gaining interest. One challenge with ALI systems is determining accurate particle mass deposition. Although a few commercially available ALI systems are equipped with online mass deposition monitoring, most studies use indirect methods to estimate mass doses. These different indirect methods may contribute to inconsistencies in the results from in vitro studies of aerosolized nanoparticles. This study explored the effectiveness of using a commercially available Quartz Crystal Microbalance (QCM) to estimate the real-time, particle-mass deposition inside an electrostatic, parallel-flow, ALI system. The QCM system required minor modifications, including custom-designed and fabricated headers. Three QCM systems were simultaneously placed in three of the six wells in the ALI exposure chamber to evaluate the uniformity of particle deposition. The measurements from fluorescein dosimetry and QCM revealed an uneven deposition between these six wells. The performance of the QCM system was also evaluated using two different methods. First, using fluorescein deposition in one well, depositions in three other wells were estimated, which was then compared to the actual QCM readings. Second, using the QCM measured deposition in one well, the deposition in three other wells was estimated and compared to deposition measured by fluorescein dosimetry. For both methods, the expected and actual deposition yields a linear fit with the slope ~1. This good fit suggests that QCM systems can be used to measure real-time mass deposition in an electrostatic ALI system.
Collapse
Affiliation(s)
| | | | - Hamidreza Ghandehari
- Utah Center for Nanomedicine, Nano Institute of Utah, University of Utah
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah
- Department of Biomedical Engineering, University of Utah
| | - Christopher Reilly
- Utah Center for Nanomedicine, Nano Institute of Utah, University of Utah
- Department of Pharmacology and Toxicology, University of Utah
| | - Robert Paine
- Division of Pulmonary and Critical Care Medicine, University of Utah
| | - Kerry E Kelly
- Department of Chemical Engineering, University of Utah
- Utah Center for Nanomedicine, Nano Institute of Utah, University of Utah
| |
Collapse
|
14
|
Air-Liquid Interface Exposure of Lung Epithelial Cells to Low Doses of Nanoparticles to Assess Pulmonary Adverse Effects. NANOMATERIALS 2020; 11:nano11010065. [PMID: 33383962 PMCID: PMC7823463 DOI: 10.3390/nano11010065] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/14/2020] [Accepted: 12/21/2020] [Indexed: 12/20/2022]
Abstract
Reliable and predictive in vitro assays for hazard assessments of manufactured nanomaterials (MNMs) are still limited. Specifically, exposure systems which more realistically recapitulate the physiological conditions in the lung are needed to predict pulmonary toxicity. To this end, air-liquid interface (ALI) systems have been developed in recent years which might be better suited than conventional submerged exposure assays. However, there is still a need for rigorous side-by-side comparisons of the results obtained with the two different exposure methods considering numerous parameters, such as different MNMs, cell culture models and read outs. In this study, human A549 lung epithelial cells and differentiated THP-1 macrophages were exposed under submerged conditions to two abundant types of MNMs i.e., ceria and titania nanoparticles (NPs). Membrane integrity, metabolic activity as well as pro-inflammatory responses were recorded. For comparison, A549 monocultures were also exposed at the ALI to the same MNMs. In the case of titania NPs, genotoxicity was also investigated. In general, cells were more sensitive at the ALI compared to under classical submerged conditions. Whereas ceria NPs triggered only moderate effects, titania NPs clearly initiated cytotoxicity, pro-inflammatory gene expression and genotoxicity. Interestingly, low doses of NPs deposited at the ALI were sufficient to drive adverse outcomes, as also documented in rodent experiments. Therefore, further development of ALI systems seems promising to refine, reduce or even replace acute pulmonary toxicity studies in animals.
Collapse
|
15
|
Comparative toxicity of ultrafine particles around a major airport in human bronchial epithelial (Calu-3) cell model at the air–liquid interface. Toxicol In Vitro 2020; 68:104950. [DOI: 10.1016/j.tiv.2020.104950] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/17/2020] [Accepted: 07/22/2020] [Indexed: 11/21/2022]
|
16
|
Hufnagel M, Schoch S, Wall J, Strauch BM, Hartwig A. Toxicity and Gene Expression Profiling of Copper- and Titanium-Based Nanoparticles Using Air-Liquid Interface Exposure. Chem Res Toxicol 2020; 33:1237-1249. [PMID: 32285662 DOI: 10.1021/acs.chemrestox.9b00489] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
To assess the toxicity of nanomaterials, most in vitro studies have been performed under submerged conditions, which do not reflect physiological conditions upon inhalation. An air-liquid interface (ALI) exposure may provide more reliable data on dosimetry and prevent interactions with cell culture media components. Therefore, an ALI exposure was combined with a high-throughput RT-qPCR approach to evaluate the toxicological potential of CuO and TiO2 nanoparticles (NP) in A549 cells. While TiO2 NP did not show any cytotoxicity or other effects compromising genomic stability up to 25.8 μg/cm2, CuO NP revealed a dose-dependent cytotoxicity, starting at 4.9 μg/cm2. Furthermore, CuO NP altered distinct gene expression patterns indicative for disturbed metal homeostasis, stress response, and DNA damage induction. Thus, induction of metal homeostasis associated genes (MT1X, MT2A) at 0.4 μg/cm2 and higher suggested uptake and intracellular dissolution of CuO NP, which was verified by a dose-dependent increase in intracellular copper concentration. Starting at 4.9 μg/cm2, oxidative stress markers (HMOX1, HSPA1A) were induced dose-dependently, supported by elevated ROS levels. Furthermore, a dose-dependent induction of genes associated with DNA damage response (DDIT3, GADD45A) was observed, in concordance with an increase in DNA strand breaks. Finally, transcriptional data suggested the induction of apoptosis at high doses, while flow cytometric analysis revealed increased numbers of either late apoptotic or necrotic cells and clearly necrotic cells at the highest concentrations. Thus, an ALI cell culture system was successfully combined with a comprehensive high-throughput RT-qPCR system, allowing the quantification of NP deposition and their impact on genomic stability. For CuO NP, in principle the data confirm observations made under submerged conditions with respect to intracellular copper ion release, as well as oxidative and genotoxic stress response. However, the results derived from ALI exposure allow the assessment of dose-response-relationships as well as the comparison of relative toxic potencies of different NP.
Collapse
Affiliation(s)
- Matthias Hufnagel
- Department of Food Chemistry and Toxicology, Institute of Applied Biosciences, Karlsruhe Institute of Technology (KIT), Adenauerring 20a, 76131 Karlsruhe, Germany
| | - Sarah Schoch
- Department of Food Chemistry and Toxicology, Institute of Applied Biosciences, Karlsruhe Institute of Technology (KIT), Adenauerring 20a, 76131 Karlsruhe, Germany
| | - Johanna Wall
- Department of Food Chemistry and Toxicology, Institute of Applied Biosciences, Karlsruhe Institute of Technology (KIT), Adenauerring 20a, 76131 Karlsruhe, Germany
| | - Bettina Maria Strauch
- Department of Food Chemistry and Toxicology, Institute of Applied Biosciences, Karlsruhe Institute of Technology (KIT), Adenauerring 20a, 76131 Karlsruhe, Germany
| | - Andrea Hartwig
- Department of Food Chemistry and Toxicology, Institute of Applied Biosciences, Karlsruhe Institute of Technology (KIT), Adenauerring 20a, 76131 Karlsruhe, Germany
| |
Collapse
|
17
|
Bequignon E, Mangin D, Bécaud J, Pasquier J, Angely C, Bottier M, Escudier E, Isabey D, Filoche M, Louis B, Papon JF, Coste A. Pathogenesis of chronic rhinosinusitis with nasal polyps: role of IL-6 in airway epithelial cell dysfunction. J Transl Med 2020; 18:136. [PMID: 32209102 PMCID: PMC7092549 DOI: 10.1186/s12967-020-02309-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 03/16/2020] [Indexed: 12/20/2022] Open
Abstract
Background Chronic rhinosinusitis with nasal polyps (CRSwNP) is characterized by an alteration in airway epithelial cell functions including barrier function, wound repair mechanisms, mucociliary clearance. The mechanisms leading to epithelial cell dysfunction in nasal polyps (NPs) remain poorly understood. Our hypothesis was that among the inflammatory cytokines involved in NPs, IL-6 could alter epithelial repair mechanisms and mucociliary clearance. The aim of this study was to evaluate the in vitro effects of IL-6 on epithelial repair mechanisms in a wound repair model and on ciliary beating in primary cultures of Human Nasal Epithelial Cells (HNEC). Methods Primary cultures of HNEC taken from 38 patients during surgical procedures for CRSwNP were used in an in vitro model of wound healing. Effects of increasing concentrations of IL-6 (1 ng/mL, 10 ng/mL, and 100 ng/mL) and other ILs (IL-5, IL-9, IL-10) on wound closure kinetics were compared to cultures without IL-modulation. After wound closure, the differentiation process was characterized under basal conditions and after IL supplementation using cytokeratin-14, MUC5AC, and βIV tubulin as immunomarkers of basal, mucus, and ciliated cells, respectively. The ciliated edges of primary cultures were analyzed on IL-6 modulation by digital high-speed video-microscopy to measure: ciliary beating frequency (CBF), ciliary length, relative ciliary density, metachronal wavelength and the ciliary beating efficiency index. Results Our results showed that: (i) IL-6 accelerated airway wound repair in vitro, with a dose–response effect whereas no effect was observed after other ILs-stimulation. After 24 h, 79% of wounded wells with IL6-100 were fully repaired, vs 46% in the IL6-10 group, 28% in the IL6-1 group and 15% in the control group; (ii) specific migration analyses of closed wound at late repair stage (Day 12) showed IL-6 had the highest migration compared with other ILs (iii) The study of the IL-6 effect on ciliary function showed that CBF and metachronal wave increased but without significant modifications of ciliary density, length of cilia and efficiency index. Conclusion The up-regulated epithelial cell proliferation observed in polyps could be induced by IL-6 in the case of prior epithelial damage. IL-6 could be a major cytokine in NP physiopathology.
Collapse
Affiliation(s)
- Emilie Bequignon
- Service d'Oto-Rhino-Laryngologie et de Chirurgie cervico-faciale, AP-HP, Hôpital Henri Mondor et Centre Hospitalier Intercommunal de Créteil, 94010, Créteil, France. .,INSERM, U955, Equipe 13, Faculte de Medecine, 8 rue du General Sarrail, 94010, Créteil, France. .,Faculté de Médecine, Université Paris-Est, 94010, Créteil, France. .,CNRS ERL 7000, 94010, Créteil, France.
| | - David Mangin
- Service d'Oto-Rhino-Laryngologie et de Chirurgie cervico-faciale, AP-HP, Hôpital Henri Mondor et Centre Hospitalier Intercommunal de Créteil, 94010, Créteil, France.,INSERM, U955, Equipe 13, Faculte de Medecine, 8 rue du General Sarrail, 94010, Créteil, France.,Faculté de Médecine, Université Paris-Est, 94010, Créteil, France.,CNRS ERL 7000, 94010, Créteil, France
| | - Justine Bécaud
- Service d'Oto-Rhino-Laryngologie et de Chirurgie cervico-faciale, AP-HP, Hôpital Henri Mondor et Centre Hospitalier Intercommunal de Créteil, 94010, Créteil, France.,INSERM, U955, Equipe 13, Faculte de Medecine, 8 rue du General Sarrail, 94010, Créteil, France.,Faculté de Médecine, Université Paris-Est, 94010, Créteil, France.,CNRS ERL 7000, 94010, Créteil, France
| | - Jennifer Pasquier
- Nice Breast Institute, 06000, Nice, France.,Stem Cell & Microenvironment Laboratory, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Christelle Angely
- INSERM, U955, Equipe 13, Faculte de Medecine, 8 rue du General Sarrail, 94010, Créteil, France.,Faculté de Médecine, Université Paris-Est, 94010, Créteil, France.,CNRS ERL 7000, 94010, Créteil, France
| | - Mathieu Bottier
- INSERM, U955, Equipe 13, Faculte de Medecine, 8 rue du General Sarrail, 94010, Créteil, France.,Faculté de Médecine, Université Paris-Est, 94010, Créteil, France.,CNRS ERL 7000, 94010, Créteil, France
| | - Estelle Escudier
- Inserm U933, Paris, France.,Université Pierre et Marie Curie, Paris, France.,Service de génétique et d'embryologie médicale, AP-HP Hôpital Armand-Trousseau, Paris, France
| | - Daniel Isabey
- INSERM, U955, Equipe 13, Faculte de Medecine, 8 rue du General Sarrail, 94010, Créteil, France.,Faculté de Médecine, Université Paris-Est, 94010, Créteil, France.,CNRS ERL 7000, 94010, Créteil, France
| | - Marcel Filoche
- INSERM, U955, Equipe 13, Faculte de Medecine, 8 rue du General Sarrail, 94010, Créteil, France.,Faculté de Médecine, Université Paris-Est, 94010, Créteil, France.,CNRS ERL 7000, 94010, Créteil, France
| | - Bruno Louis
- INSERM, U955, Equipe 13, Faculte de Medecine, 8 rue du General Sarrail, 94010, Créteil, France.,Faculté de Médecine, Université Paris-Est, 94010, Créteil, France.,CNRS ERL 7000, 94010, Créteil, France
| | - Jean-François Papon
- INSERM, U955, Equipe 13, Faculte de Medecine, 8 rue du General Sarrail, 94010, Créteil, France.,CNRS ERL 7000, 94010, Créteil, France.,Service d'Oto-Rhino-Laryngologie et de Chirurgie cervico-faciale, AP-HP, Hôpital Bicêtre, 94270, Le Kremlin-Bicêtre, France.,Faculté de Médecine, Université Paris-Sud, 94275, Le Kremlin-Bicêtre, France
| | - André Coste
- Service d'Oto-Rhino-Laryngologie et de Chirurgie cervico-faciale, AP-HP, Hôpital Henri Mondor et Centre Hospitalier Intercommunal de Créteil, 94010, Créteil, France.,INSERM, U955, Equipe 13, Faculte de Medecine, 8 rue du General Sarrail, 94010, Créteil, France.,Faculté de Médecine, Université Paris-Est, 94010, Créteil, France.,CNRS ERL 7000, 94010, Créteil, France
| |
Collapse
|
18
|
New Approach Methods to Evaluate Health Risks of Air Pollutants: Critical Design Considerations for In Vitro Exposure Testing. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17062124. [PMID: 32210027 PMCID: PMC7143849 DOI: 10.3390/ijerph17062124] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/11/2020] [Accepted: 03/19/2020] [Indexed: 12/20/2022]
Abstract
Air pollution consists of highly variable and complex mixtures recognized as major contributors to morbidity and mortality worldwide. The vast number of chemicals, coupled with limitations surrounding epidemiological and animal studies, has necessitated the development of new approach methods (NAMs) to evaluate air pollution toxicity. These alternative approaches include in vitro (cell-based) models, wherein toxicity of test atmospheres can be evaluated with increased efficiency compared to in vivo studies. In vitro exposure systems have recently been developed with the goal of evaluating air pollutant-induced toxicity; though the specific design parameters implemented in these NAMs-based studies remain in flux. This review aims to outline important design parameters to consider when using in vitro methods to evaluate air pollutant toxicity, with the goal of providing increased accuracy, reproducibility, and effectiveness when incorporating in vitro data into human health evaluations. This review is unique in that experimental considerations and lessons learned are provided, as gathered from first-hand experience developing and testing in vitro models coupled to exposure systems. Reviewed design aspects include cell models, cell exposure conditions, exposure chambers, and toxicity endpoints. Strategies are also discussed to incorporate in vitro findings into the context of in vivo toxicity and overall risk assessment.
Collapse
|
19
|
Frege C, Asgari M, Steiner S, Ferreira S, Majeed S, Lucci F, Frentzel S, Hoeng J, Kuczaj AK. Assessment of Single-Photon Ionization Mass Spectrometry for Online Monitoring of in Vitro Aerosol Exposure Experiments. Chem Res Toxicol 2020; 33:505-514. [DOI: 10.1021/acs.chemrestox.9b00381] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Carla Frege
- Philip Morris Products S.A., PMI R&D, Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Mahdi Asgari
- Philip Morris Products S.A., PMI R&D, Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Sandro Steiner
- Philip Morris Products S.A., PMI R&D, Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Sandra Ferreira
- Philip Morris Products S.A., PMI R&D, Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Shoaib Majeed
- Philip Morris Products S.A., PMI R&D, Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Francesco Lucci
- Philip Morris Products S.A., PMI R&D, Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Stefan Frentzel
- Philip Morris Products S.A., PMI R&D, Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Julia Hoeng
- Philip Morris Products S.A., PMI R&D, Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Arkadiusz K. Kuczaj
- Philip Morris Products S.A., PMI R&D, Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
- University of Twente, Faculty EEMCS, P.O. Box 217, 7500 AE Enschede, The Netherlands
| |
Collapse
|
20
|
Boué S, Goedertier D, Hoeng J, Iskandar A, Kuczaj AK, Marescotti D, Mathis C, May A, Phillips B, Peitsch MC, Schlage WK, Sciuscio D, Tan WT, Vanscheeuwijck P. State-of-the-art methods and devices for generation, exposure, and collection of aerosols from e-vapor products. TOXICOLOGY RESEARCH AND APPLICATION 2020. [DOI: 10.1177/2397847320979751] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
E-vapor products (EVP) have become popular alternatives for cigarette smokers who would otherwise continue to smoke. EVP research is challenging and complex, mostly because of the numerous and rapidly evolving technologies and designs as well as the multiplicity of e-liquid flavors and solvents available on the market. There is an urgent need to standardize all stages of EVP assessment, from the production of a reference product to e-vapor generation methods and from physicochemical characterization methods to nonclinical and clinical exposure studies. The objective of this review is to provide a detailed description of selected experimental setups and methods for EVP aerosol generation and collection and exposure systems for their in vitro and in vivo assessment. The focus is on the specificities of the product that constitute challenges and require development of ad hoc assessment frameworks, equipment, and methods. In so doing, this review aims to support further studies, objective evaluation, comparison, and verification of existing evidence, and, ultimately, formulation of standardized methods for testing EVPs.
Collapse
Affiliation(s)
- Stéphanie Boué
- Philip Morris International (PMI) Research & Development, Philip Morris Products S.A., Neuchâtel, Switzerland
| | - Didier Goedertier
- Philip Morris International (PMI) Research & Development, Philip Morris Products S.A., Neuchâtel, Switzerland
| | - Julia Hoeng
- Philip Morris International (PMI) Research & Development, Philip Morris Products S.A., Neuchâtel, Switzerland
| | - Anita Iskandar
- Philip Morris International (PMI) Research & Development, Philip Morris Products S.A., Neuchâtel, Switzerland
| | - Arkadiusz K Kuczaj
- Philip Morris International (PMI) Research & Development, Philip Morris Products S.A., Neuchâtel, Switzerland
| | - Diego Marescotti
- Philip Morris International (PMI) Research & Development, Philip Morris Products S.A., Neuchâtel, Switzerland
| | - Carole Mathis
- Philip Morris International (PMI) Research & Development, Philip Morris Products S.A., Neuchâtel, Switzerland
| | - Anne May
- Consultants in Science, Epalinges, Switzerland
| | - Blaine Phillips
- Philip Morris International (PMI) Research & Development, Philip Morris International Research Laboratories Pte. Ltd, Science Park II, Singapore
| | - Manuel C Peitsch
- Philip Morris International (PMI) Research & Development, Philip Morris Products S.A., Neuchâtel, Switzerland
| | | | - Davide Sciuscio
- Philip Morris International (PMI) Research & Development, Philip Morris Products S.A., Neuchâtel, Switzerland
| | - Wei Teck Tan
- Philip Morris International (PMI) Research & Development, Philip Morris International Research Laboratories Pte. Ltd, Science Park II, Singapore
| | - Patrick Vanscheeuwijck
- Philip Morris International (PMI) Research & Development, Philip Morris Products S.A., Neuchâtel, Switzerland
| |
Collapse
|
21
|
Tien CY, Li JP, Han D, Li Z, Fu PK, Chen JK, Tsai CJ. Development of a Novel Shallow Liquid Interface Exposure System for MWCNT Toxicity Assessment. Chem Res Toxicol 2019; 32:1925-1939. [PMID: 31469549 DOI: 10.1021/acs.chemrestox.9b00067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Increasing applications of multiwalled carbon nanotubes (MWCNT) lead to significant occupational exposure and potential health concerns. Toxicity of MWCNT should be carefully elucidated since the conventional (CON) method with fully immersed condition fails to mimic the air-liquid interface (ALI) in airways. Additionally, quantification of MWCNT in cells was a real challenge. Currently available ALI exposure devices are costly, posing problems to conducting in vitro evaluations for emerging nanomaterials. A novel system, consisting of a shaker fluidized-bed atomizer (SFA) and electrostatic shallow liquid interface (ESLI) exposure chamber, has been developed for investigating nanotoxicity of well-dispersed pristine-MWCNT (pMWCNT) and carboxylized-MWCNT (cMWCNT). After 24-h exposure, LDH, MCP-1, IL-1β, IL-6, and TNF-α releases were determined, and cell uptakes were quantified according to the molybdenum content in cells. Biological responses triggered by SLI exposure are obviously more sensitive compared with those caused by CON exposure at equivalent doses. Exposure dose-dependent release of LDH and IL-6 was highlighted in A549 cells, indicating higher cytotoxicity and inflammatory responses of cMWCNT attributed to its shorter length, smaller size, and higher cell uptake. Cell-associated dose-dependent release of LDH and IL-6 was highlighted in RAW264.7 cells, revealing the higher adverse health risk of pMWCNT due to frustrated phagocytosis and its much higher molybdenum content. These results suggest that inherent characteristics of cells and distinct physicochemical properties of pMWCNT and cMWCNT lead to either exposure dose-dependent or cell-associated dose-dependent responses. Notably, the SLI is superior to the CON exposure method and well suited for nanotoxicity assessment of different MWCNTs.
Collapse
Affiliation(s)
- Chi-Yu Tien
- Institute of Environmental Engineering , National Chiao Tung University , 1001 University Road , Hsinchu 30010 , Taiwan
| | - Jui-Ping Li
- Institute of Biomedical Engineering and Nanomedicine , National Health Research Institutes , 35 Keyan Road , Miaoli 35053 , Taiwan
| | - Ding Han
- Institute of Environmental Engineering , National Chiao Tung University , 1001 University Road , Hsinchu 30010 , Taiwan
| | - Ziyi Li
- School of Energy and Environmental Engineering , University of Science and Technology Beijing , Beijing 100083 , China
| | - Pin-Kuei Fu
- Department of Critical Care Medicine , Taichung Veterans General Hospital , Taichung 40705 , Taiwan.,College of Human Science and Social Innovation , Hungkuang University , Taichung 43302 , Taiwan.,College of Science , Tunghai University , Taichung 40704 , Taiwan
| | - Jen-Kun Chen
- Institute of Biomedical Engineering and Nanomedicine , National Health Research Institutes , 35 Keyan Road , Miaoli 35053 , Taiwan
| | - Chuen-Jinn Tsai
- Institute of Environmental Engineering , National Chiao Tung University , 1001 University Road , Hsinchu 30010 , Taiwan
| |
Collapse
|
22
|
FcRn-Dependent Transcytosis of Monoclonal Antibody in Human Nasal Epithelial Cells In Vitro: A Prerequisite for a New Delivery Route for Therapy? Int J Mol Sci 2019; 20:ijms20061379. [PMID: 30893823 PMCID: PMC6470570 DOI: 10.3390/ijms20061379] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 03/11/2019] [Accepted: 03/12/2019] [Indexed: 12/27/2022] Open
Abstract
Monoclonal antibodies (mAbs) are promising therapies to treat airway chronic inflammatory disease (asthma or nasal polyps). To date, no study has specifically assessed, in vitro, the potential function of neonatal Fc receptor (FcRn) in IgG transcytosis through the human nasal airway epithelium. The objective of this study was to report the in vitro expression and function of FcRn in nasal human epithelium. FcRn expression was studied in an air–liquid interface (ALI) primary culture model of human nasal epithelial cells (HNEC) from polyps. FcRn expression was characterized by quantitative RT-PCR, western blot, and immunolabeling. The ability of HNECs to support mAb transcytosis via FcRn was assessed by transcytosis assay. This study demonstrates the expression of FcRn mRNA and protein in HNEC. We report a high expression of FcRn in the cytosol of ciliated, mucus, and basal cells by immunohistochemistry with a higher level of FcRn proteins in differentiated HNEC. We also proved in vitro transepithelial delivery of an IgG1 therapeutic mAb with a dose–response curve. This is the first time that FcRn expression and mAb transcytosis has been shown in a model of human nasal respiratory epithelium in vitro. This study is a prerequisite for FcRn-dependent nasal administration of mAbs.
Collapse
|
23
|
Ritter D, Bitsch A, Elend M, Schuchardt S, Hansen T, Brodbeck C, Knebel J, Fuchs A, Gronewold C, Fautz R. Development and Evaluation of an In Vitro Test System for Toxicity Screening of Aerosols Released from Consumer Products and First Application to Aerosols from a Hair Straightening Process. ACTA ACUST UNITED AC 2018. [DOI: 10.1089/aivt.2017.0036] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Detlef Ritter
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hannover, Germany
| | - Annette Bitsch
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hannover, Germany
| | - Manfred Elend
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hannover, Germany
| | - Sven Schuchardt
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hannover, Germany
| | - Tanja Hansen
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hannover, Germany
| | - Carsten Brodbeck
- Fraunhofer Institute for Algorithms and Scientific Computing SCAI, Sankt Augustin, Germany
| | - Jan Knebel
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hannover, Germany
| | - Anne Fuchs
- Safety and Toxicology, KAO Germany GmbH, Darmstadt, Germany
| | | | - Rolf Fautz
- Safety and Toxicology, KAO Germany GmbH, Darmstadt, Germany
| |
Collapse
|
24
|
Lacroix G, Koch W, Ritter D, Gutleb AC, Larsen ST, Loret T, Zanetti F, Constant S, Chortarea S, Rothen-Rutishauser B, Hiemstra PS, Frejafon E, Hubert P, Gribaldo L, Kearns P, Aublant JM, Diabaté S, Weiss C, de Groot A, Kooter I. Air-Liquid Interface In Vitro Models for Respiratory Toxicology Research: Consensus Workshop and Recommendations. ACTA ACUST UNITED AC 2018; 4:91-106. [PMID: 32953944 PMCID: PMC7500038 DOI: 10.1089/aivt.2017.0034] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
In vitro air-liquid interface (ALI) cell culture models can potentially be used to assess inhalation toxicology endpoints and are usually considered, in terms of relevancy, between classic (i.e., submerged) in vitro models and animal-based models. In some situations that need to be clearly defined, ALI methods may represent a complement or an alternative option to in vivo experimentations or classic in vitro methods. However, it is clear that many different approaches exist and that only very limited validation studies have been carried out to date. This means comparison of data from different methods is difficult and available methods are currently not suitable for use in regulatory assessments. This is despite inhalation toxicology being a priority area for many governmental organizations. In this setting, a 1-day workshop on ALI in vitro models for respiratory toxicology research was organized in Paris in March 2016 to assess the situation and to discuss what might be possible in terms of validation studies. The workshop was attended by major parties in Europe and brought together more than 60 representatives from various academic, commercial, and regulatory organizations. Following plenary, oral, and poster presentations, an expert panel was convened to lead a discussion on possible approaches to validation studies for ALI inhalation models. A series of recommendations were made and the outcomes of the workshop are reported.
Collapse
Affiliation(s)
- Ghislaine Lacroix
- Chronic Risks Division, Institut National de l'Environnement Industriel et des RISques, Verneuil-en-Halatte, France
| | - Wolfgang Koch
- In Vitro und Mechanistische Toxikologie, Fraunhofer ITEM, Hannover, Germany
| | - Detlef Ritter
- In Vitro und Mechanistische Toxikologie, Fraunhofer ITEM, Hannover, Germany
| | - Arno C Gutleb
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology, Esch-sur-Alzette, Luxembourg
| | - Søren Thor Larsen
- Inhalation Toxicology Group, National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Thomas Loret
- Chronic Risks Division, Institut National de l'Environnement Industriel et des RISques, Verneuil-en-Halatte, France
| | - Filippo Zanetti
- Systems Toxicology Department, Philip Morris International R&D, Neuchâtel, Switzerland
| | | | - Savvina Chortarea
- BioNanomaterials, Adolphe Merkle Institute, University of Fribourg, Fribourg, Switzerland.,Laboratory for Materials-Biology Interactions, EMPA, Swiss Federal Laboratories for Materials, Science and Technology, St Gallen, Switzerland
| | | | - Pieter S Hiemstra
- Department of Pulmonology, Leiden University Medical Center, Leiden, The Netherlands
| | - Emeric Frejafon
- Chronic Risks Division, Institut National de l'Environnement Industriel et des RISques, Verneuil-en-Halatte, France
| | - Philippe Hubert
- Chronic Risks Division, Institut National de l'Environnement Industriel et des RISques, Verneuil-en-Halatte, France
| | - Laura Gribaldo
- Directorate F-Health, Consumers and Reference Materials Chemicals Safety and Alternative Methods Unit (F.3), EURL ECVAM, JRC, Ispra, Italy
| | - Peter Kearns
- Environment, Health and Safety Division, OECD, Paris, France
| | - Jean-Marc Aublant
- European Affairs and Standardization, Laboratoire National de Métrologie et d'Essais, Paris, France
| | - Silvia Diabaté
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Carsten Weiss
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Antoinette de Groot
- Toxicological and Environmental Risk Assessment (TERA) Department, Solvay, Brussels, Belgium
| | - Ingeborg Kooter
- Department of Circular Environment and Environment (CEE), TNO, Utrecht, The Netherlands
| |
Collapse
|
25
|
Hanna SK, Bustos AM, Peterson AW, Reipa V, Scanlan LD, Coskun SH, Cho TJ, Johnson ME, Hackley VA, Nelson BC, Winchester MR, Elliott JT, Petersen EJ. Agglomeration of Escherichia coli with Positively Charged Nanoparticles Can Lead to Artifacts in a Standard Caenorhabditis elegans Toxicity Assay. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:5968-5978. [PMID: 29672024 PMCID: PMC6081640 DOI: 10.1021/acs.est.7b06099] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The increased use and incorporation of engineered nanoparticles (ENPs) in consumer products requires a robust assessment of their potential environmental implications. However, a lack of standardized methods for nanotoxicity testing has yielded results that are sometimes contradictory. Standard ecotoxicity assays may work appropriately for some ENPs with minimal modification but produce artifactual results for others. Therefore, understanding the robustness of assays for a range of ENPs is critical. In this study, we evaluated the performance of a standard Caenorhabditis elegans ( C. elegans) toxicity assay containing an Escherichia coli ( E. coli) food supply with silicon, polystyrene, and gold ENPs with different charged coatings and sizes. Of all the ENPs tested, only those with a positively charged coating caused growth inhibition. However, the positively charged ENPs were observed to heteroagglomerate with E. coli cells, suggesting that the ENPs impacted the ability of nematodes to feed, leading to a false positive toxic effect on C. elegans growth and reproduction. When the ENPs were tested in two alternate C. elegans assays that did not contain E. coli, we found greatly reduced toxicity of ENPs. This study illustrates a key unexpected artifact that may occur during nanotoxicity assays.
Collapse
Affiliation(s)
| | - Antonio Montoro Bustos
- Materials Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899-8313
| | - Alexander W. Peterson
- Materials Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899-8313
| | - Vytas Reipa
- Materials Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899-8313
| | | | - Sanem Hosbas Coskun
- Materials Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899-8313
| | - Tae Joon Cho
- Materials Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899-8313
| | - Monique E. Johnson
- Materials Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899-8313
| | - Vincent A. Hackley
- Materials Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899-8313
| | - Bryant C. Nelson
- Materials Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899-8313
| | - Michael R. Winchester
- Materials Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899-8313
| | - John T. Elliott
- Materials Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899-8313
| | - Elijah J. Petersen
- Materials Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899-8313
| |
Collapse
|
26
|
McMullen PD, Andersen ME, Cholewa B, Clewell HJ, Dunnick KM, Hartman JK, Mansouri K, Minto MS, Nicolas CI, Phillips MB, Slattery S, Yoon M, Clewell RA. Evaluating opportunities for advancing the use of alternative methods in risk assessment through the development of fit-for-purpose in vitro assays. Toxicol In Vitro 2018; 48:310-317. [PMID: 29391263 DOI: 10.1016/j.tiv.2018.01.027] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 12/27/2017] [Accepted: 01/29/2018] [Indexed: 12/11/2022]
Abstract
An evolving regulatory, scientific, and legislative landscape is driving a fundamental change in how chemical safety decisions are made. As we move to implement changes, regulatory agencies and industry are beginning to adopt tiered approaches, which leverage high-throughput screening technologies for prioritization and read across, followed by interrogation of "hit chemicals" with more rigorous dose-response assessment either in fit-for-purpose human cell-based assays or with traditional in vivo tests. However, to date, suitable in vitro alternatives do not exist for the vast majority of the organ toxicities that form the basis of current regulatory decisions. To successfully support safety decisions, biologically relevant, quantitative, cell-based assays that evaluate dose-response and identify regions of safety for chemical exposure are required. This review evaluates the current state of the science in the development of such assays, identifies key gaps in the current tests, and recommends areas where research efforts may be focused to help move the risk assessment community towards more wide-spread use of in vitro methods. Our analysis suggests that a key shortcoming in the current efforts is the ability to test volatile compounds and to predict pulmonary toxicity. We present a mechanistically-based path forward for the development of a fit-for-purpose lung toxicity assay.
Collapse
Affiliation(s)
| | | | - Brian Cholewa
- ScitoVation, LLC., Research Triangle Park, NC 27709, United States
| | - Harvey J Clewell
- ScitoVation, LLC., Research Triangle Park, NC 27709, United States
| | | | | | - Kamel Mansouri
- ScitoVation, LLC., Research Triangle Park, NC 27709, United States
| | - Melyssa S Minto
- ScitoVation, LLC., Research Triangle Park, NC 27709, United States
| | | | | | - Scott Slattery
- ScitoVation, LLC., Research Triangle Park, NC 27709, United States
| | - Miyoung Yoon
- ScitoVation, LLC., Research Triangle Park, NC 27709, United States
| | | |
Collapse
|
27
|
He T, Long J, Li J, Liu L, Cao Y. Toxicity of ZnO nanoparticles (NPs) to A549 cells and A549 epithelium in vitro: Interactions with dipalmitoyl phosphatidylcholine (DPPC). ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2017; 56:233-240. [PMID: 29028602 DOI: 10.1016/j.etap.2017.10.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 09/03/2017] [Accepted: 10/06/2017] [Indexed: 05/27/2023]
Abstract
Once inhaled, nanoparticles (NPs) will first interact with lung surfactant system, which may influence the colloidal aspects of NPs and consequently the toxic potential of NPs to pulmonary cells. In this study, we investigated the effects of dipalmitoyl phosphatidylcholine (DPPC), the major component in lung surfactant, on stability and toxicity of ZnO NPs. The presence of DPPC increased the UV-vis spectra, hydrodynamic size, Zeta potential and dissolution rate of ZnO NPs, which indicates that DPPC might interact with NPs and affect the colloidal stability of NPs. Exposure to ZnO NPs induced cytotoxicity associated with increased intracellular Zn ions but not superoxide in A549 cells. In A549 epithelium model, exposure to ZnO NPs induced cytotoxicity and decreased the release of interleukin 6 (IL-6) without a significant effect on epithelial permeability rate. Co-exposure of A549 cells or A549 epithelium model to DPPC and ZnO NPs induced a higher release of lactate dehydrogenase (LDH) and interleukin-6 (IL-6) compared with the exposure of ZnO NPs alone. We concluded that the presence of DPPC could influence the colloidal stability of ZnO NPs and increase the damage of NPs to membrane probably due to the increased positive surface charge.
Collapse
Affiliation(s)
- Tong He
- Key Laboratory of Environment-Friendly Chemistry and Application of Ministry of Education, Lab of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan 411105, PR China
| | - Jimin Long
- Key Laboratory of Environment-Friendly Chemistry and Application of Ministry of Education, Lab of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan 411105, PR China
| | - Juan Li
- Key Laboratory of Environment-Friendly Chemistry and Application of Ministry of Education, Lab of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan 411105, PR China
| | - Liangliang Liu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, PR China.
| | - Yi Cao
- Key Laboratory of Environment-Friendly Chemistry and Application of Ministry of Education, Lab of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan 411105, PR China; Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, PR China.
| |
Collapse
|