1
|
Deng J, Wu S, Huang Y, Deng Y, Yu K. Esophageal cancer risk is influenced by genetically determined blood metabolites. Medicine (Baltimore) 2024; 103:e40122. [PMID: 39470544 PMCID: PMC11521038 DOI: 10.1097/md.0000000000040122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/13/2024] [Accepted: 09/27/2024] [Indexed: 10/30/2024] Open
Abstract
It remains unclear what causes esophageal cancer (EC), but blood metabolites have been connected to it. Our study performed a Mendelian randomization (MR) analysis to assess the causality from genetically proxied 1400 blood metabolites to EC level. A two-sample MR analysis was employed to evaluate the causal relationship between 1400 blood metabolites and EC. Initially, the EC genome-wide association study (GWAS) data (from Jiang L et al) were examined, leading to the identification of certain metabolites. Subsequently, another set of EC GWAS data from FINNGEN was utilized to validate the findings. Causality was primarily determined through inverse variance weighting, with additional support from the MR-Egger, weighted median, and MR-PRESSO models. Heterogeneity was assessed using the MR Cochran Q test. The MR-Egger intercept and MR-PRESSO global methods were employed to detect multicollinearity. In this study, Bonferroni corrected P value was used for significance threshold. We found 2 metabolites with overlaps, which are lipids. Docosatrienoate (22:3n3) was found to be causally associated with a decreased risk of EC, as evidenced by the EC GWAS data (from Jiang et al) (odds ratio [OR] = 0.620, 95% confidence interval [CI] = 0.390-0.986, P = .044) and the EC GWAS data (from FINNGEN) (OR = 0.77, 95% CI = 0.6-0.99, P = .042), these results were consistent across both data sets. Another overlapping metabolite, glycosyl-N-(2-hydroxyneuramoyl)-sphingosine, was associated with the risk of ES, with EC GWAS data (from Jiang L et al) (OR = 1.536, 95% CI = 1.000-2.360, P = .049), while EC GWAS data (from FINNGEN) (OR = 0.733, 95% CI = 0.574-0.937, P = .013), the 2 data had opposite conclusions. The findings of this study indicate a potential association between lipid metabolites (Docosatrienoate (22:3n3) and glycosyl-N-(2-hydroxynervonoyl)-sphingosine (d18:1/24:1 (2OH))) and the risk of esophageal carcinogenesis.
Collapse
Affiliation(s)
- Jieyin Deng
- Department of General Medical Practice, General Hospital of PLA Western Theater Command, Chengdu, China
| | - Silin Wu
- Department of General Medical Practice, General Hospital of PLA Western Theater Command, Chengdu, China
- School of Clinical Medicine, North Sichuan Medical College, Sichuan, China
| | - Ye Huang
- Department of Nursing, Nursing School, Chengdu Medical College, Chengdu, China
| | - Yi Deng
- Department of General Medical Practice, General Hospital of PLA Western Theater Command, Chengdu, China
| | - Ke Yu
- Department of General Medical Practice, General Hospital of PLA Western Theater Command, Chengdu, China
| |
Collapse
|
2
|
Velazquez FN, Stith JL, Zhang L, Allam AM, Haley J, Obeid LM, Snider AJ, Hannun YA. Targeting sphingosine kinase 1 in p53KO thymic lymphoma. FASEB J 2023; 37:e23247. [PMID: 37800872 DOI: 10.1096/fj.202301417r] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/19/2023] [Accepted: 09/26/2023] [Indexed: 10/07/2023]
Abstract
Sphingosine kinase 1 (SK1) is a key sphingolipid enzyme that is upregulated in several types of cancer, including lymphoma which is a heterogenous group of malignancies. Treatment for lymphoma has improved significantly by the introduction of new therapies; however, subtypes with tumor protein P53 (p53) mutations or deletion have poor prognosis, making it critical to explore new therapeutic strategies in this context. SK1 has been proposed as a therapeutic target in different types of cancer; however, the effect of targeting SK1 in cancers with p53 deletion has not been evaluated yet. Previous work from our group suggests that loss of SK1 is a key event in mediating the tumor suppressive effect of p53. Employing both genetic and pharmacological approaches to inhibit SK1 function in Trp53KO mice, we show that targeting SK1 decreases tumor growth of established p53KO thymic lymphoma. Inducible deletion of Sphk1 or its pharmacological inhibition drive increased cell death in tumors which is accompanied by selective accumulation of sphingosine levels. These results demonstrate the relevance of SK1 in the growth and maintenance of lymphoma in the absence of p53 function, positioning this enzyme as a potential therapeutic target for the treatment of tumors that lack functional p53.
Collapse
Affiliation(s)
- Fabiola N Velazquez
- Department of Medicine, Stony Brook University, Stony Brook, New York, USA
- Cancer Center, Stony Brook University, Stony Brook, New York, USA
| | - Jeffrey L Stith
- Department of Medicine, Stony Brook University, Stony Brook, New York, USA
- Cancer Center, Stony Brook University, Stony Brook, New York, USA
| | - Leiqing Zhang
- Department of Medicine, Stony Brook University, Stony Brook, New York, USA
- Cancer Center, Stony Brook University, Stony Brook, New York, USA
| | - Amira M Allam
- Department of Medicine, Stony Brook University, Stony Brook, New York, USA
- Cancer Center, Stony Brook University, Stony Brook, New York, USA
| | - John Haley
- Biological Mass Spectrometry Center, Stony Brook Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Lina M Obeid
- Department of Medicine, Stony Brook University, Stony Brook, New York, USA
- Cancer Center, Stony Brook University, Stony Brook, New York, USA
| | - Ashley J Snider
- Department of Medicine, Stony Brook University, Stony Brook, New York, USA
- Cancer Center, Stony Brook University, Stony Brook, New York, USA
- School of Nutritional Sciences and Wellness, College of Agriculture and Life Sciences, and University of Arizona Cancer Center, University of Arizona, Tucson, Arizona, USA
| | - Yusuf A Hannun
- Department of Medicine, Stony Brook University, Stony Brook, New York, USA
- Cancer Center, Stony Brook University, Stony Brook, New York, USA
| |
Collapse
|
3
|
Masnikosa R, Pirić D, Post JM, Cvetković Z, Petrović S, Paunović M, Vučić V, Bindila L. Disturbed Plasma Lipidomic Profiles in Females with Diffuse Large B-Cell Lymphoma: A Pilot Study. Cancers (Basel) 2023; 15:3653. [PMID: 37509314 PMCID: PMC10377844 DOI: 10.3390/cancers15143653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/01/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Lipidome dysregulation is a hallmark of cancer and inflammation. The global plasma lipidome and sub-lipidome of inflammatory pathways have not been reported in diffuse large B-cell lymphoma (DLBCL). In a pilot study of plasma lipid variation in female DLBCL patients and BMI-matched disease-free controls, we performed targeted lipidomics using LC-MRM to quantify lipid mediators of inflammation and immunity, and those known or hypothesised to be involved in cancer progression: sphingolipids, resolvin D1, arachidonic acid (AA)-derived oxylipins, such as hydroxyeicosatetraenoic acids (HETEs) and dihydroxyeicosatrienoic acids, along with their membrane structural precursors. We report on the role of the eicosanoids in the separation of DLBCL from controls, along with lysophosphatidylinositol LPI 20:4, implying notable changes in lipid metabolic and/or signalling pathways, particularly pertaining to AA lipoxygenase pathway and glycerophospholipid remodelling in the cell membrane. We suggest here the set of S1P, SM 36:1, SM 34:1 and PI 34:1 as DLBCL lipid signatures which could serve as a basis for the prospective validation in larger DLBCL cohorts. Additionally, untargeted lipidomics indicates a substantial change in the overall lipid metabolism in DLBCL. The plasma lipid profiling of DLBCL patients helps to better understand the specific lipid dysregulations and pathways in this cancer.
Collapse
Affiliation(s)
- Romana Masnikosa
- Department of Physical Chemistry, Vinca Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovica Alasa 12-14, 11000 Belgrade, Serbia
| | - David Pirić
- Department of Physical Chemistry, Vinca Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovica Alasa 12-14, 11000 Belgrade, Serbia
| | - Julia Maria Post
- Clinical Lipidomics Unit, Institute of Physiological Chemistry, University Medical Centre of the J.G.U Mainz, Duesbergweg 6, 55128 Mainz, Germany
| | - Zorica Cvetković
- Department of Haematology, Clinical Hospital Centre Zemun, Vukova 9, 11000 Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, Dr. Subotića 8, 11000 Belgrade, Serbia
| | - Snježana Petrović
- Group for Nutritional Biochemistry and Dietology, Centre of Research Excellence in Nutrition and Metabolism, Institute for Medical Research, National Institute of the Republic of Serbia, University of Belgrade, Tadeusa Koscuska 1, 11000 Belgrade, Serbia
| | - Marija Paunović
- Group for Nutritional Biochemistry and Dietology, Centre of Research Excellence in Nutrition and Metabolism, Institute for Medical Research, National Institute of the Republic of Serbia, University of Belgrade, Tadeusa Koscuska 1, 11000 Belgrade, Serbia
| | - Vesna Vučić
- Group for Nutritional Biochemistry and Dietology, Centre of Research Excellence in Nutrition and Metabolism, Institute for Medical Research, National Institute of the Republic of Serbia, University of Belgrade, Tadeusa Koscuska 1, 11000 Belgrade, Serbia
| | - Laura Bindila
- Clinical Lipidomics Unit, Institute of Physiological Chemistry, University Medical Centre of the J.G.U Mainz, Duesbergweg 6, 55128 Mainz, Germany
| |
Collapse
|
4
|
Pherez-Farah A, López-Sánchez RDC, Villela-Martínez LM, Ortiz-López R, Beltrán BE, Hernández-Hernández JA. Sphingolipids and Lymphomas: A Double-Edged Sword. Cancers (Basel) 2022; 14:2051. [PMID: 35565181 PMCID: PMC9104519 DOI: 10.3390/cancers14092051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 04/14/2022] [Indexed: 11/24/2022] Open
Abstract
Lymphomas are a highly heterogeneous group of hematological neoplasms. Given their ethiopathogenic complexity, their classification and management can become difficult tasks; therefore, new approaches are continuously being sought. Metabolic reprogramming at the lipid level is a hot topic in cancer research, and sphingolipidomics has gained particular focus in this area due to the bioactive nature of molecules such as sphingoid bases, sphingosine-1-phosphate, ceramides, sphingomyelin, cerebrosides, globosides, and gangliosides. Sphingolipid metabolism has become especially exciting because they are involved in virtually every cellular process through an extremely intricate metabolic web; in fact, no two sphingolipids share the same fate. Unsurprisingly, a disruption at this level is a recurrent mechanism in lymphomagenesis, dissemination, and chemoresistance, which means potential biomarkers and therapeutical targets might be hiding within these pathways. Many comprehensive reviews describing their role in cancer exist, but because most research has been conducted in solid malignancies, evidence in lymphomagenesis is somewhat limited. In this review, we summarize key aspects of sphingolipid biochemistry and discuss their known impact in cancer biology, with a particular focus on lymphomas and possible therapeutical strategies against them.
Collapse
Affiliation(s)
- Alfredo Pherez-Farah
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey 64710, Nuevo Leon, Mexico
| | | | - Luis Mario Villela-Martínez
- Facultad de Medicina, Universidad Autónoma de Sinaloa, Culiacán Rosales 80030, Sinaloa, Mexico
- Hospital Fernando Ocaranza, ISSSTE, Hermosillo 83190, Sonora, Mexico
- Centro Médico Dr. Ignacio Chávez, ISSSTESON, Hermosillo 83000, Sonora, Mexico
| | - Rocío Ortiz-López
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey 64710, Nuevo Leon, Mexico
| | - Brady E Beltrán
- Hospital Edgardo Rebagliati Martins, Lima 15072, Peru
- Instituto de Investigaciones en Ciencias Biomédicas, Universidad Ricardo Palma, Lima 1801, Peru
| | | |
Collapse
|
5
|
Khairat SHM, Omar MA, Ragab FAF, Roy S, Turab Naqvi AA, Abdelsamie AS, Hirsch AKH, Galal SA, Hassan MI, El Diwani HI. Design, synthesis, and biological evaluation of novel benzimidazole derivatives as sphingosine kinase 1 inhibitor. Arch Pharm (Weinheim) 2021; 354:e2100080. [PMID: 34128259 DOI: 10.1002/ardp.202100080] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/17/2021] [Accepted: 04/23/2021] [Indexed: 11/08/2022]
Abstract
Sphingosine kinase 1 (SphK1) has emerged as an attractive drug target for different diseases. Recently, discovered SphK1 inhibitors have been recommended in cancer therapeutics; however, selectivity and potency are great challenges. In this study, a novel series of benzimidazoles was synthesized and evaluated as SphK1 inhibitors. Our design strategy is twofold: It aimed first to study the effect of replacing the 5-position of the benzimidazole ring with a polar carboxylic acid group on the SphK1-inhibitory activity and cytotoxicity. Our second aim was to optimize the structures of the benzimidazoles through the elongation of the chain. The enzyme inhibition potentials against all the synthesized compounds toward SphK1 were evaluated, and the results revealed that most of the studied compounds inhibited SphK1 effectively. The binding affinity of the benzimidazole derivatives toward SphK1 was measured by fluorescence binding and molecular docking. Compounds 33, 37, 39, 41, 42, 43, and 45 showed an appreciable binding affinity. Therefore, the SphK1-inhibitory potentials of compounds 33, 37, 39, 41, 42, 43, and 45 were studied and IC50 values were determined, to reveal high potency. The study showed that these compounds inhibited SphK1 with effective IC50 values. Among the studied compounds, compound 41 was the most effective one with the lowest IC50 value and a high cytotoxicity on a wide spectrum of cell lines. Molecular docking revealed that most of these compounds fit well into the ATP-binding site of SphK1 and form hydrogen bond interactions with catalytically important residues. Overall, the findings suggest the therapeutic potential of benzimidazoles in the clinical management of SphK1-associated diseases.
Collapse
Affiliation(s)
- Sarah H M Khairat
- Department of Chemistry of Natural and Microbial Products, Division of Pharmaceutical and Drug Industries Research, National Research Centre, Cairo, Egypt
| | - Mohamed A Omar
- Department of Chemistry of Natural and Microbial Products, Division of Pharmaceutical and Drug Industries Research, National Research Centre, Cairo, Egypt
| | - Fatma A F Ragab
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Sonam Roy
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Ahmad A Turab Naqvi
- Department of Drug Design and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarbrücken, Germany
| | - Ahmed S Abdelsamie
- Department of Chemistry of Natural and Microbial Products, Division of Pharmaceutical and Drug Industries Research, National Research Centre, Cairo, Egypt.,Department of Pharmacy, Saarland University, Saarbrücken, Germany
| | - Anna K H Hirsch
- Department of Pharmacy, Saarland University, Saarbrücken, Germany.,Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Shadia A Galal
- Department of Chemistry of Natural and Microbial Products, Division of Pharmaceutical and Drug Industries Research, National Research Centre, Cairo, Egypt
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Hoda I El Diwani
- Department of Chemistry of Natural and Microbial Products, Division of Pharmaceutical and Drug Industries Research, National Research Centre, Cairo, Egypt
| |
Collapse
|
6
|
Schneider G. S1P Signaling in the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1223:129-153. [PMID: 32030688 DOI: 10.1007/978-3-030-35582-1_7] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Sphingosine-1-phosphate (S1P), together with other phosphosphingolipids, has been found to regulate complex cellular function in the tumor microenvironment (TME) where it acts as a signaling molecule that participates in cell-cell communication. S1P, through intracellular and extracellular signaling, was found to promote tumor growth, angiogenesis, chemoresistance, and metastasis; it also regulates anticancer immune response, modulates inflammation, and promotes angiogenesis. Interestingly, cancer cells are capable of releasing S1P and thus modifying the behavior of the TME components in a way that contributes to tumor growth and progression. Therefore, S1P is considered an important therapeutic target, and several anticancer therapies targeting S1P signaling are being developed and tested in clinics.
Collapse
Affiliation(s)
- Gabriela Schneider
- James Graham Brown Cancer Center, Division of Medical Oncology & Hematology, Department of Medicine, University of Louisville, Louisville, KY, USA.
| |
Collapse
|
7
|
Gupta P, Mohammad T, Dahiya R, Roy S, Noman OMA, Alajmi MF, Hussain A, Hassan MI. Evaluation of binding and inhibition mechanism of dietary phytochemicals with sphingosine kinase 1: Towards targeted anticancer therapy. Sci Rep 2019; 9:18727. [PMID: 31822735 PMCID: PMC6904568 DOI: 10.1038/s41598-019-55199-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 11/08/2019] [Indexed: 12/13/2022] Open
Abstract
Sphingosine kinase 1 (SphK1) has recently gained attention as a potential drug target for its association with cancer and other inflammatory diseases. Here, we have investigated the binding affinity of dietary phytochemicals viz., ursolic acid, capsaicin, DL-α tocopherol acetate, quercetin, vanillin, citral, limonin and simvastatin with the SphK1. Docking studies revealed that all these compounds bind to the SphK1 with varying affinities. Fluorescence binding and isothermal titration calorimetric measurements suggested that quercetin and capsaicin bind to SphK1 with an excellent affinity, and significantly inhibits its activity with an admirable IC50 values. The binding mechanism of quercetin was assessed by docking and molecular dynamics simulation studies for 100 ns in detail. We found that quercetin acts as a lipid substrate competitive inhibitor, and it interacts with important residues of active-site pocket through hydrogen bonds and other non-covalent interactions. Quercetin forms a stable complex with SphK1 without inducing any significant conformational changes in the protein structure. In conclusion, we infer that quercetin and capsaicin provide a chemical scaffold to develop potent and selective inhibitors of SphK1 after required modifications for the clinical management of cancer.
Collapse
Affiliation(s)
- Preeti Gupta
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Taj Mohammad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Rashmi Dahiya
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Sonam Roy
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Omar Mohammed Ali Noman
- Department of Pharmacognosy College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Mohamed F Alajmi
- Department of Pharmacognosy College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia.
| | - Afzal Hussain
- Department of Pharmacognosy College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India.
| |
Collapse
|
8
|
Li J, Zhang B, Bai Y, Liu Y, Zhang B, Jin J. Upregulation of sphingosine kinase 1 is associated with recurrence and poor prognosis in papillary thyroid carcinoma. Oncol Lett 2019; 18:5374-5382. [PMID: 31620198 PMCID: PMC6788170 DOI: 10.3892/ol.2019.10910] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 07/26/2019] [Indexed: 01/08/2023] Open
Abstract
Sphingosine kinase 1 (SPHK1), an ATP-dependent protein, has previously been demonstrated to be upregulated in several types of human cancer and to play an important role in tumor development and progression. However, the role of SPHK1 in predicting long-term prognosis in patients with papillary thyroid carcinoma (PTC) remains unclear. The purpose of the present study was to assess the significance of SPHK1 expression and its associations with clinicopathological characteristics and prognostic outcome in patients with PTC. Immunohistochemistry staining was retrospectively performed to investigate the expression levels of SPHK1 in 92 PTC tumors. Statistical analyses revealed that high levels of SPHK1 expression were associated with tumor size, lymph node metastasis and the Tumor-Node-Metastasis stage. The disease-free survival (DFS) time of patients that exhibited high levels of SPHK1 expression was shorter, whereas patients with lower levels of SPHK1 expression survived longer. Furthermore, multivariate analysis suggested that upregulated SPHK1 was an independent prognostic factor for predicting DFS of patients with PTC. The results of the Cell Counting Kit-8 and invasion assays demonstrated that SPHK1 overexpression significantly enhanced the proliferation and invasion of a PTC cell line, consistent with clinical findings. The results from the present study provide evidence that elevated expression levels of SPHK1 may be involved in the development and progression of PTC, indicating that this protein may act as a potential prognostic marker for patients with this disease.
Collapse
Affiliation(s)
- Jie Li
- The Fourth Department of Thyroid and Breast Surgery, Cangzhou Central Hospital, Cangzhou, Hebei 061000, P.R. China
| | - Bo Zhang
- The Fourth Department of Thyroid and Breast Surgery, Cangzhou Central Hospital, Cangzhou, Hebei 061000, P.R. China
| | - Yang Bai
- The Fourth Department of Thyroid and Breast Surgery, Cangzhou Central Hospital, Cangzhou, Hebei 061000, P.R. China
| | - Yonghong Liu
- The Fourth Department of Thyroid and Breast Surgery, Cangzhou Central Hospital, Cangzhou, Hebei 061000, P.R. China
| | - Buyong Zhang
- The Fourth Department of Thyroid and Breast Surgery, Cangzhou Central Hospital, Cangzhou, Hebei 061000, P.R. China
| | - Jian Jin
- The Fourth Department of Thyroid and Breast Surgery, Cangzhou Central Hospital, Cangzhou, Hebei 061000, P.R. China
| |
Collapse
|
9
|
Sphingosine-1-phosphate signalling drives an angiogenic transcriptional programme in diffuse large B cell lymphoma. Leukemia 2019; 33:2884-2897. [PMID: 31097785 PMCID: PMC6887546 DOI: 10.1038/s41375-019-0478-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 02/26/2019] [Accepted: 04/01/2019] [Indexed: 12/15/2022]
Abstract
Although the over-expression of angiogenic factors is reported in diffuse
large B-cell lymphoma (DLBCL), the poor response to anti-VEGF drugs observed in
clinical trials suggests that angiogenesis in these tumours might be driven by
VEGF-independent pathways. We show that sphingosine kinase-1 (SPHK1), which
generates the potent bioactive sphingolipid sphingosine-1-phosphate (S1P), is
over-expressed in DLBCL. A meta-analysis of over 2000 cases revealed that genes
correlated with SPHK1 mRNA expression in DLBCL were significantly enriched for
tumour angiogenesis meta-signature genes; an effect evident in both major cell
of origin (COO) and stromal subtypes. Moreover, we found that S1P induces
angiogenic signalling and a gene expression programme that is present within the
tumour vasculature of SPHK1-expressing DLBCL. Importantly, S1PR1 functional
antagonists, including Siponimod, and the S1P neutralising antibody, Sphingomab,
inhibited S1P signalling in DLBCL cells in vitro. Furthermore,
Siponimod, also reduced angiogenesis and tumour growth in an S1P-producing mouse
model of angiogenic DLBCL. Our data define a potential role for S1P signalling
in driving an angiogenic gene expression programme in the tumour vasculature of
DLBCL and suggest novel opportunities to target S1P-mediated angiogenesis in
patients with DLBCL.
Collapse
|
10
|
Pharmacological Inhibition of Serine Palmitoyl Transferase and Sphingosine Kinase-1/-2 Inhibits Merkel Cell Carcinoma Cell Proliferation. J Invest Dermatol 2018; 139:807-817. [PMID: 30399362 DOI: 10.1016/j.jid.2018.10.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 09/21/2018] [Accepted: 10/23/2018] [Indexed: 01/01/2023]
Abstract
The majority of Merkel cell carcinoma, a highly aggressive neuroendocrine cancer of the skin, is associated with Merkel cell polyomavirus infection. Polyomavirus binding, internalization, and infection are mediated by glycosphingolipids. Besides receptor function, bioactive sphingolipids are increasingly recognized as potent regulators of several hallmarks of cancer. Merkel cell polyomavirus+ and Merkel cell polyomavirus- cells express serine palmitoyl transferase subunits and sphingosine kinase (SK) 1/2 mRNA. Induced expression of Merkel cell polyomavirus-large tumor antigen in human lung fibroblasts resulted in upregulation of SPTLC1-3 and SK 1/2 expression. Therefore, we exploited pharmacological inhibition of sphingolipid metabolism as an option to interfere with proliferation of Merkel cell polyomavirus+ Merkel cell carcinoma cell lines. We used myriocin (a serine palmitoyl transferase antagonist) and two SK inhibitors (SKI-II and ABC294640). In MKL-1 and WaGa cells myriocin decreased cellular ceramide, sphingomyelin, and sphingosine-1-phosphate content. SKI-II increased ceramide species but decreased sphingomyelin and sphingosine-1-phosphate concentrations. Aberrant sphingolipid homeostasis was associated with reduced cell viability, increased necrosis, procaspase-3 and PARP processing, caspase-3 activity, and decreased AKTS473 phosphorylation. Myriocin and SKI-II decreased tumor size and Ki-67 staining of xenografted MKL-1 and WaGa tumors on the chorioallantoic membrane. Our data suggest that pharmacological inhibition of sphingolipid synthesis could represent a potential therapeutic approach in Merkel cell carcinoma.
Collapse
|
11
|
Alshaker H, Srivats S, Monteil D, Wang Q, Low CMR, Pchejetski D. Field template-based design and biological evaluation of new sphingosine kinase 1 inhibitors. Breast Cancer Res Treat 2018; 172:33-43. [PMID: 30043096 PMCID: PMC6208908 DOI: 10.1007/s10549-018-4900-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 07/19/2018] [Indexed: 11/29/2022]
Abstract
Purpose Sphingosine kinase 1 (SK1) is a protooncogenic enzyme expressed in many human tumours and is associated with chemoresistance and poor prognosis. It is a potent therapy target and its inhibition chemosensitises solid tumours. Despite recent advances in SK1 inhibitors synthesis and validation, their clinical safety and chemosensitising options are not well described. In this study, we have designed, synthesised and tested a new specific SK1 inhibitor with a low toxicity profile. Methods Field template molecular modelling was used for compound design. Lead compounds were tested in cell and mouse cancer models. Results Field template analysis of three known SK1 inhibitors, SKI-178, 12aa and SK1-I, was performed and compound screening identified six potential new SK1 inhibitors. SK1 activity assays in both cell-free and in vitro settings showed that two compounds were effective SK1 inhibitors. Compound SK-F has potently decreased cancer cell viability in vitro and sensitised mouse breast tumours to docetaxel (DTX) in vivo, without significant whole-body toxicity. Conclusion Through field template screening, we have identified a new SK1 inhibitor, SK-F, which demonstrated antitumour activity in vitro and in vivo without overt toxicity when combined with DTX. Electronic supplementary material The online version of this article (10.1007/s10549-018-4900-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Heba Alshaker
- School of Medicine, University of East Anglia, 2.53 BCRE, Norwich Research Park, Norwich, NR47UQ, UK. .,Department of Pharmacology and Biomedical Sciences, Faculty of Pharmacy and Medical Sciences, University of Petra, Amman, Jordan.
| | - Shyam Srivats
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Danielle Monteil
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Qi Wang
- School of Medicine, University of East Anglia, 2.53 BCRE, Norwich Research Park, Norwich, NR47UQ, UK
| | | | - Dmitri Pchejetski
- School of Medicine, University of East Anglia, 2.53 BCRE, Norwich Research Park, Norwich, NR47UQ, UK.
| |
Collapse
|
12
|
Lima S, Takabe K, Newton J, Saurabh K, Young MM, Leopoldino AM, Hait NC, Roberts JL, Wang HG, Dent P, Milstien S, Booth L, Spiegel S. TP53 is required for BECN1- and ATG5-dependent cell death induced by sphingosine kinase 1 inhibition. Autophagy 2018; 14:942-957. [PMID: 29368980 DOI: 10.1080/15548627.2018.1429875] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The bioactive sphingolipid metabolite sphingosine-1-phosphate (S1P) and the enzyme that produces it, SPHK1 (sphingosine kinase 1), regulate many processes important for the etiology of cancer. It has been suggested that SPHK1 levels are regulated by the tumor suppressor protein TP53, a key regulator of cell cycle arrest, apoptosis, and macroautophagy/autophagy. However, little is still known of the relationship between TP53 and SPHK1 activity in the regulation of these processes. To explore this link, we examined the effects of inhibiting SPHK1 in wild-type and TP53 null cancer cell lines. SK1-I, an analog of sphingosine and isozyme-specific SPHK1 inhibitor, suppressed cancer cell growth and clonogenic survival in a TP53-dependent manner. It also more strongly enhanced intrinsic apoptosis in wild-type TP53 cells than in isogenic TP53 null cells. Intriguingly, SK1-I induced phosphorylation of TP53 on Ser15, which increases its transcriptional activity. Consequently, levels of TP53 downstream targets such as pro-apoptotic members of the BCL2 family, including BAX, BAK1, and BID were increased in wild-type but not in TP53 null cells. Inhibition of SPHK1 also increased the formation of autophagic and multivesicular bodies, and increased processing of LC3 and its localization within acidic compartments in a TP53-dependent manner. SK1-I also induced massive accumulation of vacuoles, enhanced autophagy, and increased cell death in an SPHK1-dependent manner that also required TP53 expression. Importantly, downregulation of the key regulators of autophagic flux, BECN1 and ATG5, dramatically decreased the cytotoxicity of SK1-I only in cells with TP53 expression. Hence, our results reveal that TP53 plays an important role in vacuole-associated cell death induced by SPHK1 inhibition in cancer cells.
Collapse
Affiliation(s)
- Santiago Lima
- a Department of Biochemistry and Molecular Biology , Virginia Commonwealth University School of Medicine , Richmond , VA USA
| | - Kazuaki Takabe
- a Department of Biochemistry and Molecular Biology , Virginia Commonwealth University School of Medicine , Richmond , VA USA.,c Department of Surgery and the Massey Cancer Center , Virginia Commonwealth University School of Medicine , Richmond , VA USA
| | - Jason Newton
- a Department of Biochemistry and Molecular Biology , Virginia Commonwealth University School of Medicine , Richmond , VA USA
| | - Kumar Saurabh
- a Department of Biochemistry and Molecular Biology , Virginia Commonwealth University School of Medicine , Richmond , VA USA
| | - Megan M Young
- d Department of Pharmacology , Department of Pediatrics , Penn State University College of Medicine , Hershey , PA , USA
| | - Andreia Machado Leopoldino
- b Department of Clinical Analysis, Toxicology and Food Sciences , School of Pharmaceutical Sciences of Riberião Preto , University of São Paulo , Ribeirão Preto , SP , Brazil
| | - Nitai C Hait
- a Department of Biochemistry and Molecular Biology , Virginia Commonwealth University School of Medicine , Richmond , VA USA
| | - Jane L Roberts
- a Department of Biochemistry and Molecular Biology , Virginia Commonwealth University School of Medicine , Richmond , VA USA
| | - Hong-Gang Wang
- d Department of Pharmacology , Department of Pediatrics , Penn State University College of Medicine , Hershey , PA , USA
| | - Paul Dent
- a Department of Biochemistry and Molecular Biology , Virginia Commonwealth University School of Medicine , Richmond , VA USA
| | - Sheldon Milstien
- a Department of Biochemistry and Molecular Biology , Virginia Commonwealth University School of Medicine , Richmond , VA USA
| | - Laurence Booth
- a Department of Biochemistry and Molecular Biology , Virginia Commonwealth University School of Medicine , Richmond , VA USA
| | - Sarah Spiegel
- a Department of Biochemistry and Molecular Biology , Virginia Commonwealth University School of Medicine , Richmond , VA USA
| |
Collapse
|
13
|
Yamada A, Nagahashi M, Aoyagi T, Huang WC, Lima S, Hait NC, Maiti A, Kida K, Terracina KP, Miyazaki H, Ishikawa T, Endo I, Waters MR, Qi Q, Yan L, Milstien S, Spiegel S, Takabe K. ABCC1-Exported Sphingosine-1-phosphate, Produced by Sphingosine Kinase 1, Shortens Survival of Mice and Patients with Breast Cancer. Mol Cancer Res 2018. [PMID: 29523764 DOI: 10.1158/1541-7786.mcr-17-0353] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Sphingosine-1-phosphate (S1P), a bioactive sphingolipid mediator, has been implicated in regulation of many processes important for breast cancer progression. Previously, we observed that S1P is exported out of human breast cancer cells by ATP-binding cassette (ABC) transporter ABCC1, but not by ABCB1, both known multidrug resistance proteins that efflux chemotherapeutic agents. However, the pathologic consequences of these events to breast cancer progression and metastasis have not been elucidated. Here, it is demonstrated that high expression of ABCC1, but not ABCB1, is associated with poor prognosis in breast cancer patients. Overexpression of ABCC1, but not ABCB1, in human MCF7 and murine 4T1 breast cancer cells enhanced S1P secretion, proliferation, and migration of breast cancer cells. Implantation of breast cancer cells overexpressing ABCC1, but not ABCB1, into the mammary fat pad markedly enhanced tumor growth, angiogenesis, and lymphangiogenesis with a concomitant increase in lymph node and lung metastases as well as shorter survival of mice. Interestingly, S1P exported via ABCC1 from breast cancer cells upregulated transcription of sphingosine kinase 1 (SPHK1), thus promoting more S1P formation. Finally, patients with breast cancers that express both activated SPHK1 and ABCC1 have significantly shorter disease-free survival. These findings suggest that export of S1P via ABCC1 functions in a malicious feed-forward manner to amplify the S1P axis involved in breast cancer progression and metastasis, which has important implications for prognosis of breast cancer patients and for potential therapeutic targets.Implication: Multidrug resistant transporter ABCC1 and activation of SPHK1 in breast cancer worsen patient's survival by export of S1P to the tumor microenvironment to enhance key processes involved in cancer progression. Mol Cancer Res; 16(6); 1059-70. ©2018 AACR.
Collapse
Affiliation(s)
- Akimitsu Yamada
- Division of Surgical Oncology, Department of Surgery, Virginia Commonwealth University School of Medicine and the Massey Cancer Center, Richmond, Virginia.,Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine and the Massey Cancer Center, Richmond, Virginia.,Department of Gastroenterological Surgery, Yokohama City University School of Medicine, Kanagawa, Japan.,Department of Breast and Thyroid Surgery, Yokohama City University Medical Center, Kanagawa, Japan
| | - Masayuki Nagahashi
- Division of Surgical Oncology, Department of Surgery, Virginia Commonwealth University School of Medicine and the Massey Cancer Center, Richmond, Virginia.,Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine and the Massey Cancer Center, Richmond, Virginia.,Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Tomoyoshi Aoyagi
- Division of Surgical Oncology, Department of Surgery, Virginia Commonwealth University School of Medicine and the Massey Cancer Center, Richmond, Virginia.,Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine and the Massey Cancer Center, Richmond, Virginia
| | - Wei-Ching Huang
- Division of Surgical Oncology, Department of Surgery, Virginia Commonwealth University School of Medicine and the Massey Cancer Center, Richmond, Virginia.,Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine and the Massey Cancer Center, Richmond, Virginia.,Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Santiago Lima
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine and the Massey Cancer Center, Richmond, Virginia
| | - Nitai C Hait
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine and the Massey Cancer Center, Richmond, Virginia.,Division of Breast Surgery, Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, New York.,Department of Molecular & Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Aparna Maiti
- Division of Breast Surgery, Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Kumiko Kida
- Department of Gastroenterological Surgery, Yokohama City University School of Medicine, Kanagawa, Japan.,Department of Breast and Thyroid Surgery, Yokohama City University Medical Center, Kanagawa, Japan
| | - Krista P Terracina
- Division of Surgical Oncology, Department of Surgery, Virginia Commonwealth University School of Medicine and the Massey Cancer Center, Richmond, Virginia
| | - Hiroshi Miyazaki
- Section of General Internal Medicine, Kojin Hospital, Nagoya, Japan
| | - Takashi Ishikawa
- Department of Breast Surgery, Tokyo Medical University, Tokyo, Japan
| | - Itaru Endo
- Department of Gastroenterological Surgery, Yokohama City University School of Medicine, Kanagawa, Japan
| | - Michael R Waters
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine and the Massey Cancer Center, Richmond, Virginia
| | - Qianya Qi
- Department of Biostatistics & Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Li Yan
- Department of Biostatistics & Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Sheldon Milstien
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine and the Massey Cancer Center, Richmond, Virginia
| | - Sarah Spiegel
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine and the Massey Cancer Center, Richmond, Virginia
| | - Kazuaki Takabe
- Division of Surgical Oncology, Department of Surgery, Virginia Commonwealth University School of Medicine and the Massey Cancer Center, Richmond, Virginia. .,Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine and the Massey Cancer Center, Richmond, Virginia.,Department of Gastroenterological Surgery, Yokohama City University School of Medicine, Kanagawa, Japan.,Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.,Division of Breast Surgery, Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, New York.,Department of Breast Surgery, Tokyo Medical University, Tokyo, Japan.,Department of Surgery, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, The State University of New York, Buffalo, New York
| |
Collapse
|
14
|
White C, Alshaker H, Cooper C, Winkler M, Pchejetski D. The emerging role of FTY720 (Fingolimod) in cancer treatment. Oncotarget 2018; 7:23106-27. [PMID: 27036015 PMCID: PMC5029614 DOI: 10.18632/oncotarget.7145] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Accepted: 01/19/2016] [Indexed: 02/07/2023] Open
Abstract
FTY720 (Fingolimod) is a clinically approved immunomodulating therapy for multiple sclerosis that sequesters T-cells to lymph nodes through functional antagonism of sphingosine-1-phosphate 1 receptor. FTY720 also demonstrates a proven efficacy in multiple in vitro and in vivo cancer models, suggesting a potential therapeutic role in cancer patients. A potential anticancer mechanism of FTY720 is through the inhibition of sphingosine kinase 1, a proto-oncogene with in vitro and clinical cancer association. In addition, FTY720's anticancer properties may be attributable to actions on several other molecular targets. This study focuses on reviewing the emerging evidence regarding the anticancer properties and molecular targets of FTY720. While the clinical transition of FTY720 is currently limited by its immune suppression effects, studies aiming at FTY720 delivery and release together with identifying its key synergetic combinations and relevant patient subsets may lead to its rapid introduction into the clinic.
Collapse
Affiliation(s)
| | - Heba Alshaker
- Department of Pharmacology and Biomedical Sciences, Faculty of Pharmacy and Medical Sciences, University of Petra, Amman, Jordan.,School of Medicine, University of East Anglia, Norwich, UK
| | - Colin Cooper
- School of Medicine, University of East Anglia, Norwich, UK
| | - Matthias Winkler
- Department of Surgery and Cancer, Imperial College London, London, UK
| | | |
Collapse
|
15
|
Vrzalikova K, Ibrahim M, Vockerodt M, Perry T, Margielewska S, Lupino L, Nagy E, Soilleux E, Liebelt D, Hollows R, Last A, Reynolds G, Abdullah M, Curley H, Care M, Krappmann D, Tooze R, Allegood J, Spiegel S, Wei W, Woodman CBJ, Murray PG. S1PR1 drives a feedforward signalling loop to regulate BATF3 and the transcriptional programme of Hodgkin lymphoma cells. Leukemia 2018; 32:214-223. [PMID: 28878352 PMCID: PMC5737877 DOI: 10.1038/leu.2017.275] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 08/09/2017] [Accepted: 08/14/2017] [Indexed: 12/15/2022]
Abstract
The Hodgkin/Reed-Sternberg cells of classical Hodgkin lymphoma (HL) are characterised by the aberrant activation of multiple signalling pathways. Here we show that a subset of HL displays altered expression of sphingosine-1-phosphate (S1P) receptors (S1PR)s. S1P activates phosphatidylinositide 3-kinase (PI3-K) in these cells that is mediated by the increased expression of S1PR1 and the decreased expression of S1PR2. We also showed that genes regulated by the PI3-K signalling pathway in HL cell lines significantly overlap with the transcriptional programme of primary HRS cells. Genes upregulated by the PI3-K pathway included the basic leucine zipper transcription factor, ATF-like 3 (BATF3), which is normally associated with the development of dendritic cells. Immunohistochemistry confirmed that BATF3 was expressed in HRS cells of most HL cases. In contrast, in normal lymphoid tissues, BATF3 expression was confined to a small fraction of CD30-positive immunoblasts. Knockdown of BATF3 in HL cell lines revealed that BATF3 contributed to the transcriptional programme of primary HRS cells, including the upregulation of S1PR1. Our data suggest that disruption of this potentially oncogenic feedforward S1P signalling loop could provide novel therapeutic opportunities for patients with HL.
Collapse
Affiliation(s)
- K Vrzalikova
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - M Ibrahim
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - M Vockerodt
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
- Institute of Anatomy and Cell Biology, Georg-August University of Göttingen, Göttingen, Germany
| | - T Perry
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - S Margielewska
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - L Lupino
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - E Nagy
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - E Soilleux
- Department of Cellular Pathology, John Radcliffe Hospital, Oxford, UK
| | - D Liebelt
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - R Hollows
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - A Last
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - G Reynolds
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - M Abdullah
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
- Department of Pathology, Universiti Putra Malaysia, Selangor, Malaysia
| | - H Curley
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - M Care
- Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, UK
| | - D Krappmann
- Research Unit Cellular Signal Integration, Helmholtz Zentrum München, Neuherberg, Germany
| | - R Tooze
- Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, UK
| | - J Allegood
- Department of Biochemistry and Molecular Biology and Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - S Spiegel
- Department of Biochemistry and Molecular Biology and Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - W Wei
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
- Sheffield Institute of Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - C B J Woodman
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - P G Murray
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
- Department of Clinical and Molecular Pathology, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| |
Collapse
|
16
|
Carroll BL, Bonica J, Shamseddine AA, Hannun YA, Obeid LM. A role for caspase-2 in sphingosine kinase 1 proteolysis in response to doxorubicin in breast cancer cells - implications for the CHK1-suppressed pathway. FEBS Open Bio 2017; 8:27-40. [PMID: 29321954 PMCID: PMC5757171 DOI: 10.1002/2211-5463.12344] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 09/29/2017] [Accepted: 10/13/2017] [Indexed: 12/27/2022] Open
Abstract
Sphingosine kinase 1 (SK1) is a lipid kinase whose activity produces sphingosine 1‐phosphate, a prosurvival lipid associated with proliferation, angiogenesis, and invasion. SK1 overexpression has been observed in numerous cancers. Recent studies have demonstrated that SK1 proteolysis occurs downstream of the tumor suppressor p53 in response to several DNA‐damaging agents. Moreover, loss of SK1 in p53‐knockout mice resulted in complete protection from thymic lymphoma, providing evidence that regulation of SK1 constitutes a major tumor suppressor function of p53. Given this profound phenotype, this study aimed to investigate the mechanism by which wild‐type p53 regulates proteolysis of SK1 in response to the DNA‐damaging agent doxorubicin in breast cancer cells. We find that p53‐mediated activation of caspase‐2 was required for SK1 proteolysis and that caspase‐2 activity significantly alters the levels of endogenous sphingolipids. As p53 is mutated in 50% of all cancers, we extended our studies to investigate whether SK1 is deregulated in the context of triple‐negative breast cancer cells (TNBC) harboring a mutation in p53. Indeed, caspase‐2 was not activated in these cells and SK1 was not degraded. Moreover, caspase‐2 activation was recently shown to be downstream of the CHK1‐suppressed pathway in p53‐mutant cells, whereby inhibition of the cell cycle kinase CHK1 leads to caspase‐2 activation and apoptosis. Indeed, knockdown and inhibition of CHK1 led to the loss of SK1 in p53‐mutant TNBC cells, providing evidence that SK1 may be the first identified effector of the CHK1‐suppressed pathway.
Collapse
Affiliation(s)
- Brittany L Carroll
- Department of Medicine Stony Brook Cancer Center Health Sciences Center Stony Brook University NY USA
| | - Joseph Bonica
- Department of Medicine Stony Brook Cancer Center Health Sciences Center Stony Brook University NY USA
| | - Achraf A Shamseddine
- Department of Medicine Stony Brook Cancer Center Health Sciences Center Stony Brook University NY USA
| | - Yusuf A Hannun
- Department of Medicine Stony Brook Cancer Center Health Sciences Center Stony Brook University NY USA
| | - Lina M Obeid
- Department of Medicine Stony Brook Cancer Center Health Sciences Center Stony Brook University NY USA.,Northport Veterans Affairs Medical Center NY USA
| |
Collapse
|
17
|
Etoposide Upregulates Survival Favoring Sphingosine-1-Phosphate in Etoposide-Resistant Retinoblastoma Cells. Pathol Oncol Res 2017; 25:391-399. [DOI: 10.1007/s12253-017-0360-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 10/27/2017] [Indexed: 10/18/2022]
|
18
|
AntagomiR-613 protects neuronal cells from oxygen glucose deprivation/re-oxygenation via increasing SphK2 expression. Biochem Biophys Res Commun 2017; 493:188-194. [PMID: 28916166 DOI: 10.1016/j.bbrc.2017.09.049] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 09/10/2017] [Indexed: 01/06/2023]
Abstract
Oxygen glucose deprivation (OGD)/re-oxygenation (OGDR) causes damages to neuronal cells. Sphingosine kinase 2 (SphK2) expression could exert neuroprotective functions. Here, we aim to induce SphK2 expression via inhibiting the anti-SphK2 microRNA: microRNA-613 ("miR-613"). In both SH-SY5Y neuronal cells and primary murine hippocampal neurons, transfection of the miR-613's specific inhibitor, antagomiR-613 ("antamiR-613"), induced miR-613 depletion and SphK2 expression. Reversely, forced over-expression of miR-613 caused SphK2 downregulation in SH-SY5Y cells. OGDR-induced cytotoxicity in neuronal cells was largely attenuated by antamiR-613. SphK2 is required for antamiR-613-induced actions in neuronal cells. SphK2 knockdown (by targeted-shRNAs) or inhibition (by its inhibitor ABC294640) almost completely abolished antamiR-613-mediated neuroprotection against OGDR. Further studies showed that OGDR-induced reactive oxygen species (ROS) production, lipid peroxidation, and DNA damages in SH-SY5Y cells were largely attenuated by antamiR-613, but were intensified by miR-613 expression. Taken together, we conclude that antamiR-613 protects neuronal cells from OGDR probably via inducing SphK2 expression.
Collapse
|
19
|
Rodriguez YI, Campos LE, Castro MG, Aladhami A, Oskeritzian CA, Alvarez SE. Sphingosine-1 Phosphate: A New Modulator of Immune Plasticity in the Tumor Microenvironment. Front Oncol 2016; 6:218. [PMID: 27800303 PMCID: PMC5066089 DOI: 10.3389/fonc.2016.00218] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 09/30/2016] [Indexed: 01/01/2023] Open
Abstract
In the last 15 years, increasing evidences demonstrate a strong link between sphingosine-1-phosphate (S1P) and both normal physiology and progression of different diseases, including cancer and inflammation. Indeed, numerous studies show that tissue levels of this sphingolipid metabolite are augmented in many cancers, affecting survival, proliferation, angiogenesis, and metastatic spread. Recent insights into the possible role of S1P as a therapeutic target has attracted enormous attention and opened new opportunities in this evolving field. In this review, we will focus on the role of S1P in cancer, with particular emphasis in new developments that highlight the many functions of this sphingolipid in the tumor microenvironment. We will discuss how S1P modulates phenotypic plasticity of macrophages and mast cells, tumor-induced immune evasion, differentiation and survival of immune cells in the tumor milieu, interaction between cancer and stromal cells, and hypoxic response.
Collapse
Affiliation(s)
- Yamila I Rodriguez
- Instituto Multidisciplinario de Investigaciones Biológicas San Luis (IMIBIO-SL) CONICET , San Luis , Argentina
| | - Ludmila E Campos
- Instituto Multidisciplinario de Investigaciones Biológicas San Luis (IMIBIO-SL) CONICET , San Luis , Argentina
| | - Melina G Castro
- Instituto Multidisciplinario de Investigaciones Biológicas San Luis (IMIBIO-SL) CONICET , San Luis , Argentina
| | - Ahmed Aladhami
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine , Columbia, SC , USA
| | - Carole A Oskeritzian
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine , Columbia, SC , USA
| | - Sergio E Alvarez
- Instituto Multidisciplinario de Investigaciones Biológicas San Luis (IMIBIO-SL) CONICET, San Luis, Argentina; Universidad Nacional de San Luis, San Luis, Argentina
| |
Collapse
|
20
|
Sphingosine kinase 1 is a reliable prognostic factor and a novel therapeutic target for uterine cervical cancer. Oncotarget 2016; 6:26746-56. [PMID: 26311741 PMCID: PMC4694949 DOI: 10.18632/oncotarget.4818] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 07/11/2015] [Indexed: 01/03/2023] Open
Abstract
Sphingosine kinase 1 (SPHK1), an oncogenic kinase, has previously been found to be upregulated in various types of human malignancy and to play a crucial role in tumor development and progression. Although SPHK1 has gained increasing prominence as an important enzyme in cancer biology, its potential as a predictive biomarker and a therapeutic target in cervical cancer remains unknown. SPHK1 expression was examined in 287 formalin-fixed, paraffin-embedded cervical cancer tissues using immunohistochemistry, and its clinical implications and prognostic significance were analyzed. Cervical cancer cell lines including HeLa and SiHa were treated with the SPHK inhibitors SKI-II or FTY720, and effects on cell survival, apoptosis, angiogenesis, and invasion were examined. Moreover, the effects of FTY720 on tumor growth were evaluated using a patient-derived xenograft (PDX) model of cervical cancer. Immunohistochemical analysis revealed that expression of SPHK1 was significantly increased in cervical cancer compared with normal tissues. SPHK1 expression was significantly associated with tumor size, invasion depth, FIGO stage, lymph node metastasis, and lymphovascular invasion. Patients with high SPHK1 expression had lower overall survival and recurrence-free survival rates than those with low expression. Treatment with SPHK inhibitors significantly reduced viability and increased apoptosis in cervical cancer cells. Furthermore, FTY720 significantly decreased in vivo tumor weight in the PDX model of cervical cancer. We provide the first convincing evidence that SPHK1 is involved in tumor development and progression of cervical cancer. Our data suggest that SPHK1 might be a potential prognostic marker and therapeutic target for the treatment of cervical cancer.
Collapse
|
21
|
Vogt D, Stark H. Therapeutic Strategies and Pharmacological Tools Influencing S1P Signaling and Metabolism. Med Res Rev 2016; 37:3-51. [PMID: 27480072 DOI: 10.1002/med.21402] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 06/01/2016] [Accepted: 06/28/2016] [Indexed: 02/06/2023]
Abstract
During the last two decades the study of the sphingolipid anabolic, catabolic, and signaling pathways has attracted enormous interest. Especially the introduction of fingolimod into market as first p.o. therapeutic for the treatment of multiple sclerosis has boosted this effect. Although the complex regulation of sphingosine-1-phosphate (S1P) and other catabolic and anabolic sphingosine-related compounds is not fully understood, the influence on different (patho)physiological states from inflammation to cytotoxicity as well as the availability of versatile pharmacological tools that represent new approaches to study these states are described. Here, we have summarized various aspects concerning the many faces of sphingolipid function modulation by different pharmacological tools up to clinical candidates. Due to the immense heterogeneity of physiological or pharmacological actions and complex cross regulations, it is difficult to predict their role in upcoming therapeutic approaches. Currently, inflammatory, immunological, and/or antitumor aspects are discussed.
Collapse
Affiliation(s)
- Dominik Vogt
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Straße 9, D-60438, Frankfurt, Germany
| | - Holger Stark
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitätsstraße 1, D-40225, Düsseldorf, Germany
| |
Collapse
|
22
|
Chen MH, Yen CC, Cheng CT, Wu RC, Huang SC, Yu CS, Chung YH, Liu CY, Chang PMH, Chao Y, Chen MH, Chen YF, Chiang KC, Yeh TS, Chen TC, Huang CYF, Yeh CN. Identification of SPHK1 as a therapeutic target and marker of poor prognosis in cholangiocarcinoma. Oncotarget 2016; 6:23594-608. [PMID: 26090720 PMCID: PMC4695139 DOI: 10.18632/oncotarget.4335] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 05/30/2015] [Indexed: 01/01/2023] Open
Abstract
Cholangiocarcinoma (CCA) is characterized by a uniquely aggressive behavior and lack of effective targeted therapies. After analyzing the gene expression profiles of seven paired intrahepatic CCA microarrays, a novel sphingosine kinase 1 (SPHK1)/sphingosine-1-phosphate (S1P) pathway and a novel target gene, SPHK1, were identified. We hypothesized that therapeutic targeting of this pathway can be used to kill intrahepatic cholangiocarcinoma (CCA) cells. High levels of SPHK1 protein expression, which was evaluated by immunohistochemical staining of samples from 96 patients with intrahepatic CCA, correlated with poor overall survival. The SPHK1 inhibitor SK1-I demonstrated potent antiproliferative activity in vitro and in vivo. SK1-I modulated the balance of ceramide-sphinogosine-S1P and induced CCA apoptosis. Furthermore, SK1-I combined with JTE013, an antagonist of the predominant S1P receptor S1PR2, inhibited the AKT and ERK signaling pathways in CCA cells. Our preclinical data suggest SPHK1/S1P pathway targeting may be an effective treatment option for patients with CCA.
Collapse
Affiliation(s)
- Ming-Huang Chen
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan.,Division of Hematology and Oncology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chueh-Chuan Yen
- Division of Hematology and Oncology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chi-Tung Cheng
- Department of Surgery, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan, Taiwan
| | - Ren-Chin Wu
- Department of Pathology, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan, Taiwan
| | - Shih-Chiang Huang
- Department of Pathology, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan, Taiwan
| | - Chung-Shan Yu
- Department of Biomedical Engineering and Environmental Sciences, National Tsing-Hua University, Hsinchu, Taiwan
| | - Yi-Hsiu Chung
- Center for Advanced Molecular Imaging and Translation, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chun-Yu Liu
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan.,Division of Hematology and Oncology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Peter Mu-Hsin Chang
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan.,Division of Hematology and Oncology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yee Chao
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan.,Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Ming-Han Chen
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Yu-Fen Chen
- Division of Hematology and Oncology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Kun-Chun Chiang
- Department of General Surgery, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Ta-Sen Yeh
- Department of Surgery, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan, Taiwan
| | - Tzu Chi Chen
- Institute of Clinical Medicine and Institute of Biopharmaceutical Sciences National Yang-Ming University, Taipei, Taiwan
| | - Chi-Ying F Huang
- Institute of Clinical Medicine and Institute of Biopharmaceutical Sciences National Yang-Ming University, Taipei, Taiwan
| | - Chun-Nan Yeh
- Department of Surgery, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
23
|
Therapeutic potential of targeting sphingosine kinases and sphingosine 1-phosphate in hematological malignancies. Leukemia 2016; 30:2142-2151. [PMID: 27461062 DOI: 10.1038/leu.2016.208] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 06/24/2016] [Accepted: 07/07/2016] [Indexed: 12/14/2022]
Abstract
Sphingolipids, such as ceramide, sphingosine and sphingosine 1-phosphate (S1P) are bioactive molecules that have important functions in a variety of cellular processes, which include proliferation, survival, differentiation and cellular responses to stress. Sphingolipids have a major impact on the determination of cell fate by contributing to either cell survival or death. Although ceramide and sphingosine are usually considered to induce cell death, S1P promotes survival of cells. Sphingosine kinases (SPHKs) are the enzymes that catalyze the conversion of sphingosine to S1P. There are two isoforms, SPHK1 and SPHK2, which are encoded by different genes. SPHK1 has recently been implicated in contributing to cell transformation, tumor angiogenesis and metastatic spread, as well as cancer cell multidrug-resistance. More recent findings suggest that SPHK2 also has a role in cancer progression. This review is an overview of our understanding of the role of SPHKs and S1P in hematopoietic malignancies and provides information on the current status of SPHK inhibitors with respect to their therapeutic potential in the treatment of hematological cancers.
Collapse
|
24
|
Uranbileg B, Ikeda H, Kurano M, Enooku K, Sato M, Saigusa D, Aoki J, Ishizawa T, Hasegawa K, Kokudo N, Yatomi Y. Increased mRNA Levels of Sphingosine Kinases and S1P Lyase and Reduced Levels of S1P Were Observed in Hepatocellular Carcinoma in Association with Poorer Differentiation and Earlier Recurrence. PLoS One 2016; 11:e0149462. [PMID: 26886371 PMCID: PMC4757388 DOI: 10.1371/journal.pone.0149462] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 02/01/2016] [Indexed: 11/18/2022] Open
Abstract
Although sphingosine 1-phosphate (S1P) has been reported to play an important role in cancer pathophysiology, little is known about S1P and hepatocellular carcinoma (HCC). To clarify the relationship between S1P and HCC, 77 patients with HCC who underwent surgical treatment were consecutively enrolled in this study. In addition, S1P and its metabolites were quantitated by LC-MS/MS. The mRNA levels of sphingosine kinases (SKs), which phosphorylate sphingosine to generate S1P, were increased in HCC tissues compared with adjacent non-HCC tissues. Higher mRNA levels of SKs in HCC were associated with poorer differentiation and microvascular invasion, whereas a higher level of SK2 mRNA was a risk factor for intra- and extra-hepatic recurrence. S1P levels, however, were unexpectedly reduced in HCC compared with non-HCC tissues, and increased mRNA levels of S1P lyase (SPL), which degrades S1P, were observed in HCC compared with non-HCC tissues. Higher SPL mRNA levels in HCC were associated with poorer differentiation. Finally, in HCC cell lines, inhibition of the expression of SKs or SPL by siRNA led to reduced proliferation, invasion and migration, whereas overexpression of SKs or SPL enhanced proliferation. In conclusion, increased SK and SPL mRNA expression along with reduced S1P levels were more commonly observed in HCC tissues compared with adjacent non-HCC tissues and were associated with poor differentiation and early recurrence. SPL as well as SKs may be therapeutic targets for HCC treatment.
Collapse
MESH Headings
- Aldehyde-Lyases/antagonists & inhibitors
- Aldehyde-Lyases/genetics
- Aldehyde-Lyases/metabolism
- Carcinoma, Hepatocellular/blood supply
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/surgery
- Cell Differentiation/genetics
- Cell Line, Tumor
- Cell Movement
- Cell Proliferation
- Gene Expression Regulation, Neoplastic
- Humans
- Liver Neoplasms/blood supply
- Liver Neoplasms/genetics
- Liver Neoplasms/pathology
- Liver Neoplasms/surgery
- Lysophospholipids/metabolism
- Metabolome
- Neoplasm Invasiveness
- Neoplasm Recurrence, Local/genetics
- Neoplasm Recurrence, Local/pathology
- Phosphotransferases (Alcohol Group Acceptor)/antagonists & inhibitors
- Phosphotransferases (Alcohol Group Acceptor)/genetics
- Phosphotransferases (Alcohol Group Acceptor)/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Risk Factors
- Sphingosine/analogs & derivatives
- Sphingosine/metabolism
Collapse
Affiliation(s)
- Baasanjav Uranbileg
- Department of Clinical Laboratory Medicine, The University of Tokyo, Tokyo, Japan
| | - Hitoshi Ikeda
- Department of Clinical Laboratory Medicine, The University of Tokyo, Tokyo, Japan
- CREST, JST, Japan
- * E-mail:
| | - Makoto Kurano
- Department of Clinical Laboratory Medicine, The University of Tokyo, Tokyo, Japan
- CREST, JST, Japan
| | - Kenichiro Enooku
- Department of Clinical Laboratory Medicine, The University of Tokyo, Tokyo, Japan
| | - Masaya Sato
- Department of Clinical Laboratory Medicine, The University of Tokyo, Tokyo, Japan
| | - Daisuke Saigusa
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Miyagi, Japan
- CREST, JST, Japan
| | - Junken Aoki
- Graduate School of Pharmaceutical Sciences, Tohoku University, Miyagi, Japan
- CREST, JST, Japan
| | - Takeaki Ishizawa
- Hepato-Biliary-Pancreatic Surgery Division, Department of Surgery, The University of Tokyo, Tokyo, Japan
| | - Kiyoshi Hasegawa
- Hepato-Biliary-Pancreatic Surgery Division, Department of Surgery, The University of Tokyo, Tokyo, Japan
| | - Norihiro Kokudo
- Hepato-Biliary-Pancreatic Surgery Division, Department of Surgery, The University of Tokyo, Tokyo, Japan
| | - Yutaka Yatomi
- Department of Clinical Laboratory Medicine, The University of Tokyo, Tokyo, Japan
- CREST, JST, Japan
| |
Collapse
|
25
|
Messias CV, Santana-Van-Vliet E, Lemos JP, Moreira OC, Cotta-de-Almeida V, Savino W, Mendes-da-Cruz DA. Sphingosine-1-Phosphate Induces Dose-Dependent Chemotaxis or Fugetaxis of T-ALL Blasts through S1P1 Activation. PLoS One 2016; 11:e0148137. [PMID: 26824863 PMCID: PMC4732661 DOI: 10.1371/journal.pone.0148137] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 01/13/2016] [Indexed: 01/08/2023] Open
Abstract
Sphingosine-1-phosphate (S1P) is a bioactive sphingolipid involved in several physiological processes including cell migration and differentiation. S1P signaling is mediated through five G protein-coupled receptors (S1P1-S1P5). S1P1 is crucial to the exit of T-lymphocytes from the thymus and peripheral lymphoid organs through a gradient of S1P. We have previously observed that T-ALL and T-LBL blasts express S1P1. Herein we analyzed the role of S1P receptors in the migratory pattern of human T-cell neoplastic blasts. S1P-triggered cell migration was directly related to S1P1 expression. T-ALL blasts expressing low levels of S1P1 mRNA (HPB-ALL) did not migrate toward S1P, whereas those expressing higher levels of S1P1 (MOLT-4, JURKAT and CEM) did migrate. The S1P ligand induced T-ALL cells chemotaxis in concentrations up to 500 nM and induced fugetaxis in higher concentrations (1000-10000 nM) through interactions with S1P1. When S1P1 was specifically blocked by the W146 compound, S1P-induced migration at lower concentrations was reduced, whereas higher concentrations induced cell migration. Furthermore, we observed that S1P/S1P1 interactions induced ERK and AKT phosphorylation, and modulation of Rac1 activity. Responding T-ALL blasts also expressed S1P3 mRNA but blockage of this receptor did not modify migratory responses. Our results indicate that S1P is involved in the migration of T-ALL/LBL blasts, which is dependent on S1P1 expression. Moreover, S1P concentrations in the given microenvironment might induce dose-dependent chemotaxis or fugetaxis of T-ALL blasts.
Collapse
Affiliation(s)
- Carolina V. Messias
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Eliane Santana-Van-Vliet
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Julia P. Lemos
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Otacilio C. Moreira
- Laboratory of Molecular Biology and Endemic Diseases, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vinicius Cotta-de-Almeida
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Wilson Savino
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Daniella Arêas Mendes-da-Cruz
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Rio de Janeiro, Brazil
- * E-mail:
| |
Collapse
|
26
|
Gao Y, Gao F, Chen K, Tian ML, Zhao DL. Sphingosine kinase 1 as an anticancer therapeutic target. DRUG DESIGN DEVELOPMENT AND THERAPY 2015; 9:3239-45. [PMID: 26150697 PMCID: PMC4484649 DOI: 10.2147/dddt.s83288] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The development of chemotherapeutic resistance is a major challenge in oncology. Elevated sphingosine kinase 1 (SK1) levels is predictive of a poor prognosis, and SK1 overexpression may confer resistance to chemotherapeutics. The SK/sphingosine-1-phosphate (S1P)/sphingosine-1-phosphate receptor (S1PR) signaling pathway has been implicated in the progression of various cancers and in chemotherapeutic drug resistance. Therefore, SK1 may represent an important target for cancer therapy. Targeting the SK/S1P/S1PR signaling pathway may be an effective anticancer therapeutic strategy, particularly in the context of overcoming drug resistance. This review summarizes our current understanding of the role of SK/S1P/S1PR signaling in cancer and development of SK1 inhibitors.
Collapse
Affiliation(s)
- Ying Gao
- Department of Radiotherapy Oncology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Fei Gao
- Department of Neurology, First Affiliated Hospital of Xi'an Medical University, Xi'an, People's Republic of China
| | - Kan Chen
- School of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, People's Republic of China
| | - Mei-li Tian
- Department of Radiotherapy Oncology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Dong-li Zhao
- Department of Radiotherapy Oncology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
| |
Collapse
|
27
|
Kato H, Nishitoh H. Stress responses from the endoplasmic reticulum in cancer. Front Oncol 2015; 5:93. [PMID: 25941664 PMCID: PMC4403295 DOI: 10.3389/fonc.2015.00093] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 03/31/2015] [Indexed: 12/21/2022] Open
Abstract
The endoplasmic reticulum (ER) is a dynamic organelle that is essential for multiple cellular functions. During cellular stress conditions, including nutrient deprivation and dysregulation of protein synthesis, unfolded/misfolded proteins accumulate in the ER lumen, resulting in activation of the unfolded protein response (UPR). The UPR also contributes to the regulation of various intracellular signaling pathways such as calcium signaling and lipid signaling. More recently, the mitochondria-associated ER membrane (MAM), which is a site of close contact between the ER and mitochondria, has been shown to function as a platform for various intracellular stress responses including apoptotic signaling, inflammatory signaling, the autophagic response, and the UPR. Interestingly, in cancer, these signaling pathways from the ER are often dysregulated, contributing to cancer cell metabolism. Thus, the signaling pathway from the ER may be a novel therapeutic target for various cancers. In this review, we discuss recent research on the roles of stress responses from the ER, including the MAM.
Collapse
Affiliation(s)
- Hironori Kato
- Laboratory of Biochemistry and Molecular Biology, Department of Medical Sciences, University of Miyazaki , Miyazaki , Japan
| | - Hideki Nishitoh
- Laboratory of Biochemistry and Molecular Biology, Department of Medical Sciences, University of Miyazaki , Miyazaki , Japan
| |
Collapse
|
28
|
Dick TE, Hengst JA, Fox TE, Colledge AL, Kale VP, Sung SS, Sharma A, Amin S, Loughran TP, Kester M, Wang HG, Yun JK. The apoptotic mechanism of action of the sphingosine kinase 1 selective inhibitor SKI-178 in human acute myeloid leukemia cell lines. J Pharmacol Exp Ther 2015; 352:494-508. [PMID: 25563902 DOI: 10.1124/jpet.114.219659] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
We previously developed SKI-178 (N'-[(1E)-1-(3,4-dimethoxyphenyl)ethylidene]-3-(4-methoxxyphenyl)-1H-pyrazole-5-carbohydrazide) as a novel sphingosine kinase-1 (SphK1) selective inhibitor and, herein, sought to determine the mechanism-of-action of SKI-178-induced cell death. Using human acute myeloid leukemia (AML) cell lines as a model, we present evidence that SKI-178 induces prolonged mitosis followed by apoptotic cell death through the intrinsic apoptotic cascade. Further examination of the mechanism of action of SKI-178 implicated c-Jun NH2-terminal kinase (JNK) and cyclin-dependent protein kinase 1 (CDK1) as critical factors required for SKI-178-induced apoptosis. In cell cycle synchronized human AML cell lines, we demonstrate that entry into mitosis is required for apoptotic induction by SKI-178 and that CDK1, not JNK, is required for SKI-178-induced apoptosis. We further demonstrate that the sustained activation of CDK1 during prolonged mitosis, mediated by SKI-178, leads to the simultaneous phosphorylation of the prosurvival Bcl-2 family members, Bcl-2 and Bcl-xl, as well as the phosphorylation and subsequent degradation of Mcl-1. Moreover, multidrug resistance mediated by multidrug-resistant protein1 and/or prosurvival Bcl-2 family member overexpression did not affect the sensitivity of AML cells to SKI-178. Taken together, these findings highlight the therapeutic potential of SKI-178 targeting SphK1 as a novel therapeutic agent for the treatment of AML, including multidrug-resistant/recurrent AML subtypes.
Collapse
Affiliation(s)
- Taryn E Dick
- Department of Pharmacology (T.E.D., J.A.H., A.L.C., V.P.K., S.-S.S., A.S., S.A., H.-G.W., J.K.Y.) and The Jake Gittlen Laboratories for Cancer Research (T.E.D., J.A.H., A.L.C., V.P.K., J.K.Y.), The Pennsylvania State University College of Medicine, Hershey, Pennsylvania; and Department of Pharmacology (T.E.F., M.K.), and University of Virginia Cancer Center (T.P.L.), University of Virginia, Charlottesville, Virginia
| | - Jeremy A Hengst
- Department of Pharmacology (T.E.D., J.A.H., A.L.C., V.P.K., S.-S.S., A.S., S.A., H.-G.W., J.K.Y.) and The Jake Gittlen Laboratories for Cancer Research (T.E.D., J.A.H., A.L.C., V.P.K., J.K.Y.), The Pennsylvania State University College of Medicine, Hershey, Pennsylvania; and Department of Pharmacology (T.E.F., M.K.), and University of Virginia Cancer Center (T.P.L.), University of Virginia, Charlottesville, Virginia
| | - Todd E Fox
- Department of Pharmacology (T.E.D., J.A.H., A.L.C., V.P.K., S.-S.S., A.S., S.A., H.-G.W., J.K.Y.) and The Jake Gittlen Laboratories for Cancer Research (T.E.D., J.A.H., A.L.C., V.P.K., J.K.Y.), The Pennsylvania State University College of Medicine, Hershey, Pennsylvania; and Department of Pharmacology (T.E.F., M.K.), and University of Virginia Cancer Center (T.P.L.), University of Virginia, Charlottesville, Virginia
| | - Ashley L Colledge
- Department of Pharmacology (T.E.D., J.A.H., A.L.C., V.P.K., S.-S.S., A.S., S.A., H.-G.W., J.K.Y.) and The Jake Gittlen Laboratories for Cancer Research (T.E.D., J.A.H., A.L.C., V.P.K., J.K.Y.), The Pennsylvania State University College of Medicine, Hershey, Pennsylvania; and Department of Pharmacology (T.E.F., M.K.), and University of Virginia Cancer Center (T.P.L.), University of Virginia, Charlottesville, Virginia
| | - Vijay P Kale
- Department of Pharmacology (T.E.D., J.A.H., A.L.C., V.P.K., S.-S.S., A.S., S.A., H.-G.W., J.K.Y.) and The Jake Gittlen Laboratories for Cancer Research (T.E.D., J.A.H., A.L.C., V.P.K., J.K.Y.), The Pennsylvania State University College of Medicine, Hershey, Pennsylvania; and Department of Pharmacology (T.E.F., M.K.), and University of Virginia Cancer Center (T.P.L.), University of Virginia, Charlottesville, Virginia
| | - Shen-Shu Sung
- Department of Pharmacology (T.E.D., J.A.H., A.L.C., V.P.K., S.-S.S., A.S., S.A., H.-G.W., J.K.Y.) and The Jake Gittlen Laboratories for Cancer Research (T.E.D., J.A.H., A.L.C., V.P.K., J.K.Y.), The Pennsylvania State University College of Medicine, Hershey, Pennsylvania; and Department of Pharmacology (T.E.F., M.K.), and University of Virginia Cancer Center (T.P.L.), University of Virginia, Charlottesville, Virginia
| | - Arun Sharma
- Department of Pharmacology (T.E.D., J.A.H., A.L.C., V.P.K., S.-S.S., A.S., S.A., H.-G.W., J.K.Y.) and The Jake Gittlen Laboratories for Cancer Research (T.E.D., J.A.H., A.L.C., V.P.K., J.K.Y.), The Pennsylvania State University College of Medicine, Hershey, Pennsylvania; and Department of Pharmacology (T.E.F., M.K.), and University of Virginia Cancer Center (T.P.L.), University of Virginia, Charlottesville, Virginia
| | - Shantu Amin
- Department of Pharmacology (T.E.D., J.A.H., A.L.C., V.P.K., S.-S.S., A.S., S.A., H.-G.W., J.K.Y.) and The Jake Gittlen Laboratories for Cancer Research (T.E.D., J.A.H., A.L.C., V.P.K., J.K.Y.), The Pennsylvania State University College of Medicine, Hershey, Pennsylvania; and Department of Pharmacology (T.E.F., M.K.), and University of Virginia Cancer Center (T.P.L.), University of Virginia, Charlottesville, Virginia
| | - Thomas P Loughran
- Department of Pharmacology (T.E.D., J.A.H., A.L.C., V.P.K., S.-S.S., A.S., S.A., H.-G.W., J.K.Y.) and The Jake Gittlen Laboratories for Cancer Research (T.E.D., J.A.H., A.L.C., V.P.K., J.K.Y.), The Pennsylvania State University College of Medicine, Hershey, Pennsylvania; and Department of Pharmacology (T.E.F., M.K.), and University of Virginia Cancer Center (T.P.L.), University of Virginia, Charlottesville, Virginia
| | - Mark Kester
- Department of Pharmacology (T.E.D., J.A.H., A.L.C., V.P.K., S.-S.S., A.S., S.A., H.-G.W., J.K.Y.) and The Jake Gittlen Laboratories for Cancer Research (T.E.D., J.A.H., A.L.C., V.P.K., J.K.Y.), The Pennsylvania State University College of Medicine, Hershey, Pennsylvania; and Department of Pharmacology (T.E.F., M.K.), and University of Virginia Cancer Center (T.P.L.), University of Virginia, Charlottesville, Virginia
| | - Hong-Gang Wang
- Department of Pharmacology (T.E.D., J.A.H., A.L.C., V.P.K., S.-S.S., A.S., S.A., H.-G.W., J.K.Y.) and The Jake Gittlen Laboratories for Cancer Research (T.E.D., J.A.H., A.L.C., V.P.K., J.K.Y.), The Pennsylvania State University College of Medicine, Hershey, Pennsylvania; and Department of Pharmacology (T.E.F., M.K.), and University of Virginia Cancer Center (T.P.L.), University of Virginia, Charlottesville, Virginia
| | - Jong K Yun
- Department of Pharmacology (T.E.D., J.A.H., A.L.C., V.P.K., S.-S.S., A.S., S.A., H.-G.W., J.K.Y.) and The Jake Gittlen Laboratories for Cancer Research (T.E.D., J.A.H., A.L.C., V.P.K., J.K.Y.), The Pennsylvania State University College of Medicine, Hershey, Pennsylvania; and Department of Pharmacology (T.E.F., M.K.), and University of Virginia Cancer Center (T.P.L.), University of Virginia, Charlottesville, Virginia
| |
Collapse
|
29
|
ZHU LIANGMING, WANG ZHOU, LIN YUXIA, CHEN ZHITAO, LIU HAIBO, CHEN YING, WANG NINGNING, SONG XIUE. Sphingosine kinase 1 enhances the invasion and migration of non-small cell lung cancer cells via the AKT pathway. Oncol Rep 2014; 33:1257-63. [DOI: 10.3892/or.2014.3683] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2014] [Accepted: 10/03/2014] [Indexed: 11/05/2022] Open
|
30
|
Paik JH, Nam SJ, Kim TM, Heo DS, Kim CW, Jeon YK. Overexpression of sphingosine-1-phosphate receptor 1 and phospho-signal transducer and activator of transcription 3 is associated with poor prognosis in rituximab-treated diffuse large B-cell lymphomas. BMC Cancer 2014; 14:911. [PMID: 25472725 PMCID: PMC4265452 DOI: 10.1186/1471-2407-14-911] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2014] [Accepted: 11/22/2014] [Indexed: 11/16/2022] Open
Abstract
Background Sphingosine-1-phosphate receptor-1 (S1PR1) and signal transducer and activator of transcription-3 (STAT3) play important roles in immune responses with potential oncogenic roles. Methods We analyzed S1PR1/STAT3 pathway activation using immunohistochemistry in rituximab-treated diffuse large B-cell lymphomas (DLBCL; N = 103). Results Nuclear expression of pSTAT3 (but not S1PR1) was associated with non-GCB phenotype (p = 0.010). In univariate survival analysis, S1PR1 expression (S1PR1+) was a poor prognostic factor in total DLBCLs (p = 0.018), as well as in nodal (p = 0.041), high-stage (III, IV) (p = 0.002), and high-international prognostic index (IPI; 3–5) (p = 0.014) subgroups, while nuclear expression of pSTAT3 (pSTAT3+) was associated with poor prognosis in the low-stage (I, II) subgroup (p = 0.022). The S1PR1/pSTAT3 risk-categories, containing high-risk (S1PR1+), intermediate-risk (S1PR1-/pSTAT3+), and low-risk (S1PR1-/pSTAT3-), predicted overall survival (p = 0.010). This prognostication tended to be valid in each stage (p = 0.059 in low-stage; p = 0.006 in high-stage) and each IPI subgroups (p = 0.055 [low-IPI]; p = 0.034 [high-IPI]). S1PR1 alone and S1PR1/pSTAT3 risk-category were significant independent prognostic indicators in multivariate analyses incorporating IPI and B symptoms (S1PR1 [p = 0.005; HR = 3.0]; S1PR1/pSTAT3 risk-category [p = 0.019: overall; p = 0.024, HR = 2.7 for S1PR1-/pSTAT3+ vs. S1PR1+; p = 0.021, HR = 3.8 for S1PR1-/pSTAT3- vs. S1PR1+]). Conclusions Therefore, S1PR1 and S1PR1/pSTAT3 risk-category may contribute to risk stratification in rituximab-treated DLBCLs, and S1PR1 and STAT3 might be therapeutic targets for DLBCL.
Collapse
Affiliation(s)
| | | | | | | | | | - Yoon Kyung Jeon
- Tumor Immunity Medical Research Center, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea.
| |
Collapse
|
31
|
Bi Y, Li J, Ji B, Kang N, Yang L, Simonetto DA, Kwon JH, Kamath M, Cao S, Shah V. Sphingosine-1-phosphate mediates a reciprocal signaling pathway between stellate cells and cancer cells that promotes pancreatic cancer growth. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 184:2791-802. [PMID: 25111230 PMCID: PMC4188870 DOI: 10.1016/j.ajpath.2014.06.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 06/18/2014] [Accepted: 06/23/2014] [Indexed: 12/13/2022]
Abstract
Sphingosine-1-phosphate (S1P) is produced by sphingosine kinase 1 and is implicated in tumor growth, although the mechanisms remain incompletely understood. Pancreatic stellate cells (PSCs) reside within the tumor microenvironment and may regulate tumor progression. We hypothesized that S1P activates PSCs to release paracrine factors, which, in turn, increase cancer cell invasion and growth. We used a combination of human tissue, in vitro, and in vivo studies to mechanistically evaluate this concept. Sphingosine kinase 1 was overexpressed in human pancreatic tissue, especially within tumor cells. S1P activated PSCs in vitro and conditioned medium from S1P-stimulated PSCs, increased pancreatic cancer cell migration, and invasion, which was dependent on S1P2, ABL1 (alias c-Abl) kinase, and matrix metalloproteinase-9. In vivo studies showed that pancreatic cancer cells co-implanted with S1P2 receptor knockdown PSCs led to less cancer growth and metastasis in s.c. and orthotopic pancreatic cancer models compared with control PSCs. Pancreatic cancer cell-derived S1P activates PSCs to release paracrine factors, including matrix metalloproteinase-9, which reciprocally promotes tumor cell migration and invasion in vitro and cancer growth in vivo.
Collapse
Affiliation(s)
- Yan Bi
- Gastroenterology Research Unit, the Department of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Jiachu Li
- Gastroenterology Research Unit, the Department of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota; Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Baoan Ji
- Gastroenterology Research Unit, the Department of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Ningling Kang
- Gastroenterology Research Unit, the Department of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Liu Yang
- Gastroenterology Research Unit, the Department of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Douglas A Simonetto
- Gastroenterology Research Unit, the Department of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Jung H Kwon
- Gastroenterology Research Unit, the Department of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Marielle Kamath
- Gastroenterology Research Unit, the Department of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Sheng Cao
- Gastroenterology Research Unit, the Department of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Vijay Shah
- Gastroenterology Research Unit, the Department of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota.
| |
Collapse
|
32
|
Sphingosine kinase 1 and cancer: a systematic review and meta-analysis. PLoS One 2014; 9:e90362. [PMID: 24587339 PMCID: PMC3937388 DOI: 10.1371/journal.pone.0090362] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 01/29/2014] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Sphingosine kinase 1 (SK1) is a key regulator of the dynamic ceramide/sphingosine 1-phosphate rheostat balance and important in the pathological cancer genesis, progression, and metastasis processes. Many studies have demonstrated SK1 overexpressed in various cancers, but no meta-analysis has evaluated the relationship between SK1 and various cancers. METHODS We retrieved relevant articles from the PubMed, EBSCO, ISI, and OVID databases. A pooled odds ratio (OR) was used to assess the associations between SK1 expression and cancer; hazard ratios (HR) were used for 5-year and overall survival. Review Manager 5.0 was used for the meta-analysis, and publication bias was evaluated with STATA 12.0 (Egger's test). RESULTS Thirty-four eligible studies (n=4,673 patients) were identified. SK1 positivity and high expression were significantly different between cancer, non-cancer, and benign tissues. SK1 mRNA and protein expression levels were elevated in the cancer tissues, compared with the normal tissues. SK1 positivity rates differed between various cancer types (lowest [27.3%] in estrogen receptor-positive breast cancer and highest [82.2%] in tongue squamous cell carcinoma). SK1 positivity and high expression were associated with 5-year survival; the HR was 1.86 (95% confidence interval [CI], 1.18-2.94) for breast cancer, 1.58 (1.08-2.31) for gastric cancer, and 2.68 (2.10-3.44) for other cancers; the total cancer HR was 2.21 (95% CI, 1.83-2.67; P < 0.00001). The overall survival HRs were 2.09 (95% CI, 1.35-3.22), 1.56 (1.08-2.25), and 2.62 (2.05-3.35) in breast, gastric, and other cancers, respectively. The total effect HR was 2.21 (95% CI, 1.83-2.66; P < 0.00001). CONCLUSIONS SK1 positivity and high expression were significantly associated with cancer and a shorter 5-year and overall survival. SK1 positivity rates vary tremendously among the cancer types. It is necessary to further explore whether SK1 might be a predictive biomarker of outcomes in cancer patients.
Collapse
|
33
|
Takabe K, Spiegel S. Export of sphingosine-1-phosphate and cancer progression. J Lipid Res 2014; 55:1839-46. [PMID: 24474820 DOI: 10.1194/jlr.r046656] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Sphingosine-1-phosphate (S1P) is a bioactive lipid mediator that promotes cell survival, proliferation, migration, angiogenesis, lymphangiogenesis, and immune response; all are critical processes of cancer progression. Although some important roles of intracellular S1P have recently been uncovered, the majority of its biological effects are known to be mediated via activation of five specific G protein-coupled receptors [S1P receptor (S1PR)1-S1PR5] located on the cell surface. Secretion of S1P produced inside cells by sphingosine kinases can then signal through these receptors in autocrine, paracrine, and/or endocrine manners, coined "inside-out" signaling of S1P. Numerous studies suggest that secreted S1P plays important roles in cancer progression; thus, understanding the mechanism by which S1P is exported out of cells, particularly cancer cells, is both interesting and important. Here we will review the current understanding of the transport of S1P out of cancer cells and its potential roles in the tumor microenvironment.
Collapse
Affiliation(s)
- Kazuaki Takabe
- Division of Surgical Oncology, Department of Surgery, Virginia Commonwealth University School of Medicine and the Massey Cancer Center, Richmond, VA 23298 Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine and the Massey Cancer Center, Richmond, VA 23298
| | - Sarah Spiegel
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine and the Massey Cancer Center, Richmond, VA 23298
| |
Collapse
|
34
|
Maxwell SA, Mousavi-Fard S. Non-Hodgkin's B-cell lymphoma: advances in molecular strategies targeting drug resistance. Exp Biol Med (Maywood) 2013; 238:971-90. [PMID: 23986223 DOI: 10.1177/1535370213498985] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Non-Hodgkin's lymphoma (NHL) is a heterogeneous class of cancers displaying a diverse range of biological phenotypes, clinical behaviours and prognoses. Standard treatments for B-cell NHL are anthracycline-based combinatorial chemotherapy regimens composed of cyclophosphamide, doxorubicin, vincristine and prednisolone. Even though complete response rates of 40-50% with chemotherapy can be attained, a substantial proportion of patients relapse, resulting in 3-year overall survival rates of about 30%. Relapsed lymphomas are refractory to subsequent treatments with the initial chemotherapy regimen and can exhibit cross-resistance to a wide variety of anticancer drugs. The emergence of acquired chemoresistance thus poses a challenge in the clinic preventing the successful treatment and cure of disseminated B-cell lymphomas. Gene-expression analyses have increased our understanding of the molecular basis of chemotherapy resistance and identified rational targets for drug interventions to prevent and treat relapsed/refractory diffuse large B-cell lymphoma. Acquisition of drug resistance in lymphoma is in part driven by the inherent genetic heterogeneity and instability of the tumour cells. Due to the genetic heterogeneity of B-cell NHL, many different pathways leading to drug resistance have been identified. Successful treatment of chemoresistant NHL will thus require the rational design of combinatorial drugs targeting multiple pathways specific to different subtypes of B-cell NHL as well as the development of personalized approaches to address patient-to-patient genetic heterogeneity. This review highlights the new insights into the molecular basis of chemorefractory B-cell NHL that are facilitating the rational design of novel strategies to overcome drug resistance.
Collapse
Affiliation(s)
- Steve A Maxwell
- Texas A&M Health Science Center, College Station, TX 77843-1114, USA
| | | |
Collapse
|
35
|
Alshaker H, Sauer L, Monteil D, Ottaviani S, Srivats S, Böhler T, Pchejetski D. Therapeutic potential of targeting SK1 in human cancers. Adv Cancer Res 2013; 117:143-200. [PMID: 23290780 DOI: 10.1016/b978-0-12-394274-6.00006-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Sphingosine kinase 1 (SK1) is a lipid enzyme with oncogenic properties that converts the proapoptotic lipids ceramide and sphingosine into the antiapoptotic lipid sphingosine-1-phosphate and activates the signal transduction pathways that lead to cell proliferation, migration, the activation of the inflammatory response, and the impairment of apoptosis. There is compelling evidence that SK1 activation contributes to cancer progression leading to increased oncogenic transformation, tumor growth, resistance to therapies, tumor neovascularization, and metastatic spread. High levels of SK1 expression or activity have been associated with a poor prognosis in several human cancers. Recent studies using cancer cell and mouse models demonstrate a significant potential for SK1-targeting therapies to synergize with the effects of chemotherapy and radiotherapy; however, until recently the absence of clinically applicable SK1 inhibitors has limited the translation of these findings into patients. With the recent discovery of SK1 inhibiting properties of a clinically approved drug FTY720 (Fingolimod), SK1 has gained significant attention from both clinicians and the pharmaceutical industry and it is hoped that trials of newly developed SK1 inhibitors may follow soon. This review provides an overview of the SK1 signaling, its relevance to cancer progression, and the potential clinical significance of targeting SK1 for improved local or systemic control of human cancers.
Collapse
Affiliation(s)
- Heba Alshaker
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
The role of sphingolipids as bioactive signaling molecules that can regulate cell fate decisions puts them at center stage for cancer treatment and prevention. While ceramide and sphingosine have been established as antigrowth molecules, sphingosine-1-phosphate (S1P) offers a progrowth message to cells. The enzymes responsible for maintaining the balance between these "stop" or "go" signals are the sphingosine kinases (SK), SK1 and SK2. While the relative contribution of SK2 is still being elucidated and may involve an intranuclear role, a substantial amount of evidence suggests that regulation of sphingolipid levels by SK1 is an important component of carcinogenesis. Here, we review the literature regarding the role of SK1 as an oncogene that can function to enhance cancer cell viability and promote tumor growth and metastasis; highlighting the importance of developing specific SK1 inhibitors to supplement current cancer therapies.
Collapse
Affiliation(s)
- Linda A Heffernan-Stroud
- Molecular and Cellular Biology and Pathobiology Program, Medical University of South Carolina, Charleston, SC, USA
| | | |
Collapse
|
37
|
Neubauer HA, Pitson SM. Roles, regulation and inhibitors of sphingosine kinase 2. FEBS J 2013; 280:5317-36. [PMID: 23638983 DOI: 10.1111/febs.12314] [Citation(s) in RCA: 137] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 04/29/2013] [Accepted: 04/29/2013] [Indexed: 12/19/2022]
Abstract
The bioactive sphingolipids ceramide, sphingosine and sphingosine-1-phosphate (S1P) are important signalling molecules that regulate a diverse array of cellular processes. Most notably, the balance of the levels of these three sphingolipids in cells, termed the 'sphingolipid rheostat', can dictate cell fate, where ceramide and sphingosine enhance apoptosis and S1P promotes cell survival and proliferation. The sphingosine kinases (SKs) catalyse the production of S1P from sphingosine and are therefore central regulators of the sphingolipid rheostat and attractive targets for cancer therapy. Two SKs exist in humans: SK1 and SK2. SK1 has been extensively studied and there is a large body of evidence to demonstrate its role in promoting cell survival, proliferation and neoplastic transformation. SK1 is also elevated in many human cancers which appears to contribute to carcinogenesis, chemotherapeutic resistance and poor patient outcome. SK2, however, has not been as well characterized, and there are contradictions in the key physiological functions that have been proposed for this isoform. Despite this, many studies are now emerging that implicate SK2 in key roles in a variety of diseases, including the development of a range of solid tumours. Here, we review the literature examining SK2, its physiological and pathophysiological functions, the current knowledge of its regulation, and recent developments in targeting this complex enzyme.
Collapse
Affiliation(s)
- Heidi A Neubauer
- Centre for Cancer Biology, SA Pathology, Adelaide, Australia; School of Molecular and Biomedical Science, University of Adelaide, Australia
| | | |
Collapse
|
38
|
Wallington-Beddoe CT, Bradstock KF, Bendall LJ. Oncogenic properties of sphingosine kinases in haematological malignancies. Br J Haematol 2013; 161:623-638. [PMID: 23521541 DOI: 10.1111/bjh.12302] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The sphingosine kinases (SphKs) have relatively recently been implicated in contributing to malignant cellular processes with particular interest in the oncogenic properties of SPHK1. Whilst SPHK1 has received considerable attention as a putative oncoprotein, SPHK2 has been much more difficult to study, with often conflicting data surrounding its role in cancer. Initial studies focused on non-haemopoietic malignancies, however a growing body of literature on the role of sphingolipid metabolism in haemopoietic malignancies is now emerging. This review provides an overview of the current state of knowledge of the SphKs and the bioactive lipid sphingosine 1-phosphate (S1P), the product of the reaction they catalyse. It then reviews the current literature regarding the roles of S1P and the SphKs in haemopoietic malignancies and discusses the compounds currently available that modulate sphingolipid metabolism and their potential and shortcomings as therapeutic agents for the treatment of haematological malignancies.
Collapse
Affiliation(s)
- Craig T Wallington-Beddoe
- Westmead Institute for Cancer Research, Westmead Millennium Institute, The University of Sydney, Sydney, NSW, Australia
| | | | - Linda J Bendall
- Westmead Institute for Cancer Research, Westmead Millennium Institute, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
39
|
García-Bernal D, Redondo-Muñoz J, Dios-Esponera A, Chèvre R, Bailón E, Garayoa M, Arellano-Sánchez N, Gutierrez NC, Hidalgo A, García-Pardo A, Teixidó J. Sphingosine-1-phosphate activates chemokine-promoted myeloma cell adhesion and migration involving α4β1 integrin function. J Pathol 2013; 229:36-48. [PMID: 22711564 DOI: 10.1002/path.4066] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Revised: 05/14/2012] [Accepted: 06/12/2012] [Indexed: 12/21/2022]
Abstract
Myeloma cell adhesion dependent on α4β1 integrin is crucial for the progression of multiple myeloma (MM). The α4β1-dependent myeloma cell adhesion is up-regulated by the chemokine CXCL12, and pharmacological blockade of the CXCL12 receptor CXCR4 leads to defective myeloma cell homing to bone marrow (BM). Sphingosine-1-phosphate (S1P) regulates immune cell trafficking upon binding to G-protein-coupled receptors. Here we show that myeloma cells express S1P1, a receptor for S1P. We found that S1P up-regulated the α4β1-mediated myeloma cell adhesion and transendothelial migration stimulated by CXCL12. S1P promoted generation of high-affinity α4β1 that efficiently bound the α4β1 ligand VCAM-1, a finding that was associated with S1P-triggered increase in talin-β1 integrin association. Furthermore, S1P cooperated with CXCL12 for enhancement of α4β1-dependent adhesion strengthening and spreading. CXCL12 and S1P activated the DOCK2-Rac1 pathway, which was required for stimulation of myeloma cell adhesion involving α4β1. Moreover, in vivo analyses indicated that S1P contributes to optimizing the interactions of MM cells with the BM microvasculture and for their lodging inside the bone marrow. The regulation of α4β1-dependent adhesion and migration of myeloma cells by CXCL12-S1P combined activities might have important consequences for myeloma disease progression.
Collapse
Affiliation(s)
- David García-Bernal
- Cellular and Molecular Medicine Programme, Centro de Investigaciones Biológicas, Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Post-translational regulation of sphingosine kinases. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1831:147-56. [DOI: 10.1016/j.bbalip.2012.07.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Revised: 07/04/2012] [Accepted: 07/06/2012] [Indexed: 12/22/2022]
|
41
|
Delgado A, Fabriàs G, Casas J, Abad JL. Natural products as platforms for the design of sphingolipid-related anticancer agents. Adv Cancer Res 2013; 117:237-81. [PMID: 23290782 DOI: 10.1016/b978-0-12-394274-6.00008-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Modulation of sphingolipid metabolism is a promising strategy for cancer therapy that has already opened innovative approaches for the development of pharmacological tools and rationally designed new drugs. On the other hand, natural products represent a classical and well-established source of chemical diversity that has guided medicinal chemists on the development of new chemical entities with potential therapeutic use. Based on these premises, the aim of this chapter is to provide the reader with a general overview of some of the most representative families of sphingolipid-related natural products that have been described in the recent literature as lead compounds for the design of new modulators of sphingolipid metabolism. Special emphasis is placed on the structural aspects of natural sphingoids and synthetic analogs that have found application as anticancer agents. In addition, their cellular targets and/or their mode of action are also considered.
Collapse
Affiliation(s)
- Antonio Delgado
- Spanish National Research Council, Consejo Superior de Investigaciones Científicas, Research Unit on Bioactive Molecules, Jordi Girona 18-26, Barcelona, Spain.
| | | | | | | |
Collapse
|
42
|
Loh KC, Baldwin D, Saba JD. Sphingolipid signaling and hematopoietic malignancies: to the rheostat and beyond. Anticancer Agents Med Chem 2012; 11:782-93. [PMID: 21707493 DOI: 10.2174/187152011797655159] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Revised: 05/06/2011] [Accepted: 05/09/2011] [Indexed: 12/20/2022]
Abstract
Sphingosine-1-phosphate (S1P) is a bioactive lipid with diverse functions including the promotion of cell survival, proliferation and migration, as well as the regulation of angiogenesis, inflammation, immunity, vascular permeability and nuclear mechanisms that control gene transcription. S1P is derived from metabolism of ceramide, which itself has diverse and generally growth-inhibitory effects through its impact on downstream targets involved in regulation of apoptosis, senescence and cell cycle progression. Regulation of ceramide, S1P and the biochemical steps that modulate the balance and interconversion of these two lipids are major determinants of cell fate, a concept referred to as the "sphingolipid rheostat." There is abundant evidence that the sphingolipid rheostat plays a role in the origination, progression and drug resistance patterns of hematopoietic malignancies. The pathway has also been exploited to circumvent the problem of chemotherapy resistance in leukemia and lymphoma. Given the broad effects of sphingolipids, targeting multiple steps in the metabolic pathway may provide possible therapeutic avenues. However, new observations have revealed that sphingolipid signaling effects are more complex than previously recognized, requiring a revision of the sphingolipid rheostat model. Here, we summarize recent insights regarding the sphingolipid metabolic pathway and its role in hematopoietic malignancies.
Collapse
Affiliation(s)
- Kenneth C Loh
- Children's Hospital Oakland Research Institute, Center for Cancer Research, CA 94609, USA
| | | | | |
Collapse
|
43
|
Heffernan-Stroud LA, Helke KL, Jenkins RW, De Costa AM, Hannun YA, Obeid LM. Defining a role for sphingosine kinase 1 in p53-dependent tumors. Oncogene 2012; 31:1166-75. [PMID: 21765468 PMCID: PMC3278571 DOI: 10.1038/onc.2011.302] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2011] [Revised: 06/12/2011] [Accepted: 06/13/2011] [Indexed: 12/23/2022]
Abstract
p53 is a crucial tumor suppressor that is mutated or deleted in a majority of cancers. Exactly how p53 prevents tumor progression has proved elusive for many years; however, this information is crucial to define targets for chemotherapeutic development that can effectively restore p53 function. Bioactive sphingolipids have recently emerged as important regulators of proliferative, apoptotic and senescent cellular processes. In this study, we demonstrate that the enzyme sphingosine kinase 1 (SK1), a critical enzyme in the regulation of the key bioactive sphingolipids ceramide, sphingosine and sphingosine-1-phosphate (S1P), serves as a key downstream target for p53 action. Our results show that SK1 is proteolysed in response to genotoxic stress in a p53-dependent manner. p53 null mice display elevation of SK1 levels and a tumor-promoting dysregulation of bioactive sphingolipids in which the anti-growth sphingolipid ceramide is decreased and the pro-growth sphingolipid S1P is increased. Importantly, deletion of SK1 in p53 null mice completely abrogated thymic lymphomas in these mice and prolonged their life span by ~30%. Deletion of SK1 also significantly attenuated the formation of other cancers in p53 heterozygote mice. The mechanism of p53 tumor suppression by loss of SK1 is mediated by elevations of sphingosine and ceramide, which in turn were accompanied by increased expression of cell cycle inhibitors and tumor cell senescence. Thus, targeting SK1 may restore sphingolipid homeostasis in p53-dependent tumors and provide insights into novel therapeutic approaches to cancer.
Collapse
Affiliation(s)
- Linda A. Heffernan-Stroud
- Molecular and Cellular Biology and Pathobiology Program, Medical University of South Carolina, Charleston, SC 29403, USA
| | - Kristi L. Helke
- Department of Comparative Medicine/Lab Animal Resources, Medical University of South Carolina, Charleston, SC 29403, USA
| | - Russell W. Jenkins
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29403, USA
| | - Anna-Maria De Costa
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29403, USA
| | - Yusuf A. Hannun
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29403, USA
| | - Lina M. Obeid
- Ralph H. Johnson VAMC, Charleston, SC
- Molecular and Cellular Biology and Pathobiology Program, Medical University of South Carolina, Charleston, SC 29403, USA
- Department of Medicine, Medical University of South Carolina, Charleston, SC 29403, USA
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29403, USA
| |
Collapse
|
44
|
Guan H, Liu L, Cai J, Liu J, Ye C, Li M, Li Y. Sphingosine kinase 1 is overexpressed and promotes proliferation in human thyroid cancer. Mol Endocrinol 2011; 25:1858-66. [PMID: 21940753 DOI: 10.1210/me.2011-1048] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Sphingosine kinase 1 (SphK1), an oncogenic kinase, has been previously found to be elevated in various types of human cancer and play a role in tumor development and progression. Nevertheless, the biological and clinical significance of SphK1 in thyroid cancer is largely unknown. Here, we demonstrate that the expression of SphK1 is generally up-regulated in thyroid cancer and that its expression level is correlated with the degree of thyroid malignancy. Silencing SphK1 by specific RNA interference is able to suppress the proliferation of thyroid cancer cells, and SphK1 expression level is strongly associated with the expression of proliferation cell nuclear antigen in thyroid cancer tissues. Of particular note is that depletion of SphK1 results in dephosphorylation of protein kinase B and glycogen synthase kinase-3β and subsequent inactivation of β-catenin-T-cell factor/lymphoid enhancing factor transcriptional activity. Hence, taken together, our study has identified SphK1 as a proproliferative oncogenic kinase, an Akt/glycogen synthase kinase-3β/β-catenin activator, and probably a biomarker for thyroid cancer as well.
Collapse
Affiliation(s)
- Hongyu Guan
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
Sphingosine kinase 1 (SK1) is a lipid enzyme with oncogenic properties that converts the proapoptotic lipid sphingosine into the antiapoptotic lipid sphingosine-1-phosphate, which activates the signal transduction pathways that lead to cell proliferation, migration, activation of the inflammatory response and impairment of apoptosis. Compelling evidence suggests that SK1 activation contributes to cancer progression leading to increased oncogenic transformation, tumor growth, resistance to therapies, tumor neovascularization and metastatic spread. High levels of SK1 expression or activity have been associated with poor prognosis in several cancers, including those of the prostate. Recent studies using prostate cancer cell and mouse models demonstrate a significant potential for SK1-targeting therapies to synergize with the effects of docetaxel chemotherapy and radiotherapy. However, until recently the absence of clinically applicable SK1 inhibitors has limited the translation of these findings into patients. With the recent discovery that clinically approved drug fingolimod has SK1-inhibiting properties, SK1 has gained significant attention from both clinicians and the pharmaceutical industry and it is hoped that trials of newly developed SK1 inhibitors might follow soon.
Collapse
|
46
|
Kennedy AJ, Mathews TP, Kharel Y, Field SD, Moyer ML, East JE, Houck JD, Lynch KR, Macdonald TL. Development of amidine-based sphingosine kinase 1 nanomolar inhibitors and reduction of sphingosine 1-phosphate in human leukemia cells. J Med Chem 2011; 54:3524-48. [PMID: 21495716 DOI: 10.1021/jm2001053] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Sphingosine 1-phosphate (S1P) is a bioactive lipid that has been identified as an accelerant of cancer progression. The sphingosine kinases (SphKs) are the sole producers of S1P, and thus, SphK inhibitors may prove effective in cancer mitigation and chemosensitization. Of the two SphKs, SphK1 overexpression has been observed in a myriad of cancer cell lines and tissues and has been recognized as the presumptive target over that of the poorly characterized SphK2. Herein, we present the design and synthesis of amidine-based nanomolar SphK1 subtype-selective inhibitors. A homology model of SphK1, trained with this library of amidine inhibitors, was then used to predict the activity of additional, more potent, inhibitors. Lastly, select amidine inhibitors were validated in human leukemia U937 cells, where they significantly reduced endogenous S1P levels at nanomolar concentrations.
Collapse
Affiliation(s)
- Andrew J Kennedy
- Department of Chemistry, University of Virginia, McCormick Road, Charlottesville, Virginia 22904, United States.
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Malavaud B, Pchejetski D, Mazerolles C, de Paiva GR, Calvet C, Doumerc N, Pitson S, Rischmann P, Cuvillier O. Sphingosine kinase-1 activity and expression in human prostate cancer resection specimens. Eur J Cancer 2010; 46:3417-24. [PMID: 20970322 DOI: 10.1016/j.ejca.2010.07.053] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Revised: 07/29/2010] [Accepted: 07/30/2010] [Indexed: 11/25/2022]
Abstract
PURPOSE Sphingosine kinase-1 (SphK1) was shown in preclinical models and non-genitourinary cancers to be instrumental in cancer progression, adaptation to hypoxia and in tumour angiogenesis. No data were available in human prostate cancer. The present study was designed to assess SphK1 expression and activity in radical prostatectomy specimens and to research correlations with clinical features. MATERIALS AND METHODS Transverse section of fresh tissue was obtained from 30 consecutive patients undergoing laparoscopic prostatectomy. SphK1 enzymatic activities of tumour and normal counterpart were determined. Relationships with PSA, Gleason sum, pathological stage, resection margin status and treatment failure were researched. SphK1 pattern of expression was then assessed on tissue microarray. RESULTS A significant 2-fold increase in SphK1 enzymatic activity(11.1 ± 8.4 versus 5.9 ± 3.2 (P<0.04)) was observed in cancer. The upper quartile of SphK1 activity was associated with higher PSA (16.7 versus 6.4 ng/ml, P = 0.04), higher tumor volumes (20.7 versus 9.8, P = 0.002), higher rates of positive margins (85.7% versus 28.6%, P = 0.01) and surgical failure (71.4% versus 9.5%, P = 0.003) than the lower three quartiles. Odds ratios (OR) for treatment failure showed a strong relationship with SphK1 activity (OR: 23.7, P = 0.001), positive resection margins (OR: 15.0, P = 0.007) and Gleason sum (≥4+3, OR: 8.0, P = 0.003). Tissue microarrays showed discrete epithelial expression that varied with Gleason sum with significant relationship between SphK1 expression and higher Gleason sum. CONCLUSION In complement to preclinical literature, the demonstrated relationships between SphK1-increased activity in cancer and relevant clinical features confirm a central role for SphK1 in prostate cancer that herald promising avenues in risk-assessment and treatment.
Collapse
|
48
|
Pchejetski D, Bohler T, Brizuela L, Sauer L, Doumerc N, Golzio M, Salunkhe V, Teissié J, Malavaud B, Waxman J, Cuvillier O. FTY720 (fingolimod) sensitizes prostate cancer cells to radiotherapy by inhibition of sphingosine kinase-1. Cancer Res 2010; 70:8651-61. [PMID: 20959468 DOI: 10.1158/0008-5472.can-10-1388] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Radiotherapy is widely used as a radical treatment for prostate cancer, but curative treatments are elusive for poorly differentiated tumors where survival is just 15% at 15 years. Dose escalation improves local response rates but is limited by tolerance in normal tissues. A sphingosine analogue, FTY720 (fingolimod), a drug currently in phase III studies for treatment of multiple sclerosis, has been found to be a potent apoptosis inducer in prostate cancer cells. Using in vitro and in vivo approaches, we analyzed the impact of FTY720 on sphingolipid metabolism in hormone-refractory metastatic prostate cancer cells and evaluated its potential as a radiosensitizer on cell lines and prostate tumor xenografts. In prostate cancer cell lines, FTY720 acted as a sphingosine kinase 1 (SphK1) inhibitor that induced prostate cancer cell apoptosis in a manner independent of sphingosine-1-phosphate receptors. In contrast, γ irradiation did not affect SphK1 activity in prostate cancer cells yet synergized with FTY720 to inhibit SphK1. In mice bearing orthotopic or s.c. prostate cancer tumors, we show that FTY720 dramatically increased radiotherapeutic sensitivity, reducing tumor growth and metastasis without toxic side effects. Our findings suggest that low, well-tolerated doses of FTY720 could offer significant improvement to the clinical treatment of prostate cancer.
Collapse
Affiliation(s)
- Dmitri Pchejetski
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
There is substantial evidence that sphingosine 1-phosphate (S1P) is involved in cancer. S1P regulates processes such as inflammation, which can drive tumorigenesis; neovascularization, which provides cancer cells with nutrients and oxygen; and cell growth and survival. This occurs at multiple levels and involves S1P receptors, sphingosine kinases, S1P phosphatases and S1P lyase. This Review summarizes current research findings and examines the potential for new therapeutics designed to alter S1P signalling and function in cancer.
Collapse
Affiliation(s)
- Nigel J Pyne
- Cell Biology Group, Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 27 Taylor Street, Glasgow G4 0NR, UK.
| | | |
Collapse
|
50
|
Circulating sphingosine-1-phosphate inversely correlates with chemotherapy-induced weight gain during early breast cancer. Breast Cancer Res Treat 2010; 124:543-9. [DOI: 10.1007/s10549-010-0968-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Accepted: 05/21/2010] [Indexed: 01/24/2023]
|