1
|
Ogata K, Suto H, Sato A, Maeda K, Minami K, Tomiyama N, Kosaka T, Hojo H, Takahashi N, Aoyama H, Yamada T. Optimal testing time for cerebral heterotopia formation in the rat comparative thyroid assay, a downstream indicator for perinatal thyroid hormone insufficiency. J Toxicol Pathol 2024; 37:173-187. [PMID: 39359896 PMCID: PMC11442261 DOI: 10.1293/tox.2024-0004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 06/25/2024] [Indexed: 10/04/2024] Open
Abstract
In a past study, we proposed a modified Comparative Thyroid Assay (CTA) with additional examinations of brain thyroid hormone (TH) concentrations and brain histopathology but with smaller group sizes. The results showed that the modified CTA in Sprague Dawley rats detected 10 ppm 6-propylthiouracil (6-PTU)-induced significant suppressions of serum/brain TH concentrations in offspring. To confirm the reliability of qualitative brain histopathology and identify the optimal testing time for heterotopia (a cluster of ectopic neurons) in the modified CTA, brain histopathology together with serum/brain TH concentrations were assessed in GD20 fetuses and PND2, 4, 21, and 28 pups using a similar study protocol but with a smaller number of animals (N=3-6/group/time). Significant hypothyroidism was observed and brain histopathology revealed cerebral heterotopia formation in PND21 and PND28 pups, with likely precursor findings in PND2 and PND4 pups but not in GD20 fetuses. This study confirmed that the optimal testing time for cerebral heterotopia in rat CTA was PND21 and thereafter. These findings suggest that cerebral heterotopia assessment at appropriate times may be a useful alternative to the original CTA design.
Collapse
Affiliation(s)
- Keiko Ogata
- Environmental Health Science Laboratory, Sumitomo Chemical
Company, Ltd., 3-1-98 Kasugade-naka 3-chome, Konohana-ku, Osaka 554-8558, Japan
| | - Hidenori Suto
- Environmental Health Science Laboratory, Sumitomo Chemical
Company, Ltd., 3-1-98 Kasugade-naka 3-chome, Konohana-ku, Osaka 554-8558, Japan
- Current address: Registration & Regulatory Affairs
Department, AgroSolutions Division-International, Sumitomo Chemical Company, Ltd., Tokyo
Nihombashi Tower, 2-7-1 Nihonbashi, Chuo-ku, Tokyo 103-6020, Japan
| | - Akira Sato
- Institute of Environmental Toxicology, 4321
Uchimoriya-machi, Joso-shi, Ibaraki 303-0043, Japan
| | - Keiko Maeda
- Environmental Health Science Laboratory, Sumitomo Chemical
Company, Ltd., 3-1-98 Kasugade-naka 3-chome, Konohana-ku, Osaka 554-8558, Japan
| | - Kenta Minami
- Environmental Health Science Laboratory, Sumitomo Chemical
Company, Ltd., 3-1-98 Kasugade-naka 3-chome, Konohana-ku, Osaka 554-8558, Japan
| | - Naruto Tomiyama
- Institute of Environmental Toxicology, 4321
Uchimoriya-machi, Joso-shi, Ibaraki 303-0043, Japan
| | - Tadashi Kosaka
- Institute of Environmental Toxicology, 4321
Uchimoriya-machi, Joso-shi, Ibaraki 303-0043, Japan
| | - Hitoshi Hojo
- Institute of Environmental Toxicology, 4321
Uchimoriya-machi, Joso-shi, Ibaraki 303-0043, Japan
| | - Naofumi Takahashi
- Institute of Environmental Toxicology, 4321
Uchimoriya-machi, Joso-shi, Ibaraki 303-0043, Japan
| | - Hiroaki Aoyama
- Institute of Environmental Toxicology, 4321
Uchimoriya-machi, Joso-shi, Ibaraki 303-0043, Japan
| | - Tomoya Yamada
- Environmental Health Science Laboratory, Sumitomo Chemical
Company, Ltd., 3-1-98 Kasugade-naka 3-chome, Konohana-ku, Osaka 554-8558, Japan
| |
Collapse
|
2
|
Sakamaki Y, Shobudani M, Ojiro R, Ozawa S, Tang Q, Zou X, Ebizuka Y, Karasawa A, Woo GH, Yoshida T, Shibutani M. Suppression of Hippocampal Neurogenesis and Oligodendrocyte Maturation Similar to Developmental Hypothyroidism by Maternal Exposure of Rats to Ammonium Perchlorate, a Gunpowder Raw Material and Known Environmental Contaminant. ENVIRONMENTAL TOXICOLOGY 2024. [PMID: 39248596 DOI: 10.1002/tox.24413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 07/18/2024] [Accepted: 08/17/2024] [Indexed: 09/10/2024]
Abstract
The environmental contaminant perchlorate raises concern for hypothyroidism-related brain disorders in children. This study investigated the effects of developmental perchlorate exposure on hippocampal neurogenesis and oligodendrocyte (OL) development. Pregnant Sprague-Dawley rats were administered with ammonium perchlorate (AP) in drinking water at concentrations of 0 (control), 300, and 1000 ppm from gestation day 6 until weaning [postnatal day (PND) 21]. On PND 21, offspring displayed decreased serum triiodothyronine and thyroxine concentrations at 1000 ppm and thyroid follicular epithelial cell hyperplasia at ≥300 ppm (accompanying increased proliferation activity at 1000 ppm). Hippocampal neurogenesis indicated suppressed proliferation of neurogenic cells at ≥300 ppm, causing decreases in type-1 neural stem cells (NSCs) and type-2a neural progenitor cells. In addition, an increase of SST+ GABAergic interneurons and decreasing trend for ARC+ granule cells were observed at 1000 ppm. CNPase+ mature OLs were decreased in number in the dentate gyrus hilus at ≥300 ppm. At PND 77, thyroid changes had disappeared; however, the decrease of type-1 NSCs and increase of SST+ interneurons persisted, CCK+ interneurons were increased, and white matter tissue area was decreased at 1000 ppm. Obtained results suggest an induction of hypothyroidism causing suppressed hippocampal neurogenesis (targeting early neurogenic processes and decreased synaptic plasticity of granule cells involving ameliorative interneuron responses) and suppressed OL maturation during the weaning period. In adulthood, suppression of neurogenesis continued, and white matter hypoplasia was evident. Observed brain changes were similar to those caused by developmental hypothyroidism, suggesting that AP-induced developmental neurotoxicity was due to hypothyroidism.
Collapse
Affiliation(s)
- Yuri Sakamaki
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Momoka Shobudani
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Ryota Ojiro
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
- Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Shunsuke Ozawa
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
- Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Qian Tang
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
- Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Xinyu Zou
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
- Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Yuri Ebizuka
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Ayumi Karasawa
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Gye-Hyeong Woo
- Laboratory of Histopathology, Department of Clinical Laboratory Science, Semyung University, Jecheon, Chungbuk, Republic of Korea
| | - Toshinori Yoshida
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
- Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Makoto Shibutani
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
- Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| |
Collapse
|
3
|
Shi Q, Penman MG, Carrillo JC, Van Rompay AR, Kamelia L, Rooseboom M, Shen H, Jia S, Tian Y, Dunn J, Hubert F, Boogaard PJ. The subchronic toxicity of higher olefins in Han Wistar rats. BMC Pharmacol Toxicol 2024; 25:62. [PMID: 39243062 PMCID: PMC11380337 DOI: 10.1186/s40360-024-00786-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 08/28/2024] [Indexed: 09/09/2024] Open
Abstract
Higher olefins (HO) are a category of unsaturated hydrocarbons widely used in industry applications to make products essential for daily human life. Establishing safe exposure limits requires a solid data matrix that facilitates understanding of their toxicological profile. This in turn allows for data to be read across to other members of the category, which are structurally similar and have predictable physico-chemical properties. Five independent subchronic oral toxicity studies were conducted in Wistar rats with Oct-1-ene, Nonene, branched, Octadec-1-ene, Octadecene and hydrocarbon C12-30, olefin-rich, ethylene polymn. by product, at doses ranging from 20 to 1000 mg/kg bw. These HO were selected considering gut absorption, carbon chain length, double-bond position and carbon backbone structural variations. Generally, limited and non-adverse toxicity effects were observed at the end of the treatment for short carbon chain HO. For instance, alpha 2u-globulin nephropathy in the male rats and liver hypertrophy. No clear trend in systemic toxicity was linked to the double-bond position. Key factors for hazard assessment include absorption, carbon chain length, and branching, with Nonene, branched, identified as the worst-case substance. Taken together, the no observed adverse effect level (NOAEL) of each HO in these subchronic studies was set at the highest dose tested.
Collapse
Affiliation(s)
- Quan Shi
- Shell Product Stewardship, Shell Global Solutions International B.V., Carel van Bylandtlaan 16, The Hague, 2596 HR, The Netherlands.
| | - Michael G Penman
- Higher Olefins and Polyalpha Olefins vzw c/o Penman Consulting BV., Avenue des Arts 10, Brussels, 1210, Belgium
| | - Juan-Carlos Carrillo
- Shell Product Stewardship, Shell Global Solutions International B.V., Carel van Bylandtlaan 16, The Hague, 2596 HR, The Netherlands
| | - An R Van Rompay
- Higher Olefins and Polyalpha Olefins vzw c/o Penman Consulting BV., Avenue des Arts 10, Brussels, 1210, Belgium
| | - Lenny Kamelia
- Shell Product Stewardship, Shell Global Solutions International B.V., Carel van Bylandtlaan 16, The Hague, 2596 HR, The Netherlands
| | - Martijn Rooseboom
- Shell Product Stewardship, Shell Global Solutions International B.V., Carel van Bylandtlaan 16, The Hague, 2596 HR, The Netherlands
| | - Hua Shen
- Shell Oil Company, 150 N. Dairy Ashford Rd., Houston, TX, 77079, USA
| | - Sophie Jia
- Chevron Phillips Chemical Company, 10001 Six Pines Dr., The Woodlands, TX, 77381, USA
| | - Yuan Tian
- Institute of Ophthalmology, University College London, 11-43 Bath St, London, EC1V 9EL, UK
| | - Jamie Dunn
- Higher Olefins and Polyalpha Olefins vzw c/o Penman Consulting BV., Avenue des Arts 10, Brussels, 1210, Belgium
| | - Fabienne Hubert
- INEOS Oligomers, Hawkslease, Chapel Lane, Lyndhurst, SO43 7FG, UK
| | - Peter J Boogaard
- Division of Toxicology, Wageningen University and Research, Stippeneng 4, Wageningen, 6708 WE, The Netherlands
| |
Collapse
|
4
|
Lagadic L, Coady KK, Körner O, Miller TJ, Mingo V, Salinas ER, Sauer UG, Schopfer CR, Weltje L, Wheeler JR. Endocrine disruption assessment in aquatic vertebrates - Identification of substance-induced thyroid-mediated effect patterns. ENVIRONMENT INTERNATIONAL 2024; 191:108918. [PMID: 39270431 DOI: 10.1016/j.envint.2024.108918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/12/2024] [Accepted: 07/26/2024] [Indexed: 09/15/2024]
Abstract
According to the World Health Organisation and European Commission definitions, substances shall be considered as having endocrine disrupting properties if they show adverse effects, have endocrine activity and the adverse effects are a consequence of the endocrine activity (using a weight-of-evidence approach based on biological plausibility), unless the adverse effects are not relevant to humans or non-target organisms at the (sub)population level. To date, there is no decision logic on how to establish endocrine disruption via the thyroid modality in non-mammalian vertebrates. This paper describes an evidence-based decision logic compliant with the integrated approach to testing and assessment (IATA) concept, to identify thyroid-mediated effect patterns in aquatic vertebrates using amphibians as relevant models for thyroid disruption assessment. The decision logic includes existing test guidelines and methods and proposes detailed considerations on how to select relevant assays and interpret the findings. If the mammalian dataset used as the starting point indicates no thyroid concern, the Xenopus Eleutheroembryonic Thyroid Assay allows checking out thyroid-mediated activity in non-mammalian vertebrates, whereas the Amphibian Metamorphosis Assay or its extended, fixed termination stage variant inform on both thyroid-mediated activity and potentially population-relevant adversity. In evaluating findings, the response patterns of all assay endpoints are considered, including the direction of changes. Thyroid-mediated effect patterns identified at the individual level in the amphibian tests are followed by mode-of-action and population relevance assessments. Finally, all data are considered in an overarching weight-of-evidence evaluation. The logic has been designed generically and can be adapted, e.g. to accommodate fish tests once available for thyroid disruption assessments. It also ensures that all scientifically relevant information is considered, and that animal testing is minimised. The proposed decision logic can be included in regulatory assessments to facilitate the conclusion on whether substances meet the endocrine disruptor definition for the thyroid modality in non-mammalian vertebrates.
Collapse
Affiliation(s)
- Laurent Lagadic
- Bayer AG - R&D, Crop Science Division, Environmental Safety, Monheim, Germany.
| | | | - Oliver Körner
- ADAMA Deutschland GmbH, Environmental Safety, Köln, Germany
| | - Tara J Miller
- Syngenta, Jealott's Hill International Research Centre, Jealott's Hill, United Kingdom
| | | | - Edward R Salinas
- Bayer AG - R&D, Crop Science Division, Environmental Safety, Monheim, Germany
| | - Ursula G Sauer
- Scientific Consultancy - Animal Welfare, Neubiberg, Germany
| | | | - Lennart Weltje
- BASF SE, Agricultural Solutions - Ecotoxicology, Limburgerhof, Germany; Georg-August-University Göttingen, Division of Plant Pathology and Plant Protection, Göttingen, Germany
| | | |
Collapse
|
5
|
Akane H, Toyoda T, Matsushita K, Morikawa T, Kosaka T, Tajima H, Aoyama H, Ogawa K. Comparison of the sensitivity of histopathological and immunohistochemical analyses and blood hormone levels for early detection of antithyroid effects in rats treated with thyroid peroxidase inhibitors. J Appl Toxicol 2024; 44:1084-1103. [PMID: 38563354 DOI: 10.1002/jat.4604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/26/2024] [Accepted: 03/10/2024] [Indexed: 04/04/2024]
Abstract
Although measurements of blood triiodothyronine (T3), thyroxine (T4), and thyroid-stimulating hormone (TSH) levels in rodent toxicity studies are useful for detection of antithyroid substances, assays for these measurements are expensive and can show high variability depending on blood sampling conditions. To develop more efficient methods for detecting thyroid disruptors, we compared histopathological and immunohistochemical findings in the thyroid and pituitary glands with blood hormone levels. Six-week-old male and female Sprague-Dawley rats (five rats per group) were treated with multiple doses of the thyroid peroxidase inhibitors propylthiouracil (PTU) and methimazole by gavage for 28 days. Significant decreases in serum T3 and T4 and increases in TSH were observed in the ≥1 mg/kg PTU and ≥3 mg/kg methimazole groups. An increase in TSH was also detected in male rats in the 0.3 mg/kg PTU group. Histopathological and immunohistochemical analyses revealed that follicular cell hypertrophy and decreased T4 and T3 expressions in the thyroid gland were induced at doses lower than doses at which significant changes in serum hormone levels were observed, suggesting that these findings may be more sensitive than blood hormone levels. Significant increases in thyroid weights, Ki67-positive thyroid follicular cell counts, and TSH-positive areas in the pituitary gland were detected at doses comparable with those at which changes in serum T4 and TSH levels were observed, indicating that these parameters may also be useful for evaluation of antithyroid effects. Combining these parameters may be effective for detecting antithyroid substances without relying on hormone measurements.
Collapse
Affiliation(s)
- Hirotoshi Akane
- Division of Pathology, National Institute of Health Sciences, Kawasaki, Japan
| | - Takeshi Toyoda
- Division of Pathology, National Institute of Health Sciences, Kawasaki, Japan
| | - Kohei Matsushita
- Division of Pathology, National Institute of Health Sciences, Kawasaki, Japan
| | - Tomomi Morikawa
- Division of Pathology, National Institute of Health Sciences, Kawasaki, Japan
| | - Tadashi Kosaka
- Toxicology Division, Institute of Environmental Toxicology, Ibaraki, Japan
| | - Hitoshi Tajima
- Toxicology Division, Institute of Environmental Toxicology, Ibaraki, Japan
| | - Hiroaki Aoyama
- Toxicology Division, Institute of Environmental Toxicology, Ibaraki, Japan
| | - Kumiko Ogawa
- Division of Pathology, National Institute of Health Sciences, Kawasaki, Japan
| |
Collapse
|
6
|
Minami K, Sato A, Tomiyama N, Ogata K, Kosaka T, Hojo H, Takahashi N, Suto H, Aoyama H, Yamada T. Prenatal test cohort of a modified rat comparative thyroid assay adding brain thyroid hormone measurements and histology but lowering group size appears able to detect disruption by sodium phenobarbital. Curr Res Toxicol 2024; 6:100168. [PMID: 38693933 PMCID: PMC11061706 DOI: 10.1016/j.crtox.2024.100168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/04/2024] [Accepted: 04/16/2024] [Indexed: 05/03/2024] Open
Abstract
The Comparative Thyroid Assay (CTA, USEPA) is a screening test for thyroid hormone (TH) disruption in peripheral blood of dams and offspring. Recently, we began investigating feasible improvements to the CTA by adding examination of offspring brain TH concentrations and brain histopathology. In addition, we hypothesize that the number of animals required could be reduced by 50 % while still maintaining sensitivity to characterize treatment related changes in THs. Previously, we showed that the prenatal test cohort of the modified CTA could detect 1000 ppm sodium phenobarbital (NaPB)-induced suppression of brain T3 (by 9 %) and T4 (by 33 %) with no significant changes in serum T3 and T4 (less than 8 %). In the current study we expanded the dose response in a prenatal test cohort. Pregnant SD rats (N = 10/group) were exposed to 0, 1000 or 1500 ppm NaPB in the diet from gestational days (GD) 6 to GD20. Serum THs concentrations in GD20 dams together with serum/brain THs concentrations and brain histopathology in the GD20 fetuses were examined. NaPB dose-dependently suppressed serum T3 (up to -26 %) and T4 (up to -44 %) in dams, with suppression of T3 in serum (up to -26 %) and brain (up to -18 %) and T4 in serum (up to -26 %) and brain (up to -29 %) of fetuses but without clear dose dependency. There were no remarkable findings that deviated significantly from controls in GD20 fetal brain by qualitative histopathology. Overall, the present study suggests that the prenatal test cohort of this modified CTA is able to detect the expected fetal TH disruptions by prenatal exposure to NaPB, while also reducing the number of animals used by 50 %, consistent with the results of our previous study. These findings add to the suggestion that lowering group sizes and adding endpoints may be a useful alternative to the original CTA design.
Collapse
Affiliation(s)
- Kenta Minami
- Environmental Health Science Laboratory, Sumitomo Chemical Company, Ltd., 3-1-98, Kasugade-naka 3-chome, Konohana-ku, Osaka 554-8558, Japan
| | - Akira Sato
- The Institute of Environmental Toxicology, 4321, Uchimoriya-machi, Joso-shi, Ibaraki 303-0043, Japan
| | - Naruto Tomiyama
- The Institute of Environmental Toxicology, 4321, Uchimoriya-machi, Joso-shi, Ibaraki 303-0043, Japan
| | - Keiko Ogata
- Environmental Health Science Laboratory, Sumitomo Chemical Company, Ltd., 3-1-98, Kasugade-naka 3-chome, Konohana-ku, Osaka 554-8558, Japan
| | - Tadashi Kosaka
- The Institute of Environmental Toxicology, 4321, Uchimoriya-machi, Joso-shi, Ibaraki 303-0043, Japan
| | - Hitoshi Hojo
- The Institute of Environmental Toxicology, 4321, Uchimoriya-machi, Joso-shi, Ibaraki 303-0043, Japan
| | - Naofumi Takahashi
- The Institute of Environmental Toxicology, 4321, Uchimoriya-machi, Joso-shi, Ibaraki 303-0043, Japan
| | - Hidenori Suto
- Environmental Health Science Laboratory, Sumitomo Chemical Company, Ltd., 3-1-98, Kasugade-naka 3-chome, Konohana-ku, Osaka 554-8558, Japan
| | - Hiroaki Aoyama
- The Institute of Environmental Toxicology, 4321, Uchimoriya-machi, Joso-shi, Ibaraki 303-0043, Japan
| | - Tomoya Yamada
- Environmental Health Science Laboratory, Sumitomo Chemical Company, Ltd., 3-1-98, Kasugade-naka 3-chome, Konohana-ku, Osaka 554-8558, Japan
| |
Collapse
|
7
|
O'Shaughnessy KL, Sasser AL, Bell KS, Riutta C, Ford JL, Grindstaff RD, Gilbert ME. Bypassing the brain barriers: upregulation of serum miR-495 and miR-543-3p reflects thyroid-mediated developmental neurotoxicity in the rat. Toxicol Sci 2024; 198:128-140. [PMID: 38070162 DOI: 10.1093/toxsci/kfad125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024] Open
Abstract
Evaluating the neurodevelopmental effects of thyroid-disrupting chemicals is challenging. Although some standardized developmental and reproductive toxicity studies recommend serum thyroxine (T4) measures in developing rats, extrapolating between a serum T4 reduction and neurodevelopmental outcomes is not straightforward. Previously, we showed that the blood-brain and blood-cerebrospinal fluid barriers may be affected by developmental hypothyroidism in newborn rats. Here, we hypothesized that if the brain barriers were functionally disturbed by abnormal thyroid action, then small molecules may escape from the brain tissue and into general circulation. These small molecules could then be identified in blood samples, serving as a direct readout of thyroid-mediated developmental neurotoxicity. To address these hypotheses, pregnant rats were exposed to propylthiouracil (PTU, 0 or 3 ppm) to induce thyroid hormone insufficiency, and dams were permitted to give birth. PTU significantly reduced serum T4 in postnatal offspring. Consistent with our hypothesis, we show that tight junctions of the brain barriers were abnormal in PTU-exposed pups, and the blood-brain barrier exhibited increased permeability. Next, we performed serum microRNA Sequencing (miRNA-Seq) to identify noncoding RNAs that may reflect these neurodevelopmental disturbances. Of the differentially expressed miRNAs identified, 7 were upregulated in PTU-exposed pups. Validation by qRT-PCR shows that miR-495 and miR-543-3p were similarly upregulated in males and females. Interestingly, these miRNAs have been linked to cell junction dysfunction in other models, paralleling the identified abnormalities in the rat brain. Taken together, these data show that miR-495 and miR-543-3p may be novel in vivo biomarkers of thyroid-mediated developmental neurotoxicity.
Collapse
Affiliation(s)
- Katherine L O'Shaughnessy
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, United States Environmental Protection Agency, Research Triangle Park, North Carolina 27709, USA
| | - Aubrey L Sasser
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, United States Environmental Protection Agency, Research Triangle Park, North Carolina 27709, USA
- Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee 37831, USA
| | - Kiersten S Bell
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, United States Environmental Protection Agency, Research Triangle Park, North Carolina 27709, USA
- Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee 37831, USA
| | - Cal Riutta
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, United States Environmental Protection Agency, Research Triangle Park, North Carolina 27709, USA
- Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee 37831, USA
| | - Jermaine L Ford
- Chemical Characterization and Exposure Division, Center for Computational Toxicology and Exposure, United States Environmental Protection Agency, Research Triangle Park, North Carolina 27709, USA
| | - Rachel D Grindstaff
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, United States Environmental Protection Agency, Research Triangle Park, North Carolina 27709, USA
| | - Mary E Gilbert
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, United States Environmental Protection Agency, Research Triangle Park, North Carolina 27709, USA
| |
Collapse
|
8
|
Suto H, Ogata K, Minami K, Sato A, Tomiyama N, Kosaka T, Hojo H, Takahashi N, Aoyama H, Yamada T. Perinatal maternal exposure to high-dose sodium phenobarbital in the modified Comparative Thyroid Assay: no significant reduction in thyroid hormones in pups despite notable effects in dams. J Toxicol Sci 2024; 49:509-529. [PMID: 39496387 DOI: 10.2131/jts.49.509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2024]
Abstract
We propose a modified Comparative Thyroid Assay (CTA, USEPA) utilizing a smaller number of Sprague-Dawley rats (N=10/group) that assesses brain thyroid hormone (TH) concentrations and periventricular heterotopia while maintaining assay sensitivity. Our recent findings demonstrated that a prenatal test cohort of the modified CTA detected a dose-dependent decrease in maternal serum T3 (up to -26%) and T4 (up to -44%) with sodium phenobarbital (NaPB) exposure at 1000 ppm and 1500 ppm, equivalent to intakes of 60 and 84 mg/kg/day, respectively. On gestation day (GD) 20, fetuses exhibited reduced serum (-26%) and brain (-29%) TH concentrations, although these reductions were not dose dependent. The present study expanded the treatment in a postnatal test cohort, with maternal exposure to NaPB (81-93 mg/kg/day) from GD6 to lactation day (LD) 21. We assessed serum and brain TH concentrations, and periventricular heterotopia in pups on postnatal days (PND) 4, 21, and 28. While LD21 dams showed significant reductions in serum T3 (up to -34%) and T4 (up to -54%), the pups did not exhibit significant TH suppression or periventricular heterotopia at any test point. Instead, a compensatory increase in T4 was observed in serum and brain of PND21 pups. The present study confirmed that perinatal maternal exposure to high doses of NaPB leads to a moderate decrease in maternal TH concentrations; however, the exposure of maternal rats to a similar dose of NaPB did not significantly reduce serum or brain TH concentrations in their postnatal offspring.
Collapse
Affiliation(s)
- Hidenori Suto
- Environmental Health Science Laboratory, Sumitomo Chemical Company, Ltd
- Current address: Registration & Regulatory Affairs Dept. AgroSolutions Division - International, Sumitomo Chemical Company, Ltd
| | - Keiko Ogata
- Environmental Health Science Laboratory, Sumitomo Chemical Company, Ltd
| | - Kenta Minami
- Environmental Health Science Laboratory, Sumitomo Chemical Company, Ltd
| | - Akira Sato
- The Institute of Environmental Toxicology
| | | | | | | | | | | | - Tomoya Yamada
- Environmental Health Science Laboratory, Sumitomo Chemical Company, Ltd
| |
Collapse
|
9
|
Wu L, Gu J, Duan X, Ge F, Ye H, Kong L, Liu W, Gao R, Jiao J, Chen H, Ji G. Insight into the mechanisms of neuroendocrine toxicity induced by 6:2FTCA via thyroid hormone disruption. CHEMOSPHERE 2023; 341:140031. [PMID: 37660785 DOI: 10.1016/j.chemosphere.2023.140031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/05/2023]
Abstract
6:2 fluorotonic carboxylic acid (6:2 FTCA), a novel substitute for perfluorooctanoic acid (PFOA), is being used gradually in industrial production such as coatings or processing aids, and its detection rate in the aqueous environment is increasing year by year, posing a potential safety risk to aquatic systems and public health. However, limited information is available on the effects and mechanism of 6:2 FTCA. Therefore, this study was conducted to understand better the neuroendocrine effects of early exposure to 6:2 FTCA and the underlying mechanisms on zebrafish. In this study, zebrafish embryos were treated to varied doses of 6:2 FTCA (0, 0.08 μg/mL, 0.8 μg/mL and 8 μg/mL) at 4 h post-fertilization (hpf) for a duration of six days, which exhibited a pronounced inhibition of early growth and induced a disorganized swim pattern characterized by reduced total swim distance and average swim speed. Simultaneously, the thyroid development of zebrafish larvae was partially hindered, accompanied by decreased T3 levels, altered genes associated with the expression of thyroid hormone synthesis, transformation and transportation and neurotransmitters associated with tryptophan and tyrosine metabolic pathways. Molecular docking results showed that 6:2 FTCA has a robust binding energy with the thyroid hormone receptor (TRβ). Moreover, exogenous T3 supplementation can partially restore the adverse outcomes. Our findings indicated that 6:2 FTCA acts as a thyroid endocrine disruptor and can induce neuroendocrine toxic effects. Furthermore, our results show that targeting TRβ may be a potentially therapeutic strategy for 6:2 FTCA-induced neuroendocrine disrupting effects.
Collapse
Affiliation(s)
- Linlin Wu
- The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi Center for Disease Control and Prevention, Wuxi, 214023, China; School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Jie Gu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Jiangwangmiao Street 8, Nanjing, 210042, China; Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Ministry of Ecology and Environment of the People's Republic of China, Nanjing 210042, China
| | - Xinjie Duan
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Feng Ge
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Jiangwangmiao Street 8, Nanjing, 210042, China; Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Ministry of Ecology and Environment of the People's Republic of China, Nanjing 210042, China
| | - Heyong Ye
- The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi Center for Disease Control and Prevention, Wuxi, 214023, China; School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Lingcan Kong
- The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi Center for Disease Control and Prevention, Wuxi, 214023, China; School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Wenwei Liu
- The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi Center for Disease Control and Prevention, Wuxi, 214023, China; School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Rong Gao
- School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Jiandong Jiao
- The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi Center for Disease Control and Prevention, Wuxi, 214023, China; School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, 210029, China.
| | - Huanhuan Chen
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| | - Guixiang Ji
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Jiangwangmiao Street 8, Nanjing, 210042, China; Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Ministry of Ecology and Environment of the People's Republic of China, Nanjing 210042, China.
| |
Collapse
|
10
|
Melching-Kollmuss S, Bothe K, Charlton A, Gangadharan B, Ghaffari R, Jacobi S, Marty S, Marxfeld HA, McInnes EF, Sauer UG, Sheets LP, Strupp C, Tinwell H, Wiemann C, Botham PA, van Ravenzwaay B. Towards a science-based testing strategy to identify maternal thyroid hormone imbalance and neurodevelopmental effects in the progeny - Part IV: the ECETOC and CLE Proposal for a Thyroid Function-Related Neurodevelopmental Toxicity Testing and Assessment Scheme (Thyroid-NDT-TAS). Crit Rev Toxicol 2023; 53:339-371. [PMID: 37554099 DOI: 10.1080/10408444.2023.2231033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 06/22/2023] [Accepted: 06/22/2023] [Indexed: 08/10/2023]
Abstract
Following the European Commission Endocrine Disruptor Criteria, substances shall be considered as having endocrine disrupting properties if they (a) elicit adverse effects, (b) have endocrine activity, and (c) the two are linked by an endocrine mode-of-action (MoA) unless the MoA is not relevant for humans. A comprehensive, structured approach to assess whether substances meet the Endocrine Disruptor Criteria for the thyroid modality (EDC-T) is currently unavailable. Here, the European Centre for Ecotoxicology and Toxicology of Chemicals Thyroxine Task Force and CropLife Europe propose a Thyroid Function-Related Neurodevelopmental Toxicity Testing and Assessment Scheme (Thyroid-NDT-TAS). In Tier 0, before entering the Thyroid-NDT-TAS, all available in vivo, in vitro and in silico data are submitted to weight-of-evidence (WoE) evaluations to determine whether the substance of interest poses a concern for thyroid disruption. If so, Tier 1 of the Thyroid-NDT-TAS includes an initial MoA and human relevance assessment (structured by the key events of possibly relevant adverse outcome pathways) and the generation of supportive in vitro/in silico data, if relevant. Only if Tier 1 is inconclusive, Tier 2 involves higher-tier testing to generate further thyroid- and/or neurodevelopment-related data. Tier 3 includes the final MoA and human relevance assessment and an overarching WoE evaluation to draw a conclusion on whether, or not, the substance meets the EDC-T. The Thyroid-NDT-TAS is based on the state-of-the-science, and it has been developed to minimise animal testing. To make human safety assessments more accurate, it is recommended to apply the Thyroid-NDT-TAS during future regulatory assessments.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Ursula G Sauer
- Scientific Consultancy - Animal Welfare, Neubiberg, Germany
| | | | | | | | | | | | | |
Collapse
|
11
|
Ramhøj L, Axelstad M, Baert Y, Cañas-Portilla AI, Chalmel F, Dahmen L, De La Vieja A, Evrard B, Haigis AC, Hamers T, Heikamp K, Holbech H, Iglesias-Hernandez P, Knapen D, Marchandise L, Morthorst JE, Nikolov NG, Nissen ACVE, Oelgeschlaeger M, Renko K, Rogiers V, Schüürmann G, Stinckens E, Stub MH, Torres-Ruiz M, Van Duursen M, Vanhaecke T, Vergauwen L, Wedebye EB, Svingen T. New approach methods to improve human health risk assessment of thyroid hormone system disruption-a PARC project. FRONTIERS IN TOXICOLOGY 2023; 5:1189303. [PMID: 37265663 PMCID: PMC10229837 DOI: 10.3389/ftox.2023.1189303] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 05/05/2023] [Indexed: 06/03/2023] Open
Abstract
Current test strategies to identify thyroid hormone (TH) system disruptors are inadequate for conducting robust chemical risk assessment required for regulation. The tests rely heavily on histopathological changes in rodent thyroid glands or measuring changes in systemic TH levels, but they lack specific new approach methodologies (NAMs) that can adequately detect TH-mediated effects. Such alternative test methods are needed to infer a causal relationship between molecular initiating events and adverse outcomes such as perturbed brain development. Although some NAMs that are relevant for TH system disruption are available-and are currently in the process of regulatory validation-there is still a need to develop more extensive alternative test batteries to cover the range of potential key events along the causal pathway between initial chemical disruption and adverse outcomes in humans. This project, funded under the Partnership for the Assessment of Risk from Chemicals (PARC) initiative, aims to facilitate the development of NAMs that are specific for TH system disruption by characterizing in vivo mechanisms of action that can be targeted by in embryo/in vitro/in silico/in chemico testing strategies. We will develop and improve human-relevant in vitro test systems to capture effects on important areas of the TH system. Furthermore, we will elaborate on important species differences in TH system disruption by incorporating non-mammalian vertebrate test species alongside classical laboratory rat species and human-derived in vitro assays.
Collapse
Affiliation(s)
- Louise Ramhøj
- Research Group for Molecular and Reproductive Toxicology, National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Marta Axelstad
- Research Group for Molecular and Reproductive Toxicology, National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Yoni Baert
- Department In Vitro Toxicology and Dermato-cosmetology (IVTD), Vrije Universiteit Brussel, Jette, Belgium
| | - Ana I. Cañas-Portilla
- Environmental Toxicology Unit from National Center for Environmental Health (CNSA), Endocrine Tumor Unit from UFIEC, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Frédéric Chalmel
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), Rennes, France
| | - Lars Dahmen
- Department Experimental Toxicology and ZEBET, German Centre for the Protection of Laboratory Animals (Bf3R), German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Antonio De La Vieja
- Environmental Toxicology Unit from National Center for Environmental Health (CNSA), Endocrine Tumor Unit from UFIEC, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Bertrand Evrard
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), Rennes, France
| | - Ann-Cathrin Haigis
- Zebrafishlab, Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - Timo Hamers
- Amsterdam Institute for Life and Environment (A-LIFE), Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Kim Heikamp
- Amsterdam Institute for Life and Environment (A-LIFE), Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Centre for Health Protection (GZB), National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Henrik Holbech
- Department of Biology, University of Southern Denmark, Odense, Denmark
| | - Patricia Iglesias-Hernandez
- Environmental Toxicology Unit from National Center for Environmental Health (CNSA), Endocrine Tumor Unit from UFIEC, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Dries Knapen
- Zebrafishlab, Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - Lorna Marchandise
- Department In Vitro Toxicology and Dermato-cosmetology (IVTD), Vrije Universiteit Brussel, Jette, Belgium
| | - Jane E. Morthorst
- Department of Biology, University of Southern Denmark, Odense, Denmark
| | - Nikolai Georgiev Nikolov
- Group for Chemical Risk Assessment and GMO, National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Ana C. V. E. Nissen
- Group for Chemical Risk Assessment and GMO, National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Michael Oelgeschlaeger
- Department Experimental Toxicology and ZEBET, German Centre for the Protection of Laboratory Animals (Bf3R), German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Kostja Renko
- Department Experimental Toxicology and ZEBET, German Centre for the Protection of Laboratory Animals (Bf3R), German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Vera Rogiers
- Department In Vitro Toxicology and Dermato-cosmetology (IVTD), Vrije Universiteit Brussel, Jette, Belgium
| | - Gerrit Schüürmann
- UFZ Department of Ecological Chemistry, Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Evelyn Stinckens
- Zebrafishlab, Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - Mette H. Stub
- Research Group for Molecular and Reproductive Toxicology, National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Monica Torres-Ruiz
- Environmental Toxicology Unit from National Center for Environmental Health (CNSA), Endocrine Tumor Unit from UFIEC, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Majorie Van Duursen
- Amsterdam Institute for Life and Environment (A-LIFE), Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Tamara Vanhaecke
- Department In Vitro Toxicology and Dermato-cosmetology (IVTD), Vrije Universiteit Brussel, Jette, Belgium
| | - Lucia Vergauwen
- Zebrafishlab, Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - Eva Bay Wedebye
- Group for Chemical Risk Assessment and GMO, National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Terje Svingen
- Research Group for Molecular and Reproductive Toxicology, National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| |
Collapse
|