1
|
Abouelela MB, Shawky EM, Elgendy O, Farag MA, Baky MH. Comparative volatiles profiling of two marjoram products via GC-MS analysis in relation to the antioxidant and antibacterial effects. Sci Rep 2024; 14:27804. [PMID: 39537771 DOI: 10.1038/s41598-024-78674-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
Marjoram (Origanum majorana L.), also known as "sweet marjoram" or "sweet oregano" is a Mediterranean herbaceous perennial herb cultivated in Egypt and widely consumed as an herbal supplement for treatment of several ailments. The main goal of this study was to assess volatiles' variation in marjoram samples collected from two different widely consumed commercial products using two different extraction techniques viz. head space solid phase microextraction (HS-SPME) and petroleum ether using gas chromatography mass spectrometry (GC-MS) analysis and multivariate data analysis. A total of 20 major aroma compounds were identified in samples extracted with HS-SPME found enriched in monoterpene hydrocarbons and oxygenated compounds. The major volatiles included β-phellandrene (20.1 and 14.2%), γ-terpinene (13.4 and 11.7%), 2-bornene (12.3 and 11.5%), p-cymene (9.8 and 4.6%) terpenen-4-ol (16.4 and 7.5%), sabinene hydrate (16.02 and 8.8%) and terpineol (4.2 and 3.2%) in MR and MI, respectively. Compared with HS-SPME, 51 aroma compounds were identified in marjoram samples extracted with petroleum ether, found more enriched in aliphatic hydrocarbons (42.8 and 73.8%) in MR and MI, respectively. While a higher identification score was observed in the case of solvent extraction, SPME appeared to be more selective in the recovery of oxygenated terpenes to account more for marjoram aroma. Multivariate data analysis using principal component analysis (PCA) revealed distinct discrimination between volatile composition of both marjoram samples. The total phenolic and flavonoid contents in marjoram samples were at (111.9, 109.1 µg GA/mg) and (18.3, 19.5 µg rutin eq/mg) in MR and MI, respectively. Stronger antioxidant effects were observed in MR and MI samples with IC50 at 45.5 and 56.8 µg/mL respectively compared to IC50 6.57 µg/mL for Trolox as assayed using DPPH assay. Moderate anti-bacterial effect was observed in MR and MI samples and expressed as a zone of inhibition mostly against Bacillus subtilis (16.03 and 15.9 mm), B. cereus (12.9 and 13.7 mm), Enterococcus faecalis (14.03 and 13.97 mm), and Enterobacter cloacae (11.6 and 11.6 mm) respectively.
Collapse
Affiliation(s)
- Mostafa B Abouelela
- Pharmacognosy Department, Faculty of Pharmacy, Egyptian Russian University, Badr, Cairo, 11829, Egypt.
| | - Enas M Shawky
- Pharmacognosy Department, Faculty of Pharmacy, Egyptian Russian University, Badr, Cairo, 11829, Egypt
| | - Omayma Elgendy
- Pharmacognosy Department, Faculty of Pharmacy, Egyptian Russian University, Badr, Cairo, 11829, Egypt
| | - Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Mostafa H Baky
- Pharmacognosy Department, Faculty of Pharmacy, Egyptian Russian University, Badr, Cairo, 11829, Egypt.
- Pharmacognosy Department, College of Pharmacy, Egyptian Russian University, Badr, Cairo, 11829, Egypt.
| |
Collapse
|
2
|
Vladić J, Duarte ARC, Radman S, Simić S, Jerković I. Enzymatic and Microwave Pretreatments and Supercritical CO 2 Extraction for Improving Extraction Efficiency and Quality of Origanum vulgare L. spp. hirtum Extracts. PLANTS (BASEL, SWITZERLAND) 2021; 11:54. [PMID: 35009059 PMCID: PMC8747452 DOI: 10.3390/plants11010054] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 12/15/2021] [Accepted: 12/22/2021] [Indexed: 06/14/2023]
Abstract
The goal of the study was to establish a procedure for improving the efficiency of supercritical carbon dioxide (scCO2) extraction of Origanum vulgare L. spp. hirtum (Greek oregano) and enhancing the quality of obtained extracts. Microwave and enzymatic pretreatments of the plant material were applied prior to the scCO2 extraction. It was determined that the microwave pretreatment with irradiation power 360 W during 2 min accelerated the extraction of lipophilic compounds and provided a twofold higher extraction yield compared to the control. Moreover, this pretreatment also led to an increase in oxygenated monoterpenes content and the most dominant component carvacrol, as well as the extracts' antioxidant activity. The enzymatic pretreatment caused a significant increase in the extraction yield and the attainment of the extract with the most potent antioxidant properties. Coupling the pretreatments with scCO2 extraction improves the process of obtaining high value lipophilic products of oregano in terms of utilization of the plant material, acceleration of the extraction with the possibility to adjust its selectivity and quality of extracts, and enhancement of biological activity.
Collapse
Affiliation(s)
- Jelena Vladić
- Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal;
- Faculty of Technology, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia;
| | - Ana Rita C. Duarte
- Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal;
| | - Sanja Radman
- Faculty of Chemistry and Technology, University of Split, Ruđera Boškovića 35, 21000 Split, Croatia; (S.R.); (I.J.)
| | - Siniša Simić
- Faculty of Technology, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia;
| | - Igor Jerković
- Faculty of Chemistry and Technology, University of Split, Ruđera Boškovića 35, 21000 Split, Croatia; (S.R.); (I.J.)
| |
Collapse
|
3
|
de Jesús Calva-Cruz O, Badillo-Larios NS, De León-Rodríguez A, Espitia-Rangel E, González-García R, Turrubiartes-Martinez EA, Castro-Gallardo A, Barba de la Rosa AP. Lippia graveolens HBK oleoresins, extracted by supercritical fluids, showed bactericidal activity against multidrug resistance Enterococcus faecalis and Staphylococcus aureus strains. Drug Dev Ind Pharm 2021; 47:1546-1555. [PMID: 34791982 DOI: 10.1080/03639045.2021.2008417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
OBJECTIVE The aim of this work was to characterize Lippia graveolens oleoresins, obtained by Supercritical Fluid Extraction (SFE), from crops collected at different locations in Mexico. The antimicrobial effect of oleoresins was tested in reference strains and clinical isolates of susceptible and multidrug resistant (MDR) strains of Enterococcus faecalis and Staphylococcus aureus. SIGNIFICANCE The increasing of MDR strains is becoming a global public health problem that has led to the search for new treatments, and essential oils have resurged as a source of compounds with bactericidal functions. Oregano essential oil has attracted attention recently, however, this oil is mainly obtained by hydro-distillation (uses large amounts of water) or solvents extraction (potential contaminant). SFE has gained popularity as it represents an environmentally friendly technology. METHODS L. graveolens oleoresins were obtained by SFE, total phenol contents were quantified by Folin-Ciocalteu method, the identification of compounds and thymol and carvacrol quantification was carried out by GC-MS. The antimicrobial activity was tested by minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC). RESULTS SFE showed higher yields compared with the hydro-distillation process. L. graveolens grown in different Mexican locations showed differences in oleoresin composition and a slightly different antimicrobial capacity against clinical isolates. CONCLUSIONS It was demonstrated that SFE is an efficient technology for extracting L. graveolens oleoresins. Additionally, the solvent-free extraction method and the observed antimicrobial effect, increases the applications of these oleoresins in fields such as cosmetics, food industry, medicine, amongst others.
Collapse
Affiliation(s)
- Oscar de Jesús Calva-Cruz
- IPICYT, Instituto Potosino de Investigación Científica y Tecnológica A. C., Camino a la Presa San José 2055, San Luis Potosí, S.L.P., C.P. 78216, México
| | - Nallely S Badillo-Larios
- CICSaB, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autonoma de San Luis Potosí, Av. Sierra Leona 550, San Luis Potosí, S.L.P., C.P. 78212, México
| | - Antonio De León-Rodríguez
- IPICYT, Instituto Potosino de Investigación Científica y Tecnológica A. C., Camino a la Presa San José 2055, San Luis Potosí, S.L.P., C.P. 78216, México
| | - Eduardo Espitia-Rangel
- INIFAP, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias. Campo Experimental Valle de México, km 13.5 Carr. Los Reyes-Texcoco, Coatlinchán, Texcoco Estado de México, C.P. 56250, México
| | - Raúl González-García
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, San Luis Potosí, S.L.P., C.P. 78210, México
| | - Edgar Alejandro Turrubiartes-Martinez
- CICSaB, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autonoma de San Luis Potosí, Av. Sierra Leona 550, San Luis Potosí, S.L.P., C.P. 78212, México.,Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, San Luis Potosí, S.L.P., C.P. 78210, México
| | - Arnulfo Castro-Gallardo
- Centro de Investigación para los Recursos Naturales, Antigua Normal Rural de Salaices, Municipio de López, Chihuahua, C.P. 33943, México
| | - Ana Paulina Barba de la Rosa
- IPICYT, Instituto Potosino de Investigación Científica y Tecnológica A. C., Camino a la Presa San José 2055, San Luis Potosí, S.L.P., C.P. 78216, México
| |
Collapse
|
4
|
The effect of plant essential oils on physicochemical properties of chicken nuggets. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-01204-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
5
|
Silva SG, de Oliveira MS, Cruz JN, da Costa WA, da Silva SHM, Barreto Maia AA, de Sousa RL, Carvalho Junior RN, de Aguiar Andrade EH. Supercritical CO2 extraction to obtain Lippia thymoides Mart. & Schauer (Verbenaceae) essential oil rich in thymol and evaluation of its antimicrobial activity. J Supercrit Fluids 2021. [DOI: 10.1016/j.supflu.2020.105064] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
6
|
Plant Extracts Obtained with Green Solvents as Natural Antioxidants in Fresh Meat Products. Antioxidants (Basel) 2021; 10:antiox10020181. [PMID: 33513904 PMCID: PMC7912489 DOI: 10.3390/antiox10020181] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/21/2021] [Accepted: 01/23/2021] [Indexed: 12/23/2022] Open
Abstract
Plants are rich in bioactive compounds (BACs), mainly polyphenols, which are valuable choices to replace synthetic antioxidants in meat products. These natural antioxidants from plants, in the form of extracts and essential oils (EOs), have been obtained from different sources such as fruits (dragon fruit, guarana, pomegranate), vegetables, (cabbage, onion), herbs, and spices (epazote, ginger, rosemary, sage, thyme, turmeric, winter savory) by several extraction processes. However, in the context of current directives there is a notable incentive for “green” solvents to replace organic ones and conventional techniques, in order to avoid harm to the environment, operator, and consumer health. In addition, the recycling of co-products from the processing of these plant materials allow us to obtain valuable BACs from under-exploited materials, contributing to the revalorization of these wastes. The resulting extracts allow us to maintain the quality of meat products, exhibiting similar or better antioxidant properties compared to those shown by synthetic ones. Their incorporation in fresh meat products would maintain the oxidative stability, stabilizing colour parameters, decreasing the formation of metmyoglobin, lipid, and protein oxidation and the generation of lipid-derived volatile compounds, without affecting sensory attributes. In addition, these novel ingredients contribute to improve both technological and functional characteristics, thus diversifying the offer of so-called “wellness foods”. In this review, the application of plant extracts as natural antioxidants in several fresh meat products is presented, showing their efficacy as scavenging radicals and imparting additional health benefits.
Collapse
|
7
|
Antifungal Activity and Chemical Composition of Seven Essential Oils to Control the Main Seedborne Fungi of Cucurbits. Antibiotics (Basel) 2021; 10:antibiotics10020104. [PMID: 33499094 PMCID: PMC7912402 DOI: 10.3390/antibiotics10020104] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 12/12/2022] Open
Abstract
Essential oils represent novel alternatives to application of synthetic fungicides to control against seedborne pathogens. This study investigated seven essential oils for in vitro growth inhibition of the main seedborne pathogens of cucurbits. Cymbopogon citratus essential oil completely inhibited mycelial growth of Stagonosporopsis cucurbitacearum and Alternaria alternata at 0.6 and 0.9 mg/mL, respectively. At 1 mg/mL, Lavandula dentata, Lavandula hybrida, Melaleuca alternifolia, Laurus nobilis, and two Origanum majorana essential oils inhibited mycelia growth of A. alternata by 54%, 71%, 68%, 36%, 90%, and 74%, respectively. S. cucurbitacearum mycelia growth was more sensitive to Lavandula essential oils, with inhibition of ~74% at 1 mg/mL. To determine the main compounds in these essential oils that might be responsible for this antifungal activity, they were analyzed by gas chromatography–mass spectrometry (GC-MS). C. citratus essential oil showed cirtal as its main constituent, while L. dentata and L. nobilis essential oils showed eucalyptol. The M. alternifolia and two O. majorana essential oils had terpinen-4-ol as the major constituent, while for L. hybrida essential oil, this was linalool. Thus, in vitro, these essential oils can inhibit the main seedborne fungi of cucurbits, with future in vivo studies now needed to confirm these activities.
Collapse
|
8
|
Knez Hrnčič M, Cör D, Simonovska J, Knez Ž, Kavrakovski Z, Rafajlovska V. Extraction Techniques and Analytical Methods for Characterization of Active Compounds in Origanum Species. Molecules 2020; 25:E4735. [PMID: 33076426 PMCID: PMC7587584 DOI: 10.3390/molecules25204735] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/04/2020] [Accepted: 10/12/2020] [Indexed: 01/28/2023] Open
Abstract
Phytochemical research based on ethnopharmacology is gaining interest in industries such as functional food, nutraceuticals, cosmetics and pharmaceutical industries. Plants and plant extracts are a rich source of bioactive secondary metabolites. These compounds are often involved in plant protection against biotic or abiotic stresses. The exploitation of available technologies should be oriented and intensified to extend and enhance the continued usefulness of the plants as renewable sources of chemicals, especially medicinal compounds. This current contribution is focused on extraction and analytical techniques for their isolation from the oregano species, their characterization and their potential antioxidative, as well as their antimicrobial, antifungal and anticarcinogenic properties. The work is structured rendering to the different steps involved in the research; starting with extraction and sample preparation, followed by discussing the analytical techniques employed for the isolation and identification of compound/s responsible for the biological activity and methods and techniques for biological activity assessment.
Collapse
Affiliation(s)
- Maša Knez Hrnčič
- Laboratory for Separation Processes and Product Design, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, SI-2000 Maribor, Slovenia; (D.C.); (Ž.K.)
| | - Darija Cör
- Laboratory for Separation Processes and Product Design, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, SI-2000 Maribor, Slovenia; (D.C.); (Ž.K.)
| | - Jana Simonovska
- Department of Food and Biotechnology, Faculty of Technology and Metallurgy, Ss. Cyril and Methodius University in Skopje, Rudjer Boskovic 16, 1000 Skopje, Macedonia; (J.S.); (V.R.)
| | - Željko Knez
- Laboratory for Separation Processes and Product Design, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, SI-2000 Maribor, Slovenia; (D.C.); (Ž.K.)
| | - Zoran Kavrakovski
- Institute of Applied Chemistry and Pharmaceutical Analysis, Faculty of Pharmacy, Ss. Cyril and Methodius University in Skopje, Mother Theresa 47, 1000 Skopje, Macedonia;
| | - Vesna Rafajlovska
- Department of Food and Biotechnology, Faculty of Technology and Metallurgy, Ss. Cyril and Methodius University in Skopje, Rudjer Boskovic 16, 1000 Skopje, Macedonia; (J.S.); (V.R.)
| |
Collapse
|
9
|
Chemical Composition of Essential Oils from Different Parts of Zingiber kerrii Craib and Their Antibacterial, Antioxidant, and Tyrosinase Inhibitory Activities. Biomolecules 2020; 10:biom10020228. [PMID: 32033059 PMCID: PMC7072701 DOI: 10.3390/biom10020228] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 01/23/2020] [Accepted: 01/28/2020] [Indexed: 11/17/2022] Open
Abstract
The essential oils of the fresh rhizomes; flowers; and leaves of Zingiber kerrii Craib were investigated using different extraction techniques; including solid-phase microextraction (SPME), hydrodistillation (HD), and organic solvent (OS), and characterized by gas chromatography-mass spectrometry (GC-MS). A total of 37 SPME; 19 HD; and 36 OS compounds were identified from the rhizome extract of Z. kerrii; with the major components being α-pinene; β-pinene; and terpinen-4-ol; respectively. From the flower extract; 16 SPME; 2 HD; and 10 OS compounds were identified; (E)-caryophyllene was found as a major compound by these techniques. The leaf extract exhibited 20 SPME; 13 HD; and 14 OS compounds; with α-pinene; (E)-caryophyllene; and n-hexadecanoic acid being the major compounds; respectively. The rhizome extract showed tyrosinase inhibitory activity of 71.60% and a total phenolic content of 22.4 mg gallic acid/g. The IC50 values of the 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS) assays were 25.2 µg/mL and 153.6 µg/mL; respectively; and the ferric ion reducing antioxidant power (FRAP) assay value was 318.5 µM ascorbic acid equivalent (AAE)/g extract. The rhizome extract showed weak antibacterial activity. This extract showed no adverse toxicity in human keratinocyte (HaCaT) cell lines at concentrations below 200 µg/mL.
Collapse
|
10
|
García-Pérez JS, Cuéllar-Bermúdez SP, Cruz-Quiroz RDL, Arévalo-Gallegos A, Esquivel-Hernandez DA, Rodríguez-Rodríguez J, García-García R, Iqbal HMN, Parra-Saldivar R. Supercritical CO 2-based tailor made valorization of Origanum vulgare L extracts: A green approach to extract high-value compounds with applied perspectives. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 232:796-802. [PMID: 30529867 DOI: 10.1016/j.jenvman.2018.11.117] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 11/21/2018] [Accepted: 11/24/2018] [Indexed: 02/08/2023]
Abstract
In this study, the supercritical CO2-based extraction approach was used from the green technologies to extract Oregano oil (Origanum vulgare L.). A Taguchi experimental design was applied to evaluate the effect of pressure, temperature and ethanol as co-solvent. High yield of oregano oil (13.40%) was obtained at 40 °C, 100 bar and 8 g min-1 of co-solvent flow. Fatty acids profile include α-linolenic, palmitic, oleic and linoleic that contribute to 70.9-76.8% of total fatty acids. Volatile compounds including carvacrol (29.99%), heneicosane (8.21%), nonacosane (11.78%), docosane (7.18%), borneol (4.35%) and thymol (4.51%) were the main compounds identified. Antimicrobial activity assays showed that extracts obtained at 40 °C were highly efficient against S. aureus, E. coli, and C. albicans. Highest antioxidant activities on DPPH and FRAP assays were reached under 8 g min-1 of co-solvent flow (6.08 and 6.89 μmol TE g-1 extract, respectively). On the other hand, antioxidant activity (35.76 μmol TE g-1) on ABTS assay was improved at 40 °C, 100 bar, and 4 g min-1 of co-solvent flow.
Collapse
Affiliation(s)
- J Saúl García-Pérez
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, NL, CP 64849, Mexico
| | - Sara P Cuéllar-Bermúdez
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, NL, CP 64849, Mexico
| | - Reynaldo de la Cruz-Quiroz
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, NL, CP 64849, Mexico
| | - Alejandra Arévalo-Gallegos
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, NL, CP 64849, Mexico
| | - Diego A Esquivel-Hernandez
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, NL, CP 64849, Mexico
| | - José Rodríguez-Rodríguez
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, NL, CP 64849, Mexico
| | - Rebeca García-García
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, NL, CP 64849, Mexico
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, NL, CP 64849, Mexico.
| | - Roberto Parra-Saldivar
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, NL, CP 64849, Mexico.
| |
Collapse
|