1
|
Chen Y, Lin Q, Wang J, Mu J, Liang Y. Proteins, polysaccharides and their derivatives as macromolecular antioxidant supplements: A review of in vitro screening methods and strategies. Int J Biol Macromol 2022; 224:958-971. [DOI: 10.1016/j.ijbiomac.2022.10.181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/16/2022] [Accepted: 10/20/2022] [Indexed: 11/05/2022]
|
2
|
Al-Radadi NS. Single-step green synthesis of gold conjugated polyphenol nanoparticle using extracts of Saudi's myrrh: Their characterization, molecular docking and essential biological applications. Saudi Pharm J 2022; 30:1215-1242. [PMID: 36249941 PMCID: PMC9562988 DOI: 10.1016/j.jsps.2022.06.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 06/25/2022] [Indexed: 01/16/2023] Open
Abstract
The progress in the innovative nanocrystal synthesis process by using environmentally benign and low-priced nontoxic chemicals, solvents, and renewable sources remains a challenging task for researchers worldwide. The majority of the existing synthesis techniques engage in the potentially dangerous, for either human health or the environment. Current investigation has been centered on green synthesis processes to create novel nanomaterials, which are eco-friendly as well as safer for sustainable marketable feasibility. The current work provides the green synthesis method for gold nanoparticle (GNPs) synthesis using Commiphora myrrh (C.myrrh) extract. This simple method includes 6 ml of HAuCl4·3H2O treated with 4 ml C.myrrh extract having pH 4.5 after 80 min at 25 °C temperature. In this novel method, green synthesized GNPs characterized by UV-Vis, X_ray diffraction spectroscopy (XRD), zeta potential, fourier transform infrared (FT_IR), high_resolution transmission electron microscopy (HR_TEM), energy dispersive X_ray spectroscopy (EDXA), and dynamic light scattering (DLS). During the development successful antioxidant assay, the DPPH assay was applied. The cell toxicity of green synthesized GNPs was evaluated following an MTT assay against HCT-116 (colon cancer) and MCF-7 (breast cancer). Besides molecular docking in the δ-elemene for inhibitor to VEGFR-2 domain revealed more negative docking score (-3.976) which is an excellent binding affinity to the C.myrrh@GNP. The synthesized GNPs showed antidiabetic, antibiotic, and antibacterial properties and anti_inflammatory inhibition against inhibiting COX-1, and COX-2 enzymes. In addition, molecular docking by Lindestrene (-3.806) and Furanoeudesma-1,3-dien (-3.912) against COX1 and COX2 respectively showed strong binding affinity. The molecular docking study evidenced the anti-inflammatory and cell toxicity study.
Collapse
Affiliation(s)
- Najlaa S. Al-Radadi
- Department of Chemistry, Faculty of Science, Taibah University, P.O. Box 30002, Al-Madinah Al-Munawarah 14177, Saudi Arabia
| |
Collapse
|
3
|
|
4
|
Li H, Yan J, Meng D, Cai R, Gao X, Ji Y, Wang L, Chen C, Wu X. Gold Nanorod-Based Nanoplatform Catalyzes Constant NO Generation and Protects from Cardiovascular Injury. ACS NANO 2020; 14:12854-12865. [PMID: 32955857 DOI: 10.1021/acsnano.0c03629] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Cardiovascular disease is a leading cause of death, and one of the effective therapeutic strategies for cardiovascular disease is to provide a controlled, constant supply of nitric oxide (NO) in a mild manner; however, this has proved challenging in the clinic. To address this problem, we built a nitric oxide synthase (NOS)-like nanoplatform (NanoNOS) that consists of a noble metal nanoparticle core and a mesoporous silica shell and demonstrated the ability of NanoNOS to catalyze production of NO in vitro. Mechanistic studies show that the catalysis consists of a three-step reaction: the oxidation of NADPH to produce O2-via oxidase-like activity and the subsequent dismutation of O2- to H2O2via SOD-like activity, followed by H2O2-mediated oxidation of l-arginine to produce NO via a nonenzymatic pathway. The generation of NO is precisely regulated by both the content of the NanoNOS species and the plasmon excitation. We found that NanoNOS greatly suppressed injury-driven monocyte-endothelial cell adhesion, suggesting the NanoNOS treatment could help prevent cardiovascular disease. With such a design as well as plasmon excitation that allows for controlled and constant catalytic activity, NanoNOS technology could have a variety of biomedical applications.
Collapse
Affiliation(s)
- Haiyun Li
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
- University of Chinese Academy of Science, Beijing 100049, China
| | - Jiao Yan
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
- University of Chinese Academy of Science, Beijing 100049, China
| | - Dejing Meng
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
- University of Chinese Academy of Science, Beijing 100049, China
| | - Rui Cai
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
- University of Chinese Academy of Science, Beijing 100049, China
| | - Xinshuang Gao
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
- University of Chinese Academy of Science, Beijing 100049, China
| | - Yinglu Ji
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Liming Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- University of Chinese Academy of Science, Beijing 100049, China
- CAS-HKU Joint Laboratory of Metallomics on Health & Environment, Beijing 100049, China
| | - Chunying Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
- University of Chinese Academy of Science, Beijing 100049, China
- GBA Research Innovation Institute for Nanotechnology, Guangdong 510700, China
| | - Xiaochun Wu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
- University of Chinese Academy of Science, Beijing 100049, China
| |
Collapse
|
5
|
Meenambal R, Srinivas Bharath MM. Nanocarriers for effective nutraceutical delivery to the brain. Neurochem Int 2020; 140:104851. [PMID: 32976906 DOI: 10.1016/j.neuint.2020.104851] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 09/07/2020] [Accepted: 09/16/2020] [Indexed: 12/13/2022]
Abstract
Neurodegenerative disorders are common among aging populations around the globe. Most are characterized by loss of neurons, protein aggregates, oxidative stress, mitochondrial damage, neuroinflammation among others. Although symptomatic treatment using conventional pharmacotherapy has been widely employed, their therapeutic success is limited due to varied reasons. In the need to identify an alternative approach, researchers successfully demonstrated the therapeutic utility of plant-derived nutraceuticals in cell and animal models of neurodegenerative conditions. However, most nutraceuticals failed during clinical trials in humans owing to their poor bioavailability in vivo and limited permeability across the blood brain barrier (BBB). The current emphasis is therefore on the improved delivery of nutraceuticals to the brain. In this regard, development of nanoparticle conjugated nutraceuticals to enhance bioavailability and therapeutic efficacy in the brain has gained attention. Here, we review the research advances in nanoparticles conjugated nutraceuticals applied in neurodegenerative disorders and discuss their advantages and limitations, clinical trials and toxicity concerns.
Collapse
Affiliation(s)
- Rugmani Meenambal
- Department of Clinical Psychopharmacology and Neurotoxicology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bangalore, India.
| | - M M Srinivas Bharath
- Department of Clinical Psychopharmacology and Neurotoxicology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bangalore, India; Neurotoxicology Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bangalore, India.
| |
Collapse
|
6
|
Guo T, Yang Y, Zhang J, Miao Y, Lin F, Zhu S, Zhang C, Wu H. Ascorbate exacerbates iron toxicity on intestinal barrier function against Salmonella infection. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, TOXICOLOGY AND CARCINOGENESIS 2020; 38:91-107. [PMID: 32397945 DOI: 10.1080/26896583.2020.1729632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Ascorbic acid is often used to enhance iron absorption in nutritional interventions, but it produces pro-oxidant effects in the presence of iron. This study aimed to evaluate ascorbate's role in iron toxicity on intestinal resistance against foodborne pathogens during iron supplementation/fortification. In polarized Caco-2 cell monolayers, compared to the iron-alone treatment, the iron-ascorbate co-treatment caused more than 2-fold increase in adhesion, invasion and translocation of Salmonella enterica serovar Typhimurium. According to 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, lactate dehydrogenase release and transepithelial electrical resistance, the iron-ascorbate co-treatment resulted in reduced cell viability and increased impairment of cell membrane and paracellular permeability compared to the iron-alone treatment. Butylated hydroxytoluene protected cells against these prooxidant toxicities of ascorbate. Ascorbate completely restored iron-induced intracellular oxidant burst and depletion of cytosolic antioxidant reserve, according to dichlorodihydrofluorescein fluorescence and intracellular reduced glutathione levels. In Salmonella-infected C57BL/6 mice, iron-ascorbate co-supplementation resulted in greater loss of body weight and appetite, lower survival rate, shorter colon length, heavier intestinal microvilli damage, and more intestinal pathogen colonization and translocation than the iron-alone supplementation. Overall, ascorbate would exacerbate iron toxicity on intestinal resistance against Salmonella infection through pro-oxidant impairment of intestinal epithelial barrier from extracellular side and/or by facilitating intestinal pathogen colonization.
Collapse
Affiliation(s)
- Tengjiao Guo
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, China
| | - Yisheng Yang
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, China
| | - Jiayou Zhang
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Yu Miao
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Feifei Lin
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, China
| | - Suqin Zhu
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, China
| | - Caili Zhang
- School of Food Engineering, Ludong University, Yantai, Shandong, China
| | - Haohao Wu
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, China
| |
Collapse
|
7
|
Ash GI, Kim D, Choudhury M. Promises of Nanotherapeutics in Obesity. Trends Endocrinol Metab 2019; 30:369-383. [PMID: 31126754 PMCID: PMC6716370 DOI: 10.1016/j.tem.2019.04.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 04/01/2019] [Accepted: 04/02/2019] [Indexed: 12/12/2022]
Abstract
The application of nanotechnology to medicine promises a wide range of new tools and possibilities, from earlier diagnostics and improved imaging, to better, more efficient, and more targeted therapies. This emerging field could help address obesity, with advances in drug delivery, nutraceuticals, and genetic and epigenetic therapeutics. Its application to obesity is still largely in the development phase. Here, we review the novel angle of nanotech applied to human consumable products and their specific applications to addressing obesity through nutraceuticals, with respect to benefits and limitations of current nanotechnology methods. Further, we review potential future applications to deliver genetic and epigenetic miRNA therapeutics. Finally, we discuss future directions, including theranostics, combinatory therapy, and personalized medicine.
Collapse
Affiliation(s)
- Garrett I Ash
- School of Nursing, Yale University, West Haven, CT, USA
| | - Dongin Kim
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M Health Science Center, College Station, TX, USA
| | - Mahua Choudhury
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M Health Science Center, College Station, TX, USA.
| |
Collapse
|
8
|
Zhang H, Meng D, Fu B, Fan H, Cai R, Fu PP, Wu X. Separation of charge carriers and generation of reactive oxygen species by TiO 2 nanoparticles mixed with differently-coated gold nanorods under light irradiation. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, ENVIRONMENTAL CARCINOGENESIS & ECOTOXICOLOGY REVIEWS 2019; 37:81-98. [PMID: 31131702 DOI: 10.1080/10590501.2019.1602988] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Combinations of semiconductor nanoparticles (NPs) with noble metal NPs enable an increase in the photoactivity of semiconductor NPs into the visible and near-infrared regions. The design rationale of the semiconductor-metal hybrid nanostructures for the optimization of charge carrier separation and reactive oxygen species (ROS) generation remains unclear. In this study, the interactions of Au nanorods (AuNRs) with TiO2 NPs were modulated by controlling their surface charges. Positively charged AuNRs formed aggregates with the negatively charged TiO2 NPs (AuNR@CTAB/TiO2) upon mixing, suggesting that Schottky junctions may exist between Au and TiO2. In contrast, negatively charged AuNRs (AuNR@PSS) remained spatially separated from the TiO2 NPs in the mixed suspension (AuNR@PSS/TiO2), owing to electrostatic repulsion. We used electron spin resonance (ESR) spectroscopy to detect the separation of charged carriers and ROS generation in these two mixtures under simulated sunlight irradiation. We also explored the role of dissolved oxygen in charge carrier separation and ROS generation by continuously introducing oxygen into the AuNR@CTAB/TiO2 suspension under simulated sunlight irradiation. Moreover, the generation of ROS by the AuNR@CTAB/TiO2 and AuNR@PSS/TiO2 mixtures were also examined under 808 nm laser irradiation. Our results show that the photogenerated electrons of excited semiconductor NPs are readily transferred to noble metal NPs simply by collisions, but the transfer of photogenerated hot electrons from excited AuNRs to TiO2 NPs is more stringent and requires the formation of Schottky junctions. In addition, the introduction of oxygen is an efficient way to enhance the photocatalytic activity of semiconductor NPs/noble metal NPs system combinations.
Collapse
Affiliation(s)
- Hui Zhang
- a CAS Key Laboratory of Standardization and Measurement for Nanotechnology , CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology , Beijing , P. R. China
| | - Dejing Meng
- a CAS Key Laboratory of Standardization and Measurement for Nanotechnology , CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology , Beijing , P. R. China
| | - Bing Fu
- a CAS Key Laboratory of Standardization and Measurement for Nanotechnology , CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology , Beijing , P. R. China
| | - Huizhen Fan
- a CAS Key Laboratory of Standardization and Measurement for Nanotechnology , CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology , Beijing , P. R. China
| | - Rui Cai
- a CAS Key Laboratory of Standardization and Measurement for Nanotechnology , CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology , Beijing , P. R. China
| | - Peter P Fu
- b US Food and Drug Administration, National Center for Toxicological Research , Jefferson , AR , USA
| | - Xiaochun Wu
- a CAS Key Laboratory of Standardization and Measurement for Nanotechnology , CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology , Beijing , P. R. China
| |
Collapse
|
9
|
Zhang X, Jiang X, Croley TR, Boudreau MD, He W, Cai J, Li P, Yin JJ. Ferroxidase-like and antibacterial activity of PtCu alloy nanoparticles. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, ENVIRONMENTAL CARCINOGENESIS & ECOTOXICOLOGY REVIEWS 2019; 37:99-115. [PMID: 31099294 DOI: 10.1080/10590501.2019.1602991] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Many metal nanoparticles are reported to have intrinsic enzyme-like activities and offer great potential in chemical and biomedical applications. In this study, PtCu alloy nanoparticles (NPs), synthesized through hydrothermal treatment of Cu2+ and Pt2+ in an aqueous solution, were evaluated for ferroxidase-like and antibacterial activity. Electron spin resonance (ESR) spectroscopy and colorimetric methods were used to demonstrate that PtCu NPs exhibited strong ferroxidase-like activity in a weakly acidic environment and that this activity was not affected by the presence of most other ions, except silver. Based on the color reaction of salicylic acid in the presence of Fe3+, we tested the ferroxidase-like activity of PtCu NPs to specifically detect Fe2+ in a solution of an oral iron supplement and compared these results with data acquired from atomic absorption spectroscopy and the phenanthroline colorimetric method. The results showed that the newly developed PtCu NPs detection method was equivalent to or better than the other two methods used for Fe2+ detection. The antibacterial experiments showed that PtCu NPs have strong antibacterial activity against Staphylococcus aureus and Escherichia coli. Herein, we demonstrate that the peroxidase-like activity of PtCu NPs can catalyze H2O2 and generate hydroxyl radicals, which may elucidate the antibacterial activity of the PtCu NPs against S. aureus and E. coli. These results showed that PtCu NPs exhibited both ferroxidase- and peroxidase-like activity and that they may serve as convenient and efficient NPs for the detection of Fe2+ and for antibacterial applications.
Collapse
Affiliation(s)
- Xiaowei Zhang
- a Food and Bioengineering College , Xuchang University , Xuchang , P. R. China
- c Division of Analytical Chemistry, Office of Regulatory Science, Center for Food Safety and Applied Nutrition , U.S. Food and Drug Administration , College Park , MD , USA
| | - Xiumei Jiang
- c Division of Analytical Chemistry, Office of Regulatory Science, Center for Food Safety and Applied Nutrition , U.S. Food and Drug Administration , College Park , MD , USA
| | - Timothy R Croley
- c Division of Analytical Chemistry, Office of Regulatory Science, Center for Food Safety and Applied Nutrition , U.S. Food and Drug Administration , College Park , MD , USA
| | - Mary D Boudreau
- d National Center for Toxicological Research , U.S. Food and Drug Administration , Jefferson , AR , USA
| | - Weiwei He
- b Key Laboratory of Micro-Nano Materials for Energy Storage and Conversion of Henan Province, College of Advanced Materials and Energy , Institute of Surface Micro and Nano Materials, Xuchang University , Xuchang , P. R. China
| | - Junhui Cai
- b Key Laboratory of Micro-Nano Materials for Energy Storage and Conversion of Henan Province, College of Advanced Materials and Energy , Institute of Surface Micro and Nano Materials, Xuchang University , Xuchang , P. R. China
| | - Peirui Li
- a Food and Bioengineering College , Xuchang University , Xuchang , P. R. China
| | - Jun-Jie Yin
- c Division of Analytical Chemistry, Office of Regulatory Science, Center for Food Safety and Applied Nutrition , U.S. Food and Drug Administration , College Park , MD , USA
| |
Collapse
|
10
|
Cao GJ, Chen Y, Chen X, Weng P, Lin RG. Intrinsic catalytic activity of rhodium nanoparticles with respect to reactive oxygen species scavenging: implication for diminishing cytotoxicity. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, ENVIRONMENTAL CARCINOGENESIS & ECOTOXICOLOGY REVIEWS 2019; 37:14-25. [PMID: 30601677 DOI: 10.1080/10590501.2019.1555319] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Noble metal nanoparticles (NPs) and their hybrids have demonstrated a strong potential to mimic the catalytic activity of natural enzymes and diminish oxidative stress. There is a large space to explore the intrinsic catalytic activity of Rh NPs with respect to reactive oxygen species (ROS) scavenging. We found that Rh NPs can quench H2O2, •OH, O2•-, 1O2 and inhibit lipid peroxidation under physiological conditions. In vitro cell experiments proved that Rh NPs have great biocompatibility and protect cells from oxidative damage caused by H2O2. This study can provide important insights that could inform future biological applications.
Collapse
Affiliation(s)
- Gao-Juan Cao
- a Department of Applied Chemistry, College of Life Sciences , Fujian Agriculture and Forestry University , Fuzhou , Fujian , China
| | - Yingmei Chen
- a Department of Applied Chemistry, College of Life Sciences , Fujian Agriculture and Forestry University , Fuzhou , Fujian , China
| | - Xiaohe Chen
- a Department of Applied Chemistry, College of Life Sciences , Fujian Agriculture and Forestry University , Fuzhou , Fujian , China
| | - Peilin Weng
- a Department of Applied Chemistry, College of Life Sciences , Fujian Agriculture and Forestry University , Fuzhou , Fujian , China
| | - Rong-Guang Lin
- a Department of Applied Chemistry, College of Life Sciences , Fujian Agriculture and Forestry University , Fuzhou , Fujian , China
| |
Collapse
|
11
|
Jiang X, Zhang X, Gray P, Zheng J, Croley TR, Fu PP, Yin JJ. Influences of simulated gastrointestinal environment on physicochemical properties of gold nanoparticles and their implications on intestinal epithelial permeability. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, ENVIRONMENTAL CARCINOGENESIS & ECOTOXICOLOGY REVIEWS 2019; 37:116-131. [PMID: 31230526 DOI: 10.1080/10590501.2019.1602994] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Gold nanoparticles (Au NPs) hold great promise in food, industrial and biomedical applications due to their unique physicochemical properties. However, influences of the gastrointestinal tract (GIT), a likely route for Au NPs administration, on the physicochemical properties of Au NPs has been rarely evaluated. Here, we investigated the influence of GIT fluids on the physicochemical properties of Au NPs (5, 50, and 100 nm) and their implications on intestinal epithelial permeability in vitro. Au NPs aggregated in fasted gastric fluids and generated hydroxyl radicals in the presence of H2O2. Cell studies showed that GIT fluids incubation of Au NPs affected the cellular uptake of Au NPs but did not induce cytotoxicity or disturb the intestinal epithelial permeability.
Collapse
Affiliation(s)
- Xiumei Jiang
- a Division of Analytical Chemistry and Division of Bioanalytical Chemistry, Office of Regulatory Science, Center for Food Safety and Applied Nutrition , U.S. Food and Drug Administration , College Park , Maryland , USA
| | - Xiaowei Zhang
- a Division of Analytical Chemistry and Division of Bioanalytical Chemistry, Office of Regulatory Science, Center for Food Safety and Applied Nutrition , U.S. Food and Drug Administration , College Park , Maryland , USA
| | - Patrick Gray
- a Division of Analytical Chemistry and Division of Bioanalytical Chemistry, Office of Regulatory Science, Center for Food Safety and Applied Nutrition , U.S. Food and Drug Administration , College Park , Maryland , USA
| | - Jiwen Zheng
- b Division of Biology, Chemistry and Materials Sciences, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health , U.S. Food and Drug Administration , Silver Spring , Maryland , USA
| | - Timothy R Croley
- a Division of Analytical Chemistry and Division of Bioanalytical Chemistry, Office of Regulatory Science, Center for Food Safety and Applied Nutrition , U.S. Food and Drug Administration , College Park , Maryland , USA
| | - Peter P Fu
- c National Center for Toxicological Research , U.S. Food and Drug Administration , Jefferson , Arkansas , USA
| | - Jun-Jie Yin
- a Division of Analytical Chemistry and Division of Bioanalytical Chemistry, Office of Regulatory Science, Center for Food Safety and Applied Nutrition , U.S. Food and Drug Administration , College Park , Maryland , USA
| |
Collapse
|
12
|
Helal NA, Eassa HA, Amer AM, Eltokhy MA, Edafiogho I, Nounou MI. Nutraceuticals' Novel Formulations: The Good, the Bad, the Unknown and Patents Involved. RECENT PATENTS ON DRUG DELIVERY & FORMULATION 2019; 13:105-156. [PMID: 31577201 PMCID: PMC6806606 DOI: 10.2174/1872211313666190503112040] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 04/07/2019] [Accepted: 04/10/2019] [Indexed: 02/07/2023]
Abstract
Traditional nutraceuticals and cosmeceuticals hold pragmatic nature with respect to their definitions, claims, purposes and marketing strategies. Their definitions are not well established worldwide. They also have different regulatory definitions and registration regulatory processes in different parts of the world. Global prevalence of nutraceuticals and cosmeceuticals is noticeably high with large market share with minimal regulation compared to traditional drugs. The global market is flooded with nutraceuticals and cosmeceuticals claiming to be of natural origin and sold with a therapeutic claim by major online retail stores such as Amazon and eBay. Apart from the traditional formulations, many manufacturers and researchers use novel formulation technologies in nutraceutical and cosmeceutical formulations for different reasons and objectives. Manufacturers tend to differentiate their products with novel formulations to increase market appeal and sales. On the other hand, researchers use novel strategies to enhance nutraceuticals and cosmeceuticals activity and safety. The objective of this review is to assess the current patents and research adopting novel formulation strategies in nutraceuticals and cosmeceuticals. Patents and research papers investigating nutraceutical and cosmeceutical novel formulations were surveyed for the past 15 years. Various nanosystems and advanced biotechnology systems have been introduced to improve the therapeutic efficacy, safety and market appeal of nutraceuticals and cosmeceuticals, including liposomes, polymeric micelles, quantum dots, nanoparticles, and dendrimers. This review provides an overview of nutraceuticals and cosmeceuticals current technologies, highlighting their pros, cons, misconceptions, regulatory definitions and market. This review also aims in separating the science from fiction in the nutraceuticals and cosmeceuticals development, research and marketing.
Collapse
Affiliation(s)
- Nada A. Helal
- Both authors contributed equality to this manuscript
| | - Heba A. Eassa
- Both authors contributed equality to this manuscript
| | | | | | | | - Mohamed I. Nounou
- Address correspondence to this author at the Department of Pharmaceutical Sciences (DPS), School of Pharmacy and Physician Assistant Studies (SOPPAS), University of Saint Joseph (USJ), Hartford, CT, 06103, USA;
E-mail:
| |
Collapse
|