1
|
Cao Y, Zhang P, Chen S, Huang Y, Li J, Du H, Zhang W, Chen X, Yu D. ZnO/PUF composites with a large capacity for phosphate adsorption: adsorption behavior and mechanism studies. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-34235-4. [PMID: 39066944 DOI: 10.1007/s11356-024-34235-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 06/30/2024] [Indexed: 07/30/2024]
Abstract
Phosphate is present in all kinds of industrial wastewater; how to remove it to meet the strict total phosphorus discharge standards is a challenge. This study used a one-step foaming technique to fill polyurethane foam (PUF) with ZnO, taking advantage of PUF's excellent features like its porous network, lightweight, hydrophilicity, and abundance of binding sites to create ZnO/PUF composites with high adsorption capacity and exceptional separation properties. The adsorption isotherms, kinetics, starting pH, and matrix impacts of ZnO/PUF composites on phosphate were examined in batch studies. The results showed that the composites had good adsorption performance for phosphate with a saturated adsorption capacity of 460.25 mg/g. The quasi-secondary kinetic and Langmuir models could better describe the adsorption process, which belonged to the chemical adsorption of monomolecular layers. The composites' ability to treat phosphates in complicated waters was shown by their ability to retain a high adsorption capacity in the pH range of 3-6. In column experiments, the composite also maintains a good affinity for phosphate during dynamic adsorption. Multiple characterizations indicate that the adsorption mechanism is a combined effect of ligand exchange and electrostatic interactions. Therefore, this study provides valuable insights for practical phosphorus-containing wastewater treatment.
Collapse
Affiliation(s)
- Yang Cao
- College of Materials and Chemistry and Chemical Engineering, Chengdu University of Technology, Chengdu, 610059, Sichuan, P.R. China
| | - Peicong Zhang
- College of Materials and Chemistry and Chemical Engineering, Chengdu University of Technology, Chengdu, 610059, Sichuan, P.R. China.
- State Key Laboratory of Geo-Hazard Prevention and Earth Environment Protection, Chengdu, 610059, Sichuan, P.R. China.
| | - Suying Chen
- College of Materials and Chemistry and Chemical Engineering, Chengdu University of Technology, Chengdu, 610059, Sichuan, P.R. China
| | - Yi Huang
- State Key Laboratory of Geo-Hazard Prevention and Earth Environment Protection, Chengdu, 610059, Sichuan, P.R. China
- College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, Sichuan, P.R. China
| | - Junfeng Li
- College of Materials and Chemistry and Chemical Engineering, Chengdu University of Technology, Chengdu, 610059, Sichuan, P.R. China
| | - Haiying Du
- College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, Sichuan, P.R. China
| | - Wentao Zhang
- College of Materials and Chemistry and Chemical Engineering, Chengdu University of Technology, Chengdu, 610059, Sichuan, P.R. China
| | - Xianfei Chen
- College of Materials and Chemistry and Chemical Engineering, Chengdu University of Technology, Chengdu, 610059, Sichuan, P.R. China
| | - Daming Yu
- Panzhihua Pangang Group Ming Company, Panzhihua, 617000, Sichuan, P.R. China
| |
Collapse
|
2
|
Mu Y, Wan L, Liang Z, Yang D, Han H, Yi J, Dai X. Enhanced biological phosphorus removal by high concentration powder carrier bio-fluidized bed (HPB): Phosphorus distribution, cyclone separation, and metagenomics. CHEMOSPHERE 2023; 337:139353. [PMID: 37414297 DOI: 10.1016/j.chemosphere.2023.139353] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/08/2023] [Accepted: 06/25/2023] [Indexed: 07/08/2023]
Abstract
This study provides a comparative investigation of phosphorus removal between anaerobic-anoxic-oxic (AAO) and high-concentration powder carrier bio-fluidized bed (HPB) in the same full-scale wastewater treatment plant. The results showed that the total phosphorus removal of HPB was 71.45%-96.71%. Compared with AAO, the total phosphorus removal of HPB can be increased by a maximum of 15.73%. The mechanisms of enhanced phosphorus removal by HPB include the followings. Biological phosphorus removal was significant. The anaerobic phosphorus release capacity of HPB was enhanced and polyphosphate (Poly-P) in the excess sludge of HPB was 1.5 times higher than that of AAO. The relative abundance of Candidatus Accumulibacter was 5 times higher than that of AAO, and oxidative phosphorylation and butanoate metabolism were enhanced. The analysis of phosphorus distribution showed that cyclone separation increased the chemical phosphorus precipitation (Chem-P) in the excess sludge by 16.96% to avoid accumulation in the biochemical tank. The phosphorus adsorbed by extracellular polymeric substance (EPS) in the recycled sludge was stripped, and the EPS bound-P in the excess sludge increased by 1.5 times. This study demonstrated the feasibility of HPB to improve the phosphorus removal efficiency for domestic wastewater.
Collapse
Affiliation(s)
- Yanyu Mu
- Tongji University, College of Environmental Science and Engineering, State Key Lab Pollution Control and Resource Reuse, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Li Wan
- Hunan Wufang Environmental Science and Technology Research Institute Co. Ltd., Changsha, Hunan, China
| | - Zixuan Liang
- Tongji University, College of Environmental Science and Engineering, State Key Lab Pollution Control and Resource Reuse, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Donghai Yang
- Tongji University, College of Environmental Science and Engineering, State Key Lab Pollution Control and Resource Reuse, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| | - Hongbo Han
- Hunan Sanyou Environmental Protection Co. Ltd., Changsha, Hunan, China
| | - Jing Yi
- Hunan Sanyou Environmental Protection Co. Ltd., Changsha, Hunan, China
| | - Xiaohu Dai
- Tongji University, College of Environmental Science and Engineering, State Key Lab Pollution Control and Resource Reuse, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| |
Collapse
|
3
|
Illescas-Lopez S, Martin-Romera JD, Mañas-Torres MC, Lopez-Lopez MT, Cuerva JM, Gavira JA, Carmona FJ, Álvarez de Cienfuegos L. Short-Peptide Supramolecular Hydrogels for In Situ Growth of Metal-Organic Framework-Peptide Biocomposites. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37390355 DOI: 10.1021/acsami.3c06943] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2023]
Abstract
The development of bio-MOFs or MOF biocomposites through the combination of MOFs with biopolymers offers the possibility of expanding the potential applications of MOFs, making use of more environmentally benign processes and reagents and giving rise to a new generation of greener and more bio-oriented composite materials. Now, with the increasing use of MOFs for biotechnological applications, the development of new protocols and materials to obtain novel bio-MOFs compatible with biomedical or biotechnological uses is needed. Herein, and as a proof of concept, we have explored the possibility of using short-peptide supramolecular hydrogels as media to promote the growth of MOF particles, giving rise to a new family of bio-MOFs. Short-peptide supramolecular hydrogels are very versatile materials that have shown excellent in vitro and in vivo biomedical applications such as tissue engineering and drug delivery vehicles, among others. These peptides self-assemble by noncovalent interactions, and, as such, these hydrogels are easily reversible, being more biocompatible and biodegradable. These peptides can self-assemble by a multitude of stimuli, such as changes in pH, temperature, solvent, adding salts, enzymatic activity, and so forth. In this work, we have taken advantage of this ability to promote peptide self-assembly with some of the components required to form MOF particles, giving rise to more homogeneous and well-integrated composite materials. Hydrogel formation has been triggered using Zn2+ salts, required to form ZIF-8, and formic acid, required to form MOF-808. Two different protocols for the in situ MOF growth have been developed. Finally, the MOF-808 composite hydrogel has been tested for the decontamination of water polluted with phosphate ions as well as for the catalytic degradation of toxic organophosphate methyl paraoxon in an unbuffered solution.
Collapse
Affiliation(s)
- Sara Illescas-Lopez
- Departamento de Química Orgánica, Unidad de Excelencia Química Aplicada a Biomedicina y Medioambiente (UEQ), Universidad de Granada, C. U. Fuentenueva, Avda. Severo Ochoa s/n, E-18071 Granada, Spain
| | - Javier D Martin-Romera
- Departamento de Química Inorgánica, UEQ, Universidad de Granada, C. U. Fuentenueva, Avda. Severo Ochoa s/n, E-18071 Granada, Spain
| | - Mari C Mañas-Torres
- Departamento de Química Orgánica, Unidad de Excelencia Química Aplicada a Biomedicina y Medioambiente (UEQ), Universidad de Granada, C. U. Fuentenueva, Avda. Severo Ochoa s/n, E-18071 Granada, Spain
| | - Modesto T Lopez-Lopez
- Departamento de Física Aplicada, Universidad de Granada, C. U. Fuentenueva, Avda. Severo Ochoa s/n, E-18071 Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Av. De Madrid, 15, 18016 Granada, Spain
| | - Juan M Cuerva
- Departamento de Química Orgánica, Unidad de Excelencia Química Aplicada a Biomedicina y Medioambiente (UEQ), Universidad de Granada, C. U. Fuentenueva, Avda. Severo Ochoa s/n, E-18071 Granada, Spain
| | - José A Gavira
- Laboratorio de Estudios Cristalográficos, Instituto Andaluz de Ciencias de la Tierra, Consejo Superior de Investigaciones Científicas-UGR, Avenida de las Palmeras 4, 18100 Armilla, Granada, Spain
| | - Francisco J Carmona
- Departamento de Química Inorgánica, UEQ, Universidad de Granada, C. U. Fuentenueva, Avda. Severo Ochoa s/n, E-18071 Granada, Spain
| | - Luis Álvarez de Cienfuegos
- Departamento de Química Orgánica, Unidad de Excelencia Química Aplicada a Biomedicina y Medioambiente (UEQ), Universidad de Granada, C. U. Fuentenueva, Avda. Severo Ochoa s/n, E-18071 Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Av. De Madrid, 15, 18016 Granada, Spain
| |
Collapse
|
4
|
Xu YC, Pantopoulos K, Zheng H, Zito E, Zhao T, Tan XY, Wei XL, Song YF, Luo Z. Phosphorus Overload Promotes Hepatic Lipolysis by Suppressing GSK3β-Dependent Phosphorylation of PPARα at Ser84 and Thr265 in a Freshwater Teleost. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:2351-2361. [PMID: 36728683 DOI: 10.1021/acs.est.2c06330] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Excessive phosphorus (Pi) contributes to eutrophication in an aquatic environment, which threatens human and fish health. However, the mechanisms by which Pi overload influences aquatic animals remain largely unexplored. In the present study, Pi supplementation increased the Pi content, inhibited lipid accumulation and lipogenesis, and stimulated lipolysis in the liver. Pi supplementation increased the phosphorylation of glycogen synthase kinase-3 β (GSK3β) at serine 9 (S9) but inhibited the phosphorylation of GSK3α at tyrosine 279 (Y279), GSK3β at tyrosine 216 (Y216), and peroxisome proliferator-activated receptor α (PPARα) at serine 84 (S84) and threonine 265 (T265). Pi supplementation also upregulated PPARα protein expression and stimulated its transcriptional activity, thereby inducing lipolysis. Pi suppressed GSK3β activity and prevented GSK3β, but not GSK3α, from interacting with PPARα, which in turn alleviated PPARα phosphorylation. GSK3β-induced phosphorylation of PPARα was dependent on GSK3β S9 dephosphorylation rather than Y216 phosphorylation. Mechanistically, underphosphorylation of PPARα mediated Pi-induced lipid degradation through transcriptionally activating adipose triglyceride lipase (atgl) and very long-chain-specific acyl-CoA dehydrogenase (acadvl). Collectively, our findings uncovered a new mechanism by which Pi facilitates lipolysis via the GSK3β-PPARα pathway and highlighted the importance of S84 and T265 phosphorylation in PPARα action.
Collapse
Affiliation(s)
- Yi-Chuang Xu
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Kostas Pantopoulos
- Lady Davis Institute for Medical Research and Department of Medicine, McGill University, Montreal, Quebec H3T 1E2, Canada
| | - Hua Zheng
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Ester Zito
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Tao Zhao
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiao-Ying Tan
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiao-Lei Wei
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Yu-Feng Song
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhi Luo
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| |
Collapse
|
5
|
Han Y, Su Z, Ma X, Fu X, Xu H, Liu L, Liu M. Preparation of Fe/C-MgCO 3 micro-electrolysis fillers and mechanism of phosphorus removal. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:13372-13392. [PMID: 36131176 DOI: 10.1007/s11356-022-23057-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 09/13/2022] [Indexed: 06/15/2023]
Abstract
Iron-carbon micro-electrolysis is effective for the removal of phosphorus in wastewater; however, meeting the stringent emission standards required for treatment is difficult. To meet these treatment standards, modified micro-electrolytic fillers were prepared from iron dust, powdered activated carbon, clay, and additives using an elevated temperature roasting process under an inert atmosphere. The results show that among several additives, the modified micro-electrolytic (Fe/C-MgCO3) fillers using MgCO3 were the most effective at phosphorus removal. The preparation conditions for the Fe/C-MgCO3 fillers and their effects on phosphorus removal performance were investigated. Under the optimal preparation conditions (calcination temperature: 800 °C, Fe/C = 4:1, clay content 20%, and 5% MgCO3), the filler yielded a high compressive strength of 3.5 MPa, 1 h water absorption rate of 25.7%, and specific surface area and apparent density of 154.2 m2/g and 2689.2 kg/m3, respectively. The iron-carbon micro-electrolysis process removed 97% of phosphorus in the wastewater by using the Fe/C-MgCO3 fillers, which was 14% more than the Fe/C filler. Electrostatic adsorption and surface precipitation were identified as the main phosphorus removal mechanisms, and the surface of the Fe/C-MgCO3 filler was continuously updated. These results demonstrated that Fe/C-MgCO3 is a promising filler for phosphorus removal in water treatment.
Collapse
Affiliation(s)
- Yanhe Han
- Department of Environmental Engineering, Beijing Institute of Petrochemical Technology, Beijing, 102617, People's Republic of China.
| | - Zhimin Su
- Department of Environmental Engineering, Beijing Institute of Petrochemical Technology, Beijing, 102617, People's Republic of China
| | - Xuejiao Ma
- Department of Environmental Engineering, Beijing Institute of Petrochemical Technology, Beijing, 102617, People's Republic of China
| | - Xiaolu Fu
- Department of Environmental Engineering, Beijing Institute of Petrochemical Technology, Beijing, 102617, People's Republic of China
| | - Han Xu
- Department of Environmental Engineering, Beijing Institute of Petrochemical Technology, Beijing, 102617, People's Republic of China
| | - Lina Liu
- Department of Environmental Engineering, Beijing Institute of Petrochemical Technology, Beijing, 102617, People's Republic of China
| | - Meili Liu
- Department of Environmental Engineering, Beijing Institute of Petrochemical Technology, Beijing, 102617, People's Republic of China
| |
Collapse
|
6
|
Diaz R, Mackey B, Chadalavada S, Kainthola J, Heck P, Goel R. Enhanced Bio-P removal: Past, present, and future - A comprehensive review. CHEMOSPHERE 2022; 309:136518. [PMID: 36191763 DOI: 10.1016/j.chemosphere.2022.136518] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
Excess amounts of phosphorus (P) and nitrogen (N) from anthropogenic activities such as population growth, municipal and industrial wastewater discharges, agriculture fertilization and storm water runoffs, have affected surface water chemistry, resulting in episodes of eutrophication. Enhanced biological phosphorus removal (EBPR) based treatment processes are an economical and environmentally friendly solution to address the present environmental impacts caused by excess P present in municipal discharges. EBPR practices have been researched and operated for more than five decades worldwide, with promising results in decreasing orthophosphate to acceptable levels. The advent of molecular tools targeting bacterial genomic deoxyribonucleic acid (DNA) has also helped us reveal the identity of potential polyphosphate-accumulating organisms (PAO) and denitrifying PAO (DPAO) responsible for the success of EBPR. Integration of process engineering and environmental microbiology has provided much-needed confidence to the wastewater community for the successful implementation of EBPR practices around the globe. Despite these successes, the process of EBPR continues to evolve in terms of its microbiology and application in light of other biological processes such as anaerobic ammonia oxidation and on-site carbon capture. This review provides an overview of the history of EBPR, discusses different operational parameters critical for the successful operation of EBPR systems, reviews current knowledge of EBPR microbiology, the influence of PAO/DPAO on the disintegration of microbial communities, stoichiometry, EBPR clades, current practices, and upcoming potential innovations.
Collapse
Affiliation(s)
- Ruby Diaz
- Department of Civil and Environmental Engineering, University of Utah, Salt Lake City, UT, 84112, USA
| | - Brendan Mackey
- Department of Civil and Environmental Engineering, University of Utah, Salt Lake City, UT, 84112, USA
| | - Sreeni Chadalavada
- School of Engineering, University of Southern Queensland Springfield, Queensland, 4350, Australia.
| | - Jyoti Kainthola
- Department of Civil Engineering, École Centrale School of Engineering, Mahindra University, Hyderabad, India, 500043
| | - Phil Heck
- Central Valley Water Reclamation Facility, Salt Lake City, UT, USA
| | - Ramesh Goel
- Department of Civil and Environmental Engineering, University of Utah, Salt Lake City, UT, 84112, USA.
| |
Collapse
|
7
|
Konadu-Amoah B, Hu R, Ndé-Tchoupé AI, Gwenzi W, Noubactep C. Metallic iron (Fe 0)-based materials for aqueous phosphate removal: A critical review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 315:115157. [PMID: 35526394 DOI: 10.1016/j.jenvman.2022.115157] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/06/2022] [Accepted: 04/22/2022] [Indexed: 06/14/2023]
Abstract
The discharge of excessive phosphate from wastewater sources into the aquatic environment has been identified as a major environmental threat responsible for eutrophication. It has become essential to develop efficient but affordable techniques to remove excess phosphate from wastewater before discharging into freshwater bodies. The use of metallic iron (Fe0) as a reactive agent for aqueous phosphate removal has received a wide attention. Fe0 in-situ generates positively charged iron corrosion products (FeCPs) at pH > 4.5, with high binding affinity for anionic phosphate. This study critically reviews the literature that focuses on the utilization of Fe0-based materials for aqueous phosphate removal. The fundamental science of aqueous iron corrosion and historical background of the application of Fe0 for phosphate removal are elucidated. The main mechanisms for phosphate removal are identified and extensively discussed based on the chemistry of the Fe0/H2O system. This critical evaluation confirms that the removal process is highly influenced by several operational factors including contact time, Fe0 type, influent geochemistry, initial phosphate concentration, mixing conditions, and pH value. The difficulty in comparing independent results owing to diverse experimental conditions is highlighted. Moreover, contemporary research in progress including Fe0/oxidant systems, nano-Fe0 application, Fe0 material selection, desorption studies, and proper design of Fe0-based systems for improved phosphate removal have been discussed. Finally, potential strategies to close the loop in Fe0-based phosphate remediation systems are discussed. This review presents a science-based guide to optimize the efficient design of Fe0-based systems for phosphate removal.
Collapse
Affiliation(s)
- Bernard Konadu-Amoah
- School of Earth Science and Engineering, Hohai University, Fo Cheng Xi Road 8, Nanjing, 211100, China.
| | - Rui Hu
- School of Earth Science and Engineering, Hohai University, Fo Cheng Xi Road 8, Nanjing, 211100, China.
| | - Arnaud Igor Ndé-Tchoupé
- School of Earth Science and Engineering, Hohai University, Fo Cheng Xi Road 8, Nanjing, 211100, China.
| | - Willis Gwenzi
- Biosystems and Environmental Engineering Research Group, Department of Agricultural and Biosystems Engineering, University of Zimbabwe, P.O. Box MP167, Mount Pleasant, Harare, Zimbabwe.
| | - Chicgoua Noubactep
- School of Earth Science and Engineering, Hohai University, Fo Cheng Xi Road 8, Nanjing, 211100, China; Centre for Modern Indian Studies (CeMIS), University of Göttingen, Waldweg 26, 37073, Göttingen, Germany; Department of Water and Environmental Science and Engineering, Nelson Mandela African Institution of Science and Technology, Arusha P.O. Box 447, Tanzania; Faculty of Science and Technology, Campus of Banekane, Université des Montagnes, P.O. Box 208, Bangangté, Cameroon.
| |
Collapse
|
8
|
Zahed MA, Salehi S, Tabari Y, Farraji H, Ataei-Kachooei S, Zinatizadeh AA, Kamali N, Mahjouri M. Phosphorus removal and recovery: state of the science and challenges. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:58561-58589. [PMID: 35780273 DOI: 10.1007/s11356-022-21637-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
Phosphorus is one of the main nutrients required for all life. Phosphorus as phosphate form plays an important role in different cellular processes. Entrance of phosphorus in the environment leads to serious ecological problems including water quality problems and soil pollution. Furthermore, it may cause eutrophication as well as harmful algae blooms (HABs) in aquatic environments. Several physical, chemical, and biological methods have been presented for phosphorus removal and recovery. In this review, there is an overview of phosphorus role in nature provided, available removal processes are discussed, and each of them is explained in detail. Chemical precipitation, ion exchange, membrane separation, and adsorption can be listed as the most used methods. Identifying advantages of these technologies will allow the performance of phosphorus removal systems to be updated, optimized, evaluate the treatment cost and benefits, and support select directions for further action. Two main applications of biochar and nanoscale materials are recommended.
Collapse
Affiliation(s)
| | - Samira Salehi
- Department of Health, Safety and Environment, Petropars Company, Tehran, Iran.
| | - Yasaman Tabari
- Faculty of Sciences and Advanced Technologies, Science and Culture University, Tehran, Iran
| | - Hossein Farraji
- School of Physical and Chemical Sciences, University of Canterbury, Christchurch, New Zealand
| | | | - Ali Akbar Zinatizadeh
- Faculty of Chemistry, Department of Applied Chemistry, Environmental Research Center (ERC), Razi University, Kermanshah, 67144-14971, Iran
- Department of Environmental Sciences, College of Agriculture and Environmental Sciences, University of South Africa, P.O. Box 392, Florida, 1710, South Africa
| | - Nima Kamali
- Faculty of Civil and Environmental Engineering, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Mahjouri
- Department of Environmental Engineering, University of Tehran, Kish International Campus, Tehran, Iran
| |
Collapse
|
9
|
Nadeem K, Alliet M, Plana Q, Bernier J, Azimi S, Rocher V, Albasi C. Modeling, simulation and control of biological and chemical P-removal processes for membrane bioreactors (MBRs) from lab to full-scale applications: State of the art. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 809:151109. [PMID: 34688739 DOI: 10.1016/j.scitotenv.2021.151109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/16/2021] [Accepted: 10/16/2021] [Indexed: 06/13/2023]
Abstract
Phosphorus (P) removal from the domestic wastewater is required to counter the eutrophication in receiving water bodies and is mandated by the regulatory frameworks in several countries with discharge limits within 1-2mgPL-1. Operating at higher sludge retention time (SRT) and higher biomass concentration than the conventional activated sludge process (CASP), membrane bioreactors (MBRs) are able to remove 70-98% phosphorus without addition of coagulant. In full-scale facilities, enhanced biological phosphorus removal (EBPR) is assisted by the addition of metal coagulant to ensure >95% P-removal. MBRs are successfully used for super-large-scale wastewater treatment facilities (capacity >100,000 m3d-1). This paper documents the knowledge of P-removal modeling from lab to full-scale submerged MBRs and assesses the existing mathematical models for P-removal from domestic wastewater. There are still limited studies involving integrated modeling of the MBRs (full/super large-scale), considering the complex interactions among biology, chemical addition, filtration, and fouling. This paper analyses the design configurations and the parameters affecting the biological and chemical P-removal in MBRs to understand the P-removal process sensitivity and their implications for the modeling studies. Furthermore, it thoroughly reviews the applications of bio-kinetic and chemical precipitation models to MBRs for assessing their effectiveness with default stoichiometric and kinetic parameters and the extent to which these parameters have been calibrated/adjusted to simulate the P-removal successfully. It also presents a brief overview and comparison of seven (7) chemical precipitation models, along with a quick comparison of commercially available simulators. In addition to advantages associated with chemical precipitation for P-removal, its role in changing the relative abundance of the microbial community responsible for P-removal and denitrification and the controversial role in fouling mitigation/increase are discussed. Lastly, it encompasses several coagulant dosing control systems and their applications in the pilot to full-scale facilities to save coagulants and optimize the P-removal performance.
Collapse
Affiliation(s)
- Kashif Nadeem
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France.
| | - Marion Alliet
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France.
| | - Queralt Plana
- Parisian Sanitation Public Service (SIAAP), Direction Innovation, 92700 Colombes, France
| | - Jean Bernier
- Parisian Sanitation Public Service (SIAAP), Direction Innovation, 92700 Colombes, France
| | - Sam Azimi
- Parisian Sanitation Public Service (SIAAP), Direction Innovation, 92700 Colombes, France.
| | - Vincent Rocher
- Parisian Sanitation Public Service (SIAAP), Direction Innovation, 92700 Colombes, France.
| | - Claire Albasi
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France.
| |
Collapse
|
10
|
Pei L, Yang F, Xu X, Nan H, Gui X, Zhao L, Cao X. Further reuse of phosphorus-laden biochar for lead sorption from aqueous solution: Isotherm, kinetics, and mechanism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 792:148550. [PMID: 34465039 DOI: 10.1016/j.scitotenv.2021.148550] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/03/2021] [Accepted: 06/15/2021] [Indexed: 06/13/2023]
Abstract
Biochar and engineered biochar have been used for phosphorous recovery from wastewater, but the resulted phosphorous-laden (P-laden) biochar needs further disposal. In this study, the feasibility of reusing P-laden biochar for Pb immobilization as well as the underlying mechanism was explored. Three types of engineered biochar, i.e., Ca modified biochar, Mg modified biochar, and Fe modified biochar, were selected to sorb P and then the exhausted biochar was further used for Pb sorption. Results showed that Mg and Ca modified biochar exhibited considerable Pb sorption capacity after P sorption with the maximum value of 3.36-4.03 mmol/g and 5.49-6.58 mmol/g, respectively, while P-laden Fe modified biochar failed to sorb Pb due to its acidic pH. The removal of Pb by P-laden Mg modified biochar involved more precipitation including PbHPO4, Pb5(PO4)3(OH), and Pb3(CO3)2(OH)2 because of its higher P sorption capacity and more -OH group on the surface. Cation exchange with CaCO3 to form PbCO3 was the main mechanism for Pb removal by P-laden Ca modified biochar despite the formation of Pb5(PO4)3(OH) precipitate. Our results demonstrate that waste P-laden biochar can be further used for the effective removal of Pb, which provides a potential approach for waste adsorbent disposal.
Collapse
Affiliation(s)
- Lei Pei
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Fan Yang
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Xiaoyun Xu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Hongyan Nan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiangyang Gui
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ling Zhao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xinde Cao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
11
|
Das TK, Scott Q, Bezbaruah AN. Montmorillonite-iron crosslinked alginate beads for aqueous phosphate removal. CHEMOSPHERE 2021; 281:130837. [PMID: 34015650 DOI: 10.1016/j.chemosphere.2021.130837] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 05/04/2021] [Accepted: 05/05/2021] [Indexed: 06/12/2023]
Abstract
Phosphate runoff from agriculture fields leads to eutrophication of the water bodies with devastating effects on the aquatic ecosystem. In this study, naturally occurring montmorillonite clay-incorporated iron crosslinked alginate biopolymer (MtIA) beads were synthesized and evaluated for aqueous phosphate removal. Batch experiment data showed an efficient phosphate removal (>99%) by the MtIA beads from solutions with different initial phosphate concentrations (1 and 5 mg PO43--P/L, and 100 μg PO43--P/L). The kinetic data fitted well into the pseudo-second-order kinetic model indicating chemisorption played an important role in phosphate removal. Based on analyses of results from the Elovich and intra-particulate diffusion models, phosphate removal by the MtIA beads was found to be chemisorption where both film diffusion and intra-particulate diffusion participated. The isotherm studies indicate that MtIA surfaces were heterogeneous, and the adsorption capacity of the beads calculated from Langmuir model was 48.7 mg PO43--P/g of dry beads which is ~2.3 times higher than values reported for other clay-metal-alginate beads. Electron microscopy (SEM-EDS) data from the beads showed a rough-textured surface which helped the beads achieve better contact with the phosphate ions. Fourier-transform infrared spectroscopy (FTIR) indicated that both iron and montmorillonite clay participated in crosslinking with the alginate chain. The MtIA beads worked effectively (>98% phosphate removal) over a wide pH range of 2-10 making it a robust adsorbent. The beads can potentially be used for phosphate recovery from eutrophic lakes, agricultural run-off, and municipal wastewater.
Collapse
Affiliation(s)
- Tonoy K Das
- Nanoenvirology Research Group, Department of Civil and Environmental Engineering North Dakota State University, Fargo, ND, 58105, USA
| | - Quentin Scott
- Nanoenvirology Research Group, Department of Civil and Environmental Engineering North Dakota State University, Fargo, ND, 58105, USA
| | - Achintya N Bezbaruah
- Nanoenvirology Research Group, Department of Civil and Environmental Engineering North Dakota State University, Fargo, ND, 58105, USA.
| |
Collapse
|
12
|
Amorim de Carvalho CD, Ferreira Dos Santos A, Tavares Ferreira TJ, Sousa Aguiar Lira VN, Mendes Barros AR, Bezerra Dos Santos A. Resource recovery in aerobic granular sludge systems: is it feasible or still a long way to go? CHEMOSPHERE 2021; 274:129881. [PMID: 33582539 DOI: 10.1016/j.chemosphere.2021.129881] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 01/26/2021] [Accepted: 02/02/2021] [Indexed: 06/12/2023]
Abstract
Lately, wastewater treatment plants are much often being designed as wastewater-resource factories inserted in circular cities. Among biological treatment technologies, aerobic granular sludge (AGS), considered an evolution of activated sludge (AS), has received great attention regarding its resource recovery potential. This review presents the state-of-the-art concerning the influence of operational parameters on the recovery of alginate-like exopolysaccharides (ALE), tryptophan, phosphorus, and polyhydroxyalkanoates (PHA) from AGS systems. The carbon to nitrogen ratio was identified as a parameter that plays an important role for the optimal production of ALE, tryptophan, and PHA. The sludge retention time effect is more pronounced for the production of ALE and tryptophan. Additionally, salinity levels in the bioreactors can potentially be manipulated to increase ALE and phosphorus yields simultaneously. Some existing knowledge gaps in the scientific literature concerning the recovery of these resources from AGS were also identified. Regarding industrial applications, tryptophan has the longest way to go. On the other hand, ALE production/recovery could be considered the most mature process if we take into account that existing alternatives for phosphorus and PHA production/recovery are optimized for activated sludge rather than granular sludge. Consequently, to maintain the same effectiveness, these processes likely could not be applied to AGS without undergoing some modification. Therefore, investigating to what extent these adaptations are necessary and designing alternatives is essential.
Collapse
Affiliation(s)
- Clara de Amorim de Carvalho
- Department of Hydraulic and Environmental Engineering, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Amanda Ferreira Dos Santos
- Department of Hydraulic and Environmental Engineering, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | | | | | | | - André Bezerra Dos Santos
- Department of Hydraulic and Environmental Engineering, Federal University of Ceará, Fortaleza, Ceará, Brazil.
| |
Collapse
|
13
|
Thelin WR, Sivertsen E, Raspati G, Azrague K, Helness H. Concentration of Municipal MBBR Effluent by FO for Resource Recovery: Batch Experiments in Side-Stream Configuration. MEMBRANES 2021; 11:membranes11040278. [PMID: 33920191 PMCID: PMC8068858 DOI: 10.3390/membranes11040278] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/26/2021] [Accepted: 04/08/2021] [Indexed: 11/25/2022]
Abstract
A novel approach for resource recovery includes forward osmosis (FO) as a concentration step in municipal wastewater treatment. The current study investigates different pre-treatment strategies including biological treatment with a moving-bed bioreactor (MBBR) at different loading rates and particle removal by filtration and sedimentation. Membrane performance and recovery potential for energy and nutrients were investigated in laboratory-scale FO experiments in batch mode using pre-treated municipal wastewater as feed and 35 g/L NaCl as a draw solution. Initial water fluxes were in the range of 6.3 to 8.0 L/(m2·h). The baseline fluxes were modelled to account for flux decline due to concentration effects and to enable the prediction of flux decline due to membrane fouling. Fouling-related flux decline varied from 0 to 31%. Both organic fouling and precipitation of CaCO3 and CaHPO4 were identified by using SEM–EDS. High-rate flushing resulted in complete flux recovery under most conditions. Scaling could be avoided by lowering the pH. Two operation strategies were tested to achieve this: (1) applying a bioreactor with a low organic loading rate to achieve high nitrification, and (2) adding a strong acid. A low organic loading rate and the use of additional particle removal were efficient measures that reduced organic/particulate fouling. The recovery potentials for COD and phosphorous in FO concentrate were close to 100%.
Collapse
|
14
|
Verma S, Nadagouda MN. Graphene-Based Composites for Phosphate Removal. ACS OMEGA 2021; 6:4119-4125. [PMID: 33644534 PMCID: PMC7906579 DOI: 10.1021/acsomega.0c05819] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/27/2021] [Indexed: 06/12/2023]
Abstract
A variety of methods, including chemical precipitation, biological phosphorus elimination, and adsorption, have been described to effectively eliminate phosphorus (P) in the form of phosphate (PO4 3-) from wastewater sources. Adsorption is a simple and easy method. It shows excellent removal performance, cost effectiveness, and the substantial option of adsorbent materials. Therefore, it has been recognized as a practical, environmentally friendly, and reliable treatment method for eliminating P. Nanocomposites have been deployed to remove P from wastewater via adsorption. Nanocomposites offer low-temperature alteration, high specific surface area, adjustable surface chemistry, pore size, many adsorption sites, and rapid intraparticle diffusion distances. In this Mini-Review, we have aimed to summarize the last eight years of progress in P removal using graphene-based composites via adsorption. Ultimately, future perspectives have been presented to boost the progress of this encouraging field.
Collapse
Affiliation(s)
- Sanny Verma
- Pegasus
Technical Services, Inc., Cincinnati, Ohio 45219, United States
| | - Mallikarjuna N. Nadagouda
- Center
for Environmental Solutions and Emergency Response, U.S. Environmental Protection Agency, 26 West Martin Luther King Drive, Cincinnati, Ohio 45268, United States
| |
Collapse
|
15
|
Phosphate Removal Using Polyethylenimine Functionalized Silica-Based Materials. SUSTAINABILITY 2021. [DOI: 10.3390/su13031502] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
In water and wastewater, phosphate anions are considered critical contaminants because they cause algae blooms and eutrophication. The present work aims at studying the removal of phosphate anions from aqueous solutions using silica particles functionalized with polyethylenimine. The parameters affecting the adsorption process such as pH, initial concentration, adsorbent dose, and the presence of competitive anions, such as carbonate, nitrate, sulfate and chromate ions, were studied. Equilibrium studies were carried out to determine their sorption capacity and the rate of phosphate ions uptake. The adsorption isotherm data fitted well with the Langmuir and Sips model. The maximum sorption capacity was 41.1 mg/g at pH 5, which decreased slightly at pH 7. The efficiency of phosphate removal adsorption increased at lower pH values and by increasing the adsorbent dose. The maximum phosphate removal was 80% for pH 5 and decreased to 75% for pH 6, to 73% for pH 7 and to 70% for pH 8, for initial phosphate concentration at about 1 mg/L and for a dose of adsorbent 100 mg/L. The removal rate was increased with the increase of the adsorbent dose. For example, for initial phosphate concentration of 4 mg/L the removal rate increased from 40% to 80% by increasing the dose from 0.1 to 2.0 g/L at pH 7. The competitive anions adversely affected phosphate removal. Though they were also found to be removed to a certain extent. Their co-removal provided an adsorbent which might be very useful for treating waters with low-level multiple contaminant occurrence in natural or engineered aquatic systems.
Collapse
|
16
|
Brockgreitens JW, Heidari F, Abbas A. Versatile Process for the Preparation of Nanocomposite Sorbents: Phosphorus and Arsenic Removal. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:9034-9043. [PMID: 32539354 DOI: 10.1021/acs.est.9b07944] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Nanomaterials are being increasingly utilized for environmental remediation. The use of these materials, however, is greatly hindered due to challenges in material handling and deployment. Here we present a novel nanocomposite synthesis method based on the direct growth of nanoparticles on and within solid support materials, referred to as Crescoating. In this work, iron and copper nanoparticles have been grown on polyurethane support materials using this process and applied as sorbents for dissolved phosphorus and arsenic in water, respectively. These nanocomposite sorbents exhibit rapid sorption with saturation occurring in less than 5 min. The loading capacity is 104.8 mg PO43- g-1 and 254.4 mg As(III) g-1 for the iron and copper nanocomposite sorbents respectively, which is up to four times higher than commercially available alternatives. In addition, phosphorus can be recovered from the iron nanocomposite sorbent. This coating by growth process produces nanocomposites that do not emit particles and has the capability to be scaled and applied to other nanoparticles for diverse pollutant sorption applications.
Collapse
Affiliation(s)
- John W Brockgreitens
- Department of Bioproducts and Biosystems Engineering, University of Minnesota-Twin Cities, St. Paul, Minnesota 55108, United States
| | - Fatemeh Heidari
- Department of Bioproducts and Biosystems Engineering, University of Minnesota-Twin Cities, St. Paul, Minnesota 55108, United States
| | - Abdennour Abbas
- Department of Bioproducts and Biosystems Engineering, University of Minnesota-Twin Cities, St. Paul, Minnesota 55108, United States
| |
Collapse
|
17
|
Liu B, Liu L, Li W. Effective removal of phosphorus from eutrophic water by using cement. ENVIRONMENTAL RESEARCH 2020; 183:109218. [PMID: 32044573 DOI: 10.1016/j.envres.2020.109218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 02/01/2020] [Accepted: 02/02/2020] [Indexed: 06/10/2023]
Abstract
Increasing discharge of excessive phosphorus (P) has caused widespread eutrophication and water pollution that threaten both ecological and human health. There are many ways to remove P from eutrophic water, but there are various deficiencies. Conventional P removal is based largely on the use of Al or Fe salts and few methods can be directly used in field eutrophic water. Our research revealed that direct use of ordinary Portland cement could effectively remove P from eutrophic water bodies. Laboratory experiments indicate that a one-time application of cement reduced Total Phosphorus (TP) concentration of both eutrophic urban water and synthetic solutions to below 0.2 mg/L. A second application further reduced TP to below 0.04 mg/L. Use of cement also caused an increase in dissolved oxygen (DO) content in samples. Cement was directly used in eutrophic water body of a river and TP concentration was reduced to an allowable level. Use of readily available cement can contribute to the clean up of water pollution in developing countries. This study provides an innovative and easy solution to widespread eutrophication.
Collapse
Affiliation(s)
- Benhong Liu
- Department of Environment, College of Architecture and Environment, Sichuan University, No. 24, South Section One, First Ring Road, Chengdu, Sichuan, 610065, China.
| | - Lei Liu
- Department of Environment, College of Architecture and Environment, Sichuan University, No. 24, South Section One, First Ring Road, Chengdu, Sichuan, 610065, China
| | - Wei Li
- Department of Environment, College of Architecture and Environment, Sichuan University, No. 24, South Section One, First Ring Road, Chengdu, Sichuan, 610065, China
| |
Collapse
|
18
|
Almojil SF, Othman MA. Screening Different Divalent and Trivalent Metals Containing Binary and Ternary Layered Double Hydroxides for Optimum Phosphate Uptake. Sci Rep 2019; 9:15511. [PMID: 31664181 PMCID: PMC6820524 DOI: 10.1038/s41598-019-52031-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 10/11/2019] [Indexed: 11/09/2022] Open
Abstract
The elements constituting a layered double hydroxides material provide many alternatives for its optimization. Ten different layered double hydroxides materials with various combinations of Ni, Cu, Zn, Al, Cr, and Fe elements were studied as sorbent materials for phosphate ion. The type of element used in the layered double hydroxides affected the uptake capacity of phosphate. The influence of a specific element alone was not the primary role of enhancing the sorption performance of phosphate ion on the LDHs material. However, using specific two or three elements together is the key to achieve the best result due to synergistic effects. BET surface area of the sorbent showed no correlation with phosphate uptake. From the examined materials, Four layered double hydroxides of Cu-Zn-Cr, Zn-Cr, Ni-Al, and Cu-Ni-Cr showed high phosphate sorption capability. Sorption equilibrium isotherm, reaction kinetics, and desorption of phosphate from the sorbent materials were also investigated.
Collapse
Affiliation(s)
- Sattam Fahad Almojil
- Department of Civil Engineering, King Saud University, PO Box 800, Riyadh, 11421, Saudi Arabia
| | | |
Collapse
|
19
|
Santos AF, Arim AL, Lopes DV, Gando-Ferreira LM, Quina MJ. Recovery of phosphate from aqueous solutions using calcined eggshell as an eco-friendly adsorbent. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 238:451-459. [PMID: 30875643 DOI: 10.1016/j.jenvman.2019.03.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 02/05/2019] [Accepted: 03/03/2019] [Indexed: 06/09/2023]
Abstract
Phosphorus scarcity has become a significant issue in the European Union (EU) during 21st Century, due to its relevance as an irreplaceable macronutrient for life, and because of the total dependency of EU regarding imports. This work aims to evaluate the phosphorus recovery by adsorption in batch and fixed-bed column, using a thermally modified eggshell as an adsorbent. The screening phase revealed that calcined eggshell at 700 °C (CES700) is the most suitable material compared with the other thermally modified eggshells tested. Thus, CES700 was characterized regarding the specific surface area, pore volume, zero-point charge pH, total dissolved solids and organic matter. The influence of pH and adsorbent dosage was investigated in batch conditions. Langmuir-Freundlich model described the equilibrium data and the maximum adsorption capacity was about 39 mg P-PO4/g. The kinetics follows a pseudo-first order model, with constants between 0.063 and 0.224 min-1. Fixed-bed studies indicated that increasing fluid superficial velocity and feed concentration led to an early saturation of the adsorbent. Yoon-Nelson, Thomas and Bohard-Adams empirical models properly adjusted the breakthrough curves with R2 ≥ 0.98. Germination tests using CES700 loaded with phosphate revealed a germination index of 120 and 124% to 48 and 72 h, respectively. CES700 is statically better than the other tested materials, which opens the possibility of its use as fertilizer. This study showed that the developed material, CES700, can be applied in batch or fixed-bed processes to recover phosphate ions from liquid effluents, and the loaded adsorbent has potential to be further used as fertilizer.
Collapse
Affiliation(s)
- Andreia F Santos
- CIEPQPF, Department of Chemical Engineering, Faculty of Sciences and Technology, University of Coimbra, Pólo II, Rua Sílvio Lima, 3030-790, Coimbra, Portugal
| | - Aline L Arim
- CIEPQPF, Department of Chemical Engineering, Faculty of Sciences and Technology, University of Coimbra, Pólo II, Rua Sílvio Lima, 3030-790, Coimbra, Portugal; UNIPAMPA, Federal University of Pampa, Campus Bagé, RS, Brazil
| | - Daniela V Lopes
- CIEPQPF, Department of Chemical Engineering, Faculty of Sciences and Technology, University of Coimbra, Pólo II, Rua Sílvio Lima, 3030-790, Coimbra, Portugal; CICECO, Aveiro Institute of Materials, Department of Materials and Ceramic Engineering, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Licínio M Gando-Ferreira
- CIEPQPF, Department of Chemical Engineering, Faculty of Sciences and Technology, University of Coimbra, Pólo II, Rua Sílvio Lima, 3030-790, Coimbra, Portugal
| | - Margarida J Quina
- CIEPQPF, Department of Chemical Engineering, Faculty of Sciences and Technology, University of Coimbra, Pólo II, Rua Sílvio Lima, 3030-790, Coimbra, Portugal.
| |
Collapse
|
20
|
Dharmakeerthi RS, Kumaragamage D, Indraratne SP, Goltz D. Gypsum Amendment Reduces Redox-Induced Phosphorous Release from Freshly Manured, Flooded Soils to Floodwater. JOURNAL OF ENVIRONMENTAL QUALITY 2019; 48:127-135. [PMID: 30640341 DOI: 10.2134/jeq2018.08.0308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The effectiveness of gypsum in reducing runoff P losses from soils and the mechanisms responsible are well documented; however, gypsum amendment effects in reducing redox-induced P losses from flooded soils are less researched and documented. We examined the effect of gypsum amendment on P release from freshly manured soils to pore water and floodwater with continuous flooding for 56 d in the laboratory. Three soils (Pembina, Denham, and Dencross series) collected from Manitoba, Canada, were preincubated with liquid swine manure. Each preincubated manured soil was packed into vessels with or without recycled wallboard gypsum in triplicates and flooded for 56 d, during which pore water and floodwater were sampled weekly and analyzed for pH and dissolved reactive P (DRP), Ca, Mg, Fe, and Mn concentrations. Change in soil redox potential (Eh) with flooding was also monitored. Wallboard gypsum amendment significantly decreased the pore water and surface floodwater DRP concentrations in all three soils for most days after flooding (DAF). The Dencross soil, which had Olsen P about fivefold greater than the other soils, showed the greatest magnitude decrease in DRP concentration with gypsum amendment, by 1.27 mg L on 49 DAF and 0.99 mg L on 21 DAF for pore water and floodwater, respectively. Gypsum amendment (i) delayed the Eh reduction with flooding beyond +200 mV, (ii) decreased pore water pH, and (iii) increased concentrations of Ca, Mg, and Mn in pore water favoring precipitation of P, all of which may have directly or indirectly reduced the P release from flooded soils to overlying floodwater.
Collapse
|
21
|
Kabdaşlı I, Tünay O. Nutrient recovery by struvite precipitation, ion exchange and adsorption from source-separated human urine – a review. ACTA ACUST UNITED AC 2018. [DOI: 10.1080/21622515.2018.1473504] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Işık Kabdaşlı
- Civil Engineering Faculty, Environmental Engineering Department, İstanbul Technical University, Sarıyer, İstanbul, Republic of Turkey
| | - Olcay Tünay
- Civil Engineering Faculty, Environmental Engineering Department, İstanbul Technical University, Sarıyer, İstanbul, Republic of Turkey
| |
Collapse
|
22
|
Kong L, Han M, Shih K, Su M, Diao Z, Long J, Chen D, Hou L, Peng Y. Nano-rod Ca-decorated sludge derived carbon for removal of phosphorus. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 233:698-705. [PMID: 29121605 DOI: 10.1016/j.envpol.2017.10.099] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 10/08/2017] [Accepted: 10/22/2017] [Indexed: 06/07/2023]
Abstract
Recovering phosphorus (P) from waste streams takes the unique advantage in simultaneously addressing the crisis of eutrophication and the shortage of P resource. A novel calcium decorated sludge carbon (Ca-SC) was developed from dyeing industry wastewater treatment sludge by decorating calcium (Ca) to effectively adsorb phosphorus from solution. The X-ray diffraction (XRD) and Fourier transform infrared (FTIR) techniques were used to characterize the Ca-SCs, followed by isotherm and kinetic sorption experiments. A preferred design with CaCO3 to sludge mass ratio of 1:2 was found to have a sorption capacity of 116.82 mg/g for phosphorus. This work reveals the crucial role of well-dispersed nano-rod calcium on the Ca-SC surface for the sorption of phosphorus. Moreover, the decoration of nano-rod calcium was found to further promote the uptake of phosphorus through the formation of hydroxylapatite (Ca5(PO4)3(OH)). Thus, the development of decorated Ca-SC for sorption of phosphorus is very important in solving the P pollution and resource loss.
Collapse
Affiliation(s)
- Lingjun Kong
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, PR China; Guangdong Provincial Key Laboratory of Radioactive Contamination Control and Resources, Guangzhou 5100056, PR China; Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, PR China
| | - Meina Han
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Kaimin Shih
- Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, PR China.
| | - Minhua Su
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Zenghui Diao
- South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, PR China
| | - Jianyou Long
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, PR China; Guangdong Provincial Key Laboratory of Radioactive Contamination Control and Resources, Guangzhou 5100056, PR China
| | - Diyun Chen
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, PR China; Guangdong Provincial Key Laboratory of Radioactive Contamination Control and Resources, Guangzhou 5100056, PR China.
| | - Li'an Hou
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, PR China; Guangdong Provincial Key Laboratory of Radioactive Contamination Control and Resources, Guangzhou 5100056, PR China
| | - Yan Peng
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, PR China; Guangdong Provincial Key Laboratory of Radioactive Contamination Control and Resources, Guangzhou 5100056, PR China
| |
Collapse
|
23
|
Qiu L, Zhang M, Yu X, Zheng P. A novel Fe(II)-Ca synergistic phosphorus removal process: process optimization and phosphorus recovery. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:1543-1550. [PMID: 29098579 DOI: 10.1007/s11356-017-0183-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 09/11/2017] [Indexed: 06/07/2023]
Abstract
Phosphorus removal from wastewater is an important means to control eutrophication and to recover phosphorus from wastewater. In this study, a novel Fe(II)-Ca synergistic phosphorus removal process is developed using the complex of ferrous and calcium salts. The results showed that ferrous and calcium had an antagonistic effect at Fe(II)/Ca molar ratio of lower than 1:4, but a synergistic effect at Fe(II)/Ca molar ratio of higher than 1:4, with the strongest synergistic effect at Fe(II)/Ca molar ratio of 7:3. The optimal parameters of this novel process were as follows: Fe(II)/Ca = 3:1, ferrous-calcium complex/phosphorous (M/P) ≥ 1.5:1, pH = 7.0-8.0, and fast mixing speed (FMS) = 100-150 rpm. The cost of phosphorus removal agents was US$1.024 (kg P)-1, reduced by 30.39% compared with that of the traditional phosphorus removal process. The phosphorus content (by P2O5) in the precipitate produced in the new process was 32.70%, which had a high recycling value.
Collapse
Affiliation(s)
- Lin Qiu
- Department of Environmental Engineering, Zhejiang University, No. 866, Yuhangtang Road, Xihu District, Hangzhou, Zhejiang, China
| | - Meng Zhang
- Department of Environmental Engineering, Zhejiang University, No. 866, Yuhangtang Road, Xihu District, Hangzhou, Zhejiang, China
| | - Xiaoqing Yu
- Department of Environmental Engineering, Zhejiang University, No. 866, Yuhangtang Road, Xihu District, Hangzhou, Zhejiang, China
| | - Ping Zheng
- Department of Environmental Engineering, Zhejiang University, No. 866, Yuhangtang Road, Xihu District, Hangzhou, Zhejiang, China.
| |
Collapse
|
24
|
Sleiman N, Deluchat V, Wazne M, Courtin A, Saad Z, Kazpard V, Baudu M. Role of iron oxidation byproducts in the removal of phosphate from aqueous solution. RSC Adv 2016. [DOI: 10.1039/c5ra22444f] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Synthesis and characterization of iron oxidation byproducts, in different experimental conditions (aging and dissolved oxygen concentration); study of their phosphate adsorption capacity.
Collapse
Affiliation(s)
- Nathalie Sleiman
- Groupement de Recherche Eau Sol Environnement – GRESE EA 4330
- University of Limoges
- Limoges
- France
- Platform for Research and Analysis in Environmental Sciences
| | - Véronique Deluchat
- Groupement de Recherche Eau Sol Environnement – GRESE EA 4330
- University of Limoges
- Limoges
- France
| | - Mahmoud Wazne
- Lebanese American University
- School of Engineering
- Byblos
- Lebanon
| | - Alexandra Courtin
- Groupement de Recherche Eau Sol Environnement – GRESE EA 4330
- University of Limoges
- Limoges
- France
| | - Zeinab Saad
- Platform for Research and Analysis in Environmental Sciences
- Doctoral School of Science and Technology
- Faculty of Sciences
- Lebanese University
- Hadath
| | - Véronique Kazpard
- Platform for Research and Analysis in Environmental Sciences
- Doctoral School of Science and Technology
- Faculty of Sciences
- Lebanese University
- Hadath
| | - Michel Baudu
- Groupement de Recherche Eau Sol Environnement – GRESE EA 4330
- University of Limoges
- Limoges
- France
| |
Collapse
|