1
|
Hattori Y, Shimizu R. Effective mRNA transfection of tumor cells using cationic triacyl lipid‑based mRNA lipoplexes. Biomed Rep 2025; 22:25. [PMID: 39720303 PMCID: PMC11668129 DOI: 10.3892/br.2024.1903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 11/22/2024] [Indexed: 12/26/2024] Open
Abstract
Previously, it was reported that mRNA/cationic liposome complexes (mRNA lipoplexes) composed of the cationic triacyl lipid, 11-((1,3-bis(dodecanoyloxy)-2-((dodecanoyloxy)methyl)propan-2-yl)amino)-N,N,N- trimethyl-11-oxoundecan-1-aminium bromide (TC-1-12), with 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine and poly(ethylene glycol) cholesteryl ether, induce high protein expression in human cervical carcinoma HeLa cells. In the present study, the authors aimed to optimize mRNA transfection using TC-1-12-based mRNA lipoplexes. mRNA lipoplexes were prepared at various charge ratios (+:-) using modified ethanol injection (MEI) and thin-film hydration (TFH) methods and compared the protein expression efficiency after transfection of HeLa cells with the developed mRNA lipoplexes. Firefly luciferase (FLuc) and enhanced green fluorescent protein (EGFP) mRNA lipoplexes prepared using the MEI method exhibited higher Luc and EGFP expression levels in cells than those prepared using the TFH method. Moreover, FLuc mRNA lipoplexes prepared using the MEI and TFH methods at charge ratios of 3:1 and 4:1, respectively, exhibited the highest Luc expression in cells. However, transfection with mRNA lipoplexes using the MEI and TFH methods induced moderate cytotoxicity in HeLa cells (46 and 57% cell viability, respectively). Furthermore, Cy5-labeled mRNA lipoplexes, which were prepared using the MEI method, showed higher cellular uptake of mRNA than those prepared using the TFH method. In the transfection of FLuc mRNA lipoplexes prepared using the MEI method, the storage of the lipid-ethanol solution at 37˚C for 4 months did not decrease Luc expression in HeLa cells. Additionally, FLuc mRNA lipoplexes prepared using the MEI method, induced relatively high Luc expression in human prostate carcinoma PC-3 and human liver cancer HepG2 cells with low cytotoxicity (103 and 81% cell viability, respectively). Overall, the results highlighted the potential of TC-1-12-based mRNA lipoplexes prepared using the MEI method for efficient mRNA delivery to cells.
Collapse
Affiliation(s)
- Yoshiyuki Hattori
- Department of Molecular Pharmaceutics, Hoshi University, Shinagawa, Tokyo 142-8501, Japan
| | - Ryohei Shimizu
- Department of Molecular Pharmaceutics, Hoshi University, Shinagawa, Tokyo 142-8501, Japan
| |
Collapse
|
2
|
Iftode L, Cadinoiu AN, Raţă DM, Atanase LI, Vochiţa G, Rădulescu L, Popa M, Gherghel D. Double Peptide-Functionalized Carboxymethyl Chitosan-Coated Liposomes Loaded with Dexamethasone as a Potential Strategy for Active Targeting Drug Delivery. Int J Mol Sci 2025; 26:922. [PMID: 39940692 PMCID: PMC11816442 DOI: 10.3390/ijms26030922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/10/2025] [Accepted: 01/19/2025] [Indexed: 02/16/2025] Open
Abstract
Liposomes are intensively used as nanocarriers for biology, biochemistry, medicine, and in the cosmetics industry and their non-toxic and biocompatible nature makes these vesicles attractive systems for biomedical applications. Moreover, the conjugation of specific ligands to liposomes increases their cellular uptake and therapeutic efficiency. Considering these aspects, the aim of the present study was to obtain new formulations of cationic liposomes coated with dual-peptide functionalized carboxymethyl chitosan (CMCS) for the treatment of inner ear diseases. In order to achieve efficient active targeting and ensuring a high efficacy of the treatment, CMCS was functionalized with Tet1 peptide, to target specific ear cells, and TAT peptide, to ensure cellular penetration. Furthermore, dexamethasone phosphate was loaded as a model drug for the treatment of ear inflammation. The infrared spectroscopy confirmed the functionalization of CMCS with the two specific peptides. The mean diameter of the uncovered liposomes varied between 167 and 198 nm whereas the CMCS-coated liposomes ranged from 179 to 202 nm. TEM analysis showed the spherical shape and unilamellar structure of liposomes. The release efficiency of dexamethasone phosphate after 24 h from the uncoated liposomes was between 37 and 40% and it appeared that the coated liposomes modulated this release. The obtained results demonstrated that the liposomes are hemocompatible since, for a tested concentration of 100 µg/mL, the liposome suspension had a lysis of erythrocytes lower than 2.5% after 180 min of incubation. In addition, the peptide-functionalized CMCS-coated liposomes induced a non-significant effect on the viability of normal V79-4 cells after 48 h, at the highest doses. Values of 71.31% were recorded (CLCP-1), 77.28% (CLCP-2) and 74.36% (CLCP-3), correlated with cytotoxic effects of 28.69%, 22.72%, and 25.64%.
Collapse
Affiliation(s)
- Loredana Iftode
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (L.I.); (L.R.)
- “Cristofor Simionescu” Faculty of Chemical Engineering and Environmental Protection, “Gheorghe Asachi” Technical University, 700050 Iasi, Romania
| | - Anca Niculina Cadinoiu
- Department of Biomaterials, Faculty of Medical Dentistry, “Apollonia” University of Iasi, 700511 Iasi, Romania; (D.M.R.); (L.I.A.)
| | - Delia Mihaela Raţă
- Department of Biomaterials, Faculty of Medical Dentistry, “Apollonia” University of Iasi, 700511 Iasi, Romania; (D.M.R.); (L.I.A.)
| | - Leonard Ionuț Atanase
- Department of Biomaterials, Faculty of Medical Dentistry, “Apollonia” University of Iasi, 700511 Iasi, Romania; (D.M.R.); (L.I.A.)
- Academy of Romanian Scientists, 050044 Bucharest, Romania
| | - Gabriela Vochiţa
- Institute of Biological Research Iasi, Branch of NIRDBS—National Institute of Research and Development of Biological Sciences Bucharest, 700107 Iasi, Romania; (G.V.); (D.G.)
| | - Luminița Rădulescu
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (L.I.); (L.R.)
| | - Marcel Popa
- “Cristofor Simionescu” Faculty of Chemical Engineering and Environmental Protection, “Gheorghe Asachi” Technical University, 700050 Iasi, Romania
- Department of Biomaterials, Faculty of Medical Dentistry, “Apollonia” University of Iasi, 700511 Iasi, Romania; (D.M.R.); (L.I.A.)
- Academy of Romanian Scientists, 050044 Bucharest, Romania
| | - Daniela Gherghel
- Institute of Biological Research Iasi, Branch of NIRDBS—National Institute of Research and Development of Biological Sciences Bucharest, 700107 Iasi, Romania; (G.V.); (D.G.)
| |
Collapse
|
3
|
Hattori Y, Tang M, Sato J, Tsuiji M, Kawano K. Evaluation of mRNA lipoplexes prepared using modified ethanol injection method as a tumour vaccine. J Drug Target 2024; 32:1267-1277. [PMID: 39037704 DOI: 10.1080/1061186x.2024.2384074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
We have previously demonstrated that messenger RNA (mRNA) lipoplexes composed of N-hexadecyl-N,N-dimethylhexadecan-1-aminium bromide (DC-1-16), 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE), and polyethylene glycol-cholesteryl ether (PEG-Chol) exhibited high protein expression in the lungs and spleen of mice after intravenous injection and induced high levels of antigen-specific IgG1 upon immunisation. In this study, we optimised PEG modification in mRNA lipoplexes to reduce mRNA accumulation in the lungs and evaluated the suppression of tumour growth in mice bearing mouse lymphoma E.G7-ovalbumin (OVA) tumours by immunising them with an intravenous injection of OVA mRNA lipoplexes. PEGylation of mRNA lipoplexes with 3 mol% PEG-Chol (LP-DC-1-16-3PCL) prevented agglutination of erythrocytes and reduced accumulation in the lungs. Intravenous injection of LP-DC-1-16-3PCL lipoplexes containing OVA mRNA into mice induced high levels of anti-OVA IgG1 (83,000 mU/mL) in serum, and exhibited a high cytotoxic activity (97%) against E.G7-OVA cells by the splenocytes of mice. Furthermore, immunisation with LP-DC-1-16-3PCL lipoplexes containing OVA mRNA suppressed E.G7-OVA tumour growth compared to control mRNA. Based on these results, LP-DC-1-16-3PCL lipoplexes may be an effective mRNA vaccine for inducing antibody- and cytotoxic cell-mediated immune responses to tumours through intravenous injection.
Collapse
Affiliation(s)
- Yoshiyuki Hattori
- Department of Molecular Pharmaceutics, Hoshi University, Tokyo, Japan
| | - Min Tang
- Department of Molecular Pharmaceutics, Hoshi University, Tokyo, Japan
| | - Junnosuke Sato
- Department of Microbiology, Hoshi University, Tokyo, Japan
| | - Makoto Tsuiji
- Department of Microbiology, Hoshi University, Tokyo, Japan
| | - Kumi Kawano
- Department of Molecular Pharmaceutics, Hoshi University, Tokyo, Japan
| |
Collapse
|
4
|
Ochoa-Sánchez C, Rodríguez-León E, Iñiguez-Palomares R, Rodríguez-Beas C. Brief Comparison of the Efficacy of Cationic and Anionic Liposomes as Nonviral Delivery Systems. ACS OMEGA 2024; 9:46664-46678. [PMID: 39619565 PMCID: PMC11603276 DOI: 10.1021/acsomega.4c06714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 10/28/2024] [Accepted: 11/05/2024] [Indexed: 01/05/2025]
Abstract
In recent decades, the development and application of nonviral vectors, such as liposomes and lipidic nanoparticles, for gene therapy and drug delivery have seen substantial progress. The interest in the physicochemical properties and structures of the complexes liposome/DNA and liposome/RNA is due to their potential to substitute viruses as carriers of drugs or genetic material into cells with minimal cytotoxicity, which could lead to their use in gene therapy. Initially, cationic liposomes were utilized as nonviral DNA delivery vectors; subsequently, different molecules, such as polymers, were incorporated to enhance transfection efficiency. Additionally, liposome/protein complexes have been developed as nonviral vectors for the treatment of diseases. The most relevant internalization pathways of these vectors and the few transfection results obtained using targeted and nontargeted liposomes are discussed below. The high cytotoxicity of cationic liposomes represents a significant challenge for the development of gene therapy and drug delivery. Anionic liposomes offer a promising alternative to address the limitations of conventional cationic liposomes, including immune response, short circulation time, and low toxicity. This review will discuss the advantages of cationic liposomes and the novel anionic liposome-based systems that have emerged as a result. The advent of novel designs and manufacturing techniques has facilitated the development of innovative systems, designated as lipid nanoparticles (LNPs), which serve as highly efficacious regulators of the immune system.
Collapse
Affiliation(s)
- Carlos Ochoa-Sánchez
- Physics Department, Universidad de Sonora. Rosales and Luis Encinas 8300, Hermosillo, Sonora 83000, México
| | - Ericka Rodríguez-León
- Physics Department, Universidad de Sonora. Rosales and Luis Encinas 8300, Hermosillo, Sonora 83000, México
| | - Ramón Iñiguez-Palomares
- Physics Department, Universidad de Sonora. Rosales and Luis Encinas 8300, Hermosillo, Sonora 83000, México
| | - César Rodríguez-Beas
- Physics Department, Universidad de Sonora. Rosales and Luis Encinas 8300, Hermosillo, Sonora 83000, México
| |
Collapse
|
5
|
Aslan M, Ozturk S, Shahbazi R, Bozdemir Ö, Dilara Zeybek N, Vargel İ, Eroğlu İ, Ulubayram K. Therapeutic targeting of siRNA/anti-cancer drug delivery system for non-melanoma skin cancer. Part I: Development and gene silencing of JAK1siRNA/5-FU loaded liposome nanocomplexes. Eur J Pharm Biopharm 2024; 203:114432. [PMID: 39097115 DOI: 10.1016/j.ejpb.2024.114432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 07/17/2024] [Accepted: 07/29/2024] [Indexed: 08/05/2024]
Abstract
Non-melanoma skin cancer (NMSC) is one of the most prevalent cancers, leading to significant mortality rates due to limited treatment options and a lack of effective therapeutics. Janus kinase (JAK1), a non-receptor tyrosine kinase family member, is involved in various cellular processes, including differentiation, cell proliferation and survival, playing a crucial role in cancer progression. This study aims to provide a more effective treatment for NMSC by concurrently silencing the JAK1 gene and administering 5-Fluorouracil (5-FU) using liposome nanocomplexes as delivery vehicles. Utilizing RNA interference (RNAi) technology, liposome nanocomplexes modified with polyethylene imine (PEI) were conjugated with siRNA molecule targeting JAK1 and loaded with 5-FU. The prepared formulations (NL-PEI) were characterized in terms of their physicochemical properties, morphology, encapsulation efficiency, in vitro drug release, and stability. Cell cytotoxicity, cell uptake and knockdown efficiency were evaluated in human-derived non-melanoma epidermoid carcinoma cells (A-431). High contrast transmission electron microscopy (CTEM) images and dynamic light scattering (DLS) measurements revealed that the nanocomplexes formed spherical morphology with uniform sizes ranging from 80-120 nm. The cationic NL-PEI nanocomplexes successfully internalized within the cytoplasm of A-431, delivering siRNA for specific sequence binding and JAK1 gene silencing. The encapsulation of 5-FU in the nanocomplexes was achieved at 0.2 drug/lipid ratio. Post-treatment with NL-PEI for 24, 48 and 72 h showed cell viability above 80 % at concentrations up to 8.5 × 101 µg/mL. Notably, 5-FU delivery via nanoliposome formulations significantly reduced cell viability at 5-FU concentration of 5 µM and above (p < 0.05) after 24 h of incubation. The NL-PEI nanocomplexes effectively silenced the JAK1 gene in vitro, reducing its expression by 50 %. Correspondingly, JAK1 protein level decreased after transfection with JAK1 siRNA-conjugated liposome nanocomplexes, leading to a 37 % reduction in pERK (phosphor extracellular signal-regulated kinase) protein expression. These findings suggest that the combined delivery of JAK1 siRNA and 5-FU via liposomal formulations offers a promising and novel treatment strategy for targeting genes and other identified targets in NMSC therapy.
Collapse
Affiliation(s)
- Minela Aslan
- Bioengineering Division, Institute for Graduate Studies in Science and Engineering, Hacettepe University, Ankara, Turkey
| | - Sukru Ozturk
- Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Reza Shahbazi
- School of Medicine, Indiana University, Indianapolis, IN
| | - Özlem Bozdemir
- Department of Stem Cell Sciences, Graduate School of Health Sciences, Hacettepe University, Ankara, Turkey
| | - Naciye Dilara Zeybek
- Department of Histology and Embryology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - İbrahim Vargel
- Department of Plastic, Reconstructive and Aesthetic Surgery, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - İpek Eroğlu
- Bioengineering Division, Institute for Graduate Studies in Science and Engineering, Hacettepe University, Ankara, Turkey; Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey.
| | - Kezban Ulubayram
- Bioengineering Division, Institute for Graduate Studies in Science and Engineering, Hacettepe University, Ankara, Turkey; Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey.
| |
Collapse
|
6
|
Xue R, Pan Y, Xia L, Li J. Non-viral vectors combined delivery of siRNA and anti-cancer drugs to reverse tumor multidrug resistance. Biomed Pharmacother 2024; 178:117119. [PMID: 39142247 DOI: 10.1016/j.biopha.2024.117119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 07/01/2024] [Accepted: 07/08/2024] [Indexed: 08/16/2024] Open
Abstract
Multidrug resistance (MDR) of tumors is one of the main reasons for the failure of chemotherapy. Multidrug resistance refers to the cross-resistance of tumor cells to multiple antitumor drugs with different structures and mechanisms of action. Current strategies to reverse multidrug resistance in tumors include MDR inhibitors and RNAi technology. siRNA is a small molecule RNA that is widely used in RNAi technology and has the characteristics of being prepared in large quantities and chemically modified. However, siRNA is susceptible to degradation in vivo. The effect of siRNA therapy alone is not ideal, so siRNA and anticancer drugs are administered in combination to reverse the MDR of tumors. Non-viral vectors are now commonly used to deliver siRNA and anticancer drugs to tumor sites. This article will review the progress of siRNA and chemotherapeutic drug delivery systems and their mechanisms for reversing multidrug resistance.
Collapse
Affiliation(s)
- Renkai Xue
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Yanzhu Pan
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Lijie Xia
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China.
| | - Jinyao Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China.
| |
Collapse
|
7
|
Yildiz SN, Entezari M, Paskeh MDA, Mirzaei S, Kalbasi A, Zabolian A, Hashemi F, Hushmandi K, Hashemi M, Raei M, Goharrizi MASB, Aref AR, Zarrabi A, Ren J, Orive G, Rabiee N, Ertas YN. Nanoliposomes as nonviral vectors in cancer gene therapy. MedComm (Beijing) 2024; 5:e583. [PMID: 38919334 PMCID: PMC11199024 DOI: 10.1002/mco2.583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 04/19/2024] [Accepted: 04/26/2024] [Indexed: 06/27/2024] Open
Abstract
Nonviral vectors, such as liposomes, offer potential for targeted gene delivery in cancer therapy. Liposomes, composed of phospholipid vesicles, have demonstrated efficacy as nanocarriers for genetic tools, addressing the limitations of off-targeting and degradation commonly associated with traditional gene therapy approaches. Due to their biocompatibility, stability, and tunable physicochemical properties, they offer potential in overcoming the challenges associated with gene therapy, such as low transfection efficiency and poor stability in biological fluids. Despite these advancements, there remains a gap in understanding the optimal utilization of nanoliposomes for enhanced gene delivery in cancer treatment. This review delves into the present state of nanoliposomes as carriers for genetic tools in cancer therapy, sheds light on their potential to safeguard genetic payloads and facilitate cell internalization alongside the evolution of smart nanocarriers for targeted delivery. The challenges linked to their biocompatibility and the factors that restrict their effectiveness in gene delivery are also discussed along with exploring the potential of nanoliposomes in cancer gene therapy strategies by analyzing recent advancements and offering future directions.
Collapse
Affiliation(s)
| | - Maliheh Entezari
- Department of GeneticsFaculty of Advanced Science and TechnologyTehran Medical SciencesIslamic Azad UniversityTehranIran
- Department of Medical Convergence SciencesFarhikhtegan Hospital Tehran Medical SciencesIslamic Azad UniversityTehranIran
| | - Mahshid Deldar Abad Paskeh
- Department of GeneticsFaculty of Advanced Science and TechnologyTehran Medical SciencesIslamic Azad UniversityTehranIran
- Department of Medical Convergence SciencesFarhikhtegan Hospital Tehran Medical SciencesIslamic Azad UniversityTehranIran
| | - Sepideh Mirzaei
- Department of BiologyFaculty of ScienceIslamic Azad UniversityScience and Research BranchTehranIran
| | - Alireza Kalbasi
- Department of PharmacyBrigham and Women's HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Amirhossein Zabolian
- Department of OrthopedicsShahid Beheshti University of Medical SciencesTehranIran
| | - Farid Hashemi
- Department of Comparative BiosciencesFaculty of Veterinary MedicineUniversity of TehranTehranIran
| | - Kiavash Hushmandi
- Department of Clinical Sciences InstituteNephrology and Urology Research CenterBaqiyatallah University of Medical SciencesTehranIran
| | - Mehrdad Hashemi
- Department of GeneticsFaculty of Advanced Science and TechnologyTehran Medical SciencesIslamic Azad UniversityTehranIran
- Department of Medical Convergence SciencesFarhikhtegan Hospital Tehran Medical SciencesIslamic Azad UniversityTehranIran
| | - Mehdi Raei
- Department of Epidemiology and BiostatisticsSchool of HealthBaqiyatallah University of Medical SciencesTehranIran
| | | | - Amir Reza Aref
- Belfer Center for Applied Cancer ScienceDana‐Farber Cancer InstituteHarvard Medical SchoolBostonMassachusettsUSA
- Department of Translational SciencesXsphera Biosciences Inc.BostonMassachusettsUSA
| | - Ali Zarrabi
- Department of Biomedical EngineeringFaculty of Engineering and Natural SciencesIstinye UniversityIstanbulTurkey
| | - Jun Ren
- Shanghai Institute of Cardiovascular DiseasesDepartment of CardiologyZhongshan HospitalFudan UniversityShanghaiChina
| | - Gorka Orive
- NanoBioCel Research GroupSchool of PharmacyUniversity of the Basque Country (UPV/EHU)Vitoria‐GasteizSpain
- University Institute for Regenerative Medicine and Oral Implantology ‐ UIRMI (UPV/EHU‐Fundación Eduardo Anitua)Vitoria‐GasteizSpain
- Bioaraba, NanoBioCel Research GroupVitoria‐GasteizSpain
- The AcademiaSingapore Eye Research InstituteSingaporeSingapore
| | - Navid Rabiee
- Centre for Molecular Medicine and Innovative TherapeuticsMurdoch UniversityPerthWestern AustraliaAustralia
| | - Yavuz Nuri Ertas
- Department of Biomedical EngineeringErciyes UniversityKayseriTurkey
- ERNAM—Nanotechnology Research and Application CenterErciyes UniversityKayseriTurkey
- UNAM−National Nanotechnology Research CenterBilkent UniversityAnkaraTurkey
| |
Collapse
|
8
|
Eş I, Thakur A, Mousavi Khaneghah A, Foged C, de la Torre LG. Engineering aspects of lipid-based delivery systems: In vivo gene delivery, safety criteria, and translation strategies. Biotechnol Adv 2024; 72:108342. [PMID: 38518964 DOI: 10.1016/j.biotechadv.2024.108342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/11/2024] [Accepted: 03/15/2024] [Indexed: 03/24/2024]
Abstract
Defects in the genome cause genetic diseases and can be treated with gene therapy. Due to the limitations encountered in gene delivery, lipid-based supramolecular colloidal materials have emerged as promising gene carrier systems. In their non-functionalized form, lipid nanoparticles often demonstrate lower transgene expression efficiency, leading to suboptimal therapeutic outcomes, specifically through reduced percentages of cells expressing the transgene. Due to chemically active substituents, the engineering of delivery systems for genetic drugs with specific chemical ligands steps forward as an innovative strategy to tackle the drawbacks and enhance their therapeutic efficacy. Despite intense investigations into functionalization strategies, the clinical outcome of such therapies still needs to be improved. Here, we highlight and comprehensively review engineering aspects for functionalizing lipid-based delivery systems and their therapeutic efficacy for developing novel genetic cargoes to provide a full snapshot of the translation from the bench to the clinics. We outline existing challenges in the delivery and internalization processes and narrate recent advances in the functionalization of lipid-based delivery systems for nucleic acids to enhance their therapeutic efficacy and safety. Moreover, we address clinical trials using these vectors to expand their clinical use and principal safety concerns.
Collapse
Affiliation(s)
- Ismail Eş
- Department of Material and Bioprocess Engineering, School of Chemical Engineering, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil; Institute of Biomedical Engineering, Old Road Campus Research Building, University of Oxford, Headington, Oxford OX3 7DQ, UK.
| | - Aneesh Thakur
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.
| | - Amin Mousavi Khaneghah
- Faculty of Biotechnologies (BioTech), ITMO University 191002, 9 Lomonosova Street, Saint Petersburg, Russia.
| | - Camilla Foged
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Lucimara Gaziola de la Torre
- Department of Material and Bioprocess Engineering, School of Chemical Engineering, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil.
| |
Collapse
|
9
|
Moreira L, Guimarães NM, Santos RS, Loureiro JA, Pereira MC, Azevedo NF. Promising strategies employing nucleic acids as antimicrobial drugs. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102122. [PMID: 38333674 PMCID: PMC10850860 DOI: 10.1016/j.omtn.2024.102122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Antimicrobial resistance (AMR) is a growing concern because it causes microorganisms to develop resistance to drugs commonly used to treat infections. This results in increased difficulty in treating infections, leading to higher mortality rates and significant economic effects. Investing in new antimicrobial agents is, therefore, necessary to prevent and control AMR. Antimicrobial nucleic acids have arisen as potential key players in novel therapies for AMR infections. They have been designed to serve as antimicrobials and to act as adjuvants to conventional antibiotics or to inhibit virulent mechanisms. This new category of antimicrobial drugs consists of antisense oligonucleotides and oligomers, DNAzymes, and transcription factor decoys, differing in terms of structure, target molecules, and mechanisms of action. They are synthesized using nucleic acid analogs to enhance their resistance to nucleases. Because bacterial envelopes are generally impermeable to oligonucleotides, delivery into the cytoplasm typically requires the assistance of nanocarriers, which can affect their therapeutic potency. Given that numerous factors contribute to the success of these antimicrobial drugs, this review aims to provide a summary of the key advancements in the use of oligonucleotides for treating bacterial infections. Their mechanisms of action and the impact of factors such as nucleic acid design, target sequence, and nanocarriers on the antimicrobial potency are discussed.
Collapse
Affiliation(s)
- Luís Moreira
- LEPABE–Laboratory for Process Engineering, Environment, Biotechnology, and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE–Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Nuno M. Guimarães
- LEPABE–Laboratory for Process Engineering, Environment, Biotechnology, and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE–Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Rita S. Santos
- LEPABE–Laboratory for Process Engineering, Environment, Biotechnology, and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE–Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Joana A. Loureiro
- LEPABE–Laboratory for Process Engineering, Environment, Biotechnology, and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE–Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Maria C. Pereira
- LEPABE–Laboratory for Process Engineering, Environment, Biotechnology, and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE–Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Nuno F. Azevedo
- LEPABE–Laboratory for Process Engineering, Environment, Biotechnology, and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE–Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| |
Collapse
|
10
|
Ma P, He M, Lian H, Li J, Gao Y, Wu J, Men K, Men Y, Li C. Systemic and Local Administration of a Dual-siRNA Complex Efficiently Inhibits Tumor Growth and Bone Invasion in Oral Squamous Cell Carcinoma. Mol Pharm 2024; 21:661-676. [PMID: 38175819 DOI: 10.1021/acs.molpharmaceut.3c00802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
Oral squamous cell carcinoma (OSCC) accounts for nearly 90% of oral and oropharyngeal cancer cases and is characterized by high mortality and poor prognosis. RNA-based gene therapies have been developed as an emerging option for cancer treatment, but it has not been widely explored in OSCC. In this work, we developed an efficient siRNA cationic micelle DOTAP-mPEG-PCL (DMP) by self-assembling the cationic lipid DOTAP and monomethoxy poly(ethylene glycol)-poly(ε-caprolactone) (mPEG-PCL) polymer. We tested the characteristics and transformation efficiency of this micelle and combined DMP with siRNA targeting STAT3 and TGF-β to evaluate the antitumor effect and bone invasion interfering in vitro and in vivo. The average size of the DMP was 28.27 ± 1.62 nm with an average zeta potential of 54.60 ± 0.29 mV. The DMP/siRNA complex showed high delivery efficiency, with rates of 97.47 ± 0.42% for HSC-3. In vitro, the DMP/siSTAT3 complex exhibited an obvious cell growth inhibition effect detected by MTT assay (an average cell viability of 25.1%) and clonogenic assay (an average inhibition rate of 51.9%). Besides, the supernatant from HSC-3 transfected by DMP/siTGF-β complexes was found to interfere with osteoclast differentiation in vitro. Irrespective of local or systemic administration, DMP/siSTAT3+siTGF-β showed antitumor effects and bone invasion inhibition in the OSCC mice mandibular invasion model according to tumor volume assays and Micro-CT scanning. The complex constructed by DMP cationic micelles and siSTAT3+siTGF-β represents a potential RNA-based gene therapy delivery system for OSCC.
Collapse
Affiliation(s)
- Pingchuan Ma
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan China
| | - Mingxia He
- Joint National Laboratory for Antibody Drug Engineering, School of Medicine, Henan University, 475004 Kaifeng, China
| | - Haosen Lian
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan China
| | - Jingmei Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu 610041, Sichuan Province China
| | - Yan Gao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu 610041, Sichuan Province China
| | - Jieping Wu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu 610041, Sichuan Province China
| | - Ke Men
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu 610041, Sichuan Province China
| | - Yi Men
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan China
| | - Chunjie Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan China
| |
Collapse
|
11
|
Neary MT, Mulder LM, Kowalski PS, MacLoughlin R, Crean AM, Ryan KB. Nebulised delivery of RNA formulations to the lungs: From aerosol to cytosol. J Control Release 2024; 366:812-833. [PMID: 38101753 DOI: 10.1016/j.jconrel.2023.12.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 12/04/2023] [Accepted: 12/08/2023] [Indexed: 12/17/2023]
Abstract
In the past decade RNA-based therapies such as small interfering RNA (siRNA) and messenger RNA (mRNA) have emerged as new and ground-breaking therapeutic agents for the treatment and prevention of many conditions from viral infection to cancer. Most clinically approved RNA therapies are parenterally administered which impacts patient compliance and adds to healthcare costs. Pulmonary administration via inhalation is a non-invasive means to deliver RNA and offers an attractive alternative to injection. Nebulisation is a particularly appealing method due to the capacity to deliver large RNA doses during tidal breathing. In this review, we discuss the unique physiological barriers presented by the lung to efficient nebulised RNA delivery and approaches adopted to circumvent this problem. Additionally, the different types of nebulisers are evaluated from the perspective of their suitability for RNA delivery. Furthermore, we discuss recent preclinical studies involving nebulisation of RNA and analysis in in vitro and in vivo settings. Several studies have also demonstrated the importance of an effective delivery vector in RNA nebulisation therefore we assess the variety of lipid, polymeric and hybrid-based delivery systems utilised to date. We also consider the outlook for nebulised RNA medicinal products and the hurdles which must be overcome for successful clinical translation. In summary, nebulised RNA delivery has demonstrated promising potential for the treatment of several lung-related conditions such as asthma, COPD and cystic fibrosis, to which the mode of delivery is of crucial importance for clinical success.
Collapse
Affiliation(s)
- Michael T Neary
- SSPC, The SFI Research Centre for Pharmaceuticals, School of Pharmacy, University College Cork, Ireland; School of Pharmacy, University College Cork, Ireland
| | | | - Piotr S Kowalski
- School of Pharmacy, University College Cork, Ireland; APC Microbiome, University College Cork, Cork, Ireland
| | | | - Abina M Crean
- SSPC, The SFI Research Centre for Pharmaceuticals, School of Pharmacy, University College Cork, Ireland; School of Pharmacy, University College Cork, Ireland
| | - Katie B Ryan
- SSPC, The SFI Research Centre for Pharmaceuticals, School of Pharmacy, University College Cork, Ireland; School of Pharmacy, University College Cork, Ireland.
| |
Collapse
|
12
|
Thomas J, Sun J, Montclare JK. Constructing Nucleic Acid Delivering Lipoproteoplexes from Coiled-Coil Supercharged Protein and Cationic Liposomes. Methods Mol Biol 2024; 2720:191-207. [PMID: 37775667 DOI: 10.1007/978-1-0716-3469-1_14] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2023]
Abstract
The safe and efficient delivery of nucleic acids is crucial for both clinical applications of gene therapy and pre-clinical laboratory research. Such delivery strategies rely on vectors to condense nucleic acid payloads and escort them into the cell without being degraded in the extracellular environment; however, the construction and utilization of these vectors can be difficult and time-consuming. Here, we detail the steps involved in the rapid, laboratory-scale production and assessment of a versatile, nucleic acid delivery vehicle, known as the lipoproteoplex. In this chapter, we outline: (1) the recombinant synthesis and subsequent purification of the supercharged coiled-coil protein component known as N8; (2) the synthesis of cationic liposomes from dioleoyl-3-trimethylammonium propane (DOTAP) and sodium cholate; (3) and finally a protocol for the delivery of a model siRNA cargo into a cultured cell line.
Collapse
Affiliation(s)
- Joseph Thomas
- Department of Biomedical Engineering, State University of New York Downstate Health Sciences University, Brooklyn, NY, USA
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, NY, USA
| | - Jonathan Sun
- Department of Chemistry, New York University, New York, NY, USA
- Department of Radiology, State University of New York Downstate Medical Center, Brooklyn, NY, USA
| | - Jin Kim Montclare
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, NY, USA.
- Department of Chemistry, New York University, New York, NY, USA.
- Department of Radiology, State University of New York Downstate Medical Center, Brooklyn, NY, USA.
- Department of Biomaterials, New York University College of Dentistry, New York, NY, USA.
| |
Collapse
|
13
|
Jagrosse ML, Baliga UK, Jones CW, Russell JJ, García CI, Najar RA, Rahman A, Dean DA, Nilsson BL. Impact of Peptide Sequence on Functional siRNA Delivery and Gene Knockdown with Cyclic Amphipathic Peptide Delivery Agents. Mol Pharm 2023; 20:6090-6103. [PMID: 37963105 DOI: 10.1021/acs.molpharmaceut.3c00455] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Short-interfering RNA (siRNA) oligonucleotide therapeutics that modify gene expression by accessing RNA-interference (RNAi) pathways have great promise for the treatment of a range of disorders; however, their application in clinical settings has been limited by significant challenges in cellular delivery. Herein, we report a structure-function study using a series of modified cyclic amphipathic cell-penetrating peptides (CAPs) to determine the impact of peptide sequence on (1) siRNA-binding efficiency, (2) cellular delivery and knockdown efficiency, and (3) the endocytic uptake mechanism. Nine cyclic peptides of the general sequence Ac-C[XZ]4CG-NH2 in which X residues are hydrophobic/aromatic (Phe, Tyr, Trp, or Leu) and Z residues are charged/hydrophilic (Arg, Lys, Ser, or Glu) are assessed along with one acyclic peptide, Ac-(WR)4G-NH2. Cyclization is enforced by intramolecular disulfide bond formation between the flanking Cys residues. Binding analyses indicate that strong cationic character and the presence of aromatic residues that are competent to participate in CH-π interactions lead to CAP sequences that most effectively interact with siRNA. CAP-siRNA binding increases in the following order as a function of CAP hydrophobic/aromatic content: His < Phe < Tyr < Trp. Both cationic charge and disulfide-constrained cyclization of CAPs improve uptake of siRNA in vitro. Net neutral CAPs and an acyclic peptide demonstrate less-efficient siRNA translocation compared to the cyclic, cationic CAPs tested. All CAPs tested facilitated efficient siRNA target gene knockdown of at least 50% (as effective as a lipofectamine control), with the best CAPs enabling >80% knockdown. Significantly, gene knockdown efficiency does not strongly correlate with CAP-siRNA internalization efficiency but moderately correlates with CAP-siRNA-binding affinity. Finally, utilization of small-molecule inhibitors and targeted knockdown of essential endocytic pathway proteins indicate that most CAP-siRNA nanoparticles facilitate siRNA delivery through clathrin- and caveolin-mediated endocytosis. These results provide insight into the design principles for CAPs to facilitate siRNA delivery and the mechanisms by which these peptides translocate siRNA into cells. These studies also demonstrate the nature of the relationships between peptide-siRNA binding, cellular delivery of siRNA cargo, and functional gene knockdown. Strong correlations between these properties are not always observed, which illustrates the complexity in the design of optimal next-generation materials for oligonucleotide delivery.
Collapse
Affiliation(s)
- Melissa L Jagrosse
- Department of Chemistry, University of Rochester, Rochester, New York 14627-0216, United States
| | - Uday K Baliga
- Department of Pediatrics and Neonatology, University of Rochester Medical Center, School of Medicine and Dentistry, University of Rochester, Rochester, New York 14642, United States
| | - Christopher W Jones
- Department of Chemistry, University of Rochester, Rochester, New York 14627-0216, United States
| | - Jade J Russell
- Department of Chemistry, University of Rochester, Rochester, New York 14627-0216, United States
| | - Claudia I García
- Department of Chemistry, University of Rochester, Rochester, New York 14627-0216, United States
| | - Rauf Ahmad Najar
- Department of Pediatrics and Neonatology, University of Rochester Medical Center, School of Medicine and Dentistry, University of Rochester, Rochester, New York 14642, United States
| | - Arshad Rahman
- Department of Pediatrics and Neonatology, University of Rochester Medical Center, School of Medicine and Dentistry, University of Rochester, Rochester, New York 14642, United States
| | - David A Dean
- Department of Pediatrics and Neonatology, University of Rochester Medical Center, School of Medicine and Dentistry, University of Rochester, Rochester, New York 14642, United States
| | - Bradley L Nilsson
- Department of Chemistry, University of Rochester, Rochester, New York 14627-0216, United States
- Materials Science Program, University of Rochester, Rochester, New York 14627, United States
| |
Collapse
|
14
|
Chehelgerdi M, Chehelgerdi M. The use of RNA-based treatments in the field of cancer immunotherapy. Mol Cancer 2023; 22:106. [PMID: 37420174 PMCID: PMC10401791 DOI: 10.1186/s12943-023-01807-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 06/13/2023] [Indexed: 07/09/2023] Open
Abstract
Over the past several decades, mRNA vaccines have evolved from a theoretical concept to a clinical reality. These vaccines offer several advantages over traditional vaccine techniques, including their high potency, rapid development, low-cost manufacturing, and safe administration. However, until recently, concerns over the instability and inefficient distribution of mRNA in vivo have limited their utility. Fortunately, recent technological advancements have mostly resolved these concerns, resulting in the development of numerous mRNA vaccination platforms for infectious diseases and various types of cancer. These platforms have shown promising outcomes in both animal models and humans. This study highlights the potential of mRNA vaccines as a promising alternative approach to conventional vaccine techniques and cancer treatment. This review article aims to provide a thorough and detailed examination of mRNA vaccines, including their mechanisms of action and potential applications in cancer immunotherapy. Additionally, the article will analyze the current state of mRNA vaccine technology and highlight future directions for the development and implementation of this promising vaccine platform as a mainstream therapeutic option. The review will also discuss potential challenges and limitations of mRNA vaccines, such as their stability and in vivo distribution, and suggest ways to overcome these issues. By providing a comprehensive overview and critical analysis of mRNA vaccines, this review aims to contribute to the advancement of this innovative approach to cancer treatment.
Collapse
Affiliation(s)
- Mohammad Chehelgerdi
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran.
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
| | - Matin Chehelgerdi
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| |
Collapse
|
15
|
Kansız S, Elçin YM. Advanced liposome and polymersome-based drug delivery systems: Considerations for physicochemical properties, targeting strategies and stimuli-sensitive approaches. Adv Colloid Interface Sci 2023; 317:102930. [PMID: 37290380 DOI: 10.1016/j.cis.2023.102930] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/17/2023] [Accepted: 05/18/2023] [Indexed: 06/10/2023]
Abstract
Liposomes and polymersomes are colloidal vesicles that are self-assembled from lipids and amphiphilic polymers, respectively. Because of their ability to encapsulate both hydrophilic and hydrophobic therapeutics, they are of great interest in drug delivery research. Today, the applications of liposomes and polymersomes have expanded to a wide variety of complex therapeutic molecules, including nucleic acids, proteins and enzymes. Thanks to their chemical versatility, they can be tailored to different drug delivery applications to achieve maximum therapeutic index. This review article evaluates liposomes and polymersomes from a perspective that takes into account the physical and biological barriers that reduce the efficiency of the drug delivery process. In this context, the design approaches of liposomes and polymersomes are discussed with representative examples in terms of their physicochemical properties (size, shape, charge, mechanical), targeting strategies (passive and active) and response to different stimuli (pH, redox, enzyme, temperature, light, magnetic field, ultrasound). Finally, the challenges limiting the transition from laboratory to practice, recent clinical developments, and future perspectives are addressed.
Collapse
Affiliation(s)
- Seyithan Kansız
- Tissue Engineering, Biomaterials and Nanobiotechnology Laboratory, Ankara University Faculty of Science, Department of Chemistry, Ankara, Turkey
| | - Yaşar Murat Elçin
- Tissue Engineering, Biomaterials and Nanobiotechnology Laboratory, Ankara University Faculty of Science, Department of Chemistry, Ankara, Turkey; Biovalda Health Technologies, Inc., Ankara, Turkey.
| |
Collapse
|
16
|
Moreira L, Guimarães NM, Pereira S, Santos RS, Loureiro JA, Ferreira RM, Figueiredo C, Pereira MC, Azevedo NF. Engineered liposomes to deliver nucleic acid mimics in Escherichia coli. J Control Release 2023; 355:489-500. [PMID: 36775246 DOI: 10.1016/j.jconrel.2023.02.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 01/11/2023] [Accepted: 02/08/2023] [Indexed: 02/14/2023]
Abstract
Antisense oligonucleotides (ASOs) composed of nucleic acid mimics (NAMs) monomers are considered as potential novel therapeutic drugs against bacterial infections. However, bacterial envelopes are generally impermeable to naked oligonucleotides. Herein, liposomes loaded with NAMs-modified oligonucleotides (LipoNAMs) were evaluated to deliver ASOs in Escherichia coli. Specifically, we tested several surface modifications that included methoxyPEG conjugated to different lipid anchors or modification of the PEG distal ends with maleimide groups and antibodies. MethoxyPEG coated LipoNAMs showed low delivery efficiency for most bacteria, but maleimide-functionalized PEG LipoNAMs were able to deliver ASOs to nearly half of the bacterial population. Conjugation of antibodies to maleimide-functionalized PEG LipoNAMs increased 1.3-fold the delivery efficiency, enhancing the selectivity towards E. coli and biocompatibility. This work demonstrated for the first time that the coupling of antibodies to PEGylated liposomes can significantly improve the delivery of ASOs in E. coli, which might bring alternative routes for the treatment of bacterial infections in the future.
Collapse
Affiliation(s)
- Luís Moreira
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Nuno M Guimarães
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal.
| | - Sara Pereira
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Rita S Santos
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Joana A Loureiro
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Rui M Ferreira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; Ipatimup - Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
| | - Céu Figueiredo
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; Ipatimup - Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal; Faculty of Medicine, University of Porto, Porto, Portugal
| | - Maria C Pereira
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Nuno F Azevedo
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| |
Collapse
|
17
|
Surface Design Options in Polymer- and Lipid-Based siRNA Nanoparticles Using Antibodies. Int J Mol Sci 2022; 23:ijms232213929. [PMID: 36430411 PMCID: PMC9692731 DOI: 10.3390/ijms232213929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/28/2022] [Accepted: 11/04/2022] [Indexed: 11/16/2022] Open
Abstract
The mechanism of RNA interference (RNAi) could represent a breakthrough in the therapy of all diseases that arise from a gene defect or require the inhibition of a specific gene expression. In particular, small interfering RNA (siRNA) offers an attractive opportunity to achieve a new milestone in the therapy of human diseases. The limitations of siRNA, such as poor stability, inefficient cell uptake, and undesired immune activation, as well as the inability to specifically reach the target tissue in the body, can be overcome by further developments in the field of nanoparticulate drug delivery. Therefore, types of surface modified siRNA nanoparticles are presented and illustrate how a more efficient and safer distribution of siRNA at the target site is possible by modifying the surface properties of nanoparticles with antibodies. However, the development of such efficient and safe delivery strategies is currently still a major challenge. In consideration of that, this review article aims to demonstrate the function and targeted delivery of siRNA nanoparticles, focusing on the surface modification via antibodies, various lipid- and polymer-components, and the therapeutic effects of these delivery systems.
Collapse
|
18
|
Shukla MK, Dubey A, Pandey S, Singh SK, Gupta G, Prasher P, Chellappan DK, Oliver BG, Kumar D, Dua K. Managing Apoptosis in Lung Diseases using Nano-assisted Drug Delivery System. Curr Pharm Des 2022; 28:3202-3211. [PMID: 35422206 DOI: 10.2174/1381612828666220413103831] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 02/25/2022] [Indexed: 01/28/2023]
Abstract
Several factors exist that limit the efficacy of lung cancer treatment. These may be tumor-specific delivery of therapeutics, airway geometry, humidity, clearance mechanisms, presence of lung diseases, and therapy against tumor cell resistance. Advancements in drug delivery using nanotechnology based multifunctional nanocarriers, have emerged as a viable method for treating lung cancer with more efficacy and fewer adverse effects. This review does a thorough and critical examination of effective nano-enabled approaches for lung cancer treatment, such as nano-assisted drug delivery systems. In addition, to therapeutic effectiveness, researchers have been working to determine several strategies to produce nanotherapeutics by adjusting the size, drug loading, transport, and retention. Personalized lung tumor therapies using sophisticated nano modalities have the potential to provide great therapeutic advantages based on individual unique genetic markers and disease profiles. Overall, this review provides comprehensive information on newer nanotechnological prospects for improving the management of apoptosis in lung cancer.
Collapse
Affiliation(s)
- Monu K Shukla
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan-173229, Himachal Pradesh, India
| | - Amit Dubey
- Computational Chemistry and Drug Discovery Division, Quanta Calculus Pvt. Ltd., Kushinagar-274203, India.,Department of Pharmacology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu 602105, India
| | - Sadanand Pandey
- Department of Chemistry, College of Natural Sciences, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, South Korea
| | - Sachin K Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara-144411, Punjab, India.,Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo NSW 2007, Australia
| | - Gaurav Gupta
- Department of Pharmacology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu 602105, India.,School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Jaipur, 302017, India.,Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, 248007, India
| | - Parteek Prasher
- Department of Chemistry, University of Petroleum & Energy Studies, Dehradun 248007, India
| | - Dinesh K Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil 57000, Kuala Lumpur, Malaysia
| | - Brian G Oliver
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW, 2007, Australia.,Woolcock Institute of Medical Research, University of Sydney, Sydney, New South Wales, NSW 2037, Australia
| | - Deepak Kumar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan-173229, Himachal Pradesh, India
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo NSW 2007, Australia.,Woolcock Institute of Medical Research, University of Sydney, Sydney, New South Wales, NSW 2037, Australia.,Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia
| |
Collapse
|
19
|
Goyal R, Chopra H, singh I, Dua K, Gautam RK. Insights on prospects of nano-siRNA based approaches in treatment of Cancer. Front Pharmacol 2022; 13:985670. [PMID: 36091772 PMCID: PMC9452808 DOI: 10.3389/fphar.2022.985670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
siRNA interference, commonly referred to as gene silence, is a biological mechanism that inhibits gene expression in disorders such as cancer. It may enhance the precision, efficacy, and stability of medicines, especially genetic therapies to some extent. However, obstacles such as the delivery of oligonucleotide drugs to inaccessible areas of the body and the prevalence of severe side effects must be overcome. To maximize their potential, it is thus essential to optimize their distribution to target locations and limit their toxicity to healthy cells. The action of siRNA may be harnessed to delete a similar segment of mRNA that encodes a protein that causes sickness. The absence of an efficient delivery mechanism that shields siRNA from nuclease degradation, delivers it to cancer cells and releases it into the cytoplasm of specific cancer cells without causing side effects is currently the greatest obstacle to the practical implementation of siRNA therapy. This article focuses on combinations of siRNA with chemotherapeutic drug delivery systems for the treatment of cancer and gives an overview of several nanocarrier formulations in both research and clinical applications.
Collapse
Affiliation(s)
- Rajat Goyal
- MM School of Pharmacy, MM University, Sadopur-Ambala, Haryana, India
- MM College of Pharmacy, MM (Deemed to be University), Mullana-Ambala, Haryana, India
| | - Hitesh Chopra
- Chitkara College of Pharmacy, Chitkara University, Patiala, Punjab, India
| | - Inderbir singh
- Chitkara College of Pharmacy, Chitkara University, Patiala, Punjab, India
| | - Kamal Dua
- Discipline of Pharmacy Graduate School of Health Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine (ARCCIM) University of Technology Sydney, Sydney, NSW, Australia
- *Correspondence: Kamal Dua, ; Rupesh K. Gautam,
| | - Rupesh K. Gautam
- MM School of Pharmacy, MM University, Sadopur-Ambala, Haryana, India
- *Correspondence: Kamal Dua, ; Rupesh K. Gautam,
| |
Collapse
|
20
|
Tsakiri M, Zivko C, Demetzos C, Mahairaki V. Lipid-based nanoparticles and RNA as innovative neuro-therapeutics. Front Pharmacol 2022; 13:900610. [PMID: 36016560 PMCID: PMC9395673 DOI: 10.3389/fphar.2022.900610] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 07/13/2022] [Indexed: 11/13/2022] Open
Abstract
RNA-delivery is a promising tool to develop therapies for difficult to treat diseases such as neurological disorders, by silencing pathological genes or expressing therapeutic proteins. However, in many cases RNA delivery requires a vesicle that could effectively protect the molecule from bio-degradation, bypass barriers i.e., the blood brain barrier, transfer it to a targeted tissue and efficiently release the RNA inside the cells. Many vesicles such as viral vectors, and polymeric nanoparticles have been mentioned in literature. In this review, we focus in the discussion of lipid-based advanced RNA-delivery platforms. Liposomes and lipoplexes, solid lipid nanoparticles and lipid nanoparticles are the main categories of lipidic platforms for RNA-delivery to the central nervous systems (CNS). A variety of surface particles' modifications and routes of administration have been studied to target CNS providing encouraging results in vivo. It is concluded that lipid-based nanoplatforms will play a key role in the development of RNA neuro-therapies.
Collapse
Affiliation(s)
- Maria Tsakiri
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Athens, Greece
| | - Cristina Zivko
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Athens, Greece
- Department of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Costas Demetzos
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Athens, Greece
| | - Vasiliki Mahairaki
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Athens, Greece
- Department of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, MD, United States
| |
Collapse
|
21
|
Hattori Y, Tang M, Torii S, Tomita K, Sagawa A, Inoue N, Yamagishi R, Ozaki KI. Optimal combination of cationic lipid and phospholipid in cationic liposomes for gene knockdown in breast cancer cells and mouse lung using siRNA lipoplexes. Mol Med Rep 2022; 26:253. [PMID: 35686555 PMCID: PMC9218728 DOI: 10.3892/mmr.2022.12769] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 05/12/2022] [Indexed: 11/05/2022] Open
Abstract
Formulation of cationic liposomes is a key factor that determine the gene knockdown efficiency by cationic liposomes/siRNA complexes (siRNA lipoplexes). Here, to determine the optimal combination of cationic lipid and phospholipid in cationic liposomes for in vitro and in vivo gene knockdown using siRNA lipoplexes, three types of cationic lipid were used, namely 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP), dimethyldioctadecylammonium bromide (DDAB) and 11-[(1,3-bis(dodecanoyloxy)-2-((dodecanoyloxy)methyl)propan-2-yl)amino]-N,N,N-trimethyl-11-oxoundecan-1-aminium bromide (TC-1-12). Thereafter, 30 types of cationic liposome composed of each cationic lipid with phosphatidylcholine or phosphatidylethanolamine containing saturated or unsaturated dialkyl chains (C14, C16, or C18) were prepared. The inclusion of phosphatidylethanolamine containing unsaturated and long dialkyl chains with DOTAP- or DDAB-based cationic liposomes induced strong luciferase gene knockdown in human breast cancer MCF-7-Luc cells stably expressing luciferase gene. Furthermore, the inclusion of phosphatidylcholine or phosphatidylethanolamine containing saturated and short dialkyl chains or unsaturated and long dialkyl chains into TC-1-12-based cationic liposomes resulted in high gene knockdown efficacy. When cationic liposomes composed of DDAB/1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE), TC-1-12/DOPE and TC-1-12/1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine were used, significant gene knockdown occurred in the lungs of mice following systemic injection of siRNA lipoplexes. Overall, the present findings indicated that optimal phospholipids in cationic liposome for in vitro and in vivo siRNA transfection were affected by the types of cationic lipid used.
Collapse
Affiliation(s)
- Yoshiyuki Hattori
- Department of Molecular Pharmaceutics, Hoshi University, Tokyo 142-8501, Japan
| | - Min Tang
- Department of Molecular Pharmaceutics, Hoshi University, Tokyo 142-8501, Japan
| | - Satomi Torii
- Department of Molecular Pharmaceutics, Hoshi University, Tokyo 142-8501, Japan
| | - Kana Tomita
- Department of Molecular Pharmaceutics, Hoshi University, Tokyo 142-8501, Japan
| | - Ayane Sagawa
- Department of Molecular Pharmaceutics, Hoshi University, Tokyo 142-8501, Japan
| | - Nodoka Inoue
- Department of Molecular Pharmaceutics, Hoshi University, Tokyo 142-8501, Japan
| | - Reo Yamagishi
- Department of Molecular Pharmaceutics, Hoshi University, Tokyo 142-8501, Japan
| | - Kei-Ichi Ozaki
- Department of Molecular Pathology, Faculty of Pharmaceutical Sciences, Doshisha Women's College of Liberal Arts, Kodo, Kyotanabe, Kyoto 610-0395, Japan
| |
Collapse
|
22
|
Hattori Y, Saito H, Nakamura K, Yamanaka A, Tang M, Ozaki KI. In vitro and in vivo transfections using siRNA lipoplexes prepared by mixing siRNAs with a lipid-ethanol solution. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
23
|
Liu C, Wang J, Zhang Y, Zha W, Zhang H, Dong S, Xing H, Li X. Efficient delivery of PKN3 shRNA for the treatment of breast cancer via lipid nanoparticles. Bioorg Med Chem 2022; 69:116884. [PMID: 35752145 DOI: 10.1016/j.bmc.2022.116884] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/03/2022] [Accepted: 06/09/2022] [Indexed: 11/02/2022]
Abstract
Protein kinase N3 (PKN3), an AGC-family member, is often overexpressed in breast tumor cells. RNAi therapy is a promising approach to inhibit tumor growth by reducing the expression of PKN3. In this report, lipid nanoparticles encapsulated with new shRNA PKN3 (SS-LNP/shPKN3) with redox-responsiveness were developed in order to specifically down-regulate the expression of PKN3 for breast cancer treatment. The SS-LNP/shPKN3 was prepared by microfluidic method using disulfide bonds based ionizable lipid as main component. The as-prepared SS-LNP/shPKN3 lipid nanoparticles were characterized via using dynamic light scattering (DLS) and transmission electron microscopy (TEM). The results indicated that the obtained SS-LNP/shPKN3 exhibited uniform particle size and regular spherical morphology. Moreover, glutathione (GSH) triggered release of shPKN3 confirmed the redox-responsiveness of the SS-LNP/shPKN3. Finally, the anti-tumor effect of SS-LNP/shPKN3 was evaluated against MDA-MB-231 cells and derived xenograft tumor bearing mice. It was found that the SS-LNP/shPKN3-2 had the highest PKN3 protein inhibition rate of 60.8% and tumor inhibition rate of 62.3%. Taken together, the SS-LNP/shPKN3 might be a potential therapeutic strategy for breast cancer.
Collapse
Affiliation(s)
- Chao Liu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Ji Wang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Yanhao Zhang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Wenhui Zha
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Hao Zhang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Shuo Dong
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Hanlei Xing
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Xinsong Li
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China.
| |
Collapse
|
24
|
de Brito e Cunha D, Frederico ABT, Azamor T, Melgaço JG, da Costa Neves PC, Bom APDA, Tilli TM, Missailidis S. Biotechnological Evolution of siRNA Molecules: From Bench Tool to the Refined Drug. Pharmaceuticals (Basel) 2022; 15:ph15050575. [PMID: 35631401 PMCID: PMC9146980 DOI: 10.3390/ph15050575] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 12/13/2022] Open
Abstract
The depth and versatility of siRNA technologies enable their use in disease targets that are undruggable by small molecules or that seek to achieve a refined turn-off of the genes for any therapeutic area. Major extracellular barriers are enzymatic degradation of siRNAs by serum endonucleases and RNAases, renal clearance of the siRNA delivery system, the impermeability of biological membranes for siRNA, activation of the immune system, plasma protein sequestration, and capillary endothelium crossing. To overcome the intrinsic difficulties of the use of siRNA molecules, therapeutic applications require nanometric delivery carriers aiming to protect double-strands and deliver molecules to target cells. This review discusses the history of siRNAs, siRNA design, and delivery strategies, with a focus on progress made regarding siRNA molecules in clinical trials and how siRNA has become a valuable asset for biopharmaceutical companies.
Collapse
Affiliation(s)
- Danielle de Brito e Cunha
- Immunological Technology Laboratory, Institute of Technology in Immunobiologicals, Bio-Manguinhos, Oswaldo Cruz Foundation, Fiocruz, Rio de Janeiro 21040-900, Brazil; (D.d.B.e.C.); (A.B.T.F.); (T.A.); (J.G.M.); (P.C.d.C.N.); (A.P.D.A.B.); (S.M.)
| | - Ana Beatriz Teixeira Frederico
- Immunological Technology Laboratory, Institute of Technology in Immunobiologicals, Bio-Manguinhos, Oswaldo Cruz Foundation, Fiocruz, Rio de Janeiro 21040-900, Brazil; (D.d.B.e.C.); (A.B.T.F.); (T.A.); (J.G.M.); (P.C.d.C.N.); (A.P.D.A.B.); (S.M.)
| | - Tamiris Azamor
- Immunological Technology Laboratory, Institute of Technology in Immunobiologicals, Bio-Manguinhos, Oswaldo Cruz Foundation, Fiocruz, Rio de Janeiro 21040-900, Brazil; (D.d.B.e.C.); (A.B.T.F.); (T.A.); (J.G.M.); (P.C.d.C.N.); (A.P.D.A.B.); (S.M.)
| | - Juliana Gil Melgaço
- Immunological Technology Laboratory, Institute of Technology in Immunobiologicals, Bio-Manguinhos, Oswaldo Cruz Foundation, Fiocruz, Rio de Janeiro 21040-900, Brazil; (D.d.B.e.C.); (A.B.T.F.); (T.A.); (J.G.M.); (P.C.d.C.N.); (A.P.D.A.B.); (S.M.)
| | - Patricia Cristina da Costa Neves
- Immunological Technology Laboratory, Institute of Technology in Immunobiologicals, Bio-Manguinhos, Oswaldo Cruz Foundation, Fiocruz, Rio de Janeiro 21040-900, Brazil; (D.d.B.e.C.); (A.B.T.F.); (T.A.); (J.G.M.); (P.C.d.C.N.); (A.P.D.A.B.); (S.M.)
| | - Ana Paula Dinis Ano Bom
- Immunological Technology Laboratory, Institute of Technology in Immunobiologicals, Bio-Manguinhos, Oswaldo Cruz Foundation, Fiocruz, Rio de Janeiro 21040-900, Brazil; (D.d.B.e.C.); (A.B.T.F.); (T.A.); (J.G.M.); (P.C.d.C.N.); (A.P.D.A.B.); (S.M.)
| | - Tatiana Martins Tilli
- Translational Oncology Platform, Center for Technological Development in Health, Oswaldo Cruz Foundation, Fiocruz, Rio de Janeiro 21040-900, Brazil
- Laboratory of Cardiovascular Research, Oswaldo Cruz Foundation, Fiocruz, Rio de Janeiro 21040-900, Brazil
- Correspondence: ; Tel.: +55-21-2562-1312
| | - Sotiris Missailidis
- Immunological Technology Laboratory, Institute of Technology in Immunobiologicals, Bio-Manguinhos, Oswaldo Cruz Foundation, Fiocruz, Rio de Janeiro 21040-900, Brazil; (D.d.B.e.C.); (A.B.T.F.); (T.A.); (J.G.M.); (P.C.d.C.N.); (A.P.D.A.B.); (S.M.)
| |
Collapse
|
25
|
Yadav K, Singh D, Singh MR, Minz S, Sahu KK, Kaurav M, Pradhan M. Dermal nanomedicine: Uncovering the ability of nucleic acid to alleviate autoimmune and other related skin disorders. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
26
|
Tang M, Hattori Y. Effect of using amino acids in the freeze-drying of siRNA lipoplexes on gene knockdown in cells after reverse transfection. Biomed Rep 2021; 15:72. [PMID: 34405044 DOI: 10.3892/br.2021.1448] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 06/25/2021] [Indexed: 11/06/2022] Open
Abstract
Recently, small interfering RNA (siRNA)/cationic liposome complexes (siRNA lipoplexes) have become a crucial research tool for studying gene function. Easy and reliable siRNA transfection with a large set of siRNAs is required for the successful screening of gene function. Reverse (Rev)-transfection with freeze-dried siRNA lipoplexes is validated for siRNA transfection with a large set of siRNAs in a multi-well plate. In our previous study, it was shown that Rev-transfection with siRNA lipoplexes freeze-dried in disaccharides or trisaccharides resulted in long-term stability with a high level of gene-knockdown activity. In the present study, the effects of amino acids used as cryoprotectants in the freeze-drying of siRNA lipoplexes on gene knockdown via Rev-transfection were assessed. A total of 15 types of amino acids were used to prepare freeze-dried siRNA lipoplexes, and it was found that the freeze-drying of siRNA lipoplexes with amino acid concentrations >100 mM strongly suppressed targeted gene expression regardless of the amino acid type; however, some amino acids strongly upregulated or downregulated gene expression in the cells transfected with negative control siRNA. Amongst the amino acids tested, the presence of asparagine showed specific gene-knockdown activity, forming large cakes after freeze-drying and retaining a favorable siRNA lipoplex size after rehydration. These findings provide valuable information regarding amino acids as cryoprotectants for Rev-transfection using freeze-dried siRNA lipoplexes for the efficient delivery of siRNA into cells.
Collapse
Affiliation(s)
- Min Tang
- Department of Molecular Pharmaceutics, Hoshi University, Tokyo 142-8501, Japan
| | - Yoshiyuki Hattori
- Department of Molecular Pharmaceutics, Hoshi University, Tokyo 142-8501, Japan
| |
Collapse
|
27
|
Nijen Twilhaar MK, Czentner L, van Nostrum CF, Storm G, den Haan JMM. Mimicking Pathogens to Augment the Potency of Liposomal Cancer Vaccines. Pharmaceutics 2021; 13:954. [PMID: 34202919 PMCID: PMC8308965 DOI: 10.3390/pharmaceutics13070954] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 01/02/2023] Open
Abstract
Liposomes have emerged as interesting vehicles in cancer vaccination strategies as their composition enables the inclusion of both hydrophilic and hydrophobic antigens and adjuvants. In addition, liposomes can be decorated with targeting moieties to further resemble pathogenic particles that allow for better engagement with the immune system. However, so far liposomal cancer vaccines have not yet reached their full potential in the clinic. In this review, we summarize recent preclinical studies on liposomal cancer vaccines. We describe the basic ingredients for liposomal cancer vaccines, tumor antigens, and adjuvants, and how their combined inclusion together with targeting moieties potentially derived from pathogens can enhance vaccine immunogenicity. We discuss newly identified antigen-presenting cells in humans and mice that pose as promising targets for cancer vaccines. The lessons learned from these preclinical studies can be applied to enhance the efficacy of liposomal cancer vaccination in the clinic.
Collapse
Affiliation(s)
- Maarten K. Nijen Twilhaar
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands;
| | - Lucas Czentner
- Department of Pharmaceutics, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands; (L.C.); (C.F.v.N.); (G.S.)
| | - Cornelus F. van Nostrum
- Department of Pharmaceutics, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands; (L.C.); (C.F.v.N.); (G.S.)
| | - Gert Storm
- Department of Pharmaceutics, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands; (L.C.); (C.F.v.N.); (G.S.)
- Department of Biomaterials, Science and Technology, Faculty of Science and Technology, University of Twente, 7522 NB Enschede, The Netherlands
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Joke M. M. den Haan
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands;
| |
Collapse
|
28
|
Hattori Y, Saito H, Oku T, Ozaki KI. Effects of sterol derivatives in cationic liposomes on biodistribution and gene-knockdown in the lungs of mice systemically injected with siRNA lipoplexes. Mol Med Rep 2021; 24:598. [PMID: 34165169 PMCID: PMC8240178 DOI: 10.3892/mmr.2021.12237] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/04/2021] [Indexed: 01/17/2023] Open
Abstract
Cationic liposomes can be intravenously injected to deliver short interfering (si)RNAs into the lungs. The present study investigated the effects of sterol derivatives in systemically injected siRNA/cationic liposome complexes (siRNA lipoplexes) on gene-knockdown in the lungs of mice. Cationic liposomes composed of 1,2-dioleoyl-3-trimethylammonium-propane or dimethyldioctadecylammonium bromide (DDAB) were prepared as a cationic lipid, with sterol derivatives such as cholesterol (Chol), β-sitosterol, ergosterol (Ergo) or stigmasterol as a neutral helper lipid. Transfected liposomal formulations composed of DDAB/Chol or DDAB/Ergo did not suppress the expression of the luciferase gene in LLC-Luc and Colon 26-Luc cells in vitro, whereas other formulations induced moderate gene-silencing. The systemic injection of siRNA lipoplexes formulated with Chol or Ergo into mice resulted in abundant siRNA accumulation in the lungs. In comparison, systemically injected DDAB/Chol or DDAB/Ergo lipoplexes of Tie2 siRNA effectively increased the suppression of the Tie2 mRNA expression in the lungs of mice. These findings indicated that DDAB/Chol and DDAB/Ergo liposomes could function as vectors for siRNA delivery to the lungs.
Collapse
Affiliation(s)
- Yoshiyuki Hattori
- Department of Molecular Pharmaceutics, Hoshi University, Tokyo 142-8501, Japan
| | - Hiromu Saito
- Department of Molecular Pharmaceutics, Hoshi University, Tokyo 142-8501, Japan
| | - Teruaki Oku
- Department of Microbiology, Hoshi University, Tokyo 142-8501, Japan
| | - Kei-Ichi Ozaki
- Department of Molecular Pathology, Faculty of Pharmaceutical Sciences, Doshisha Women's College of Liberal Arts, Kyotanabe, Kyoto 610-0395, Japan
| |
Collapse
|
29
|
Puchkov PA, Maslov MA. Lipophilic Polyamines as Promising Components of Liposomal Gene Delivery Systems. Pharmaceutics 2021; 13:920. [PMID: 34205825 PMCID: PMC8234823 DOI: 10.3390/pharmaceutics13060920] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/13/2021] [Accepted: 06/17/2021] [Indexed: 12/28/2022] Open
Abstract
Gene therapy requires an effective and safe delivery vehicle for nucleic acids. In the case of non-viral vehicles, including cationic liposomes, the structure of compounds composing them determines the efficiency a lot. Currently, cationic amphiphiles are the most frequently used compounds in liposomal formulations. In their structure, which is a combination of hydrophobic and cationic domains and includes spacer groups, each component contributes to the resulting delivery efficiency. This review focuses on polycationic and disulfide amphiphiles as prospective cationic amphiphiles for gene therapy and includes a discussion of the mutual influence of structural components.
Collapse
Affiliation(s)
| | - Michael A. Maslov
- Lomonosov Institute of Fine Chemical Technologies, MIREA—Russian Technological University, Vernadsky Ave. 86, 119571 Moscow, Russia;
| |
Collapse
|
30
|
de Menezes BRC, Rodrigues KF, Schatkoski VM, Pereira RM, Ribas RG, Montanheiro TLDA, Thim GP. Current advances in drug delivery of nanoparticles for respiratory disease treatment. J Mater Chem B 2021; 9:1745-1761. [PMID: 33508058 DOI: 10.1039/d0tb01783c] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cases of respiratory diseases have been increasing around the world, affecting the health and quality of life of millions of people every year. Chronic respiratory diseases (CRDs) and acute respiratory infections (ARIs) are responsible for many hospital admissions and deaths, requiring sophisticated treatments that facilitate the delivery of therapeutics to specific target sites with controlled release. In this context, different nanoparticles (NPs) have been explored to match this demand, such as lipid, liposome, protein, carbon-based, polymeric, metallic, oxide, and magnetic NPs. The use of NPs as drug delivery systems can improve the efficacy of commercial drugs due to their advantages related to sustained drug release, targeting effects, and patient compliance. The current review presents an updated summary of recent advances regarding the use of NPs as drug delivery systems to treat diseases related to the respiratory tract, such as CRDs and ARIs. The latest applications presented in the literature were considered, and the opportunities and challenges of NPs in the drug delivery field are discussed.
Collapse
Affiliation(s)
- Beatriz Rossi Canuto de Menezes
- Laboratory of Plasma and Processes (LPP), Technological Institute of Aeronautics (ITA), Praça Marechal Eduardo Gomes, 50, Vila das Acácias, São José dos Campos, SP 12228-900, Brazil.
| | - Karla Faquine Rodrigues
- Laboratory of Plasma and Processes (LPP), Technological Institute of Aeronautics (ITA), Praça Marechal Eduardo Gomes, 50, Vila das Acácias, São José dos Campos, SP 12228-900, Brazil.
| | - Vanessa Modelski Schatkoski
- Laboratory of Plasma and Processes (LPP), Technological Institute of Aeronautics (ITA), Praça Marechal Eduardo Gomes, 50, Vila das Acácias, São José dos Campos, SP 12228-900, Brazil.
| | - Raíssa Monteiro Pereira
- Laboratory of Plasma and Processes (LPP), Technological Institute of Aeronautics (ITA), Praça Marechal Eduardo Gomes, 50, Vila das Acácias, São José dos Campos, SP 12228-900, Brazil.
| | - Renata Guimarães Ribas
- Laboratory of Plasma and Processes (LPP), Technological Institute of Aeronautics (ITA), Praça Marechal Eduardo Gomes, 50, Vila das Acácias, São José dos Campos, SP 12228-900, Brazil.
| | - Thaís Larissa do Amaral Montanheiro
- Laboratory of Plasma and Processes (LPP), Technological Institute of Aeronautics (ITA), Praça Marechal Eduardo Gomes, 50, Vila das Acácias, São José dos Campos, SP 12228-900, Brazil.
| | - Gilmar Patrocínio Thim
- Laboratory of Plasma and Processes (LPP), Technological Institute of Aeronautics (ITA), Praça Marechal Eduardo Gomes, 50, Vila das Acácias, São José dos Campos, SP 12228-900, Brazil.
| |
Collapse
|
31
|
Li D, Gao C, Kuang M, Xu M, Wang B, Luo Y, Teng L, Xie J. Nanoparticles as Drug Delivery Systems of RNAi in Cancer Therapy. Molecules 2021; 26:2380. [PMID: 33921892 PMCID: PMC8073355 DOI: 10.3390/molecules26082380] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/26/2021] [Accepted: 04/16/2021] [Indexed: 02/07/2023] Open
Abstract
RNA interference (RNAi) can mediate gene-silencing by knocking down the expression of a target gene via cellular machinery with much higher efficiency in contrast to other antisense-based approaches which represents an emerging therapeutic strategy for combating cancer. Distinct characters of nanoparticles, such as distinctive size, are fundamental for the efficient delivery of RNAi therapeutics, allowing for higher targeting and safety. In this review, we present the mechanism of RNAi and briefly describe the hurdles and concerns of RNAi as a cancer treatment approach in systemic delivery. Furthermore, the current nanovectors for effective tumor delivery of RNAi therapeutics are classified, and the characteristics of different nanocarriers are summarized.
Collapse
Affiliation(s)
- Diedie Li
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China; (D.L.); (C.G.); (M.K.); (M.X.); (B.W.); (Y.L.)
| | - Chengzhi Gao
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China; (D.L.); (C.G.); (M.K.); (M.X.); (B.W.); (Y.L.)
| | - Meiyan Kuang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China; (D.L.); (C.G.); (M.K.); (M.X.); (B.W.); (Y.L.)
| | - Minhao Xu
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China; (D.L.); (C.G.); (M.K.); (M.X.); (B.W.); (Y.L.)
| | - Ben Wang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China; (D.L.); (C.G.); (M.K.); (M.X.); (B.W.); (Y.L.)
| | - Yi Luo
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China; (D.L.); (C.G.); (M.K.); (M.X.); (B.W.); (Y.L.)
| | - Lesheng Teng
- School of Life Sciences, Jilin University, Changchun 130012, China;
| | - Jing Xie
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China; (D.L.); (C.G.); (M.K.); (M.X.); (B.W.); (Y.L.)
| |
Collapse
|
32
|
Lu Z, Laney VEA, Hall R, Ayat N. Environment-Responsive Lipid/siRNA Nanoparticles for Cancer Therapy. Adv Healthc Mater 2021; 10:e2001294. [PMID: 33615743 DOI: 10.1002/adhm.202001294] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 10/12/2020] [Indexed: 12/14/2022]
Abstract
RNA interference (RNAi) is a promising technology to regulate oncogenes for treating cancer. The primary limitation of siRNA for clinical application is the safe and efficacious delivery of therapeutic siRNA into target cells. Lipid-based delivery systems are developed to protect siRNA during the delivery process and to facilitate intracellular uptake. There is a significant progress in lipid nanoparticle systems that utilize cationic and protonatable amino lipid systems to deliver siRNA to tumors. Among these lipids, environment-responsive lipids are a class of novel lipid delivery systems that are capable of responding to the environment changes during the delivery process and demonstrate great promise for clinical translation for siRNA therapeutics. Protonatable or ionizable amino lipids and switchable lipids as well as pH-sensitive multifunctional amino lipids are the presentative environment-responsive lipids for siRNA delivery. These lipids are able to respond to environmental changes during the delivery process to facilitate efficient cytosolic siRNA delivery. Environment-responsive lipid/siRNA nanoparticles (ERLNP) are developed with the lipids and are tested for efficient delivery of therapeutic siRNA into the cytoplasm of cancer cells to silence target genes for cancer treatment in preclinical development. This review summarizes the recent developments in environment-response lipids and nanoparticles for siRNA delivery in cancer therapy.
Collapse
Affiliation(s)
- Zheng‐Rong Lu
- Department of Biomedical Engineering Case Western Reserve University Cleveland OH 44106 USA
| | - Victoria E. A. Laney
- Department of Biomedical Engineering Case Western Reserve University Cleveland OH 44106 USA
| | - Ryan Hall
- Department of Biomedical Engineering Case Western Reserve University Cleveland OH 44106 USA
| | - Nadia Ayat
- Department of Biomedical Engineering Case Western Reserve University Cleveland OH 44106 USA
| |
Collapse
|
33
|
Centyrin ligands for extrahepatic delivery of siRNA. Mol Ther 2021; 29:2053-2066. [PMID: 33601052 PMCID: PMC8178446 DOI: 10.1016/j.ymthe.2021.02.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 01/05/2021] [Accepted: 02/10/2021] [Indexed: 01/08/2023] Open
Abstract
RNA interference (RNAi) offers the potential to treat disease at the earliest onset by selectively turning off the expression of target genes, such as intracellular oncogenes that drive cancer growth. However, the development of RNAi therapeutics as anti-cancer drugs has been limited by both a lack of efficient and target cell-specific delivery systems and the necessity to overcome numerous intracellular barriers, including serum/lysosomal instability, cell membrane impermeability, and limited endosomal escape. Here, we combine two technologies to achieve posttranscriptional gene silencing in tumor cells: Centyrins, alternative scaffold proteins binding plasma membrane receptors for targeted delivery, and small interfering RNAs (siRNAs), chemically modified for high metabolic stability and potency. An EGFR Centyrin known to internalize in EGFR-positive tumor cells was site-specifically conjugated to a beta-catenin (CTNNb1) siRNA and found to drive potent and specific target knockdown by free uptake in cell culture and in mice inoculated with A431 tumor xenografts (EGFR amplified). The generalizability of this approach was further demonstrated with Centyrins targeting multiple receptors (e.g., BCMA, PSMA, and EpCAM) and siRNAs targeting multiple genes (e.g., CD68, KLKb1, and SSB1). Moreover, by installing multiple conjugation handles, two different siRNAs were fused to a single Centyrin, and the conjugate was shown to simultaneously silence two different targets. Finally, by specifically pairing EpCAM-binding Centyrins that exhibited optimized internalization profiles, we present data showing that an EpCAM Centyrin CTNNb1 siRNA conjugate suppressed tumor cell growth of a colorectal cancer cell line containing an APC mutation but not cells with normal CTNNb1 signaling. Overall, these data demonstrate the potential of Centyrin-siRNA conjugates to target cancer cells and silence oncogenes, paving the way to a new class of anticancer drugs.
Collapse
|
34
|
Charbe NB, Amnerkar ND, Ramesh B, Tambuwala MM, Bakshi HA, Aljabali AA, Khadse SC, Satheeshkumar R, Satija S, Metha M, Chellappan DK, Shrivastava G, Gupta G, Negi P, Dua K, Zacconi FC. Small interfering RNA for cancer treatment: overcoming hurdles in delivery. Acta Pharm Sin B 2020; 10:2075-2109. [PMID: 33304780 PMCID: PMC7714980 DOI: 10.1016/j.apsb.2020.10.005] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/24/2020] [Accepted: 10/08/2020] [Indexed: 12/11/2022] Open
Abstract
In many ways, cancer cells are different from healthy cells. A lot of tactical nano-based drug delivery systems are based on the difference between cancer and healthy cells. Currently, nanotechnology-based delivery systems are the most promising tool to deliver DNA-based products to cancer cells. This review aims to highlight the latest development in the lipids and polymeric nanocarrier for siRNA delivery to the cancer cells. It also provides the necessary information about siRNA development and its mechanism of action. Overall, this review gives us a clear picture of lipid and polymer-based drug delivery systems, which in the future could form the base to translate the basic siRNA biology into siRNA-based cancer therapies.
Collapse
Key Words
- 1,3-propanediol, PEG-b-PDMAEMA-b-Ppy
- 2-propylacrylicacid, PAH-b-PDMAPMA-b-PAH
- APOB, apolipoprotein B
- AQP-5, aquaporin-5
- AZEMA, azidoethyl methacrylate
- Atufect01, β-l-arginyl-2,3-l-diaminopropionicacid-N-palmityl-N-oleyl-amide trihydrochloride
- AuNPs, gold nanoparticles
- B-PEI, branched polyethlenimine
- BMA, butyl methacrylate
- CFTR, cystic fibrosis transmembrane conductance regulator gene
- CHEMS, cholesteryl hemisuccinate
- CHOL, cholesterol
- CMC, critical micelles concentration
- Cancer
- DC-Chol, 3β-[N-(N′,N′-dimethylaminoethane)carbamoyl]cholesterol
- DMAEMA, 2-dimethylaminoethyl methacrylate
- DNA, deoxyribonucleic acid
- DOPC, dioleylphosphatidyl choline
- DOPE, dioleylphosphatidyl ethanolamine
- DOTAP, N-[1-(2,3-dioleoyloxy)propyl]-N,N,N-trimethylammonium methyl-sulfate
- DOTMA, N-[1-(2,3-dioleyloxy)propy]-N,N,N-trimethylammoniumchloride
- DOX, doxorubicin
- DSGLA, N,N-dis-tearyl-N-methyl-N-2[N′-(N2-guanidino-l-lysinyl)] aminoethylammonium chloride
- DSPC, 1,2-distearoyl-sn-glycero-3-phosphocholine
- DSPE, 1,2-distearoyl-sn-glycero-3-phosphorylethanolamine
- DSPE-MPEG, 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000] (ammonium salt)
- DSPE-PEG-Mal: 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[maleimide(polyethylene glycol)-2000] (mmmonium salt), EPR
- Liposomes
- Micelles
- N-acetylgalactosamine, HIF-1α
- Nanomedicine
- PE-PCL-b-PNVCL, pentaerythritol polycaprolactone-block-poly(N-vinylcaprolactam)
- PLA, poly-l-arginine
- PLGA, poly lactic-co-glycolic acid
- PLK-1, polo-like kinase 1
- PLL, poly-l-lysine
- PPES-b-PEO-b-PPES, poly(4-(phenylethynyl)styrene)-block-PEO-block-poly(4-(phenylethynyl)styrene)
- PTX, paclitaxel
- PiRNA, piwi-interacting RNA
- Polymer
- RES, reticuloendothelial system
- RGD, Arg-Gly-Asp peptide
- RISC, RNA-induced silencing complex
- RNA, ribonucleic acid
- RNAi, RNA interference
- RNAse III, ribonuclease III enzyme
- SEM, scanning electron microscope
- SNALP, stable nucleic acid-lipid particles
- SiRNA, short interfering rNA
- Small interfering RNA (siRNA)
- S–Au, thio‒gold
- TCC, transitional cell carcinoma
- TEM, transmission electron microscopy
- Tf, transferrin
- Trka, tropomyosin receptor kinase A
- USPIO, ultra-small superparamagnetic iron oxide nanoparticles
- UV, ultraviolet
- VEGF, vascular endothelial growth factor
- ZEBOV, Zaire ebola virus
- enhanced permeability and retention, Galnac
- hypoxia-inducible factor-1α, KSP
- kinesin spindle protein, LDI
- lipid-protamine-DNA/hyaluronic acid, MDR
- lysine ethyl ester diisocyanate, LPD/LPH
- messenger RNA, MTX
- methotrexate, NIR
- methoxy polyethylene glycol-polycaprolactone, mRNA
- methoxypoly(ethylene glycol), MPEG-PCL
- micro RNA, MPEG
- multiple drug resistance, MiRNA
- nanoparticle, NRP-1
- near-infrared, NP
- neuropilin-1, PAA
- poly(N,N-dimethylacrylamide), PDO
- poly(N-isopropyl acrylamide), pentaerythritol polycaprolactone-block-poly(N-isopropylacrylamide)
- poly(acrylhydrazine)-block-poly(3-dimethylaminopropyl methacrylamide)-block-poly(acrylhydrazine), PCL
- poly(ethylene glycol)-block-poly(2-dimethylaminoethyl methacrylate)-block poly(pyrenylmethyl methacrylate), PEG-b-PLL
- poly(ethylene glycol)-block-poly(l-lysine), PEI
- poly(ethylene oxide)-block-poly(2-(diethylamino)ethyl methacrylate)-stat-poly(methoxyethyl methacrylate), PEO-b-PCL
- poly(ethylene oxide)-block-poly(Ε-caprolactone), PE-PCL-b-PNIPAM
- poly(Ε-caprolactone), PCL-PEG
- poly(Ε-caprolactone)-polyethyleneglycol-poly(l-histidine), PCL-PEI
- polycaprolactone-polyethyleneglycol, PCL-PEG-PHIS
- polycaprolactone-polyethylenimine, PDMA
- polyethylenimine, PEO-b-P(DEA-Stat-MEMA
Collapse
Affiliation(s)
- Nitin Bharat Charbe
- Departamento de Quimica Orgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
- Sri Adichunchunagiri College of Pharmacy, Sri Adichunchunagiri University, BG Nagar, Karnataka 571418, India
| | - Nikhil D. Amnerkar
- Adv V. R. Manohar Institute of Diploma in Pharmacy, Nagpur, Maharashtra 441110, India
| | - B. Ramesh
- Sri Adichunchunagiri College of Pharmacy, Sri Adichunchunagiri University, BG Nagar, Karnataka 571418, India
| | - Murtaza M. Tambuwala
- School of Pharmacy and Pharmaceutical Science, Ulster University, Coleraine, Northern Ireland BT52 1SA, UK
| | - Hamid A. Bakshi
- School of Pharmacy and Pharmaceutical Science, Ulster University, Coleraine, Northern Ireland BT52 1SA, UK
| | - Alaa A.A. Aljabali
- Faculty of Pharmacy, Department of Pharmaceutics and Pharmaceutical Technology, Yarmouk University, Irbid 21163, Jordan
| | - Saurabh C. Khadse
- Department of Pharmaceutical Chemistry, R.C. Patel Institute of Pharmaceutical Education and Research, Dist. Dhule, Maharashtra 425 405, India
| | - Rajendran Satheeshkumar
- Departamento de Quimica Orgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - Saurabh Satija
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411 Punjab, India
| | - Meenu Metha
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411 Punjab, India
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil 57000, Kuala Lumpur, Malaysia
| | - Garima Shrivastava
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Delhi, New Delhi 110016, India
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Jaipur 302017, India
| | - Poonam Negi
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute (HMRI) and School of Biomedical Sciences and Pharmacy, University of Newcastle, NSW 2308, Australia
| | - Flavia C. Zacconi
- Departamento de Quimica Orgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 4860, Chile
| |
Collapse
|
35
|
Salim L, Desaulniers JP. To Conjugate or to Package? A Look at Targeted siRNA Delivery Through Folate Receptors. Nucleic Acid Ther 2020; 31:21-38. [PMID: 33121373 DOI: 10.1089/nat.2020.0893] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
RNA interference (RNAi) applications have evolved from experimental tools to study gene function to the development of a novel class of gene-silencing therapeutics. Despite decades of research, it was not until August 2018 that the US FDA approved the first-ever RNAi drug, marking a new era for RNAi therapeutics. Although there are many limitations associated with the inherent structure of RNA, delivery to target cells and tissues remains the most challenging. RNAs are unable to diffuse across cellular membranes due to their large size and polyanionic backbone and, therefore, require a delivery vector. RNAi molecules can be conjugated to a targeting ligand or packaged into a delivery vehicle. Alnylam has used both strategies in their FDA-approved formulations to achieve efficient delivery to the liver. To harness the full potential of RNAi therapeutics, however, we must be able to target additional cells and tissues. One promising target is the folate receptor α, which is overexpressed in a variety of tumors despite having limited expression and distribution in normal tissues. Folate can be conjugated directly to the RNAi molecule or used to functionalize delivery vehicles. In this review, we compare both delivery strategies and discuss the current state of research in the area of folate-mediated delivery of RNAi molecules.
Collapse
Affiliation(s)
- Lidya Salim
- Faculty of Science, University of Ontario Institute of Technology, Oshawa, Canada
| | | |
Collapse
|
36
|
Tang M, Hu S, Hattori Y. Effect of pre‑freezing and saccharide types in freeze‑drying of siRNA lipoplexes on gene‑silencing effects in the cells by reverse transfection. Mol Med Rep 2020; 22:3233-3244. [PMID: 32945442 PMCID: PMC7453497 DOI: 10.3892/mmr.2020.11419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 07/02/2020] [Indexed: 11/15/2022] Open
Abstract
Our previous study reported that reverse (Rev)-transfection with small interfering RNA (siRNA)/cationic liposome complexes (siRNA lipoplexes) freeze-dried in trehalose or sucrose solution resulted in high gene-silencing activity in cells. The current study investigated whether pre-freezing or saccharide types present during the freeze-drying of siRNA lipoplexes affected gene-silencing in cells after Rev-transfection. Three types of cationic cholesterol derivatives and three types of dialkyl or trialkyl cationic lipids were used for the preparation of cationic liposomes. Additionally, six types of siRNA lipoplexes were vacuum-dried in trehalose or sucrose solution without a pre-freezing process in multi-well plates. A strong gene-silencing activity after Rev-transfection was observed regardless of the cationic lipid types in the cationic liposomes. It was also investigated whether saccharide types in the freeze-drying of siRNA lipoplexes affected gene-silencing after Rev-transfection. siRNA lipoplexes freeze-dried in monosaccharides (glucose, fructose, galactose or mannose), disaccharides (maltose, lactose, lactulose or cellobiose) and trisaccharide solution (raffinose or melezitose) demonstrated high gene-silencing activity. However, following Rev-transfection with siRNA lipoplexes freeze-dried in monosaccharides or trisaccharides, certain saccharides induced cytotoxicity and/or off-target effects. The results of the current study indicated that disaccharides may be suitable for the preparation of vacuum-dried or freeze-dried siRNA lipoplexes for Rev-transfection.
Collapse
Affiliation(s)
- Min Tang
- Department of Molecular Pharmaceutics, Hoshi University, Shinagawa, Tokyo 142‑8501, Japan
| | - Subin Hu
- Department of Molecular Pharmaceutics, Hoshi University, Shinagawa, Tokyo 142‑8501, Japan
| | - Yoshiyuki Hattori
- Department of Molecular Pharmaceutics, Hoshi University, Shinagawa, Tokyo 142‑8501, Japan
| |
Collapse
|
37
|
Liu C, Zhang L, Zhu W, Guo R, Sun H, Chen X, Deng N. Barriers and Strategies of Cationic Liposomes for Cancer Gene Therapy. Mol Ther Methods Clin Dev 2020; 18:751-764. [PMID: 32913882 PMCID: PMC7452052 DOI: 10.1016/j.omtm.2020.07.015] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cationic liposomes (CLs) have been regarded as the most promising gene delivery vectors for decades with the advantages of excellent biodegradability, biocompatibility, and high nucleic acid encapsulation efficiency. However, the clinical use of CLs in cancer gene therapy is limited because of many uncertain factors in vivo. Extracellular barriers such as opsonization, rapid clearance by the reticuloendothelial system and poor tumor penetration, and intracellular barriers, including endosomal/lysosomal entrapped network and restricted diffusion to the nucleus, make CLs not the ideal vector for transferring extrinsic genes in the body. However, the obstacles in achieving productive therapeutic effects of nucleic acids can be addressed by tailoring the properties of CLs, which are influenced by lipid compositions and surface modification. This review focuses on the physiological barriers of CLs against cancer gene therapy and the effects of lipid compositions on governing transfection efficiency, and it briefly discusses the impacts of particle size, membrane charge density, and surface modification on the fate of CLs in vivo, which may provide guidance for their preclinical studies.
Collapse
Affiliation(s)
- Chunyan Liu
- Guangdong Province Engineering Research Center for Antibody Drug and Immunoassay, Department of Biology, Jinan University, Guangzhou 510632, China
| | - Ligang Zhang
- Guangdong Province Engineering Research Center for Antibody Drug and Immunoassay, Department of Biology, Jinan University, Guangzhou 510632, China
| | - Wenhui Zhu
- Guangdong Province Engineering Research Center for Antibody Drug and Immunoassay, Department of Biology, Jinan University, Guangzhou 510632, China
| | - Raoqing Guo
- Guangdong Province Engineering Research Center for Antibody Drug and Immunoassay, Department of Biology, Jinan University, Guangzhou 510632, China
| | - Huamin Sun
- Guangdong Province Engineering Research Center for Antibody Drug and Immunoassay, Department of Biology, Jinan University, Guangzhou 510632, China
| | - Xi Chen
- Guangdong Province Engineering Research Center for Antibody Drug and Immunoassay, Department of Biology, Jinan University, Guangzhou 510632, China
| | - Ning Deng
- Guangdong Province Engineering Research Center for Antibody Drug and Immunoassay, Department of Biology, Jinan University, Guangzhou 510632, China
| |
Collapse
|
38
|
Gawrys O, Rak M, Baranowska I, Bobis-Wozowicz S, Szaro K, Madeja Z, Swiezewska E, Masnyk M, Chmielewski M, Karnas E, Kompanowska-Jezierska E. Polyprenol-Based Lipofecting Agents for In Vivo Delivery of Therapeutic DNA to Treat Hypertensive Rats. Biochem Genet 2020; 59:62-82. [PMID: 32767051 PMCID: PMC7846535 DOI: 10.1007/s10528-020-09992-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 07/28/2020] [Indexed: 11/26/2022]
Abstract
Development of efficient vectors for transfection is one of the major challenges in genetic engineering. Previous research demonstrated that cationic derivatives of polyisoprenoids (PTAI) may serve as carriers of nucleic acids. In the present study, the effectiveness of two PTAI-based formulations (PTAI-6–8 and 10–14) was investigated and compared to the commercial reagents. The purpose of applied gene therapy was to enhance the expression of vascular endothelial growth factor (VEGF-A) in the renal medulla of spontaneously hypertensive rats (SHR) and to test its potential as a novel antihypertensive intervention. In the first part of the study (in vitro), we confirmed that PTAI-based lipoplexes efficiently transfect XC rat sarcoma cells and are stable in 37 °C for 7 days. In the in vivo experiments, we administered selected lipoplexes directly to the kidneys of conscious SHR (via osmotic pumps). There were no blood pressure changes and VEGF-A level in renal medulla was significantly higher only for PTAI-10–14-based formulation. In conclusion, despite the promising results, we were not able to achieve VEGF-A expression level high enough to verify VEGF-A gene therapy usefulness in SHR. However, results of our study give important indications for the future development of PTAI-based DNA carriers and kidney-targeted gene delivery.
Collapse
Affiliation(s)
- Olga Gawrys
- Department of Renal and Body Fluid Physiology, M. Mossakowski Medical Research Centre, PAS, 5 A. Pawinskiego Street, 02-106, Warsaw, Poland.
| | - Monika Rak
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 7 Gronostajowa St., 30-387, Kraków, Poland
| | - Iwona Baranowska
- Department of Renal and Body Fluid Physiology, M. Mossakowski Medical Research Centre, PAS, 5 A. Pawinskiego Street, 02-106, Warsaw, Poland
| | - Sylwia Bobis-Wozowicz
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 7 Gronostajowa St., 30-387, Kraków, Poland
| | - Karolina Szaro
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 7 Gronostajowa St., 30-387, Kraków, Poland
| | - Zbigniew Madeja
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 7 Gronostajowa St., 30-387, Kraków, Poland
| | - Ewa Swiezewska
- Institute of Biochemistry and Biophysics, PAS, 5a A. Pawinskiego Street, 02-106, Warsaw, Poland
| | - Marek Masnyk
- Institute of Organic Chemistry, Polish Academy of Sciences, 44/52 M. Kasprzaka Street, 01-224, Warsaw, Poland
| | - Marek Chmielewski
- Institute of Organic Chemistry, Polish Academy of Sciences, 44/52 M. Kasprzaka Street, 01-224, Warsaw, Poland
| | - Elzbieta Karnas
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 7 Gronostajowa St., 30-387, Kraków, Poland
- Malopolska Centre of Biotechnology, Jagiellonian University, 7 Gronostajowa St., 30-387, Kraków, Poland
| | - Elzbieta Kompanowska-Jezierska
- Department of Renal and Body Fluid Physiology, M. Mossakowski Medical Research Centre, PAS, 5 A. Pawinskiego Street, 02-106, Warsaw, Poland
| |
Collapse
|
39
|
Jagrosse ML, Dean DA, Rahman A, Nilsson BL. RNAi therapeutic strategies for acute respiratory distress syndrome. Transl Res 2019; 214:30-49. [PMID: 31401266 PMCID: PMC7316156 DOI: 10.1016/j.trsl.2019.07.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 07/22/2019] [Accepted: 07/23/2019] [Indexed: 12/11/2022]
Abstract
Acute respiratory distress syndrome (ARDS), replacing the clinical term acute lung injury, involves serious pathophysiological lung changes that arise from a variety of pulmonary and nonpulmonary injuries and currently has no pharmacological therapeutics. RNA interference (RNAi) has the potential to generate therapeutic effects that would increase patient survival rates from this condition. It is the purpose of this review to discuss potential targets in treating ARDS with RNAi strategies, as well as to outline the challenges of oligonucleotide delivery to the lung and tactics to circumvent these delivery barriers.
Collapse
Affiliation(s)
| | - David A Dean
- Department of Pediatrics and Neonatology, University of Rochester Medical Center, School of Medicine and Dentistry, University of Rochester, Rochester, New York
| | - Arshad Rahman
- Department of Pediatrics and Neonatology, University of Rochester Medical Center, School of Medicine and Dentistry, University of Rochester, Rochester, New York
| | - Bradley L Nilsson
- Department of Chemistry, University of Rochester, Rochester, New York.
| |
Collapse
|
40
|
Kumar P, Huo P, Liu B. Formulation Strategies for Folate-Targeted Liposomes and Their Biomedical Applications. Pharmaceutics 2019; 11:E381. [PMID: 31382369 PMCID: PMC6722551 DOI: 10.3390/pharmaceutics11080381] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 07/22/2019] [Accepted: 07/28/2019] [Indexed: 12/27/2022] Open
Abstract
The folate receptor (FR) is a tumor-associated antigen that can bind with folic acid (FA) and its conjugates with high affinity and ingests the bound molecules inside the cell via the endocytic mechanism. A wide variety of payloads can be delivered to FR-overexpressed cells using folate as the ligand, ranging from small drug molecules to large DNA-containing macromolecules. A broad range of folate attached liposomes have been proven to be highly effective as the targeted delivery system. For the rational design of folate-targeted liposomes, an intense conceptual understanding combining chemical and biomedical points of view is necessary because of the interdisciplinary nature of the field. The fabrication of the folate-conjugated liposomes basically involves the attachment of FA with phospholipids, cholesterol or peptides before liposomal formulation. The present review aims to provide detailed information about the design and fabrication of folate-conjugated liposomes using FA attached uncleavable/cleavable phospholipids, cholesterol or peptides. Advances in the area of folate-targeted liposomes and their biomedical applications have also been discussed.
Collapse
Affiliation(s)
- Parveen Kumar
- Laboratory of Functional Molecules and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology, Xincun West Road 266, Zibo 255000, China
| | - Peipei Huo
- Laboratory of Functional Molecules and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology, Xincun West Road 266, Zibo 255000, China
| | - Bo Liu
- Laboratory of Functional Molecules and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology, Xincun West Road 266, Zibo 255000, China.
| |
Collapse
|
41
|
Hattori Y, Tamaki K, Ozaki KI, Kawano K, Onishi H. Optimized combination of cationic lipids and neutral helper lipids in cationic liposomes for siRNA delivery into the lung by intravenous injection of siRNA lipoplexes. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.06.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
42
|
Hosseinkhani H, Domb AJ. Biodegradable polymers in gene‐silencing technology. POLYM ADVAN TECHNOL 2019. [DOI: 10.1002/pat.4713] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
| | - Abraham J. Domb
- School of Pharmacy‐Faculty of Medicine, Institute of Drug Research, The Center for Nanoscience and Nanotechnology and Alex Grass Center for drug Design and SynthesisThe Hebrew University of Jerusalem Jerusalem Israel
| |
Collapse
|
43
|
Zhang G, Nie M, Webster TJ, Zhang Q, Fan W. Ectopic chondrogenesis of nude mouse induced by nano gene delivery enhanced tissue engineering technology. Int J Nanomedicine 2019; 14:4755-4765. [PMID: 31308656 PMCID: PMC6613371 DOI: 10.2147/ijn.s199306] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Accepted: 05/06/2019] [Indexed: 01/08/2023] Open
Abstract
Background: Many techniques and methods have been used clinically to relieve pain from cartilage repair, but the long-term effect is still unsatisfactory. Purpose: The objective of this study was to form an artificial chondroid tissue gene enhanced tissue engineering system to repair cartilage defects via nanosized liposomes. Methods: Cationic nanosized liposomes were prepared and characterized using transmission electron microscope (TEM) and dynamic laser light scattering (DLS). The rat mesenchymal stem cells (rMSCs) were isolated, cultivated, and induced by SRY (Sex-Determining Region Y)-Box 9 (Sox9) via cationic nanosized liposomes. The induced rMSCs were mixed with a thermo-sensitive chitosan hydrogel and subcutaneously injected into the nude mice. Finally, the newly-formed chondroid tissue obtained in the injection parts, and the transparent parts were detected by HE, collagen II, and safranin O. Results: It was found that the presently prepared cationic nanosized liposomes had the diameter of 85.76±3.48 nm and the zeta potential of 15.76±2.1 mV. The isolated rMSCs proliferation was fibroblast-like, with a cultivated confluence of 90% confluence in 5-8 days, and stained positive for CD29 and CD44 while negative for CD34 and CD45. After transfection with cationic nanosized liposomes, we observed changes of cellular morphology and a higher expression of SOX9 compared with control groups, which indicated that rMSCs could differentiate into chondrocyte in vitro. By mixing transfected rMSCs with the thermo-sensitive hydrogel of chitosan in nude mice, chondroid tissue was successfully obtained, demonstrating that rMSCs can differentiate into chondrogenic cells in vivo. Conclusion: This study explored new ways to improve the quality of tissue engineered cartilage, thus accelerating clinical transformation and reducing patient pain.
Collapse
Affiliation(s)
- Guangcheng Zhang
- Department of Orthopedics, the First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Mingjun Nie
- Department of Orthopedics, Affiliated Hospital of Jiangsu University, Zhenjiang, People's Republic of China
| | - Thomas J Webster
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA
| | - Qing Zhang
- Department of Orthopedics, Affiliated Hospital of Jiangsu University, Zhenjiang, People's Republic of China
| | - Weimin Fan
- Department of Orthopedics, the First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| |
Collapse
|
44
|
Hattori Y, Hu S, Onishi H. Effects of cationic lipids in cationic liposomes and disaccharides in the freeze-drying of siRNA lipoplexes on gene silencing in cells by reverse transfection. J Liposome Res 2019; 30:235-245. [DOI: 10.1080/08982104.2019.1630643] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Yoshiyuki Hattori
- Department of Drug Delivery Research, Hoshi University, Tokyo, Japan
| | - Subin Hu
- Department of Drug Delivery Research, Hoshi University, Tokyo, Japan
| | - Hiraku Onishi
- Department of Drug Delivery Research, Hoshi University, Tokyo, Japan
| |
Collapse
|
45
|
Oligonucleotide therapy: An emerging focus area for drug delivery in chronic inflammatory respiratory diseases. Chem Biol Interact 2019; 308:206-215. [PMID: 31136735 PMCID: PMC7094617 DOI: 10.1016/j.cbi.2019.05.028] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 04/30/2019] [Accepted: 05/15/2019] [Indexed: 02/07/2023]
Abstract
Oligonucleotide-based therapies are advanced novel interventions used in the management of various respiratory diseases such as asthma and Chronic Obstructive Pulmonary Disease (COPD). These agents primarily act by gene silencing or RNA interference. Better methodologies and techniques are the need of the hour that can deliver these agents to tissues and cells in a target specific manner by which their maximum potential can be reached in the management of chronic inflammatory diseases. Nanoparticles play an important role in the target-specific delivery of drugs. In addition, oligonucleotides also are extensively used for gene transfer in the form of polymeric, liposomal and inorganic carrier materials. Therefore, the current review focuses on various novel dosage forms like nanoparticles, liposomes that can be used efficiently for the delivery of various oligonucleotides such as siRNA and miRNA. We also discuss the future perspectives and targets for oligonucleotides in the management of respiratory diseases.
Collapse
|
46
|
Effect of Cationic Lipid Type in Folate-PEG-Modified Cationic Liposomes on Folate Receptor-Mediated siRNA Transfection in Tumor Cells. Pharmaceutics 2019; 11:pharmaceutics11040181. [PMID: 30991703 PMCID: PMC6523911 DOI: 10.3390/pharmaceutics11040181] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/06/2019] [Accepted: 04/12/2019] [Indexed: 12/04/2022] Open
Abstract
In this study, we examined the effect of cationic lipid type in folate (FA)-polyethylene glycol (PEG)-modified cationic liposomes on gene-silencing effects in tumor cells using cationic liposomes/siRNA complexes (siRNA lipoplexes). We used three types of cationic cholesterol derivatives, cholesteryl (3-((2-hydroxyethyl)amino)propyl)carbamate hydroiodide (HAPC-Chol), N-(2-(2-hydroxyethylamino)ethyl)cholesteryl-3-carboxamide (OH-Chol), and cholesteryl (2-((2-hydroxyethyl)amino)ethyl)carbamate (OH-C-Chol), and we prepared three types of FA-PEG-modified siRNA lipoplexes. The modification of cationic liposomes with 1–2 mol % PEG-lipid abolished the gene-silencing effect in human nasopharyngeal tumor KB cells, which overexpress the FA receptor (FR). In contrast, FA-PEG-modification of cationic liposomes restored gene-silencing activity regardless of the cationic lipid type in cationic liposomes. However, the optimal amount of PEG-lipid and FA-PEG-lipid in cationic liposomes for selective gene silencing and cellular uptake were different among the three types of cationic liposomes. Furthermore, in vitro transfection of polo-like kinase 1 (PLK1) siRNA by FA-PEG-modified liposomes exhibited strong cytotoxicity in KB cells, compared with PEG-modified liposomes; however, in in vivo therapy, intratumoral injection of PEG-modified PLK1 siRNA lipoplexes inhibited tumor growth of KB xenografts, as well as that of FA-PEG-modified PLK1 siRNA lipoplexes. From these results, the optimal formulation of PEG- and FA-PEG-modified liposomes for FR-selective gene silencing might be different between in vitro and in vivo transfection.
Collapse
|
47
|
Effect of cationic lipid type in cationic liposomes for siRNA delivery into the liver by sequential injection of chondroitin sulfate and cationic lipoplex. J Drug Deliv Sci Technol 2018. [DOI: 10.1016/j.jddst.2018.09.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|