1
|
Kuzmich AS, Filshtein AP, Likhatskaya GN, Gorpenchenko TY, Chikalovets IV, Mizgina TO, Hua KF, von Amsberg G, Dyshlovoy SA, Chernikov OV. Lectins CGL and MTL, representatives of mytilectin family, exhibit different antiproliferative activity in Burkitt's lymphoma cells. IUBMB Life 2024. [PMID: 39166889 DOI: 10.1002/iub.2909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/16/2024] [Indexed: 08/23/2024]
Abstract
Lectins are carbohydrate-binding proteins, whose biological effects are exerted via binding to glycoconjugates expressed on the surface of cells. Exposure to lectins can lead not only to a change in the structure and properties of cells but also to their death. Here, we studied the biological activity of lectins from the mussels Crenomytilus graynus (CGL) and Mytilus trossulus (MTL) and showed that these proteins can affect the proliferation of human lymphoma cells. Both lectins suppressed the formation of colonies as well as cell cycle progression. The mechanism of action of these lectins was not mediated by reactive oxygen species but included damaging of mitochondria, inhibition of key cell cycle points, and activation of MAPK signaling pathway in tumor cells. Computer modeling suggested that various effects of CGL and MTL on lymphoma cells may be due to the difference in the energy of binding of these lectins to carbohydrate ligands on the cell surface. Thus, molecular recognition of residues of terminal carbohydrates on the surface of tumor cells is a key factor in the manifestation of the biological action of lectins.
Collapse
Affiliation(s)
- Alexandra S Kuzmich
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of Russian Academy of Sciences, Vladivostok, Russia
| | - Alina P Filshtein
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of Russian Academy of Sciences, Vladivostok, Russia
| | - Galina N Likhatskaya
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of Russian Academy of Sciences, Vladivostok, Russia
| | - Tatiana Y Gorpenchenko
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of Russian Academy of Sciences, Vladivostok, Russia
| | - Irina V Chikalovets
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of Russian Academy of Sciences, Vladivostok, Russia
| | - Tatyana O Mizgina
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of Russian Academy of Sciences, Vladivostok, Russia
| | - Kuo-Feng Hua
- Department of Biotechnology and Animal Science, National Ilan University, Yilan, Taiwan
| | - Gunhild von Amsberg
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald-Tumorzentrum, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Martini-Klinik, Prostate Cancer Center, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Sergey A Dyshlovoy
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald-Tumorzentrum, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Oleg V Chernikov
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of Russian Academy of Sciences, Vladivostok, Russia
| |
Collapse
|
2
|
Silchenko AS, Kalinovsky AI, Avilov SA, Popov RS, Chingizova EA, Menchinskaya ES, Zelepuga EA, Tabakmakher KM, Stepanov VG, Kalinin VI. The Composition of Triterpene Glycosides in the Sea Cucumber Psolus peronii: Anticancer Activity of the Glycosides against Three Human Breast Cancer Cell Lines and Quantitative Structure-Activity Relationships (QSAR). Mar Drugs 2024; 22:292. [PMID: 39057402 PMCID: PMC11278233 DOI: 10.3390/md22070292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/17/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024] Open
Abstract
Eight sulfated triterpene glycosides, peronioside A (1) and psolusosides A (2), B (3), G (4), I (5), L (6), N (7) and P (8), were isolated from the sea cucumber Psolus peronii. Peronioside A (1) is a new glycoside, while compounds 2-8 were found previously in Psolus fabricii, indicating the phylogenetic and systematic closeness of these species of sea cucumbers. The activity of 1-8 against human erythrocytes and their cytotoxicity against the breast cancer cell lines MCF-7, T-47D and triple-negative MDA-MB-231 were tested. The most active against cancer cell compounds, psolusosides A (2) and L (6), which were not cytotoxic to the non-transformed cells of the mammary gland, were chosen to study the inhibition of the migration, formation and growth of colonies of the cancer cell lines. Glycoside 2 effectively inhibited the growth of colonies and the migration of the MDA-MB-231 cell line. Compound 6 blocked the growth of colonies of T-47D cells and showed a pronounced antimigration effect on MDA-MB-231 cells. The quantitative structure-activity relationships (QSAR) indicated the strong impact on the activity of the form and size of the molecules, which is connected to the length and architecture of the carbohydrate chain, the distribution of charge on the molecules' surface and various aspects of hydrogen bond formation, depending on the quantity and positions of the sulfate groups. The QSAR calculations were in good accordance with the observed SAR tendencies.
Collapse
Affiliation(s)
- Alexandra Sergeevna Silchenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-letya Vladivostoka 159, 690022 Vladivostok, Russia; (A.I.K.); (S.A.A.); (R.S.P.); (E.A.C.); (E.S.M.); (E.A.Z.); (K.M.T.)
| | - Anatoly Ivanovich Kalinovsky
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-letya Vladivostoka 159, 690022 Vladivostok, Russia; (A.I.K.); (S.A.A.); (R.S.P.); (E.A.C.); (E.S.M.); (E.A.Z.); (K.M.T.)
| | - Sergey Anatolievich Avilov
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-letya Vladivostoka 159, 690022 Vladivostok, Russia; (A.I.K.); (S.A.A.); (R.S.P.); (E.A.C.); (E.S.M.); (E.A.Z.); (K.M.T.)
| | - Roman Sergeevich Popov
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-letya Vladivostoka 159, 690022 Vladivostok, Russia; (A.I.K.); (S.A.A.); (R.S.P.); (E.A.C.); (E.S.M.); (E.A.Z.); (K.M.T.)
| | - Ekaterina Alexandrovna Chingizova
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-letya Vladivostoka 159, 690022 Vladivostok, Russia; (A.I.K.); (S.A.A.); (R.S.P.); (E.A.C.); (E.S.M.); (E.A.Z.); (K.M.T.)
| | - Ekaterina Sergeevna Menchinskaya
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-letya Vladivostoka 159, 690022 Vladivostok, Russia; (A.I.K.); (S.A.A.); (R.S.P.); (E.A.C.); (E.S.M.); (E.A.Z.); (K.M.T.)
| | - Elena Alexandrovna Zelepuga
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-letya Vladivostoka 159, 690022 Vladivostok, Russia; (A.I.K.); (S.A.A.); (R.S.P.); (E.A.C.); (E.S.M.); (E.A.Z.); (K.M.T.)
| | - Kseniya Mikhailovna Tabakmakher
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-letya Vladivostoka 159, 690022 Vladivostok, Russia; (A.I.K.); (S.A.A.); (R.S.P.); (E.A.C.); (E.S.M.); (E.A.Z.); (K.M.T.)
| | - Vadim Georgievich Stepanov
- Kamchatka Branch of Pacific Institute of Geography, Far Eastern Branch of the Russian Academy of Sciences, Partizanskaya st. 6, 683000 Petropavlovsk-Kamchatsky, Russia;
| | - Vladimir Ivanovich Kalinin
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-letya Vladivostoka 159, 690022 Vladivostok, Russia; (A.I.K.); (S.A.A.); (R.S.P.); (E.A.C.); (E.S.M.); (E.A.Z.); (K.M.T.)
| |
Collapse
|
3
|
Hu M, Ying X, Zheng M, Wang C, Li Q, Gu L, Zhang X. Therapeutic potential of natural products against Alzheimer's disease via autophagic removal of Aβ. Brain Res Bull 2024; 206:110835. [PMID: 38043648 DOI: 10.1016/j.brainresbull.2023.110835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/17/2023] [Accepted: 11/30/2023] [Indexed: 12/05/2023]
Abstract
The pathological features of Alzheimer's disease (AD), a progressive neurodegenerative disorder, include the deposition of extracellular amyloid beta (Aβ) plaques and intracellular tau neurofibrillary tangles. A decline in cognitive ability is related to the accumulation of Aβ in patients with AD. Autophagy, which is a primary intracellular mechanism for degrading aggregated proteins and damaged organelles, plays a crucial role in AD. In this review, we summarize the most recent research progress regarding the process of autophagy and the effect of autophagy on Aβ. We further discuss some typical monomers of natural products that contribute to the clearance of Aβ by autophagy, which can alleviate AD. This provides a new perspective for the application of autophagy modulation in natural product therapy for AD.
Collapse
Affiliation(s)
- Min Hu
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, Zhejiang 310013, PR China
| | - Xinyi Ying
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, Zhejiang 310013, PR China
| | - Miao Zheng
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, Zhejiang 310013, PR China
| | - Can Wang
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, Zhejiang 310013, PR China
| | - Qin Li
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, Zhejiang 310013, PR China
| | - Lili Gu
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, Zhejiang 310013, PR China.
| | - Xinyue Zhang
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, Zhejiang 310013, PR China.
| |
Collapse
|
4
|
Liu G, Zhang S, Lin R, Cao X, Yuan L. Anti-tumor target screening of sea cucumber saponin Frondoside A: a bioinformatics and molecular docking analysis. Front Oncol 2023; 13:1307838. [PMID: 38144520 PMCID: PMC10739435 DOI: 10.3389/fonc.2023.1307838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 11/23/2023] [Indexed: 12/26/2023] Open
Abstract
Cancer remains the leading cause of death worldwide. In spite of significant advances in targeted and immunotherapeutic approaches, clinical outcomes for cancer remain poor. The aim of the present study was to investigate the potential mechanisms and therapeutic targets of Frondoside A for the treatment of liver, pancreatic, and bladder cancers. The data presented in our study demonstrated that Frondoside A reduced the viability and migration of HepG2, Panc02, and UM-UC-3 cancer cell in vitro. Moreover, we utilized the GEO database to screen and identify for differentially expressed genes (DEGs) in liver, pancreatic, and bladder cancers, which resulted in the identification of 714, 357, and 101 DEGs, respectively. Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway annotation were performed using the Metascape database for DEGs that were significantly associated with cancer development. The protein-protein interaction (PPI) networks of the identified DEGs in liver, pancreatic, and bladder cancers were analyzed using Cytoscape 3.9.0 software, and subsequently identified potential key genes that were associated with these networks. Subsequently, their prognostic values were assessed by gene expression level analysis and Kaplan-Meier survival analysis (GEPIA). Furthermore, we utilized TIMER 2.0 to investigate the correlation between the expression of the identified key gene and cancer immune infiltration. Finally, molecular docking simulations were performed to assess the affinity of Frondoside A and key genes. Our results showed a significant correlation between these DEGs and cancer progression. Combined, these analyses revealed that Frondoside A involves in the regulation of multiple pathways, such as drug metabolism, cell cycle in liver cancer by inhibiting the expression of CDK1, TOP2A, CDC20, and KIF20A, and regulates protein digestion and absorption, receptor interaction in pancreatic cancer by down-regulation of ASPM, TOP2A, DLGAP5, TPX2, KIF23, MELK, LAMA3, and ANLN. While in bladder cancer, Frondoside A regulates muscle contraction, complement and coagulation cascade by increase FLNC expression. In conclusion, the present study offers valuable insights into the molecular mechanism underlying the anticancer effects of Frondoside A, and suggests that Frondoside A can be used as a functional food supplement or further developed as a natural anti-cancer drug.
Collapse
Affiliation(s)
- Guangchun Liu
- School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Shenglin Zhang
- School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Ruoyan Lin
- School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xudong Cao
- Deparment of Chemical and Biological Engineering, University of Ottawa, Ottawa, ON, Canada
| | - Lihong Yuan
- School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
5
|
Dyshlovoy SA, Hauschild J, Venz S, Krisp C, Kolbe K, Zapf S, Heinemann S, Fita KD, Shubina LK, Makarieva TN, Guzii AG, Rohlfing T, Kaune M, Busenbender T, Mair T, Moritz M, Poverennaya EV, Schlüter H, Serdyuk V, Stonik VA, Dierlamm J, Bokemeyer C, Mohme M, Westphal M, Lamszus K, von Amsberg G, Maire CL. Rhizochalinin Exhibits Anticancer Activity and Synergizes with EGFR Inhibitors in Glioblastoma In Vitro Models. Mol Pharm 2023; 20:4994-5005. [PMID: 37733943 DOI: 10.1021/acs.molpharmaceut.3c00217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
Rhizochalinin (Rhiz) is a recently discovered cytotoxic sphingolipid synthesized from the marine natural compound rhizochalin. Previously, Rhiz demonstrated high in vitro and in vivo efficacy in various cancer models. Here, we report Rhiz to be highly active in human glioblastoma cell lines as well as in patient-derived glioma-stem like neurosphere models. Rhiz counteracted glioblastoma cell proliferation by inducing apoptosis, G2/M-phase cell cycle arrest, and inhibition of autophagy. Proteomic profiling followed by bioinformatic analysis suggested suppression of the Akt pathway as one of the major biological effects of Rhiz. Suppression of Akt as well as IGF-1R and MEK1/2 kinase was confirmed in Rhiz-treated GBM cells. In addition, Rhiz pretreatment resulted in a more pronounced inhibitory effect of γ-irradiation on the growth of patient-derived glioma-spheres, an effect to which the Akt inhibition may also contribute decisively. In contrast, EGFR upregulation, observed in all GBM neurospheres under Rhiz treatment, was postulated to be a possible sign of incipient resistance. In line with this, combinational therapy with EGFR-targeted tyrosine kinase inhibitors synergistically increased the efficacy of Rhiz resulting in dramatic inhibition of GBM cell viability as well as a significant reduction of neurosphere size in the case of combination with lapatinib. Preliminary in vitro data generated using a parallel artificial membrane permeability (PAMPA) assay suggested that Rhiz cannot cross the blood brain barrier and therefore alternative drug delivery methods should be used in the further in vivo studies. In conclusion, Rhiz is a promising new candidate for the treatment of human glioblastoma, which should be further developed in combination with EGFR inhibitors.
Collapse
Affiliation(s)
- Sergey A Dyshlovoy
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald Tumorzentrum - University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg 20251, Germany
- Laboratory of Biologically Active Compounds, Institute of Science-Intensive Technologies and Advanced Materials, Far Eastern Federal University, Vladivostok 690922, Russian Federation
| | - Jessica Hauschild
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald Tumorzentrum - University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg 20251, Germany
| | - Simone Venz
- Department of Medical Biochemistry and Molecular Biology, University of Greifswald, Greifswald 17489, Germany
- Interfacultary Institute of Genetics and Functional Genomics, Department of Functional Genomics, University of Greifswald, Greifswald 17489, Germany
| | - Christoph Krisp
- Section / Core Facility Mass Spectrometric Proteomics, Center of Diagnostics, University Medical Center Hamburg-Eppendorf, Hamburg 20251, Germany
| | - Katharina Kolbe
- Laboratory for Brain Tumor Research, Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg 20251, Germany
| | - Svenja Zapf
- Laboratory for Brain Tumor Research, Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg 20251, Germany
| | - Sarina Heinemann
- Laboratory for Brain Tumor Research, Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg 20251, Germany
| | - Krystian D Fita
- Laboratory for Brain Tumor Research, Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg 20251, Germany
| | - Larisa K Shubina
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-East Branch, Russian Academy of Sciences, Vladivostok 690022, Russian Federation
| | - Tatyana N Makarieva
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-East Branch, Russian Academy of Sciences, Vladivostok 690022, Russian Federation
| | - Alla G Guzii
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-East Branch, Russian Academy of Sciences, Vladivostok 690022, Russian Federation
| | - Tina Rohlfing
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald Tumorzentrum - University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg 20251, Germany
| | - Moritz Kaune
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald Tumorzentrum - University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg 20251, Germany
| | - Tobias Busenbender
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald Tumorzentrum - University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg 20251, Germany
| | - Thomas Mair
- Section / Core Facility Mass Spectrometric Proteomics, Center of Diagnostics, University Medical Center Hamburg-Eppendorf, Hamburg 20251, Germany
| | - Manuela Moritz
- Section / Core Facility Mass Spectrometric Proteomics, Center of Diagnostics, University Medical Center Hamburg-Eppendorf, Hamburg 20251, Germany
| | - Ekaterina V Poverennaya
- Laboratory of Proteoform Interactomics, Institute of Biomedical Chemistry, Moscow 119121, Russian Federation
| | - Hartmut Schlüter
- Section / Core Facility Mass Spectrometric Proteomics, Center of Diagnostics, University Medical Center Hamburg-Eppendorf, Hamburg 20251, Germany
| | - Volodymyr Serdyuk
- Zentrum für Molekulare Neurobiologie (ZMNH), University Medical Center Hamburg-Eppendorf, Hamburg 20251, Germany
| | - Valentin A Stonik
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-East Branch, Russian Academy of Sciences, Vladivostok 690022, Russian Federation
| | - Judith Dierlamm
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald Tumorzentrum - University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg 20251, Germany
| | - Carsten Bokemeyer
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald Tumorzentrum - University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg 20251, Germany
| | - Malte Mohme
- Laboratory for Brain Tumor Research, Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg 20251, Germany
| | - Manfred Westphal
- Laboratory for Brain Tumor Research, Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg 20251, Germany
| | - Katrin Lamszus
- Laboratory for Brain Tumor Research, Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg 20251, Germany
| | - Gunhild von Amsberg
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald Tumorzentrum - University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg 20251, Germany
- Martini-Klinik, Prostate Cancer Center, University Hospital Hamburg-Eppendorf, Hamburg 20251, Germany
| | - Cecile L Maire
- Laboratory for Brain Tumor Research, Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg 20251, Germany
| |
Collapse
|
6
|
Silchenko AS, Kalinovsky AI, Avilov SA, Popov RS, Dmitrenok PS, Chingizova EA, Menchinskaya ES, Panina EG, Stepanov VG, Kalinin VI, Stonik VA. Djakonoviosides A, A 1, A 2, B 1-B 4 - Triterpene Monosulfated Tetra- and Pentaosides from the Sea Cucumber Cucumaria djakonovi: The First Finding of a Hemiketal Fragment in the Aglycones; Activity against Human Breast Cancer Cell Lines. Int J Mol Sci 2023; 24:11128. [PMID: 37446305 DOI: 10.3390/ijms241311128] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/02/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
Seven new monosulfated triterpene glycosides, djakonoviosides A (1), A1 (2), A2 (3), and B1-B4 (4-7), along with three known glycosides found earlier in the other Cucumaria species, namely okhotoside A1-1, cucumarioside A0-1, and frondoside D, have been isolated from the far eastern sea cucumber Cucumaria djakonovi (Cucumariidae, Dendrochirotida). The structures were established on the basis of extensive analysis of 1D and 2D NMR spectra and confirmed by HR-ESI-MS data. The compounds of groups A and B differ from each other in their carbohydrate chains, namely monosulfated tetrasaccharide chains are inherent to group A and pentasaccharide chains with one sulfate group, branched by C-2 Qui2, are characteristic of group B. The aglycones of djakonoviosides A2 (3), B2 (5), and B4 (7) are characterized by a unique structural feature, a 23,16-hemiketal fragment found first in the sea cucumbers' glycosides. The biosynthetic pathway of its formation is discussed. The set of aglycones of C. djakonovi glycosides was species specific because of the presence of new aglycones. At the same time, the finding in C. djakonovi of the known glycosides isolated earlier from the other species of Cucumaria, as well as the set of carbohydrate chains characteristic of the glycosides of all investigated representatives of the genus Cucumaria, demonstrated the significance of these glycosides as chemotaxonomic markers. The membranolytic actions of compounds 1-7 and known glycosides okhotoside A1-1, cucumarioside A0-1, and frondoside D, isolated from C. djakonovi against human cell lines, including erythrocytes and breast cancer cells (MCF-7, T-47D, and triple negative MDA-MB-231), as well as leukemia HL-60 and the embryonic kidney HEK-293 cell line, have been studied. Okhotoside A1-1 was the most active compound from the series because of the presence of a tetrasaccharide linear chain and holostane aglycone with a 7(8)-double bond and 16β-O-acetoxy group, cucumarioside A0-1, having the same aglycone, was slightly less active because of the presence of branching xylose residue at C-2 Qui2. Generally, the activity of the djakonoviosides of group A was higher than that of the djakonoviosides of group B containing the same aglycones, indicating the significance of a linear chain containing four monosaccharide residues for the demonstration of membranolytic action by the glycosides. All the compounds containing hemiketal fragments, djakonovioside A2 (3), B2 (5), and B4 (7), were almost inactive. The most aggressive triple-negative MDA-MB-231 breast cancer cell line was the most sensitive to the glycosides action when compared with the other cancer cells. Okhotoside A1-1 and cucumarioside A0-1 demonstrated promising effects against MDA-MB-231 cells, significantly inhibiting the migration, as well as the formation and growth, of colonies.
Collapse
Affiliation(s)
- Alexandra S Silchenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-letya Vladivostoka 159, 690022 Vladivostok, Russia
| | - Anatoly I Kalinovsky
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-letya Vladivostoka 159, 690022 Vladivostok, Russia
| | - Sergey A Avilov
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-letya Vladivostoka 159, 690022 Vladivostok, Russia
| | - Roman S Popov
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-letya Vladivostoka 159, 690022 Vladivostok, Russia
| | - Pavel S Dmitrenok
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-letya Vladivostoka 159, 690022 Vladivostok, Russia
| | - Ekaterina A Chingizova
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-letya Vladivostoka 159, 690022 Vladivostok, Russia
| | - Ekaterina S Menchinskaya
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-letya Vladivostoka 159, 690022 Vladivostok, Russia
| | - Elena G Panina
- Kamchatka Branch of Pacific Institute of Geography, Far Eastern Branch of the Russian Academy of Sciences, Partizanskaya st. 6, 683000 Petropavlovsk-Kamchatsky, Russia
| | - Vadim G Stepanov
- Kamchatka Branch of Pacific Institute of Geography, Far Eastern Branch of the Russian Academy of Sciences, Partizanskaya st. 6, 683000 Petropavlovsk-Kamchatsky, Russia
| | - Vladimir I Kalinin
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-letya Vladivostoka 159, 690022 Vladivostok, Russia
| | - Valentin A Stonik
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-letya Vladivostoka 159, 690022 Vladivostok, Russia
| |
Collapse
|
7
|
Zhang J, Qiao W, Luo Y. Mitochondrial quality control proteases and their modulation for cancer therapy. Med Res Rev 2023; 43:399-436. [PMID: 36208112 DOI: 10.1002/med.21929] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 09/04/2022] [Accepted: 09/26/2022] [Indexed: 02/05/2023]
Abstract
Mitochondria, the main provider of energy in eukaryotic cells, contains more than 1000 different proteins and is closely related to the development of cells. However, damaged proteins impair mitochondrial function, further contributing to several human diseases. Evidence shows mitochondrial proteases are critically important for protein maintenance. Most importantly, quality control enzymes exert a crucial role in the modulation of mitochondrial functions by degrading misfolded, aged, or superfluous proteins. Interestingly, cancer cells thrive under stress conditions that damage proteins, so targeting mitochondrial quality control proteases serves as a novel regulator for cancer cells. Not only that, mitochondrial quality control proteases have been shown to affect mitochondrial dynamics by regulating the morphology of optic atrophy 1 (OPA1), which is closely related to the occurrence and progression of cancer. In this review, we introduce mitochondrial quality control proteases as promising targets and related modulators in cancer therapy with a focus on caseinolytic protease P (ClpP), Lon protease (LonP1), high-temperature requirement protein A2 (HrtA2), and OMA-1. Further, we summarize our current knowledge of the advances in clinical trials for modulators of mitochondrial quality control proteases. Overall, the content proposed above serves to suggest directions for the development of novel antitumor drugs.
Collapse
Affiliation(s)
- Jiangnan Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China
| | - Wenliang Qiao
- Lung Cancer Center, Laboratory of Lung Cancer, Western China Hospital of Sichuan University, Chengdu, China
| | - Youfu Luo
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
8
|
Zhao HM, He J, Chang YT, Liu LY, Sun F, Lin HW, Yang F. Marine Sponge-Derived Alkaloid Induces Mitochondrial Dysfunction and Inhibits the PI3K/AKT/mTOR Signaling Pathway against Burkitt's Lymphoma. JOURNAL OF NATURAL PRODUCTS 2023; 86:45-51. [PMID: 36524671 DOI: 10.1021/acs.jnatprod.2c00673] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Burkitt's lymphoma (BL) has a particularly extremely poor prognosis and the fastest growth rate among human tumors, and the development of new drugs for the treatment of BL is urgently needed. In this study, the cytotoxic properties of 3,7-bis(3,5-dimethylphenyl)-aaptamine (AP-51), a new semisynthetic alkaloid derived from the marine natural product aapatamine, were investigated using BL cell lines. Our results showed that AP-51 inhibited the proliferation of Daudi and Raji cells with IC50 values of 3.48 and 2.07 μM, respectively. Flow cytometry and Western blot analyses showed that AP-51 initiated G0/G1 phase arrest by modulating the expression of cyclin-dependent kinases (CDKs). AP-51 also induced apoptosis, as demonstrated by nuclear fragmentation, downregulation of BCL-XL and Mcl-1, and upregulation of cleaved caspase-9, cleaved caspase-3, cleaved-PARP, and cytochrome c, the markers of apoptosis regulated via the mitochondrial pathway. When it comes to mitochondria, AP-51 treatment also significantly increased the levels of intracellular mitochondrial superoxide, decreased ATP content, and reduced the expression of ATP synthase, as well as the expression of the mitochondrial respiratory chain complexes. Finally, AP-51 treatment significantly inhibited the PI3K/AKT/mTOR signaling pathway, which was shown to be associated with the induction of apoptosis. Collectively, these findings indicated that AP-51 initiated cell cycle arrest, induced apoptosis, caused mitochondrial dysfunction, and decreased the phosphorylation of PI3K/AKT/mTOR signaling pathway-related proteins and the protein levels of C-MYC, suggesting that AP-51 has therapeutic potential as a possible treatment for Burkitt's lymphoma.
Collapse
Affiliation(s)
- Hui-Min Zhao
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai 200127, People's Republic of China
| | - Jing He
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai 200127, People's Republic of China
| | - Yung-Ting Chang
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai 200127, People's Republic of China
| | - Li-Yun Liu
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai 200127, People's Republic of China
| | - Fan Sun
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai 200127, People's Republic of China
| | - Hou-Wen Lin
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai 200127, People's Republic of China
| | - Fan Yang
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai 200127, People's Republic of China
| |
Collapse
|
9
|
Ru R, Chen G, Liang X, Cao X, Yuan L, Meng M. Sea Cucumber Derived Triterpenoid Glycoside Frondoside A: A Potential Anti-Bladder Cancer Drug. Nutrients 2023; 15:nu15020378. [PMID: 36678249 PMCID: PMC9861588 DOI: 10.3390/nu15020378] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/23/2022] [Accepted: 12/28/2022] [Indexed: 01/15/2023] Open
Abstract
Bladder cancer is a highly recurrent disease and a common cause of cancer-related deaths worldwide. Despite recent developments in diagnosis and therapy, the clinical outcome of bladder cancer remains poor; therefore, novel anti-bladder cancer drugs are urgently needed. Natural bioactive substances extracted from marine organisms such as sea cucumbers, scallops, and sea urchins are believed to have anti-cancer activity with high effectiveness and less toxicity. Frondoside A is a triterpenoid glycoside isolated from sea cucumber, Cucumaria frondosa. It has been demonstrated that Frondoside A exhibits anti-proliferative, anti-invasive, anti-angiogenic, anti-cancer, and potent immunomodulatory effects. In addition, CpG oligodeoxynucleotide (CpG-ODN) has also been shown to have potent anti-cancer effects in various tumors models, such as liver cancer, breast cancer, and bladder cancer. However, very few studies have investigated the effectiveness of Frondoside A against bladder cancer alone or in combination with CpG-ODN. In this study, we first investigated the individual effects of both Frondoside A and CpG-ODN and subsequently studied their combined effects on human bladder cancer cell viability, migration, apoptosis, and cell cycle in vitro, and on tumor growth in nude mice using human bladder cancer cell line UM-UC-3. To interrogate possible synergistic effects, combinations of different concentrations of the two drugs were used. Our data showed that Frondoside A decreased the viability of bladder cancer cells UM-UC-3 in a concentration-dependent manner, and its inhibitory effect on cell viability (2.5 μM) was superior to EPI (10 μM). We also showed that Frondoside A inhibited UM-UC-3 cell migration, affected the distribution of cell cycle and induced cell apoptosis in concentration-dependent manners, which effectively increased the sub-G1 (apoptotic) cell fraction. In addition, we also demonstrated that immunomodulator CpG-ODN could synergistically potentiate the inhibitory effects of Frondoside A on the proliferation and migration of human bladder cancer cell line UM-UC-3. In in vivo experiments, Frondoside A (800 μg/kg/day i.p. for 14 days) alone and in combination with CpG-ODN (1 mg/kg/dose i.p.) significantly decreased the growth of UM-UC-3 tumor xenografts, without any significant toxic side-effects; however, the chemotherapeutic agent EPI caused weight loss in nude mice. Taken together, these findings indicated that Frondoside A in combination with CpG-ODN is a promising therapeutic strategy for bladder cancer.
Collapse
Affiliation(s)
- Ruizhen Ru
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Gengzhan Chen
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Xiaoxia Liang
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Xudong Cao
- Department of Chemical and Biological Engineering, University of Ottawa, Ottawa, ON K1N6N5, Canada
| | - Lihong Yuan
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Correspondence: (L.Y.); (M.M.); Tel.: +86-020-39352201 (L.Y. & M.M.)
| | - Minjie Meng
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Correspondence: (L.Y.); (M.M.); Tel.: +86-020-39352201 (L.Y. & M.M.)
| |
Collapse
|
10
|
von Amsberg G, Zilles M, Mansour W, Gild P, Alsdorf W, Kaune M, Böckelmann L, Hauschild J, Krisp C, Rohlfing T, Saygi C, Alawi M, Zielinski A, Langebrake C, Oh-Hohenhorst SJ, Perner S, Tilki D, Schlüter H, Graefen M, Dyshlovoy SA, Bokemeyer C. Salvage Chemotherapy with Cisplatin, Ifosfamide, and Paclitaxel in Aggressive Variant of Metastatic Castration-Resistant Prostate Cancer. Int J Mol Sci 2022; 23:ijms232314948. [PMID: 36499277 PMCID: PMC9738104 DOI: 10.3390/ijms232314948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/12/2022] [Accepted: 11/24/2022] [Indexed: 12/05/2022] Open
Abstract
Significant progress has been achieved in the treatment of metastatic castration-resistant prostate cancer (mCRPC). However, results in patients with aggressive variant prostate cancer (AVPC) have been disappointing. Here, we report retrospectively collected data from intensively pretreated AVPC patients (n = 17; 88.2% visceral metastases; 82% elevation of neuroendocrine markers) treated with salvage chemotherapy consisting of cisplatin, ifosfamide, and paclitaxel (TIP). At the interim analysis, 60% of patients showed radiographic response or stable disease (PFS = 2.5 months; OS = 6 months). In men who responded to chemotherapy, an OS > 15 months was observed. Preclinical analyses confirmed the high activity of the TIP regimen, especially in docetaxel-resistant prostate cancer cells. This effect was primarily mediated by increased cisplatin sensitivity in the emergence of taxane resistance. Proteomic and functional analyses identified a lower DNA repair capacity and cell cycle machinery deficiency to be causative. In contrast, paclitaxel showed inconsistent effects, partially antagonizing cisplatin and ifosfamide in some AVPC models. Consequently, paclitaxel has been excluded from the TIP combination for future patients. In summary, we report for the first time the promising efficacy of TIP as salvage therapy in AVPC. Our preclinical data indicate a pivotal role for cisplatin in overcoming docetaxel resistance.
Collapse
Affiliation(s)
- Gunhild von Amsberg
- Department of Oncology, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- Martini-Klinik Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- Correspondence: ; Tel.: +49-179-5137710
| | - Mirjam Zilles
- Department of Oncology, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Wael Mansour
- Department of Radiotherapy and Radiooncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- Mildred Scheel Cancer Career Center HaTriCS4, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Philipp Gild
- Department of Urology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Winfried Alsdorf
- Department of Oncology, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Moritz Kaune
- Department of Oncology, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Lukas Böckelmann
- Department of Oncology, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Jessica Hauschild
- Department of Oncology, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- Martini-Klinik Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Christoph Krisp
- Institute of Clinical Chemistry and Laboratory Medicine, Section Mass Spectrometry and Proteomics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Tina Rohlfing
- Department of Oncology, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Ceren Saygi
- Bioinformatics Core, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Malik Alawi
- Bioinformatics Core, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Alexandra Zielinski
- Department of Radiotherapy and Radiooncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Claudia Langebrake
- Pharmacy, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Su Jung Oh-Hohenhorst
- Martini-Klinik Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- Department of Urology, Centre Hospitalier de l’Université de Montreal (CHUM)/Centre de recherche du CHUM, Montreal, QC 3840, Canada
| | - Sven Perner
- Institute of Pathology, University of Lübeck and University Hospital Schleswig-Holstein, Campus Lübeck, 23562 Lübeck, Germany
- Pathology, Research Center Borstel, Leibniz Lung Center, 23845 Borstel, Germany
- German Center for Lung Research (DZL), 35392 Gießen, Germany
| | - Derya Tilki
- Martini-Klinik Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- Department of Urology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Hartmut Schlüter
- Institute of Clinical Chemistry and Laboratory Medicine, Section Mass Spectrometry and Proteomics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Markus Graefen
- Martini-Klinik Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Sergey A. Dyshlovoy
- Department of Oncology, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- Martini-Klinik Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Carsten Bokemeyer
- Department of Oncology, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| |
Collapse
|
11
|
Potential role of Marine Bioactive Compounds targeting signaling pathways in cancer: A review. Eur J Pharmacol 2022; 936:175330. [DOI: 10.1016/j.ejphar.2022.175330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 11/23/2022]
|
12
|
Zhou Y, Farooqi AA, Xu B. Comprehensive review on signaling pathways of dietary saponins in cancer cells suppression. Crit Rev Food Sci Nutr 2021:1-26. [PMID: 34751072 DOI: 10.1080/10408398.2021.2000933] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Nutrigenomics utilizes high-throughput genomic technologies to reveal changes in gene and protein levels. Excitingly, ever-growing body of scientific findings has provided sufficient evidence about the interplay between diet and genes. Cutting-edge research and advancements in genomics, epigenetics and metabolomics have deepened our understanding on the role of dietary factors in the inhibition of carcinogenesis and metastasis. Dietary saponins, a type of triterpene glycosides, are generally found in Platycodon grandifloras, Dioscorea oppositifolia, asparagus, legumes, and sea cucumber. Wealth of information has started to shed light on pleiotropic mechanistic roles of dietary saponins in cancer prevention and inhibition. In this review, we have attempted to summarize the in vitro research of dietary saponins in the last two decades by searching common databases such as Google Scholar, PubMed, Scopus, and Web of Science. The results showed that dietary saponins exerted anti-cancer activities via regulation of apoptosis, autophagy, arrest cell cycle, anti-proliferation, anti-metastasis, and anti-angiogenesis, by regulation of several critical signaling pathways, including MAPK, PI3K/Akt/mTOR, NF-κB, and VEGF/VEGFR. However, there is no data about the dosage of dietary saponins for practical anti-cancer effects in human bodies. Extensive clinical studies are needed to confirm the effectiveness of dietary saponins for further commercial and medical applications.
Collapse
Affiliation(s)
- Yifan Zhou
- Food Science and Technology Program, BNU-HKBU United International College, Zhuhai, Guangdong, China.,Department of Food Science and Technology, National University of Singapore, Singapore, Singapore
| | | | - Baojun Xu
- Food Science and Technology Program, BNU-HKBU United International College, Zhuhai, Guangdong, China
| |
Collapse
|
13
|
Dyshlovoy SA, Pelageev DN, Jakob LS, Borisova KL, Hauschild J, Busenbender T, Kaune M, Khmelevskaya EA, Graefen M, Bokemeyer C, Anufriev VP, von Amsberg G. Activity of New Synthetic (2-Chloroethylthio)-1,4-naphthoquinones in Prostate Cancer Cells. Pharmaceuticals (Basel) 2021; 14:ph14100949. [PMID: 34681173 PMCID: PMC8540265 DOI: 10.3390/ph14100949] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/14/2021] [Accepted: 09/16/2021] [Indexed: 12/14/2022] Open
Abstract
Development of resistance to currently available standard therapies in advanced prostate cancer (PCa) emphasizes the need for novel therapeutic options. Here, we report the synthesis of new hybrid molecules consisting of 2-chloroethylthio and 1,4-naphthoquinone pharmacophores and describe their activity in PCa. In screening analyses, the introduction of one 2-chloroethylthio group improved the anticancer properties of 1,4-naphthoquinones, whereas the introduction of a second 2-chloroethylthio moiety rather decreased activity. Two most promising of the synthesized compounds, 30 and 32, were highly active in different human PCa cell lines harboring varying resistance profiles at nanomolar concentrations. The generated data suggest that the compounds are capable of mitochondria targeting, cytotoxic ROS induction, and DNA damage, which resulted in apoptosis presumably executed in a caspase-dependent manner. The substances synergized with the clinically approved PARP inhibitor olaparib and resensitized AR-V7-expressing PCa cells to antiandrogen enzalutamide, as well as to a combination of enzalutamide and an AKT inhibitor. This was at least in part exerted via down-regulation of AR-V7 expression and inhibition of AR signaling. Mild antagonism was observed in combination with platinum- or taxane-based chemotherapy, which was putatively related to treatment-induced activation of p38, JNK1/2, ERK1/2, MEK1/2, and AKT, functioning as potential pro-survival factors. Thus, the synthesized (2-chloroethylthio)-1,4-naphthoquinone derivatives exhibit promising anticancer properties in vitro, suggesting their further development as potential therapeutics for the treatment of castration-resistant PCa.
Collapse
Affiliation(s)
- Sergey A. Dyshlovoy
- Laboratory of Experimental Oncology, Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald-Tumorzentrum, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20251 Hamburg, Germany; (L.S.J.); (J.H.); (T.B.); (M.K.); (C.B.); (G.v.A.)
- Martini-Klinik, Prostate Cancer Center, University Hospital Hamburg-Eppendorf, Martinistrasse 52, 20251 Hamburg, Germany;
- School of Natural Sciences, FEFU Campus, Far Eastern Federal University, Ajax Bay 10, Russky Island, 690922 Vladivostok, Russia; (D.N.P.); (E.A.K.)
- Correspondence: or ; Tel.: +49-40-7410-51950
| | - Dmitry N. Pelageev
- School of Natural Sciences, FEFU Campus, Far Eastern Federal University, Ajax Bay 10, Russky Island, 690922 Vladivostok, Russia; (D.N.P.); (E.A.K.)
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-East Branch, Russian Academy of Sciences, 690022 Vladivostok, Russia; (K.L.B.); (V.P.A.)
| | - Lea S. Jakob
- Laboratory of Experimental Oncology, Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald-Tumorzentrum, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20251 Hamburg, Germany; (L.S.J.); (J.H.); (T.B.); (M.K.); (C.B.); (G.v.A.)
| | - Ksenia L. Borisova
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-East Branch, Russian Academy of Sciences, 690022 Vladivostok, Russia; (K.L.B.); (V.P.A.)
| | - Jessica Hauschild
- Laboratory of Experimental Oncology, Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald-Tumorzentrum, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20251 Hamburg, Germany; (L.S.J.); (J.H.); (T.B.); (M.K.); (C.B.); (G.v.A.)
| | - Tobias Busenbender
- Laboratory of Experimental Oncology, Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald-Tumorzentrum, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20251 Hamburg, Germany; (L.S.J.); (J.H.); (T.B.); (M.K.); (C.B.); (G.v.A.)
| | - Moritz Kaune
- Laboratory of Experimental Oncology, Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald-Tumorzentrum, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20251 Hamburg, Germany; (L.S.J.); (J.H.); (T.B.); (M.K.); (C.B.); (G.v.A.)
| | - Ekaterina A. Khmelevskaya
- School of Natural Sciences, FEFU Campus, Far Eastern Federal University, Ajax Bay 10, Russky Island, 690922 Vladivostok, Russia; (D.N.P.); (E.A.K.)
| | - Markus Graefen
- Martini-Klinik, Prostate Cancer Center, University Hospital Hamburg-Eppendorf, Martinistrasse 52, 20251 Hamburg, Germany;
| | - Carsten Bokemeyer
- Laboratory of Experimental Oncology, Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald-Tumorzentrum, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20251 Hamburg, Germany; (L.S.J.); (J.H.); (T.B.); (M.K.); (C.B.); (G.v.A.)
| | - Victor Ph. Anufriev
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-East Branch, Russian Academy of Sciences, 690022 Vladivostok, Russia; (K.L.B.); (V.P.A.)
| | - Gunhild von Amsberg
- Laboratory of Experimental Oncology, Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald-Tumorzentrum, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20251 Hamburg, Germany; (L.S.J.); (J.H.); (T.B.); (M.K.); (C.B.); (G.v.A.)
- Martini-Klinik, Prostate Cancer Center, University Hospital Hamburg-Eppendorf, Martinistrasse 52, 20251 Hamburg, Germany;
| |
Collapse
|
14
|
Natural Products Targeting the Mitochondria in Cancers. Molecules 2020; 26:molecules26010092. [PMID: 33379233 PMCID: PMC7795732 DOI: 10.3390/molecules26010092] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/23/2020] [Accepted: 12/25/2020] [Indexed: 12/13/2022] Open
Abstract
There are abundant sources of anticancer drugs in nature that have a broad prospect in anticancer drug discovery. Natural compounds, with biological activities extracted from plants and marine and microbial metabolites, have significant antitumor effects, but their mechanisms are various. In addition to providing energy to cells, mitochondria are involved in processes, such as cell differentiation, cell signaling, and cell apoptosis, and they have the ability to regulate cell growth and cell cycle. Summing up recent data on how natural products regulate mitochondria is valuable for the development of anticancer drugs. This review focuses on natural products that have shown antitumor effects via regulating mitochondria. The search was done in PubMed, Web of Science, and Google Scholar databases, over a 5-year period, between 2015 and 2020, with a keyword search that focused on natural products, natural compounds, phytomedicine, Chinese medicine, antitumor, and mitochondria. Many natural products have been studied to have antitumor effects on different cells and can be further processed into useful drugs to treat cancer. In the process of searching for valuable new drugs, natural products such as terpenoids, flavonoids, saponins, alkaloids, coumarins, and quinones cover the broad space.
Collapse
|
15
|
Dyshlovoy SA, Kaune M, Hauschild J, Kriegs M, Hoffer K, Busenbender T, Smirnova PA, Zhidkov ME, Poverennaya EV, Oh-Hohenhorst SJ, Spirin PV, Prassolov VS, Tilki D, Bokemeyer C, Graefen M, von Amsberg G. Efficacy and Mechanism of Action of Marine Alkaloid 3,10-Dibromofascaplysin in Drug-Resistant Prostate Cancer Cells. Mar Drugs 2020; 18:md18120609. [PMID: 33271756 PMCID: PMC7761490 DOI: 10.3390/md18120609] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 11/24/2020] [Accepted: 11/27/2020] [Indexed: 12/12/2022] Open
Abstract
Efficacy and mechanism of action of marine alkaloid 3,10-dibromofascaplysin (DBF) were investigated in human prostate cancer (PCa) cells harboring different levels of drug resistance. Anticancer activity was observed across all cell lines examined without signs of cross-resistance to androgen receptor targeting agents (ARTA) or taxane based chemotherapy. Kinome analysis followed by functional investigation identified JNK1/2 to be one of the molecular targets of DBF in 22Rv1 cells. In contrast, no activation of p38 and ERK1/2 MAPKs was observed. Inhibition of the drug-induced JNK1/2 activation or of the basal p38 activity resulted in increased cytotoxicity of DBF, whereas an active ERK1/2 was identified to be important for anticancer activity of the alkaloid. Synergistic effects of DBF were observed in combination with PARP-inhibitor olaparib most likely due to the induction of ROS production by the marine alkaloid. In addition, DBF intensified effects of platinum-based drugs cisplatin and carboplatin, and taxane derivatives docetaxel and cabazitaxel. Finally, DBF inhibited AR-signaling and resensitized AR-V7-positive 22Rv1 prostate cancer cells to enzalutamide, presumably due to AR-V7 down-regulation. These findings propose DBF to be a promising novel drug candidate for the treatment of human PCa regardless of resistance to standard therapy.
Collapse
Affiliation(s)
- Sergey A. Dyshlovoy
- Laboratory of Experimental Oncology, Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald-Tumorzentrum, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20251 Hamburg, Germany; (M.K.); (J.H.); (T.B.); (C.B.); (G.v.A.)
- Laboratory of Pharmacology, A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Palchevskogo str. 17, 690041 Vladivostok, Russian
- Martini-Klinik, Prostate Cancer Center, University Hospital Hamburg-Eppendorf, Martinistrasse 52, 20251 Hamburg, Germany; (S.J.O.-H.); (D.T.); (M.G.)
- School of Natural Sciences, Far Eastern Federal University, FEFU Campus, Ajax Bay 10, Russky Island, 690922 Vladivostok, Russian; (P.A.S.); (M.E.Z.)
- Correspondence:
| | - Moritz Kaune
- Laboratory of Experimental Oncology, Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald-Tumorzentrum, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20251 Hamburg, Germany; (M.K.); (J.H.); (T.B.); (C.B.); (G.v.A.)
| | - Jessica Hauschild
- Laboratory of Experimental Oncology, Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald-Tumorzentrum, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20251 Hamburg, Germany; (M.K.); (J.H.); (T.B.); (C.B.); (G.v.A.)
| | - Malte Kriegs
- Department of Radiotherapy & Radiation Oncology, Hubertus Wald Tumorzentrum–University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20251 Hamburg, Germany; (M.K.); (K.H.)
- UCCH Kinomics Core Facility, Hubertus Wald Tumorzentrum–University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20251 Hamburg, Germany
| | - Konstantin Hoffer
- Department of Radiotherapy & Radiation Oncology, Hubertus Wald Tumorzentrum–University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20251 Hamburg, Germany; (M.K.); (K.H.)
- UCCH Kinomics Core Facility, Hubertus Wald Tumorzentrum–University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20251 Hamburg, Germany
| | - Tobias Busenbender
- Laboratory of Experimental Oncology, Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald-Tumorzentrum, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20251 Hamburg, Germany; (M.K.); (J.H.); (T.B.); (C.B.); (G.v.A.)
| | - Polina A. Smirnova
- School of Natural Sciences, Far Eastern Federal University, FEFU Campus, Ajax Bay 10, Russky Island, 690922 Vladivostok, Russian; (P.A.S.); (M.E.Z.)
| | - Maxim E. Zhidkov
- School of Natural Sciences, Far Eastern Federal University, FEFU Campus, Ajax Bay 10, Russky Island, 690922 Vladivostok, Russian; (P.A.S.); (M.E.Z.)
| | - Ekaterina V. Poverennaya
- Laboratory of Proteoform Interactomics, Institute of Biomedical Chemistry, Pogodinskaya str. 10/8, 119121 Moscow, Russian;
| | - Su Jung Oh-Hohenhorst
- Martini-Klinik, Prostate Cancer Center, University Hospital Hamburg-Eppendorf, Martinistrasse 52, 20251 Hamburg, Germany; (S.J.O.-H.); (D.T.); (M.G.)
- Institute of Anatomy and Experimental Morphology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Pavel V. Spirin
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova 32, 119991 Moscow, Russian; (P.V.S.); (V.S.P.)
| | - Vladimir S. Prassolov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova 32, 119991 Moscow, Russian; (P.V.S.); (V.S.P.)
| | - Derya Tilki
- Martini-Klinik, Prostate Cancer Center, University Hospital Hamburg-Eppendorf, Martinistrasse 52, 20251 Hamburg, Germany; (S.J.O.-H.); (D.T.); (M.G.)
- Department of Urology, University Hospital Hamburg-Eppendorf, Martinistrasse 52, 20251 Hamburg, Germany
| | - Carsten Bokemeyer
- Laboratory of Experimental Oncology, Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald-Tumorzentrum, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20251 Hamburg, Germany; (M.K.); (J.H.); (T.B.); (C.B.); (G.v.A.)
| | - Markus Graefen
- Martini-Klinik, Prostate Cancer Center, University Hospital Hamburg-Eppendorf, Martinistrasse 52, 20251 Hamburg, Germany; (S.J.O.-H.); (D.T.); (M.G.)
| | - Gunhild von Amsberg
- Laboratory of Experimental Oncology, Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald-Tumorzentrum, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20251 Hamburg, Germany; (M.K.); (J.H.); (T.B.); (C.B.); (G.v.A.)
- Martini-Klinik, Prostate Cancer Center, University Hospital Hamburg-Eppendorf, Martinistrasse 52, 20251 Hamburg, Germany; (S.J.O.-H.); (D.T.); (M.G.)
| |
Collapse
|
16
|
Dyshlovoy SA. Blue-Print Autophagy in 2020: A Critical Review. Mar Drugs 2020; 18:md18090482. [PMID: 32967369 PMCID: PMC7551687 DOI: 10.3390/md18090482] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/15/2020] [Accepted: 09/17/2020] [Indexed: 12/13/2022] Open
Abstract
Autophagy is an elegant and complex biological process that has recently attracted much attention from the scientific community. The compounds which are capable of control and modulation of this process have a promising potential as therapeutics for a number of pathological conditions, including cancer and neurodegenerative disorders. At the same time, due to the relatively young age of the field, there are still some pitfalls in the autophagy monitoring assays and interpretation of the experimental data. This critical review provides an overview of the marine natural compounds, which have been reported to affect autophagy. The time period from the beginning of 2016 to the middle of 2020 is covered. Additionally, the published data and conclusions based on the experimental results are re-analyzed with regard to the guidelines developed by Klionsky and colleagues (Autophagy. 2016; 12(1): 1–222), which are widely accepted by the autophagy research community. Remarkably and surprisingly, more than half of the compounds reported to be autophagy activators or inhibitors could not ultimately be assigned to either category. The experimental data reported for those substances could indicate both autophagy activation and inhibition, requiring further investigation. Thus, the reviewed molecules were divided into two groups: having validated and non-validated autophagy modulatory effects. This review gives an analysis of the recent updates in the field and raises an important problem of standardization in the experimental design and data interpretation.
Collapse
Affiliation(s)
- Sergey A Dyshlovoy
- Laboratory of Pharmacology, A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, 690041 Vladivostok, Russia
| |
Collapse
|
17
|
Review of Natural Compounds for the Management and Prevention of Lymphoma. Processes (Basel) 2020. [DOI: 10.3390/pr8091164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Lymphoma is a type of blood cancer that can be categorized into two types-Hodgkin lymphoma (HL) and Non-Hodgkin lymphoma (NHL). A total of 509,590 and 79,990 cases of NHL and HL were newly diagnosed in 2018, respectively. Although conventional therapy has stridden forward over recent decades, its adverse effects are still a hurdle to be solved. Thus, to help researchers develop better lymphoma treatment, this study aims to review the systematic anticancer data for natural products and their compounds. A variety of natural products showed anticancerous effects on lymphoma by regulation of intracellular mechanisms including apoptosis as well as cell cycle arrest. As these results shed light on the potential to substitute conventional therapy with natural products, it may become a promising strategy for lymphoma treatment in the near future.
Collapse
|
18
|
Marine alkaloid monanchoxymycalin C: a new specific activator of JNK1/2 kinase with anticancer properties. Sci Rep 2020; 10:13178. [PMID: 32764580 PMCID: PMC7411023 DOI: 10.1038/s41598-020-69751-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 07/16/2020] [Indexed: 12/22/2022] Open
Abstract
Monanchoxymycalin C (MomC) is a new marine pentacyclic guanidine alkaloid, recently isolated from marine sponge Monanchora pulchra by us. Here, anticancer activity and mechanism of action was investigated for the first time using a human prostate cancer (PCa) model. MomC was active in all PCa cell lines at low micromolar concentrations and induced an unusual caspase-independent, non-apoptotic cell death. Kinase activity screening identified activation of mitogen-activated protein kinase (MAPK) c-Jun N-terminal protein kinase (JNK1/2) to be one of the primary molecular mechanism of MomC anticancer activity. Functional assays demonstrated a specific and selective JNK1/2 activation prior to the induction of other cell death related processes. Inhibition of JNK1/2 by pretreatment with the JNK-inhibitor SP600125 antagonized cytotoxic activity of the marine compound. MomC caused an upregulation of cytotoxic ROS. However, in contrast to other ROS-inducing agents, co-treatment with PARP-inhibitor olaparib revealed antagonistic effects indicating an active PARP to be necessary for MomC activity. Interestingly, although no direct regulation of p38 and ERK1/2 were detected, active p38 kinase was required for MomC efficacy, while the inhibition of ERK1/2 increased its cytotoxicity. In conclusion, MomC shows promising activity against PCa, which is exerted via JNK1/2 activation and non-apoptotic cell death.
Collapse
|
19
|
Dyshlovoy SA, Pelageev DN, Hauschild J, Sabutskii YE, Khmelevskaya EA, Krisp C, Kaune M, Venz S, Borisova KL, Busenbender T, Denisenko VA, Schlüter H, Bokemeyer C, Graefen M, Polonik SG, Anufriev VP, von Amsberg G. Inspired by Sea Urchins: Warburg Effect Mediated Selectivity of Novel Synthetic Non-Glycoside 1,4-Naphthoquinone-6S-Glucose Conjugates in Prostate Cancer. Mar Drugs 2020; 18:md18050251. [PMID: 32403427 PMCID: PMC7281150 DOI: 10.3390/md18050251] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/03/2020] [Accepted: 05/05/2020] [Indexed: 02/07/2023] Open
Abstract
The phenomenon of high sugar consumption by tumor cells is known as Warburg effect. It results from a high glycolysis rate, used by tumors as preferred metabolic pathway even in aerobic conditions. Targeting the Warburg effect to specifically deliver sugar conjugated cytotoxic compounds into tumor cells is a promising approach to create new selective drugs. We designed, synthesized, and analyzed a library of novel 6-S-(1,4-naphthoquinone-2-yl)-d-glucose chimera molecules (SABs)—novel sugar conjugates of 1,4-naphthoquinone analogs of the sea urchin pigments spinochromes, which have previously shown anticancer properties. A sulfur linker (thioether bond) was used to prevent potential hydrolysis by human glycoside-unspecific enzymes. The synthesized compounds exhibited a Warburg effect mediated selectivity to human prostate cancer cells (including highly drug-resistant cell lines). Mitochondria were identified as a primary cellular target of SABs. The mechanism of action included mitochondria membrane permeabilization, followed by ROS upregulation and release of cytotoxic mitochondrial proteins (AIF and cytochrome C) to the cytoplasm, which led to the consequent caspase-9 and -3 activation, PARP cleavage, and apoptosis-like cell death. These results enable us to further clinically develop these compounds for effective Warburg effect targeting.
Collapse
Affiliation(s)
- Sergey A. Dyshlovoy
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald-Tumorzentrum, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (J.H.); (M.K.); (T.B.); (C.B.); (G.v.A.)
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-East Branch, Russian Academy of Sciences, 690022 Vladivostok, Russia; (D.N.P.); (Y.E.S.); (E.A.K.); (K.L.B.); (V.A.D.); (S.G.P.); (V.P.A.)
- School of Natural Sciences, Far Eastern Federal University, 690091 Vladivostok, Russia
- Martini-Klinik, Prostate Cancer Center, University Hospital Hamburg-Eppendorf, 20251 Hamburg, Germany;
- Correspondence: or ; Tel.: +4940-7410-53591
| | - Dmitry N. Pelageev
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-East Branch, Russian Academy of Sciences, 690022 Vladivostok, Russia; (D.N.P.); (Y.E.S.); (E.A.K.); (K.L.B.); (V.A.D.); (S.G.P.); (V.P.A.)
- School of Natural Sciences, Far Eastern Federal University, 690091 Vladivostok, Russia
| | - Jessica Hauschild
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald-Tumorzentrum, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (J.H.); (M.K.); (T.B.); (C.B.); (G.v.A.)
| | - Yurii E. Sabutskii
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-East Branch, Russian Academy of Sciences, 690022 Vladivostok, Russia; (D.N.P.); (Y.E.S.); (E.A.K.); (K.L.B.); (V.A.D.); (S.G.P.); (V.P.A.)
| | - Ekaterina A. Khmelevskaya
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-East Branch, Russian Academy of Sciences, 690022 Vladivostok, Russia; (D.N.P.); (Y.E.S.); (E.A.K.); (K.L.B.); (V.A.D.); (S.G.P.); (V.P.A.)
- School of Natural Sciences, Far Eastern Federal University, 690091 Vladivostok, Russia
| | - Christoph Krisp
- Institute of Clinical Chemistry and Laboratory Medicine, Mass Spectrometric Proteomics, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (C.K.); (H.S.)
| | - Moritz Kaune
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald-Tumorzentrum, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (J.H.); (M.K.); (T.B.); (C.B.); (G.v.A.)
| | - Simone Venz
- Department of Medical Biochemistry and Molecular Biology, University of Greifswald, 17489 Greifswald, Germany;
- Interfacultary Institute of Genetics and Functional Genomics, Department of Functional Genomics, University of Greifswald, 17489 Greifswald, Germany
| | - Ksenia L. Borisova
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-East Branch, Russian Academy of Sciences, 690022 Vladivostok, Russia; (D.N.P.); (Y.E.S.); (E.A.K.); (K.L.B.); (V.A.D.); (S.G.P.); (V.P.A.)
| | - Tobias Busenbender
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald-Tumorzentrum, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (J.H.); (M.K.); (T.B.); (C.B.); (G.v.A.)
| | - Vladimir A. Denisenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-East Branch, Russian Academy of Sciences, 690022 Vladivostok, Russia; (D.N.P.); (Y.E.S.); (E.A.K.); (K.L.B.); (V.A.D.); (S.G.P.); (V.P.A.)
| | - Hartmut Schlüter
- Institute of Clinical Chemistry and Laboratory Medicine, Mass Spectrometric Proteomics, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (C.K.); (H.S.)
| | - Carsten Bokemeyer
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald-Tumorzentrum, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (J.H.); (M.K.); (T.B.); (C.B.); (G.v.A.)
| | - Markus Graefen
- Martini-Klinik, Prostate Cancer Center, University Hospital Hamburg-Eppendorf, 20251 Hamburg, Germany;
| | - Sergey G. Polonik
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-East Branch, Russian Academy of Sciences, 690022 Vladivostok, Russia; (D.N.P.); (Y.E.S.); (E.A.K.); (K.L.B.); (V.A.D.); (S.G.P.); (V.P.A.)
| | - Victor Ph. Anufriev
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-East Branch, Russian Academy of Sciences, 690022 Vladivostok, Russia; (D.N.P.); (Y.E.S.); (E.A.K.); (K.L.B.); (V.A.D.); (S.G.P.); (V.P.A.)
| | - Gunhild von Amsberg
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald-Tumorzentrum, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (J.H.); (M.K.); (T.B.); (C.B.); (G.v.A.)
- Martini-Klinik, Prostate Cancer Center, University Hospital Hamburg-Eppendorf, 20251 Hamburg, Germany;
| |
Collapse
|
20
|
The Marine-Derived Triterpenoid Frondoside A Inhibits Thrombus Formation. Mar Drugs 2020; 18:md18020111. [PMID: 32074969 PMCID: PMC7074411 DOI: 10.3390/md18020111] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 02/10/2020] [Accepted: 02/11/2020] [Indexed: 12/20/2022] Open
Abstract
Background: The marine-derived triterpenoid frondoside A inhibits the phosphatidylinositol-3-kinase (PI3K) pathway in cancer cells. Because this pathway is also crucially involved in platelet activation, we studied the effect of frondoside A on thrombus formation. Methods: Frondoside A effects on platelet viability, surface adhesion molecule expression, and intracellular signaling were analyzed by flow cytometry and Western blot. The effect of frondoside A was analyzed by photochemically induced thrombus formation in the mouse dorsal skinfold chamber model and by tail vein bleeding. Results: Concentrations of up to 15 µM frondoside A did not affect the viability of platelets, but reduced their surface expression of P-selectin (CD62P) and the activation of glycoprotein (GP)IIb/IIIa after agonist stimulation. Additional mechanistic analyses revealed that this was mediated by downregulation of PI3K-dependent Akt and extracellular-stimuli-responsive kinase (ERK) phosphorylation. Frondoside A significantly prolonged the complete vessel occlusion time in the mouse dorsal skinfold chamber model of photochemically induced thrombus formation and also the tail vein bleeding time when compared to vehicle-treated controls. Conclusion: Our findings demonstrated that frondoside A inhibits agonist-induced CD62P expression and activation of GPIIb/IIIa. Moreover, frondoside A suppresses thrombus formation. Therefore, this marine-derived triterpenoid may serve as a lead compound for the development of novel antithrombotic drugs.
Collapse
|
21
|
Ye J, Wang Y, Wang Z, Liu L, Yang Z, Ye D, Wang M, Xu Y, Zhang J, Zhao M, Liu J, Lin Y, Ji Q, Wan J. Interleukin-12p35 deficiency enhances mitochondrial dysfunction and aggravates cardiac remodeling in aging mice. Aging (Albany NY) 2020; 12:193-203. [PMID: 31901899 PMCID: PMC6977681 DOI: 10.18632/aging.102609] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 12/05/2019] [Indexed: 12/14/2022]
Abstract
Our previous studies have demonstrated that interleukin-12p35 knockout (IL-12p35 KO) regulates the progression of various cardiovascular diseases, such as acute cardiac injury and hypertension. The aims of this study were to investigate whether IL-12p35 KO affects aging-related cardiac remodeling and to explore the possible mechanisms. First, the effects of IL-12p35 KO on heart structure and function were detected, and the results showed that IL-12p35 KO exacerbated cardiac remodeling and increased cardiac senescence-related protein levels in aged mice. In addition, whether IL-12p35 KO regulates cardiac senescence-related protein expression, cardiac mitochondrial dysfunction and cardiomyocyte apoptosis was also investigated. IL-12p35 KO increased mitochondrial calcium fluorescence intensity and ROS fluorescence intensity, while it reduced mitochondrial membrane potential. Furthermore, reduced mitochondrial complex (I-IV) activity and ATP levels and increased apoptosis-inducing factor (AIF)-related cardiomyocyte apoptosis were observed in aged IL-12p35 KO mice compared with wild-type mice. Our results demonstrate that aging is aggravated by IL-12p35 KO and that the mechanism may be related to exacerbation of mitochondrial dysfunction and AIF-related cardiomyocyte apoptosis.
Collapse
Affiliation(s)
- Jing Ye
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Hubei Key Laboratory of Cardiology, Wuhan 430060, China
- Emergency and Critical Care Center, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung, and Blood Vessel Diseases, and Beijing Lab for Cardiovascular Precision Medicine, Beijing 100029, China
- Department of Cardiology, The People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, China
| | - Yuan Wang
- Department of Thyroid Breast Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Zhen Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Ling Liu
- Department of Cardiology, The People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, China
| | - Zicong Yang
- Department of Cardiology, The People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, China
| | - Di Ye
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Menglong Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Yao Xu
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Jishou Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Mengmeng Zhao
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Jianfang Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Yingzhong Lin
- Department of Cardiology, The People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, China
| | - Qingwei Ji
- Emergency and Critical Care Center, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung, and Blood Vessel Diseases, and Beijing Lab for Cardiovascular Precision Medicine, Beijing 100029, China
- Department of Cardiology, The People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, China
| | - Jun Wan
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| |
Collapse
|
22
|
Wu J, Li L, Wu S, Xu B. CMTM family proteins 1-8: roles in cancer biological processes and potential clinical value. Cancer Biol Med 2020; 17:528-542. [PMID: 32944388 PMCID: PMC7476098 DOI: 10.20892/j.issn.2095-3941.2020.0032] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 06/08/2020] [Indexed: 02/07/2023] Open
Abstract
The CKLF-like MARVEL transmembrane domain containing (CMTM) family of genes comprises CKLF and CMTM1–8 (previously called chemokine-like factor superfamily 1–8, CKLFSF1–8). The CMTM family proteins contain a structurally conserved MAL and related proteins for vesicle trafficking and membrane linking (MARVEL) domain. Dysregulated expression of multiple CMTM family members is a common feature in many human cancer types. CMTM proteins control critical biological processes in cancer development, including growth factor receptor activation and recycling, cell proliferation, apoptosis, metastasis, and immune evasion. Emerging in vivo and in vitro evidence indicates that the mechanisms of action of most CMTM proteins are complex and multifactorial. This review highlights new findings regarding the roles of CMTM1–8 in cancer, particularly in tumor growth, metastasis, and immune evasion. Additionally, the potential clinical value of CMTMs as novel drug targets or biomarkers is discussed.
Collapse
Affiliation(s)
- Jie Wu
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Lan Li
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Siyi Wu
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Bin Xu
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| |
Collapse
|
23
|
Successful Targeting of the Warburg Effect in Prostate Cancer by Glucose-Conjugated 1,4-Naphthoquinones. Cancers (Basel) 2019; 11:cancers11111690. [PMID: 31671612 PMCID: PMC6896172 DOI: 10.3390/cancers11111690] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 10/26/2019] [Indexed: 12/23/2022] Open
Abstract
Treatment of castration-resistant prostate cancer (CRPC) remains challenging due to the development of drug resistance. The Warburg effect describes the ability of cancer cells to consume larger amounts of glucose compared to normal tissues. We identified derivatives of natural 1,4-naphthoquinones to be active in CRPC and further synthetically modified them via glucose conjugation to increase selectivity by Warburg effect targeting. Mechanisms of action were examined by quantitative proteomics followed by bioinformatical analysis and target validation. Four synthesized molecules revealed the highest selectivity towards human CRPC cells, which correlated with higher GLUT-1 activity and expression. The compounds were able to induce pro-apoptotic signs and to inhibit the pro-survival processes and mechanisms of drug resistance (i.e., AR-signaling and autophagy). Proteome analysis suggested a disruption of the mitochondria/oxidative phosphorylation, which was validated by further functional analysis: thus, mitochondria depolarization, elevated levels of cytotoxic ROS, an increase of Bax/Bcl-2 ratio as well as release of mitochondrial AIF and cytochrome C to cytoplasm were observed. In conclusion, glucose-conjugated 1,4-naphthoquinones show potent activity and selectivity in human CRPC exerted via mitochondrial targeting. The compounds can overcome drug resistance against current standard therapies and suppress pro-survival mechanisms. This unique combination of properties makes them new promising candidates for the treatment of CRPC.
Collapse
|
24
|
Liu Y, Lei H, Ma J, Deng H, He P, Dong W. α-Hederin Increases The Apoptosis Of Cisplatin-Resistant Gastric Cancer Cells By Activating Mitochondrial Pathway In Vivo And Vitro. Onco Targets Ther 2019; 12:8737-8750. [PMID: 31695431 PMCID: PMC6815764 DOI: 10.2147/ott.s221005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 09/18/2019] [Indexed: 01/04/2023] Open
Abstract
INTRODUCTION Gastric cancer remains an important cancer worldwide, and conventional chemotherapeutic drugs have the defects of drug resistance and cell toxicity. α-Hederin has been found to have certain therapeutic effects on various types of human cancers. However, studies on the α-hederin that exert biological activities on the cisplatin-resistant gastric cancer cells are limited. In this study, we evaluated the effects of α-hederin in HGC27/DDP and the potential mechanisms both in vivo and in vitro. METHODS HGC27/DDP cells were cultured in DMEM/F12 medium. Cell proliferation and viability were assessed quantitatively using Cell Counting Kit-8. Cell invasion and migration were detected by Transwell invasion assay and wound healing assay. Cell apoptosis was examined by employing Hoechst 33258 Staining Kit and an Annexin V-PE apoptosis kit. Intracellular GSH levels were examined by using a GSH Assay Kit. DCFH-DA and JC-1 Kit were used to detect levels of intracellular reactive oxygen species (ROS) and changes in mitochondrial membrane potential (∆Ψm). The protein levels of Apaf-1, AIF, Bax, Bcl-2, Cyt C, Survivin, cleaved caspase-3, cleaved caspase-9, MMP-9 and MMP-2 were detected by Western blot analysis. The effect of α-hederin in vivo was observed by xenograft tumor models in nude mice. RESULTS The α-hederin treatment significantly inhibited the proliferation in a dose- and time-dependent manner of HGC27/DDP and induced obvious apoptosis compared with the control group (P<0.05). Meanwhile, the ability of cells to invade and migrate was suppressed (P<0.05). The α-hederin induced the depletion of GSH (P<0.05) and the accumulation of intracellular ROS (P<0.05), changed the mitochondrial membrane potential (P<0.05), increased the Bax, Apaf-1, AIF, Cyt C, cleaved caspase-3 and cleaved caspase-9 expression and decreased the protein level of Bcl-2, survivin, MMP-9 and MMP-2 (P<0.05). Pretreatment with NAC (12 mM) enhanced the tendency and pretreatment with BSO (8 mM) attenuated the tendency above (P<0.05). Meanwhile, α-hederin inhibited xenograft tumor growth in vivo (P<0.05). CONCLUSION Our study provides strong molecular evidence to support our hypothesis that α-hederin inhibits the proliferation and induces the apoptosis of HGC27/DDP cells by increasing the levels of intracellular ROS and triggering mitochondrial pathway activation.
Collapse
Affiliation(s)
- Yinghui Liu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, People’s Republic of China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, People’s Republic of China
| | - Hongbo Lei
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, People’s Republic of China
| | - Jingjing Ma
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, People’s Republic of China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, People’s Republic of China
| | - Huan Deng
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, People’s Republic of China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, People’s Republic of China
| | - Pengzhan He
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, People’s Republic of China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, People’s Republic of China
| | - Weiguo Dong
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, People’s Republic of China
| |
Collapse
|
25
|
Ma XJ, Xu G, Li ZJ, Chen F, Wu D, Miao JN, Zhan Y, Fan Y. HDAC-selective Inhibitor Cay10603 Has Single Anti-tumour Effect in Burkitt’s Lymphoma Cells by Impeding the Cell Cycle. Curr Med Sci 2019; 39:228-236. [DOI: 10.1007/s11596-019-2024-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 01/23/2019] [Indexed: 02/06/2023]
|
26
|
Adrian TE, Collin P. The Anti-Cancer Effects of Frondoside A. Mar Drugs 2018; 16:E64. [PMID: 29463049 PMCID: PMC5852492 DOI: 10.3390/md16020064] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 02/14/2018] [Accepted: 02/16/2018] [Indexed: 02/06/2023] Open
Abstract
Frondoside A is a triterpenoid glycoside from the Atlantic Sea Cucumber, Cucumariafrondosa. Frondoside A has a broad spectrum of anti-cancer effects, including induction of cellular apoptosis, inhibition of cancer cell growth, migration, invasion, formation of metastases, and angiogenesis. In cell lines and animal models studied to date, the anti-cancer effects of the compound are seen in all solid cancers, lymphomas, and leukemias studied to date. These effects appear to be due to potent inhibition of p21-activated kinase 1 (PAK1), which is up-regulated in many cancers. In mouse models, frondoside A has synergistic effects with conventional chemotherapeutic agents, such as gemcitabine, paclitaxel, and cisplatin. Frondoside A administration is well-tolerated. No side effects have been reported and the compound has no significant effects on body weight, blood cells, or on hepatic and renal function tests after long-term administration. Frondoside A may be valuable in the treatment of malignancies, either as a single agent or in combination with other therapeutic modalities.
Collapse
Affiliation(s)
- Thomas E Adrian
- Department of Physiology, Faculty of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, United Arab Emirates.
| | - Peter Collin
- Coastside Bio Resources, Deer Isle, ME 04627, USA.
| |
Collapse
|