1
|
Thangavelu L, Moglad E, Gupta G, Menon SV, Gaur A, Sharma S, Kaur M, Chahar M, Sivaprasad GV, Deorari M. GAS5 lncRNA: A biomarker and therapeutic target in breast cancer. Pathol Res Pract 2024; 260:155424. [PMID: 38909406 DOI: 10.1016/j.prp.2024.155424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/19/2024] [Accepted: 06/19/2024] [Indexed: 06/25/2024]
Abstract
Breast cancer is one of the most common causes of cancer-related mortality globally, and its aggressive phenotype results in poor treatment outcomes. Growth Arrest-Specific 5 long non-coding RNA has attracted considerable attention due to its pivotal function in apoptosis regulation and tumor aggressiveness in breast cancer. Gas5 enhances apoptosis by regulating apoptotic proteins, such as caspases and BCL2 family proteins, and the sensitivity of BCCs to chemotherapeutic agents. At the same time, low levels of GAS5 increased invasion, metastasis, and overall tumor aggressiveness. GAS5 also regulates EMT markers, critical for cancer metastasis, and influences tumor cell proliferation by regulating various signaling components. As a result, GAS5 can be restored to suppress tumor development as a possible therapeutic strategy, which might present promising prospects for a patient's treatment. Its activity levels might also be a crucial indicator and diagnostic parameter for prediction. This review highlights the significant role of GAS5 in modulating apoptosis and tumor aggressiveness in breast cancer, emphasizing its potential as a therapeutic target for breast cancer treatment and management.
Collapse
Affiliation(s)
- Lakshmi Thangavelu
- Center for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, India
| | - Ehssan Moglad
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Gaurav Gupta
- Centre for Research Impact & Outcome-Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Soumya V Menon
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Ashish Gaur
- Graphic Era (Deemed to be University), Clement Town, Dehradun 248002, India; Graphic Era Hill University, Clement Town, Dehradun 248002, India
| | - Snehlata Sharma
- Chandigarh Pharmacy College, Chandigarh Group of Colleges, Jhanjheri, Mohali, Punjab 140307, India
| | - Mandeep Kaur
- Department of Sciences, Vivekananda Global University, Jaipur, Rajasthan 303012, India
| | - Mamata Chahar
- Department of Chemistry, NIMS University, Jaipur, India
| | - G V Sivaprasad
- Department of Basic Science & Humanities, Raghu Engineering College, Visakhapatnam, India
| | - Mahamedha Deorari
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India.
| |
Collapse
|
2
|
Ren Y, Zhao X. Bone marrow mesenchymal stem cells-derived exosomal lncRNA GAS5 mitigates heart failure by inhibiting UL3/Hippo pathway-mediated ferroptosis. Eur J Med Res 2024; 29:303. [PMID: 38812041 PMCID: PMC11137962 DOI: 10.1186/s40001-024-01880-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/03/2024] [Indexed: 05/31/2024] Open
Abstract
BACKGROUND Exosomes (Exos) are involved in the therapeutic effects of bone marrow mesenchymal stem cells (BMSCs) on heart failure (HF). We investigated the molecular mechanisms underlying the involvement of BMSC-Exos in ferroptosis on HF. METHODS A rat model of HF and cellular model of hypoxia were established. BMSC-Exos were injected into model rats or co-cultured with model cells. In model rats, the cardiac function (echocardiography), oxidative stress (commercial kits), pathological damage (HE staining), fibrosis (MASSON staining), iron deposition (Prussian blue staining), and cell apoptosis (TUNEL staining) were examined. Viability (cell counting kit-8; CCK-8), cell cycle (flow cytometry), oxidative stress, and Fe2+ levels were detected in the model cells. GAS5, UL3, YAP, and TAZ expression were detected using qRT-PCR, western blotting, and immunohistochemistry analyses. RESULTS BMSC-Exos restored cardiac function and inhibited oxidative stress, apoptosis, pathological damage, fibrosis, and iron deposition in myocardial tissues of HF rats. In hypoxic cells, BMSC-Exos increased cell viability, decreased the number of G1 phase cells, decreased Fe2+ levels, and inhibited oxidative stress. Ferrostatin-1 (a ferroptosis inhibitor) exhibited a synergistic effect with BMSC-Exos. Additionally, GAS5 was upregulated in BMSC-Exos, further upregulating its target UL3 and Hippo pathway effectors (YAP and TAZ). The relieving effects of BMSC-Exos on HF or hypoxia-induced injury were enhanced by GAS5 overexpression, but weakened by UL3 silencing or verteporfin (a YAP inhibitor). CONCLUSIONS GAS5-harbouring BMSC-Exos inhibited ferroptosis by regulating the UL3/Hippo pathway, contributing to HF remission in vivo and in vitro.
Collapse
Affiliation(s)
- Yu Ren
- Department of Scientific Research, Inner Mongolia People's Hospital, Hohhot, 010017, China
| | - Xingsheng Zhao
- Department of Cardiology, Inner Mongolia People's Hospital, No.20 Zhao Wuda Road, Hohhot, 010017, China.
| |
Collapse
|
3
|
Break MKB, Syed RU, Hussein W, Alqarni S, Magam SM, Nawaz M, Shaikh S, Otaibi AA, Masood N, Younes KM. Noncoding RNAs as therapeutic targets in autophagy-related diabetic cardiomyopathy. Pathol Res Pract 2024; 256:155225. [PMID: 38442448 DOI: 10.1016/j.prp.2024.155225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/06/2024] [Accepted: 02/21/2024] [Indexed: 03/07/2024]
Abstract
Diabetic cardiomyopathy, a multifaceted complication of diabetes mellitus, remains a major challenge in clinical management due to its intricate pathophysiology. Emerging evidence underscores the pivotal role of autophagy dysregulation in the progression of diabetic cardiomyopathy, providing a novel avenue for therapeutic intervention. Noncoding RNAs (ncRNAs), a diverse class of regulatory molecules, have recently emerged as promising candidates for targeted therapeutic strategies. The exploration of various classes of ncRNAs, including microRNAs (miRNAs), long noncoding RNAs (lncRNAs), and circular RNAs (circRNAs) reveal their intricate regulatory networks in modulating autophagy and influencing the pathophysiological processes associated with diabetic cardiomyopathy. The nuanced understanding of the molecular mechanisms underlying ncRNA-mediated autophagic regulation offers a rationale for the development of precise and effective therapeutic interventions. Harnessing the regulatory potential of ncRNAs presents a promising frontier for the development of targeted and personalized therapeutic strategies, aiming to ameliorate the burden of diabetic cardiomyopathy in affected individuals. As research in this field advances, the identification and validation of specific ncRNA targets hold immense potential for the translation of these findings into clinically viable interventions, ultimately improving outcomes for patients with diabetic cardiomyopathy. This review encapsulates the current understanding of the intricate interplay between autophagy and diabetic cardiomyopathy, with a focus on the potential of ncRNAs as therapeutic targets.
Collapse
Affiliation(s)
- Mohammed Khaled Bin Break
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Hail, Hail, Saudi Arabia; Medical and Diagnostic Research Centre, University of Hail, Hail 55473, Saudi Arabia.
| | - Rahamat Unissa Syed
- Department of Pharmaceutics, College of Pharmacy, University of Hail, Hail 55473, Saudi Arabia.
| | - Weiam Hussein
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Hail, Hail, Saudi Arabia; Department of Pharmaceutical Chemistry, College of Pharmacy, Aden University, Aden 6075, Yemen
| | - Saad Alqarni
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Hail, Hail, Saudi Arabia
| | - Sami M Magam
- Basic Science Department, Preparatory Year, University of Hail, Hail City 1560, Kingdom of Saudi Arabia; Department of Marine Chemistry and Pollution, Faculty of Marine Science and Environment, Hodeidah University, Hodeidah City, Yemen
| | - Muhammad Nawaz
- Department of Nano-Medicine Research, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Sameer Shaikh
- Division of Oral Diagnosis and Oral Medicine, Department of OMFS and Diagnostic Sciences, College of Dentistry, University of Hail, Ha'il, Saudi Arabia
| | - Ahmed Al Otaibi
- Chemistry Department, Faculty of Science, University of Ha'il, P.O. Box 2440, Ha'il 81451, Saudi Arabia
| | - Najat Masood
- Chemistry Department, Faculty of Science, University of Ha'il, P.O. Box 2440, Ha'il 81451, Saudi Arabia
| | - Kareem M Younes
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Hail, Hail, Saudi Arabia; Department of Analytical Chemistry, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| |
Collapse
|
4
|
Jiang X, Zhang M. The roles of long noncoding RNA NEAT1 in cardiovascular diseases. Hypertens Res 2024; 47:735-746. [PMID: 38177287 DOI: 10.1038/s41440-023-01551-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 11/09/2023] [Accepted: 11/21/2023] [Indexed: 01/06/2024]
Abstract
The morbidity of cardiovascular diseases (CVDs) gradually increases worldwide. Long noncoding RNAs (lncRNAs) are a large class of non-(protein)-coding RNAs with lengths beyond 200 nucleotides. Increasing evidence suggests that lncRNA NEAT1 plays important roles in the pathogenesis of CVDs, such as myocardial infarction, heart failure, myocardial ischemia-reperfusion (I/R) injury, atherosclerosis, hypertension, cardiomyopathy, and others. We summarized the current studies of NEAT1 in CVDs, which shed light on the understanding of the molecular mechanisms of CVDs and understanding the therapeutic potential of NEAT1.
Collapse
Affiliation(s)
- Xiaoying Jiang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China.
| | - Mingjuan Zhang
- Department of Cardiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| |
Collapse
|
5
|
Almalki WH. LncRNAs and PTEN/PI3K signaling: A symphony of regulation in cancer biology. Pathol Res Pract 2023; 249:154764. [PMID: 37643526 DOI: 10.1016/j.prp.2023.154764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/11/2023] [Accepted: 08/12/2023] [Indexed: 08/31/2023]
Abstract
The Emergence of Long Non-coding RNAs (lncRNAs) as Key Regulators in Diverse Biological Processes: A Paradigm Shift in Understanding Gene Expression and its Impact on Cancer. The PTEN/PI3K pathway, a pivotal signaling cascade involved in cancer progression, orchestrates critical cellular functions such as survival, proliferation, and growth. In light of these advances, our investigation delves into the intricate and multifaceted interplay between lncRNAs and the PTEN/PI3K signaling pathway, unearthing previously undisclosed mechanisms that underpin cancer growth and advancement. These elusive lncRNAs exert their influence through direct targeting of the PTEN/PI3K pathway or by skillfully regulating the expression and activity of specific lncRNAs. This comprehensive review underscores the paramount significance of the interaction between lncRNAs and the PTEN/PI3K signaling pathway in cancer biology, unveiling an auspicious avenue for novel diagnostic tools and targeted therapeutic interventions. In this review, we navigate through the functional roles of specific lncRNAs in modulating PTEN/PI3K expression and activity. Additionally, we scrutinize their consequential effects on downstream components of the PTEN/PI3K pathway, unraveling the intricacies of their mutual regulation. By advancing our understanding of this complex regulatory network, this study holds the potential to revolutionize the landscape of cancer research, paving the way for tailored and efficacious treatments to combat this devastating disease.
Collapse
Affiliation(s)
- Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia.
| |
Collapse
|
6
|
Xia J, Liu Y, Ma Y, Yang F, Ruan Y, Xu JF, Pi J. Advances of Long Non-Coding RNAs as Potential Biomarkers for Tuberculosis: New Hope for Diagnosis? Pharmaceutics 2023; 15:2096. [PMID: 37631310 PMCID: PMC10458399 DOI: 10.3390/pharmaceutics15082096] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 07/31/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023] Open
Abstract
Tuberculosis (TB), one of the top ten causes of death globally induced by the infection of Mycobacterium tuberculosis (Mtb), remains a grave public health issue worldwide. With almost one-third of the world's population getting infected by Mtb, between 5% and 10% of these infected individuals are predicted to develop active TB disease, which would not only result in severe tissue damage and necrosis, but also pose serious threats to human life. However, the exact molecular mechanisms underlying the pathogenesis and immunology of TB remain unclear, which significantly restricts the effective control of TB epidemics. Despite significant advances in current detection technologies and treatments for TB, there are still no appropriate solutions that are suitable for simultaneous, early, rapid, and accurate screening of TB. Various cellular events can perturb the development and progression of TB, which are always associated with several specific molecular signaling events controlled by dysregulated gene expression patterns. Long non-coding RNAs (lncRNAs), a kind of non-coding RNA (ncRNA) with a transcript of more than 200 nucleotides in length in eukaryotic cells, have been found to regulate the expression of protein-coding genes that are involved in some critical signaling events, such as inflammatory, pathological, and immunological responses. Increasing evidence has claimed that lncRNAs might directly influence the susceptibility to TB, as well as the development and progression of TB. Therefore, lncRNAs have been widely expected to serve as promising molecular biomarkers and therapeutic targets for TB. In this review, we summarized the functions of lncRNAs and their regulatory roles in the development and progression of TB. More importantly, we widely discussed the potential of lncRNAs to act as TB biomarkers, which would offer new possibilities in novel diagnostic strategy exploration and benefit the control of the TB epidemic.
Collapse
Affiliation(s)
- Jiaojiao Xia
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China; (J.X.); (Y.L.); (Y.M.); (F.Y.); (Y.R.)
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming 650500, China
| | - Yilin Liu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China; (J.X.); (Y.L.); (Y.M.); (F.Y.); (Y.R.)
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Yuhe Ma
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China; (J.X.); (Y.L.); (Y.M.); (F.Y.); (Y.R.)
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Fen Yang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China; (J.X.); (Y.L.); (Y.M.); (F.Y.); (Y.R.)
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Yongdui Ruan
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China; (J.X.); (Y.L.); (Y.M.); (F.Y.); (Y.R.)
| | - Jun-Fa Xu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China; (J.X.); (Y.L.); (Y.M.); (F.Y.); (Y.R.)
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, China
| | - Jiang Pi
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China; (J.X.); (Y.L.); (Y.M.); (F.Y.); (Y.R.)
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, China
| |
Collapse
|
7
|
Chen C, Ding P, Yan W, Wang Z, Lan Y, Yan X, Li T, Han J. Pharmacological roles of lncRNAs in diabetic retinopathy with a focus on oxidative stress and inflammation. Biochem Pharmacol 2023; 214:115643. [PMID: 37315816 DOI: 10.1016/j.bcp.2023.115643] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/03/2023] [Accepted: 06/07/2023] [Indexed: 06/16/2023]
Abstract
Diabetic retinopathy (DR) is a complication caused by abnormal glucose metabolism, which affects the vision and quality of life of patients and severely impacts the society at large.DR has a complex pathogenic process. Evidence from multiple studies have shown that oxidative stress and inflammation play pivotal roles in DR.Additionally, with the rapid development of various genetic detection methods, the abnormal expression of long non-coding RNAs (lncRNAs) have been confirmed to promote the development of DR.Research has demonstrated the potential of lncRNAs as ideal biomarkers and theranostic targets in DR. In this narrative review, we will focus on the research results on mechanisms underlying DR, list lncRNAs confirmed to be closely related to these mechanisms, and discuss their potential clinical application value and limitations.
Collapse
Affiliation(s)
- Chengming Chen
- Department of Ophthalmology, Tangdu Hospital, The Air Force Military Medical University, Xi'an 710038, China; Department of Ophthalmology, The 900th Hospital of Joint Logistic Support Force, PLA (Clinical Medical College of Fujian Medical University, Dongfang Hospital Affiliated to Xiamen University), Fuzhou 350025, China
| | - Peng Ding
- Department of Thoracic Surgery, Tangdu Hospital, The Air Force Military Medical University, Xi'an 710038, China
| | - Weiming Yan
- Department of Ophthalmology, The 900th Hospital of Joint Logistic Support Force, PLA (Clinical Medical College of Fujian Medical University, Dongfang Hospital Affiliated to Xiamen University), Fuzhou 350025, China
| | - Zhaoyang Wang
- Department of Thoracic Surgery, Tangdu Hospital, The Air Force Military Medical University, Xi'an 710038, China
| | - Yanyan Lan
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Xiaolong Yan
- Department of Thoracic Surgery, Tangdu Hospital, The Air Force Military Medical University, Xi'an 710038, China.
| | - Tian Li
- School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China.
| | - Jing Han
- Department of Ophthalmology, Tangdu Hospital, The Air Force Military Medical University, Xi'an 710038, China.
| |
Collapse
|
8
|
Jiang X, Lei R. Extracellular lncRNAs secreted and absorbed by cardiomyocytes. J Cell Biochem 2023. [PMID: 37183382 DOI: 10.1002/jcb.30425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/12/2023] [Accepted: 05/03/2023] [Indexed: 05/16/2023]
Abstract
Exosomes are membrane-surrounded extracellular vesicles released by almost all cell types, which mediate intercellular communications by delivering bioactive molecules from secretory cells to recipient cells. Long noncoding RNAs (lncRNAs) are a large class of non-(protein)-coding RNAs with lengths exceeding 200 nucleotides that are very active in the development of cardiovascular diseases (CVDs). Increasing evidence suggests that exosomal lncRNAs also play important roles in the progress of CVDs. We focus on the current available studies regarding these extracellular lncRNAs secreted and absorbed by cardiomyocytes and their functional roles in CVDs, hopefully providing a basis for deeper understanding of the pathological mechanisms of CVDs and their potential for clinical diagnosis and therapy.
Collapse
Affiliation(s)
- Xiaoying Jiang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Ronghui Lei
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| |
Collapse
|
9
|
Drekolia MK, Talyan S, Cordellini Emídio R, Boon RA, Guenther S, Looso M, Dumbović G, Bibli SI. Unravelling the impact of aging on the human endothelial lncRNA transcriptome. Front Genet 2022; 13:1035380. [PMID: 36338971 PMCID: PMC9634578 DOI: 10.3389/fgene.2022.1035380] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/06/2022] [Indexed: 11/21/2022] Open
Abstract
The incidence and prevalence of cardiovascular disease is highest among the elderly. There is a need to further understand the mechanisms behind endothelial cell aging in order to achieve vascular rejuvenation and minimize the onset of age-related vascular diseases. Long non-coding RNAs (lncRNAs) have been proposed to regulate numerous processes in the human genome, yet their function in vascular aging and their therapeutic potential remain largely unknown. This is primarily because the majority of studies investigating the impact of aging on lncRNA expression heavily rely on in vitro studies based on replicative senescence. Here, using a unique collection of young and aged endothelial cells isolated from native human arteries, we sought to characterize the age-related alterations in lncRNA expression profiles. We were able to detect a total of 4463 lncRNAs expressed in the human endothelium from which ∼17% (798) were altered in advanced age. One of the most affected lncRNAs in aging was the primate-specific, Prostate Cancer Associated Transcript (PCAT) 14. In our follow up analysis, using single molecule RNA FISH, we showed that PCAT14 is relatively abundant, localized almost exclusively in the nucleus of young endothelial cells, and silenced in the aged endothelium. Functionally, our studies proposed that downregulation of PCAT14 alters endothelial cell transcription profile and cell functions including endothelial cell migration, sprouting and inflammatory responses in vitro. Taken together, our data highlight that endothelial cell aging correlates with altered expression of lncRNAs, which could impair the endothelial regenerative capacity and enhance inflammatory phenotypes.
Collapse
Affiliation(s)
- Maria-Kyriaki Drekolia
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt, Germany
| | - Sweta Talyan
- Bioinformatics Core Unit, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | | | - Reinier Abraham Boon
- Institute for Cardiovascular Regeneration, Goethe University, Frankfurt, Germany
- German Center for Cardiovascular Research (DZHK), partner site Rhein/Main, Frankfurt, Germany
| | - Stefan Guenther
- Bioinformatics Core Unit, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
- German Center for Cardiovascular Research (DZHK), partner site Rhein/Main, Frankfurt, Germany
| | - Mario Looso
- Bioinformatics Core Unit, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
- German Center for Cardiovascular Research (DZHK), partner site Rhein/Main, Frankfurt, Germany
| | - Gabrijela Dumbović
- Institute for Cardiovascular Regeneration, Goethe University, Frankfurt, Germany
| | - Sofia-Iris Bibli
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt, Germany
- German Center for Cardiovascular Research (DZHK), partner site Rhein/Main, Frankfurt, Germany
| |
Collapse
|
10
|
Hsieh MH, Wu YL, Tsao TCY, Huang YW, Lin JC, Lee CY, Hsieh MJ, Yang SF. Impact of LncRNA GAS5 Genetic Variants and the Epidermal Growth Factor Receptor Phenotypes on the Clinicopathological Characteristics of Lung Adenocarcinoma Patients. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:9971. [PMID: 36011604 PMCID: PMC9407922 DOI: 10.3390/ijerph19169971] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 06/15/2023]
Abstract
The aim of the current study was to evaluate the combined effect of the single nucleotide polymorphism (SNP) in long non-coding RNA growth arrest-specific 5 (GAS5) and the phenotypes of epidermal growth factor receptor (EGFR) on the clinicopathological characteristics of lung adenocarcinoma. The present study examined the relationship between the GAS5 single-nucleotide polymorphisms (SNPs; rs145204276 Ins/Del, rs55829688 T/C) and the clinicopathological factors in 539 lung adenocarcinoma patients with or without EGFR mutations. We found that the genotype distributions of the two GAS5 SNPs between different EGFR genotypes were similar after adjusting for age, gender and smoking history. The GAS5 SNP rs145204276 Ins/Del + Del/Del illustrated a higher distribution with an advanced tumor stage (p = 0.030), larger tumor T status (p = 0.019), positive lymph node status (p = 0.014) and distal metastases (p = 0.011) in the EGFR wild type group. In the subgroup analysis of the EGFR wild type population, the presence of GAS5 SNP rs145204276 Ins/Del + Del/Del was correlated to an advanced tumor stage (p = 0.014) and distal metastases (p = 0.020) in non-smokers. In conclusion, these data indicate that the GAS5 SNP rs145204276 variant may help predict tumor stage, lymph node metastasis and distal metastases in patients with EGFR wild type lung adenocarcinoma.
Collapse
Affiliation(s)
- Ming-Hong Hsieh
- School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
- Department of Psychiatry, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - Yi-Liang Wu
- School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
- Department of Surgery, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - Thomas Chang-Yao Tsao
- Division of Chest, Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - Yi-Wen Huang
- Department of Health, Pulmonary and Critical Care Unit, Changhua Hospital, Changhua 513, Taiwan
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
| | - Jian-Cheng Lin
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - Chia-Yi Lee
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 402, Taiwan
- Nobel Eye Institute, Taipei 115, Taiwan
| | - Ming-Ju Hsieh
- Oral Cancer Research Center, Changhua Christian Hospital, Changhua 500, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung 402, Taiwan
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| |
Collapse
|
11
|
The G3BP1-UPF1-Associated Long Non-Coding RNA CALA Regulates RNA Turnover in the Cytoplasm. Noncoding RNA 2022; 8:ncrna8040049. [PMID: 35893232 PMCID: PMC9326601 DOI: 10.3390/ncrna8040049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/10/2022] [Accepted: 06/28/2022] [Indexed: 11/16/2022] Open
Abstract
Besides transcription, RNA decay accounts for a large proportion of regulated gene expression and is paramount for cellular functions. Classical RNA surveillance pathways, like nonsense-mediated decay (NMD), are also implicated in the turnover of non-mutant transcripts. Whereas numerous protein factors have been assigned to distinct RNA decay pathways, the contribution of long non-coding RNAs (lncRNAs) to RNA turnover remains unknown. Here we identify the lncRNA CALA as a potent regulator of RNA turnover in endothelial cells. We demonstrate that CALA forms cytoplasmic ribonucleoprotein complexes with G3BP1 and regulates endothelial cell functions. A detailed characterization of these G3BP1-positive complexes by mass spectrometry identifies UPF1 and numerous other NMD factors having cytoplasmic G3BP1-association that is CALA-dependent. Importantly, CALA silencing impairs degradation of NMD target transcripts, establishing CALA as a non-coding regulator of RNA steady-state levels in the endothelium.
Collapse
|
12
|
Zhao Y, Yan G, Mi J, Wang G, Yu M, Jin D, Tong X, Wang X. The Impact of lncRNA on Diabetic Kidney Disease: Systematic Review and In Silico Analyses. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2022:8400106. [PMID: 35528328 PMCID: PMC9068318 DOI: 10.1155/2022/8400106] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/07/2022] [Accepted: 04/13/2022] [Indexed: 12/17/2022]
Abstract
Background Long noncoding RNA (lncRNA) is involved in the occurrence and development of diabetic kidney disease (DKD). It is necessary to identify the expression of lncRNA from DKD patients through systematic reviews, and then carry out silico analyses to recognize the dysregulated lncRNA and their associated pathways. Methods The study searched Pubmed, Embase, Cochrane Library, WanFang, VIP, CNKI, and CBM to find lncRNA studies on DKD published before March 1, 2021. Systematic review of the literature on this topic was conducted to determine the expression of lncRNA in DKD and non-DKD controls. For the dysregulated lncRNA in DKD patients, silico analysis was performed, and lncRNA2Target v2.0 and starBase were used to search for potential target genes of lncRNA. The Encyclopedia of Genomics (KEGG) pathway enrichment analysis was performed to better identify dysregulated lncRNAs in DKD and determine the associated signal pathways. Results According to the inclusion and exclusion criteria, 28 publications meeting the eligibility criteria were included in the systematic evaluation. A total of 3,394 patients were enrolled in this study, including 1,238 patients in DKD group, and 1,223 diabetic patients, and 933 healthy adults in control group. Compared with the control, there were eight lncRNA disorders in DKD patients (MALAT1, GAS5, MIAT, CASC2, NEAT1, NR_033515, ARAP1-AS2, and ARAP1-AS1). In addition, five lncRNAs (MALAT1, GAS5, MIAT, CASC2, and NEAT1) participated in disease-related signal pathways, indicating their role in DKD. Discussion. This study showed that there were eight lncRNAs in DKD that were persistently dysregulated, especially five lncRNAs which were closely related to the disease. Although systematic review included 28 studies that analyzed the expression of lncRNA in DKD-related tissues, the potential of these dysregulated lncRNAs as biomarkers or therapeutic targets for DKD remains to be further explored. Trial registration. PROSPERO (CRD42021248634).
Collapse
Affiliation(s)
- Yunyun Zhao
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Guanchi Yan
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Jia Mi
- Endocrinology Department, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Guoqiang Wang
- Endocrinology Department, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Miao Yu
- Endocrinology Department, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Di Jin
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Xiaolin Tong
- Northeast Asian Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Xiuge Wang
- Endocrinology Department, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
13
|
Feng X, Wang K, Yang T, Liu Y, Wang X. LncRNA-GAS5/miR-382-3p axis inhibits pulmonary artery remodeling and promotes autophagy in chronic thromboembolic pulmonary hypertension. Genes Genomics 2022; 44:395-404. [PMID: 35066809 DOI: 10.1007/s13258-021-01202-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 12/01/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND We have clarified the role of miR-382-3p in chronic thromboembolic pulmonary hypertension (CTEPH), but what is less clear lies in its upstream regulatory mechanism. OBJECTIVE To explore the regulation mechanism of GAS5/miR-382-3p axis on CTEPH. METHODS In vitro, we constructed cell models by treating Pulmonary Artery Smooth Muscle Cells (PASMCs) with platelet-derived growth factor-BB (PDGF-BB). The effects of different concentrations of PDGF-BB on the activity of PASMCs were tested by cell counting kit-8 (CCK-8). The upstream lncRNA of miR-382-3p was screened and confirmed through bioinformatics analysis, RNA pull-down, quantitative reverse transcription polymerase chain reaction (qRT-PCR), dual luciferase reporter gene and RNA immunoprecipitation assays. The effects of GAS5/miR-382-3p axis on the viability, migration, and expressions of autophagy- and angiogenesis-related proteins were confirmed by rescue experiments (CCK-8, wound healing and western blot). In vivo, animal models by perfusing autologous blood vessels, the effects of GAS5 overexpression or silencing on the expressions of miR-382-3p, angiogenesis- and autophagy-related genes, mean pulmonary arterial pressure (mPAP) and pulmonary artery wall were determined by biological signal acquisition system, hematoxylin-eosin staining, qRT-PCR and western blot. RESULTS PDGF-BB dose-dependently promoted PASMCs viability. XIST and GAS5 expressions in PASMCs were affected by the concentration of PDGF-BB, but only GAS5 can be pulled down by miR-382-3p probe. GAS5 targeted miR-382-3p to inhibit the viability and migration of PAMSCs, mPAP in CTEPH rats, pulmonary artery wall thickening and angiogenesis, and promote autophagy. CONCLUSIONS GAS5/miR-382-3p axis is involved in the regulation of pulmonary artery remodeling and autophagy in CTEPH.
Collapse
Affiliation(s)
- Xiaona Feng
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Jiamusi University, No. 348, Dexiang Street, Xiangyang District, Jiamusi, 154002, Heilongjiang, China
| | - Kaifeng Wang
- Vascular Surgery, First Affiliated Hospital of Jiamusi University, No. 348, Dexiang Street, Xiangyang District, Jiamusi, 154002, Heilongjiang, China.
| | - Ting Yang
- Vascular Surgery, First Affiliated Hospital of Jiamusi University, No. 348, Dexiang Street, Xiangyang District, Jiamusi, 154002, Heilongjiang, China
| | - Yanhui Liu
- Vascular Surgery, First Affiliated Hospital of Jiamusi University, No. 348, Dexiang Street, Xiangyang District, Jiamusi, 154002, Heilongjiang, China
| | - Xiaodong Wang
- Vascular Surgery, First Affiliated Hospital of Jiamusi University, No. 348, Dexiang Street, Xiangyang District, Jiamusi, 154002, Heilongjiang, China
| |
Collapse
|
14
|
Song G, Yu M, Mi DQ, Jiang Y, Tian G, Geng CP, Yuan JC, Miao SB, Wu XH. Lower growth arrest-specific 5 level in endometrium is related to endometriosis via promoting cell proliferation and angiogenesis. Kaohsiung J Med Sci 2021; 37:776-783. [PMID: 34137167 DOI: 10.1002/kjm2.12408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 04/28/2021] [Accepted: 05/11/2021] [Indexed: 01/22/2023] Open
Abstract
Long noncoding RNAs are a group of more than 200 nt, nonprotein coding RNAs, some of which are dysregulated in many pathophysiological processes including endometriosis. This study aims to clarify the roles of dysregulated growth arrest-specific 5 (GAS5) in patients with endometriosis, and unveil the underlying mechanisms. We obtained endometrium samples from 37 patients with endometriosis and 23 controls without endometriosis. Primary endometrial stromal cells (ESCs) and endothelial cells were separated from the endometrium. Levels of GAS5 were quantified using quantitative real-time polymerase chain reaction, and levels of p27, cleaved caspase-3, cleaved poly (ADP-Ribose) polymerase 1, vascular endothelial growth factor A, tissue inhibitor of metalloproteinases 3 (TIMP3), and trypsin-modified soy protein 10 were assessed by immunoblotting. Cell viability was examined using MTT assays, and the cell cycle and apoptosis were analyzed by flow cytometry. Endothelial cell tube formation capacity was assayed in vitro. GAS5 and p27 levels were found lower in the endometrium samples from patients with endometriosis. Primary ESCs from patients with endometriosis had increased viability, reduced apoptosis, and a relatively uncontrolled cell cycle. Gain- and loss-of-function studies confirmed that GAS5 regulated p27 expression in ESCs. Furthermore, GAS5 level was relatively low in primary endothelial cells from patients with endometriosis and GAS5 acted as an angiogenesis inhibitor by regulating the miR-181c-TIMP3 axis. Thus, lower GAS5 level in endometrium might be related to endometriosis by regulating cell proliferation, apoptosis, cell cycle, and angiogenesis.
Collapse
Affiliation(s)
- Ge Song
- Center for Reproductive Medicine, The Fourth Hospital of Shijiazhuang, Gynecology and Obstetrics Hospital Affiliated to Hebei Medical University, Shijiazhuang, Heibei, China
| | - Mei Yu
- Prenatal Diagnosis Center, The Fourth Hospital of Shijiazhuang, Gynecology and Obstetrics Hospital Affiliated to Hebei Medical University, Shijiazhuang, Heibei, China
| | - Dong-Qing Mi
- Prenatal Diagnosis Center, The Fourth Hospital of Shijiazhuang, Gynecology and Obstetrics Hospital Affiliated to Hebei Medical University, Shijiazhuang, Heibei, China
| | - Yan Jiang
- Center for Reproductive Medicine, The Fourth Hospital of Shijiazhuang, Gynecology and Obstetrics Hospital Affiliated to Hebei Medical University, Shijiazhuang, Heibei, China
| | - Geng Tian
- Center for Reproductive Medicine, The Fourth Hospital of Shijiazhuang, Gynecology and Obstetrics Hospital Affiliated to Hebei Medical University, Shijiazhuang, Heibei, China
| | - Cai-Ping Geng
- Center for Reproductive Medicine, The Fourth Hospital of Shijiazhuang, Gynecology and Obstetrics Hospital Affiliated to Hebei Medical University, Shijiazhuang, Heibei, China
| | - Jing-Chuan Yuan
- Center for Reproductive Medicine, The Fourth Hospital of Shijiazhuang, Gynecology and Obstetrics Hospital Affiliated to Hebei Medical University, Shijiazhuang, Heibei, China
| | - Sui-Bing Miao
- Center for Reproductive Medicine, The Fourth Hospital of Shijiazhuang, Gynecology and Obstetrics Hospital Affiliated to Hebei Medical University, Shijiazhuang, Heibei, China
| | - Xiao-Hua Wu
- Center for Reproductive Medicine, The Fourth Hospital of Shijiazhuang, Gynecology and Obstetrics Hospital Affiliated to Hebei Medical University, Shijiazhuang, Heibei, China
| |
Collapse
|
15
|
Circulating miR-148a-5p and miR-21-5p as Novel Diagnostic Biomarkers in Adult Egyptian Male Patients With Metabolic Syndrome. Can J Diabetes 2021; 45:614-618. [PMID: 33582040 DOI: 10.1016/j.jcjd.2020.12.005] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 12/19/2020] [Accepted: 12/23/2020] [Indexed: 01/02/2023]
Abstract
BACKGROUND Metabolic syndrome (MetS) is a group of abnormalities related to metabolism that increase the risk of cardiac diseases, type 2 diabetes and mortality. MicroRNAs (miRs) act as regulators of many cellular and metabolic events, and any dysregulation of these tiny molecules can cause great disturbance in one's health. The main purpose of this study was to ascertain the diagnostic potential of miR-148a-5p and miR-21-5p in MetS. METHODS Serum levels of miR-148a-5p and miR-21-5p were quantified in 118 MetS male patients and 30 healthy controls by quantitative real-time polymerase chain reaction. Fasting plasma glucose, serum high-density lipoprotein cholesterol and serum triacylglycerol were measured by the colorimetric method. Blood pressure and anthropometric measurements were performed on each individual. All MetS patients had diabetes and had a large waist circumference, and were divided into 3 groups: group 1, dyslipidemic and hypertensive; group 2, normotensive; and group 3, normal lipid profile. RESULTS miR-148a-5p expression was significantly upregulated in all MetS patients: group 1, 70.3±8.07 (p<0.0001); group 2, 75.0±9.17 (p<0.0001) and group 3, 33.7±6.89 (p<0.0001), when compared with control subjects. However, miR-21-5p expression was elevated only in the sera of group 1 (36.9±8.39, p<0.0001) and group 3 (48.9±12.0, p<0.0001), when compared with controls. CONCLUSIONS Serum levels of miR-148a-5p and miR-21-5p were higher in MetS patients than in healthy controls; consequently, these serum miRs can serve as novel biomarkers for diagnosis and prognosis of MetS.
Collapse
|
16
|
Chen T, Liang Q, Xu J, Zhang Y, Zhang Y, Mo L, Zhang L. MiR-665 Regulates Vascular Smooth Muscle Cell Senescence by Interacting With LncRNA GAS5/SDC1. Front Cell Dev Biol 2021; 9:700006. [PMID: 34386495 PMCID: PMC8353444 DOI: 10.3389/fcell.2021.700006] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 06/22/2021] [Indexed: 12/13/2022] Open
Abstract
Background: Vascular aging is considered a special risk factor for cardiovascular diseases, and vascular smooth muscle cells (VSMCs) play a major role in aging-related vascular remodeling and in the pathological process of atherosclerosis. Recent research has reported that long non-coding RNA/microRNA (lncRNA/miRNA) is a critical regulator of cellular senescence. However, the role and mechanism of lncRNA GAS5/miR-665 axis in VSMC senescence remain incompletely understood. Methods: Cellular senescence was evaluated using senescence-associated β-gal activity, the NAD+/NADH ratio, and by immunofluorescence staining of γH2AX immunofluorescence. Differentially expressed miRNAs (DEMs) were identified by miRNA microarray assays and subsequently validated by quantitative real-time PCR (qRT-PCR). A dual luciferase reporter assay was conducted to confirm the binding of lncRNA GAS5 and miR-665 as well as miR-665 and syndecan 1 (SDC1). Serum levels of miR-665, lncRNA GAS5, and SDC1 in 93 subjects were detected by qRT-PCR. The participants were subdivided into control, aging, and early vascular aging (EVA) groups, and their brachial-ankle pulse wave velocity (baPWV) was measured. Results: A total of 20 overlapping DEMs were identified in young and old VSMCs via microarray analysis. MiR-665 showed a significant alteration and, therefore, was selected for further analysis. Upregulation of miR-665 was found in aging VSMCs, and downregulation of miR-665 caused an inhibition of VSMCs senescence. Subsequently, the dual luciferase reporter assay determined the binding site of miR-665 with the 3'-UTR of lncRNA GAS5 and SDC1. Increased expression of lncRNA GAS5 expression inhibited the miR-665 level and VSMC senescence. However, as shown in rescue experiment results, either miR-665 overexpression or SDC1 knockdown significantly reversed the effects of lncRNA GAS5 on VSMC senescence. Finally, compared with that of the control group, miR-665 was highly expressed in serum samples in the aging and EVA groups, especially in the EVA groups. On the contrary, serum levels of lncRNA GAS5 and SDC1 were lower in these two groups. Collectively, in the aging and EVA groups, miR-665 expression was negatively correlated with lncRNA GAS5 and SDC1 expression. Conclusion: miR-665 inhibition functions as a vital modulator of VSMC senescence by negatively regulating SDC1, which is achieved by lncRNA GAS5 that sponges miR-665. Our findings may provide a new treatment strategy for aging-related cardiovascular diseases.
Collapse
Affiliation(s)
- Tianbin Chen
- Functional Experiment Center, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Qingyang Liang
- Department of Cardiology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Jialin Xu
- Department of Cardiology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Yanan Zhang
- Key Laboratory of Animal Virology of Ministry of Agriculture, Center for Veterinary Sciences, Zhejiang University, Hangzhou, China
| | - Yi Zhang
- Department of Cardiology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Liping Mo
- Department of Cardiology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Li Zhang
- Department of Cardiology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
- *Correspondence: Li Zhang
| |
Collapse
|