1
|
Wu F. The treatment of phosphogypsum leachate is more urgent than phosphogypsum. ENVIRONMENTAL RESEARCH 2024; 262:119849. [PMID: 39208975 DOI: 10.1016/j.envres.2024.119849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/05/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
Phosphogypsum(PG) is one of the typical bulk industrial solid wastes generated in the phosphate chemical industry. Due to its huge production volume and immature resource treatment technology, a large amount of PG can only be stored and disposed in slag yards, and its impact on the ecological environment is becoming increasingly significant during long-term storage. Up to now, many researchers have focused their research on PG, with less attention paid to the PG leachate(PG-L). On the basis of the resource utilization of PG, this article analyzed the migration and transformation of pollutants and their impact on the ecological environment during long-term storage of PG. The content of pollutants in PG-L and PG was compared, and it was found that the content of toxic and harmful substances in PG-L was significantly higher than that in PG itself, and the pollution diffusion ability was greater than that of PG, the pollution of PG to the ecological environment is mainly caused by PG-L, indicating that the harmless treatment of PG-L is more urgent than PG. On the basis of traditional leachate treatment methods, a new technology of valuable element recovery and electrochemical synergistic treatment is proposed to achieve high value-added treatment of PG-L.
Collapse
Affiliation(s)
- Fenghui Wu
- Faculty of Biological and Chemical Engineering, Panzhihua University, Panzhihua, 617000, Sichuan, China; Fujian Goshi Green Environmental Protection Technology Development Co., Ltd, Fuqing, 350301, Fujian, China.
| |
Collapse
|
2
|
Saleh AK, Aboelghait KM, El-Fakharany EM, El-Gendi H. Multifunctional engineering of Mangifera indica L. peel extract-modified bacterial cellulose hydrogel: Unveiling novel strategies for enhanced heavy metal sequestration and cytotoxicity evaluation. Int J Biol Macromol 2024; 278:134874. [PMID: 39168196 DOI: 10.1016/j.ijbiomac.2024.134874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/10/2024] [Accepted: 08/17/2024] [Indexed: 08/23/2024]
Abstract
The escalating interest in bacterial cellulose (BC) confronts a substantial obstacle due to its biologically inert properties. Hence, BC was modified with ethanolic mango peel extract (EEMP) for various industrial and medical applications of the novel nanocomposite (BC/EEMP). High-performance liquid chromatography (HPLC) delineated the phenolic composition of EEMP, revealing a repertoire of polyphenolic compounds, notably chlorogenic acid, gallic acid, catechin, and ellagic acid. EEMP exhibited broad-spectrum antimicrobial activity against Candida albicans and Staphylococcus aureus, with MIC of 0.018 mg/mL and 0.009 mg/mL, respectively. The removal mechanism of Pb2+ and Ni2+ by BC/EEMP nanocomposite membrane via SEM, EDX, FT-IR, and XRD was characterized, indicating deposition and aggregation of heavy metals with diminished porosity. Heavy metal removal optimization using the Box-Behnken design achieved maximal removal of 95.5 % and 90 % for Pb2+ and Ni2+, respectively. Moreover, BC/EEMP nanocomposite demonstrated selective dose-dependent anticancer activity toward hepatoma (HepG-2, IC50 of 208.8 μg/mL), skin carcinoma (A431, IC50 of 216.7 μg/mL), and breast carcinoma (MDA, IC50 of 197.5 μg/mL), attributed to the enhanced availability of biologically active polyphenolic compounds and physical characteristics of BC. This study underscores the remarkable potential of BC/EEMP nanocomposite for multifaceted industrial and biomedical applications, marking a pioneering contribution to the field.
Collapse
Affiliation(s)
- Ahmed K Saleh
- Cellulose and Paper Department, National Research Centre, 33 El-Bohouth St., Dokki, P.O. 12622 Giza, Egypt.
| | - K M Aboelghait
- Water Pollution Research Department, National Research Centre, El-Bohouth St. 33, Dokki, P.O. 12622 Giza, Egypt
| | - Esmail M El-Fakharany
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute GEBRI, City of Scientific Research and Technological Applications (SRTA City), New Borg El-Arab, Alexandria 21934, Egypt; Pharmaceutical and Fermentation Industries Development Centre (PFIDC), City of Scientific Research and Technological Applications (SRTA-City), New Borg Al-Arab, Alexandria, Egypt; Pharos University in Alexandria; Canal El Mahmoudia Street, Beside Green Plaza Complex, 21648 Alexandria, Egypt
| | - Hamada El-Gendi
- Bioprocess Development Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA City), New Borg El-Arab, Alexandria 21934, Egypt.
| |
Collapse
|
3
|
Bayuo J, Rwiza MJ, Mtei KM. Optimization of divalent mercury removal from synthetic wastewater using desirability function in central composite design of response surface methodology. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2024; 22:209-227. [PMID: 39524114 PMCID: PMC11549279 DOI: 10.1007/s40201-023-00888-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 11/15/2023] [Indexed: 11/16/2024]
Abstract
Heavy metals exist in the ecosystem both naturally and due to anthropogenic activities and as recalcitrant pollutants; they are non-biodegradable and cause acute and chronic diseases to human beings and many lifeforms. A statistical experimental approach was applied in this current study to optimize the detoxification of mercury [Hg(II)] from mono-component biosorption system by a novel hybrid granular activated carbon (biosorbent) prepared from maize plant residues. The analysis of variance by the application of central composite design shows that all the studied independent factors greatly influence Hg(II) removal efficiency and uptake capacity. The optimum experimental condition of 30 min contact time, 0.5 g/L biosorbent dosage, and 15 mg/L initial Hg(II) concentration were achieved after seeking 20 optimization solutions at 0.903 desirability. The optimum percentage removal and uptake capacity of Hg(II) at the optimal experimental setup was 96.7% and 10.8 mg/g, respectively. To confirm the quadratic models developed for the prediction of the responses as a function of the independent factors, confirmatory laboratory experiments were performed at the optimum condition. The results show that at the established best experimental condition, the optimum Hg(II) removal efficiency of 98.3% and uptake capacity of 11.2 mg/g were attained, which were within the prediction intervals indicating the suitability of the quadratic models in predicting future cases. The TEM and XRD analyses show that the Hg(II) ions were adsorbed by the biosorbent successfully and this suggests the potential and applicability of this novel biosorbent in treating water contaminants, especially heavy metals. Supplementary Information The online version contains supplementary material available at 10.1007/s40201-023-00888-5.
Collapse
Affiliation(s)
- Jonas Bayuo
- School of Materials, Energy, Water, Environmental Sciences and Engineering (MEWES), The Nelson Mandela African Institution of Science and Technology (NM-AIST), P.O. Box 447, Arusha, Tanzania
- School of Science, Mathematics, and Technology Education (SoSMTE), Department of Science Education, C. K. Tedam University of Technology and Applied Sciences (CKT-UTAS), Upper East Region, Postal Box 24, Navrongo, Ghana
| | - Mwemezi J. Rwiza
- School of Materials, Energy, Water, Environmental Sciences and Engineering (MEWES), The Nelson Mandela African Institution of Science and Technology (NM-AIST), P.O. Box 447, Arusha, Tanzania
| | - Kelvin Mark Mtei
- School of Materials, Energy, Water, Environmental Sciences and Engineering (MEWES), The Nelson Mandela African Institution of Science and Technology (NM-AIST), P.O. Box 447, Arusha, Tanzania
| |
Collapse
|
4
|
Guo Z, Zhang C, Jiang H, Li L, Li Z, Zhao L, Chen H. Phosphogypsum/titanium gypsum coupling for enhanced biochar immobilization of lead: Mineralization reaction behavior and electron transfer effect. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 345:118781. [PMID: 37611520 DOI: 10.1016/j.jenvman.2023.118781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 07/19/2023] [Accepted: 08/09/2023] [Indexed: 08/25/2023]
Abstract
The hazards caused by Pb pollution have received worldwide attention. Phosphogypsum (PG) and titanium gypsum (TG) have the disadvantage of limited adsorption capacity and poor dispersion when used as heavy metal adsorbents on their own. The excellent pore and electron transfer capacity of biochar makes it possible to combine with PG and TG to solidify/stabilize Pb2+. In this study, the mechanism of Pb2+ adsorption/immobilization by rice husk biochar (BC) combined with PG/TG was investigated in terms of both mineral formation and electron transfer rate. The removal rate of Pb2+ by BC composite PG (BC/PG-Pb) or TG (BC/TG-Pb) was as high as 97%-98%, an increase of 120.9% and 122.5% over BC. Adsorption kinetics and mineral precipitation results indicate that the main removal of Pb2+ from BC/PG-Pb and BC/TG-Pb is achieved by PG/TG induced Pb-sulfate and Pb-phosphate formation. The addition of PG/TG significantly enhances the formation of stable Pb-minerals on the biochar surface, with the proportion of non-bioaccessible forms exceeding 50%. The four-step extraction results confirm that P and F in PG/TG are key in facilitating the conversion of Pb minerals to pyromorphite. The rich pore structure of biochar not only disperses the easily agglomerated PG/TG onto the biochar surface, but also attracts Pb2+ for uniformly dispersed precipitation. Furthermore, the excellent electrical conductivity and smooth electron transfer channels of biochar facilitate the reaction rate of Pb2+ mineralization. Overall, the use of biochar in combination with PG/TG is a promising technology for the combination of solid waste resourceisation and Pb remediation.
Collapse
Affiliation(s)
- Ziqi Guo
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Chaonan Zhang
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Hanfeng Jiang
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Lingli Li
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Zhonghua Li
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Lei Zhao
- School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
| | - Haoming Chen
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
| |
Collapse
|
5
|
Li X, Lv X, Xiang L. Review of the State of Impurity Occurrences and Impurity Removal Technology in Phosphogypsum. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5630. [PMID: 37629922 PMCID: PMC10456710 DOI: 10.3390/ma16165630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/03/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023]
Abstract
A variety of co-existing impurities in phosphogypsum limit its large-scale and high-value utilization. This paper summarizes the common contents of major impurity components (silicon and phosphorus) and trace impurity components (fluorine, iron, aluminum, and carbon) in phosphogypsum and discusses the harm of impurity components to the comprehensive utilization of harmless phosphogypsum chemical resources. The occurrence status of impurity components in phosphogypsum and the research progress of various impurity removal technologies are summarized, and the effects of these impurity removal technologies on different contents of impurity components are evaluated. On this basis, the goal of improving the whiteness of phosphogypsum samples and the development of technology for further removal of impurities in phosphogypsum to improve the purity of the main content of calcium sulfate are speculated.
Collapse
Affiliation(s)
| | | | - Lan Xiang
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China; (X.L.); (X.L.)
| |
Collapse
|
6
|
Alaa Abdulhusain N, Tark Abd Ali Z. Green approach for fabrication of sand-bimetallic (Fe/Pb) nanocomposite as reactive material for remediation of contaminated groundwater using permeable reactive barrier. ALEXANDRIA ENGINEERING JOURNAL 2023; 72:511-530. [DOI: 10.1016/j.aej.2023.04.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
7
|
Es-Said A, El Hamdaoui L, Ennoukh FE, Nafai H, Zerki N, Lamzougui G, Bchitou R. Chemometrics approach for adsorption multi-response optimization of Cu(II), Zn(II), and Cd(II) ions from phosphoric acid solution using natural clay. PHOSPHORUS SULFUR 2023. [DOI: 10.1080/10426507.2022.2164765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Amine Es-Said
- Laboratory of Materials, Nanotechnology and Environment, Department of Chemistry, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco
| | - Lahcen El Hamdaoui
- Laboratory of Materials, Nanotechnology and Environment, Department of Chemistry, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco
| | - Fatima Ezzahra Ennoukh
- Laboratory of Materials, Nanotechnology and Environment, Department of Chemistry, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco
| | - Hicham Nafai
- Laboratory of Materials, Nanotechnology and Environment, Department of Chemistry, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco
| | - Nabih Zerki
- Laboratory of Materials, Nanotechnology and Environment, Department of Chemistry, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco
| | - Ghita Lamzougui
- Laboratory of Materials, Nanotechnology and Environment, Department of Chemistry, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco
| | - Rahma Bchitou
- Laboratory of Materials, Nanotechnology and Environment, Department of Chemistry, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco
| |
Collapse
|
8
|
Ma X, Li Q, Li R, Zhang W, Sun X, Li J, Shen J, Han W. Removal performance and mechanisms of Pb(II) and Sb(V) from water by iron-doped phosphogypsum: single and coexisting systems. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:87413-87425. [PMID: 35804235 DOI: 10.1007/s11356-022-21862-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
The serious environmental risks caused by Pb(II) and Sb(V) co-contamination increase the need for their efficient and simultaneous removal. In this study, the remediation feasibility by Fe-doped phosphogypsum (FPG) was elucidated for single systems with Pb or Sb pollutant and coexisting systems with both from water. As for single systems, Fe doping effectively enhanced the Pb(II) removal performance by phosphogypsum (PG) at low Pb(II) concentrations of below 100 mg/L via the combination of precipitation and complexation. The optimal removal rate of Sb(V) by FPG increased by 2.08-3.31 times as compared to that of by PG (10-120 mg/L), mainly due to the strong affinity of iron hydroxyl (≡Fe-O-H) towards Sb(V). Compared with the single systems, the coexistence greatly enhanced the Pb(II) and Sb(V) removal performance by FPG, and the interaction behavior between Pb(II) and Sb(V) on the FPG was concentration dependent. Briefly, the sorption of FPG controlled the elimination of low coexisting concentrations of Pb(II) and Sb(V), whereas the co-precipitation process between Pb(II) and Sb(V) predominated with high ions concentration. The significant synergistic effects were found during the removal of Pb(II) and Sb(V) on FPG in the coexisting system, which mainly attributed to precipitation, bridging complexation and electrostatic attraction. Considering the advantages such as facile preparation, low cost and high removal capacity, FPG is a promising material to uptake Pb(II) and/or Sb(V) from contaminated water.
Collapse
Affiliation(s)
- Xinyue Ma
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, Jiangsu, China
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Qiao Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, Jiangsu, China
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Rui Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, Jiangsu, China
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Wei Zhang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, Jiangsu, China
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Xiuyun Sun
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, Jiangsu, China.
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
| | - Jiansheng Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, Jiangsu, China
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Jinyou Shen
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, Jiangsu, China
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Weiqing Han
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, Jiangsu, China
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| |
Collapse
|
9
|
Graimed BH, Abd Ali ZT. Batch and continuous study of one-step sustainable green graphene sand hybrid synthesized from Date-syrup for remediation of contaminated groundwater. ALEXANDRIA ENGINEERING JOURNAL 2022; 61:8777-8796. [DOI: 10.1016/j.aej.2022.02.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
10
|
Bayuo J, Rwiza M, Mtei K. Response surface optimization and modeling in heavy metal removal from wastewater-a critical review. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:351. [PMID: 35396639 DOI: 10.1007/s10661-022-09994-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
The existence of hazardous heavy metals in aquatic settings causes health risks to humans, prompting researchers to devise effective methods for removing these pollutants from drinking water and wastewater. To obtain optimum removal efficiencies and sorption capacities of the contaminants on the sorbent materials, it is normally necessary to optimize the purification technology to attain the optimum value of the independent process variables. This review discusses the most current advancements in using various adsorbents for heavy metal remediation, as well as the modeling and optimization of the adsorption process independent factors by response surface methodology. The remarkable efficiency of the response surface methodology for the extraction of the various heavy metal ions from aqueous systems by various types of adsorbents is confirmed in this critical review. For the first time, this review also identifies several gaps in the optimization of adsorption process factors that need to be addressed. The comprehensive analysis and conclusions in this review should also be useful to industry players, engineers, environmentalists, scientists, and other motivated researchers interested in the use of the various adsorbents and optimization methods or tools in environmental pollution cleanup.
Collapse
Affiliation(s)
- Jonas Bayuo
- Department of Materials Science and Engineering, The Nelson Mandela African Institution of Science and Technology, Postal Box 447, Arusha, Tanzania.
- Department of Science Education, C. K. Tedam University of Technology and Applied Sciences, Navrongo, Postal Box 24, Upper East Region, Ghana.
| | - Mwemezi Rwiza
- Department of Materials Science and Engineering, The Nelson Mandela African Institution of Science and Technology, Postal Box 447, Arusha, Tanzania
| | - Kelvin Mtei
- Department of Materials Science and Engineering, The Nelson Mandela African Institution of Science and Technology, Postal Box 447, Arusha, Tanzania
| |
Collapse
|