1
|
Zhang Z, Zhang J, Chen H, Han C, Chen Y, Zhan X, Liu Y. The shell formation mechanism of Turbo argyrostomus based on ultrastructure and transcriptome analysis. Gene 2024; 927:148747. [PMID: 38972557 DOI: 10.1016/j.gene.2024.148747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/18/2024] [Accepted: 07/02/2024] [Indexed: 07/09/2024]
Abstract
The gold inner shell of Turbo argyrostomus is an important morphological classification characteristic in Gastropoda. However, the gene sets responsible for shell formation in gastropods remain poorly explored. In this study, we investigated the microstructure using scanning electron microscopy (SEM), hematoxylin-eosin (HE) and Alcian blue staining-periodic acid-Schiff (AB-PAS) staining. The SEM results illustrated that the T. argyrostomus shell exhibited a special "sandwich" microstructure. The results of histological observation demonstrated two major cell types: adipocytes and mucin cells. A total of 318 differentially expressed genes were identified between edge mantle and central mantle, among which whey acidic protein, N66, and nacre-like proteins, and Lam G and EGF domains may be related to shell microstructure. 22.39% - 25.20% of the mucin genes had biomineralization related domains, which supported for the relationship between mucins and shell formation. Moreover, this study revealed energy distribution differences between the edge mantle and central mantle. These results provide insights for further understanding of the biomineralization mechanism in Gastropoda.
Collapse
Affiliation(s)
- Zhijie Zhang
- School of Marine Biology and Fisheries, Hainan University, Haikou 570228, China; Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan University Haikou 570228, China; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Jiayi Zhang
- School of Marine Biology and Fisheries, Hainan University, Haikou 570228, China; Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan University Haikou 570228, China; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Hengda Chen
- School of Marine Biology and Fisheries, Hainan University, Haikou 570228, China; Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan University Haikou 570228, China; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Changqing Han
- School of Marine Biology and Fisheries, Hainan University, Haikou 570228, China; Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan University Haikou 570228, China; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Yi Chen
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan University Haikou 570228, China; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China; School of Ecology, Hainan University, Haikou 570228, China
| | - Xin Zhan
- School of Marine Biology and Fisheries, Hainan University, Haikou 570228, China; Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan University Haikou 570228, China; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China.
| | - Yibing Liu
- Key Laboratory of Mariculture (Ministry of Education), Fisheries College, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
2
|
Hu B, Yu H, Du S, Li Q. Protoporphyrin IX metabolism mediated via translocator protein (CgTspO) involved in orange shell coloration of pacific oyster (Crassostrea gigas). Int J Biol Macromol 2024; 276:134020. [PMID: 39038584 DOI: 10.1016/j.ijbiomac.2024.134020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/06/2024] [Accepted: 07/17/2024] [Indexed: 07/24/2024]
Abstract
Mollusc shell color polymorphism is influenced by various factors. Pigments secreted in vivo by animals play a critical role in shell coloration. Among the different shell-color hues, orange pigmentation has been partially attributed to porphyrins. However, the detailed causal relationship between porphyrins and orange-shell phenotype in molluscs remains largely unexplored. The various strains of Pacific oyster (Crassostrea gigas) with different shell color provide useful models to study the molecular regulation of mollusc coloration. Accordingly, oysters with orange and gold-shells, exhibiting distinct porphyrin distributions, were selected for analysis of total metabolites and gene expression profile through mantle metabolomic and transcriptomic studies. Translocator protein (TspO) and protoporphyrin IX (PPIX) were identified as potential factors influencing oyster shell-color. The concentration of PPIX was measured using HPLC, while expression profiling of CgTspO was analyzed by qPCR, in situ hybridization, Western blotting, and immunofluorescence techniques. Moreover, the roles of CgTspO in regulating PPIX metabolism and affecting the orange-shell-coloration were investigated in vitro and in vivo. These studies indicate that PPIX and its associated metabolic protein, CgTspO may serve as new regulators of orange-shell-coloration in C. gigas. Data of this study offer new insights into oyster shell coloration and enhancing understandings of mollusc shell color polymorphism.
Collapse
Affiliation(s)
- Biyang Hu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Hong Yu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Shaojun Du
- Institute of Marine and Environmental Technology, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Qi Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
3
|
Xu Q, Nie H, Ma Q, Wang J, Huo Z, Yan X. The lgi-miR-2d is Potentially Involved in Shell Melanin Synthesis by Targeting mitf in Manila Clam Ruditapes philippinarum. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2024; 26:432-446. [PMID: 38607523 DOI: 10.1007/s10126-024-10307-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 03/21/2024] [Indexed: 04/13/2024]
Abstract
Shell color as an important economic trait is also the crucial target trait for breeding and production. MicroRNA (miRNA) is an endogenous small non-coding RNA that can post-transcriptionally regulate the expression of target genes, it plays important roles in many life activities and physiological processes, such as shell color, stress response, and disease traits. In this study, we investigated the function of lgi-miR-2d in shell melanin formation and the expression patterns of lgi-miR-2d and target gene Rpmitf in Manila clam Ruditapes philippinarum. We further explored and verified the relationship between Rpmitf and lgi-miR-2d and identified the expression level of shell color-related gene changes by RNAi and injecting the antagomir of lgi-miR-2d, respectively. Our results indicated that lgi-miR-2d antagomir affected the expression of its target gene Rpmitf. In addition, the dual-luciferase reporter assay was conducted to confirm the direct interaction between lgi-miR-2d and Rpmitf. The results showed that the expression levels of melanin-related genes such as Rpmitf and tyr were significantly decreased in the positive treatment group compared with the blank control group after the Rpmitf dsRNA injection, indicating Rpmitf plays a crucial role in the melanin synthesis pathway. Taken together, we speculated that lgi-miR-2d might be negatively modulating Rpmitf, which might regulate other shell color-related genes, thereby affecting melanin synthesis in R. philippinarum.
Collapse
Affiliation(s)
- Qiaoyue Xu
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China
- Engineering and Technology Research Center of Shellfish Breeding in Liaoning Province, Dalian Ocean University, Dalian, 116023, China
| | - Hongtao Nie
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China.
- Engineering and Technology Research Center of Shellfish Breeding in Liaoning Province, Dalian Ocean University, Dalian, 116023, China.
| | - Qianying Ma
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China
- Engineering and Technology Research Center of Shellfish Breeding in Liaoning Province, Dalian Ocean University, Dalian, 116023, China
| | - Jiadi Wang
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China
- Engineering and Technology Research Center of Shellfish Breeding in Liaoning Province, Dalian Ocean University, Dalian, 116023, China
| | - Zhongming Huo
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China
- Engineering and Technology Research Center of Shellfish Breeding in Liaoning Province, Dalian Ocean University, Dalian, 116023, China
| | - Xiwu Yan
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China
- Engineering and Technology Research Center of Shellfish Breeding in Liaoning Province, Dalian Ocean University, Dalian, 116023, China
| |
Collapse
|
4
|
Chen S, Nie H, Huo Z, Yan X. Comprehensive analysis of differentially expressed mRNA, lncRNA and miRNA, and their ceRNA networks in the regulation of shell color in the Manila clam (Ruditapes philippinarum). Int J Biol Macromol 2024; 256:128404. [PMID: 38016607 DOI: 10.1016/j.ijbiomac.2023.128404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/11/2023] [Accepted: 11/22/2023] [Indexed: 11/30/2023]
Abstract
The regulatory mechanism of ceRNA network plays an important role in molecular function and biological processes, however, the molecular mechanism in the shell color of Ruditapes philippinarum has not yet been reported. In this study, we performed transcriptome sequencing on the mantle of R. philippinarum with different shell colors, and screened for mRNA, miRNA, and lncRNA. A total of 61 mRNAs, 3725 lncRNAs and 90 miRNAs were obtained from all the shell color comparison groups (all mRNAs, lncRNAs and miRNAs P < 0.05), and 7 mRNAs, 8 lncRNAs, and 4 miRNAs of the porphyrin pathway and melanin pathway were screened for competitive endogenous RNA (ceRNA) network construction. The results indicate that the ceRNA network composed of mRNA and lncRNA, centered around efu-miR-101, mle-bantam-3p, egr-miR-9-5p, and sma-miR-75p, may play a crucial regulatory role in shell color formation. This study reveals for the first time the mechanism of ceRNA regulatory networks in the shell color of R. philippinarum and providing important reference data for molecular breeding of shell color in R. philippinarum.
Collapse
Affiliation(s)
- Sitong Chen
- College of Fisheries and Life Science, Dalian Ocean University, 116023 Dalian, China; Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, Dalian Ocean University, 116023 Dalian, China
| | - Hongtao Nie
- College of Fisheries and Life Science, Dalian Ocean University, 116023 Dalian, China; Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, Dalian Ocean University, 116023 Dalian, China.
| | - Zhongming Huo
- College of Fisheries and Life Science, Dalian Ocean University, 116023 Dalian, China; Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, Dalian Ocean University, 116023 Dalian, China
| | - Xiwu Yan
- College of Fisheries and Life Science, Dalian Ocean University, 116023 Dalian, China; Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, Dalian Ocean University, 116023 Dalian, China
| |
Collapse
|
5
|
Liu J, Nie H, Huo Z, Yan X. Genome-Wide Identification and Characterization of MITF Genes in Ruditapes philippinarum and Their Involvement in the Immune Response to Vibrio anguillarum Infection. Biochem Genet 2023; 61:2514-2530. [PMID: 37119506 DOI: 10.1007/s10528-023-10365-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 03/09/2023] [Indexed: 05/01/2023]
Abstract
Studies have shown that the shellfish have innate immune system, which is a very important immune form of shellfish, and they rely on the innate immune system to resist diseases. As a transcription factor, Microphthalmia-associated transcription factor (MITF) plays a regulatory role in immune response and the shell color is also an important index for the breeding of excellent varieties of R. philippinarum. The research on immune response mechanism of RPMITFs can provide important reference data for the breeding of excellent clam varieties. In the genome of R. philippinarum, the RPMITF genes family of shell color-related gene family was selected as the target gene of this experiment. There are 12 RpMITF genes named RpMITF1, RpMITF2, RpMITF3, RpMITF4, RpMITF5, RpMITF6, RpMITF7, RpMITF8, RpMITF9, RpMITF10, RpMITF11, and RpMITF12. The open reading frame length is 639, 1233, 996, 1239, 675, 624, 816, 1365, 612, 1614, 1122, and 486 bp, encoding 212, 410, 331, 412, 224, 207, 271, 454, 203, 537, 373, and 161 aa, respectively. The predicted molecular weight range of amino acids is 18.85-62.61 kda, and the isoelectric point range is 5.26-9.44. Real-time quantitative PCR was used to detect the gene expression of RpMITF gene family in hepatopancreas tissues of two populations of Manila clam at 6 time points (0, 3, 6, 12, 24, and 48 h) after Vibrio anguillarum stress. The results show that RpMITF gene family was significantly expressed in hepatopancreas of two clam populations after V. anguillarum stress (P < 0.05).
Collapse
Affiliation(s)
- Jie Liu
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China
- Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, Dalian Ocean University, Dalian, 116023, China
| | - Hongtao Nie
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China.
- Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, Dalian Ocean University, Dalian, 116023, China.
| | - Zhongming Huo
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China.
- Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, Dalian Ocean University, Dalian, 116023, China.
| | - Xiwu Yan
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China
- Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, Dalian Ocean University, Dalian, 116023, China
| |
Collapse
|
6
|
Wang Y, Mao J, Fan Z, Hang Y, Tang A, Tian Y, Wang X, Hao Z, Han B, Ding J, Chang Y. Transcriptome analysis reveals core lncRNA-mRNA networks regulating melanization and biomineralization in Patinopecten yessoensis shell-infested by Polydora. BMC Genomics 2023; 24:723. [PMID: 38031026 PMCID: PMC10687851 DOI: 10.1186/s12864-023-09837-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 11/23/2023] [Indexed: 12/01/2023] Open
Abstract
BACKGROUND Patinopecten yessoensis, a large and old molluscan group, has been one of the most important aquaculture shellfish in Asian countries because of its high economic value. However, the aquaculture of the species has recently been seriously affected by the frequent outbreaks of Polydora disease, causing great economic losses. Long non-coding RNAs (lncRNAs) exhibit exhibit crucial effects on diverse biological processes, but still remain poorly studied in scallops, limiting our understanding of the molecular regulatory mechanism of P. yessoensis in response to Polydora infestation. RESULTS In this study, a high-throughput transcriptome analysis was conducted in the mantles of healthy and Polydora-infected P. yessoensis by RNA sequencing. A total of 19,133 lncRNAs with 2,203 known and 16,930 novel were identified. The genomic characterizations of lncRNAs showed shorter sequence and open reading frame (ORF) length, fewer number of exons and lower expression levels in comparison with mRNAs. There were separately 2280 and 1636 differentially expressed mRNAs and lncRNAs (DEGs and DELs) detected in diseased individuals. The target genes of DELs were determined by both co-location and co-expression analyses. Functional enrichment analysis revealed that DEGs involved in melanization and biomineralization were significantly upregulated; further, obviously increased melanin granules were observed in epithelial cells of the edge mantle in diseased scallops by histological and TEM study, indicating the crucial role of melanizaiton and biomineralization in P. yessoensis to resist against Polydora infestation. Moreover, many key genes, such as Tyrs, Frizzled, Wnts, calmodulins, Pifs, perlucin, laccase, shell matrix protein, mucins and chitins, were targeted by DELs. Finally, a core lncRNA-mRNA interactive network involved in melanization and biomineralization was constructed and validated by qRT-PCR. CONCLUSIONS This work provides valuable resources for studies of lncRNAs in scallops, and adds a new insight into the molecular regulatory mechanisms of P. yessoensis defending against Polydora infestation, which will contribute to Polydora disease control and breeding of disease-resistant varieties in molluscs.
Collapse
Affiliation(s)
- Yiying Wang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Junxia Mao
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China.
| | - Zhiyue Fan
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Yunna Hang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - AnQi Tang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Ying Tian
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Xubo Wang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Zhenlin Hao
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Bing Han
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China.
| | - Jun Ding
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Yaqing Chang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| |
Collapse
|
7
|
Hermida M, Robledo D, Díaz S, Costas D, Bruzos AL, Blanco A, Pardo BG, Martínez P. The first high-density genetic map of common cockle (Cerastoderma edule) reveals a major QTL controlling shell color variation. Sci Rep 2022; 12:16971. [PMID: 36216849 PMCID: PMC9551087 DOI: 10.1038/s41598-022-21214-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 09/23/2022] [Indexed: 12/29/2022] Open
Abstract
Shell color shows broad variation within mollusc species and despite information on the genetic pathways involved in shell construction and color has recently increased, more studies are needed to understand its genetic architecture. The common cockle (Cerastoderma edule) is a valuable species from ecological and commercial perspectives which shows important variation in shell color across Northeast Atlantic. In this study, we constructed a high-density genetic map, as a tool for screening common cockle genome, which was applied to ascertain the genetic basis of color variation in the species. The consensus genetic map comprised 19 linkage groups (LGs) in accordance with the cockle karyotype (2n = 38) and spanned 1073 cM, including 730 markers per LG and an inter-marker distance of 0.13 cM. Five full-sib families showing segregation for several color-associated traits were used for a genome-wide association study and a major QTL on chromosome 13 associated to different color-traits was detected. Mining on this genomic region revealed several candidate genes related to shell construction and color. A genomic region previously reported associated with divergent selection in cockle distribution overlapped with this QTL suggesting its putative role on adaptation.
Collapse
Affiliation(s)
- Miguel Hermida
- Department of Zoology, Genetics and Physical Anthropology, Acuigen Group, Faculty of Veterinary, Universidade de Santiago de Compostela, Campus of Lugo, 27002, Lugo, Spain
| | - Diego Robledo
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK
| | - Seila Díaz
- Genomes and Disease Group, Department of Zoology, Genetics and Physical Anthropology, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
- ECOMARE, CESAM-Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Santiago University Campus, 3810-193, Aveiro, Portugal
| | - Damián Costas
- Centro de Investigación Mariña, Universidade de Vigo, ECIMAT, 36331, Vigo, Spain
| | - Alicia L Bruzos
- Genomes and Disease Group, Department of Zoology, Genetics and Physical Anthropology, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
- Mosaicism and Precision Medicine Group, Department of Genetics and Genomic Medicine, The Francis Crick Institute, University College of London, London, UK
| | - Andrés Blanco
- Department of Zoology, Genetics and Physical Anthropology, Acuigen Group, Faculty of Veterinary, Universidade de Santiago de Compostela, Campus of Lugo, 27002, Lugo, Spain
| | - Belén G Pardo
- Department of Zoology, Genetics and Physical Anthropology, Acuigen Group, Faculty of Veterinary, Universidade de Santiago de Compostela, Campus of Lugo, 27002, Lugo, Spain
| | - Paulino Martínez
- Department of Zoology, Genetics and Physical Anthropology, Acuigen Group, Faculty of Veterinary, Universidade de Santiago de Compostela, Campus of Lugo, 27002, Lugo, Spain.
| |
Collapse
|
8
|
Xu Q, Nie H, Yin Z, Zhang Y, Huo Z, Yan X. MiRNA-mRNA Integration Analysis Reveals the Regulatory Roles of MiRNAs in Shell Pigmentation of the Manila clam (Ruditapes philippinarum). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2021; 23:976-993. [PMID: 34773538 DOI: 10.1007/s10126-021-10080-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/14/2021] [Indexed: 06/13/2023]
Abstract
The shell color of the Manila clam (Ruditapes philippinarum) is an economically important trait. We used high-throughput sequencing and transcriptome analysis to study the molecular mechanisms that underlie shell color formation and regulation in this species. We constructed small RNA libraries from mantle tissues from four shell color strains of Manila clam, subjected them to high-throughput sequencing. Notably, the results suggested that a number of pigment-associated genes including Mitf, HERC2, were negatively regulated by nvi-miR-2a, tgu-miR-133-3p, respectively. They might be involved in melanin formation via the activation of the melanogenesis pathway. And aae-miR-71-5p and dme-miR-7-5p linked to shell formation-related genes such as Calmodulin and IMSP3 were considered to participate in the calcium signaling pathway. We then used quantitative PCR to verify the candidate miRNAs and target genes in different shell color groups. Our results indicated that miR-7, miR-71, and miR-133 may regulate target mRNAs to participate in shell color pigmentation. These results provide the foundation to further characterize miRNA effects on the regulation of shell color and have significant implications for the breeding of new varieties of clams.
Collapse
Affiliation(s)
- Qiaoyue Xu
- Engineering and Technology Research Center of Shellfish Breeding in Liaoning Province, College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China
| | - Hongtao Nie
- Engineering and Technology Research Center of Shellfish Breeding in Liaoning Province, College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China.
| | - Zhihui Yin
- Engineering and Technology Research Center of Shellfish Breeding in Liaoning Province, College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China
| | - Yanming Zhang
- Engineering and Technology Research Center of Shellfish Breeding in Liaoning Province, College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China
| | - Zhongming Huo
- Engineering and Technology Research Center of Shellfish Breeding in Liaoning Province, College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China
| | - Xiwu Yan
- Engineering and Technology Research Center of Shellfish Breeding in Liaoning Province, College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China.
| |
Collapse
|
9
|
Li Z, Li Q, Liu S, Han Z, Kong L, Yu H. Integrated Analysis of Coding Genes and Non-coding RNAs Associated with Shell Color in the Pacific Oyster (Crassostrea gigas). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2021; 23:417-429. [PMID: 33929611 DOI: 10.1007/s10126-021-10034-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 04/14/2021] [Indexed: 06/12/2023]
Abstract
Molluscan shell color polymorphism is important in genetic breeding, while the molecular information mechanism for shell coloring is unclear. Here, high-throughput RNA sequencing was used to compare expression profiles of coding and non-coding RNAs (ncRNAs) from Pacific oyster Crassostrea gigas with orange and black shell, which were from an F2 family constructed by crossing an orange shell male with a black shell female. First, 458, 13, and 8 differentially expressed genes (DEGs), lncRNAs (DELs), and miRNAs (DEMs) were identified, respectively. Functional analysis suggested that the DEGs were significantly enriched in 9 pathways including tyrosine metabolism and oxidative phosphorylation pathways. Several genes related to melanin synthesis and biomineralization expressed higher whereas genes associated with carotenoid pigmentation or metabolism expressed lower in orange shell oyster. Then, based on the ncRNA analysis, 163 and 20 genes were targeted by 13 and 8 differentially expressed lncRNAs (DELs) and miRNAs (DEMs), severally. Potential DELs-DEMs-DEGs interactions were also examined. Seven DEMs-DEGs pairs were detected, in which tyrosinase-like protein 1 was targeted by lgi-miR-133-3p and lgi-miR-252a and cytochrome P450 was targeted by dme-miRNA-1-3p. These results revealed that melanin synthesis-related genes and miRNAs-mRNA interactions functioned on orange shell coloration, which shed light on the molecular regulation of shell coloration in marine shellfish.
Collapse
Affiliation(s)
- Zhuanzhuan Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Qi Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China.
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| | - Shikai Liu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Ziqiang Han
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Lingfeng Kong
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Hong Yu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| |
Collapse
|
10
|
Liu J, Sun X, Nie H, Kifat J, Li J, Huo Z, Bi J, Yan X. Genome-wide identification and expression profiling of TYR gene family in Ruditapes philippinarum under the challenge of Vibrio anguillarum. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2021; 37:100788. [PMID: 33516925 DOI: 10.1016/j.cbd.2020.100788] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 12/22/2020] [Accepted: 12/22/2020] [Indexed: 11/28/2022]
Abstract
Tyrosinase (EC1.14.18.1, TYR) is also called phenol oxidase, is not only involved in pigmentation but also plays an important role in modulating innate immunity in invertebrates. Tyrosinase is a copper containing metalloenzyme. The tyrosinase protein has two copper binding sites and three conserved histidines. In this study, 21 tyrosinase genes (RpTYR) were obtained from the whole genome of Ruditapes philippinarum. Their open reading frames were from 951 to 5424 aa, the range of predicted relative molecular weight from 36.72 to 203.81 kDa, and the range of isoelectric point from 4.72 to 9.88. Transcriptome analysis showed that RpTYR gene was expressed specifically in different developmental stages, adult tissues, four strains and two groups with different shell colors. Besides, the expression profiles of 21 RpTYRs were investigated against the immune response of R. philippinarum to a Vibrio challenge. The qPCR results showed that RpTYRs were involved in the immune response of R. philippinarum after Vibrio anguillarum challenge. This study provides preliminary evidence that the tyrosinases genes are involved in the immune defense and the potential immune function of R. philippinarum. Overall, these findings suggested that the expansion of TYR genes may play vital roles in larval development, the formation of shell color pattern, and immune response in R. philippinarum.
Collapse
Affiliation(s)
- Jie Liu
- College of Fisheries and Life Science, Dalian Ocean University, 116023 Dalian, China; Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, Dalian Ocean University, 116023 Dalian, China
| | - Xiaotong Sun
- College of Fisheries and Life Science, Dalian Ocean University, 116023 Dalian, China; Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, Dalian Ocean University, 116023 Dalian, China
| | - Hongtao Nie
- College of Fisheries and Life Science, Dalian Ocean University, 116023 Dalian, China; Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, Dalian Ocean University, 116023 Dalian, China.
| | - Jahan Kifat
- College of Fisheries and Life Science, Dalian Ocean University, 116023 Dalian, China; Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, Dalian Ocean University, 116023 Dalian, China
| | - Jinlong Li
- College of Fisheries and Life Science, Dalian Ocean University, 116023 Dalian, China; Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, Dalian Ocean University, 116023 Dalian, China
| | - Zhongming Huo
- College of Fisheries and Life Science, Dalian Ocean University, 116023 Dalian, China; Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, Dalian Ocean University, 116023 Dalian, China
| | - Jinhong Bi
- Rongcheng Marine Economic Development Center, 264300 Rongcheng, China
| | - Xiwu Yan
- College of Fisheries and Life Science, Dalian Ocean University, 116023 Dalian, China; Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, Dalian Ocean University, 116023 Dalian, China.
| |
Collapse
|
11
|
Bai Y, Nie H, Wang Z, Yan X. Genome-wide identification and transcriptome-based expression profiling of Wnt gene family in Ruditapes philippinarum. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2020; 35:100709. [PMID: 32688272 DOI: 10.1016/j.cbd.2020.100709] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/23/2020] [Accepted: 06/30/2020] [Indexed: 12/14/2022]
Abstract
The Wnt genes encode a set of conserved glycoproteins regulating early development, cell proliferation and differentiation, and tissue regeneration in metazoans. In some mollusks, the knowledge of Wnt gene family has been limited because of the short of the genomic and transcriptomic resources. Ruditapes philippinarum is an economically important bivalve with a variety of shell coloration patterns and ability to regenerate its siphon. To gain a greater understanding of the evolutionary dynamics of Wnt gene family, we carried out a genome-wide identification and phylogenetic analysis of Wnt gene family in R. philippinarum and other four mollusks. A total of 12 Wnt genes were identified in the genome of R. philippinarum, and the dynamic patterns of gene conservation, loss and duplication of Wnt genes were analyzed in mollusks and model organisms. Furthermore, the transcriptome analyses demonstrated the expression profiles of the Wnt genes at different developmental stage, in adult tissues, during siphon regeneration, in four different shell color strains, and at uncolored and colored developmental stages in two different shell color strains. These findings suggest that the expansion of Wnt genes may play vital roles in the larval development, the formation of shell color pattern and siphon regeneration in R. philippinarum. This study provides a valuable insight into Wnt function and evolution in mollusks.
Collapse
Affiliation(s)
- Yitian Bai
- College of Fisheries and Life Science, Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, Dalian Ocean University, Dalian 116023, China
| | - Hongtao Nie
- College of Fisheries and Life Science, Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, Dalian Ocean University, Dalian 116023, China.
| | - Zhengxing Wang
- College of Fisheries and Life Science, Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, Dalian Ocean University, Dalian 116023, China
| | - Xiwu Yan
- College of Fisheries and Life Science, Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, Dalian Ocean University, Dalian 116023, China
| |
Collapse
|