1
|
Wang X, Niu X, Sha W, Feng X, Yu L, Zhang Z, Wang W, Yuan Z. An oxidation responsive nano-radiosensitizer increases radiotherapy efficacy by remolding tumor vasculature. Biomater Sci 2021; 9:6308-6324. [PMID: 34519724 DOI: 10.1039/d1bm00834j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
As an excellent candidate material for nano-sensitizers, gold nanostructures have shown great potential in radiotherapy. Nevertheless, severe hypoxia and low accumulation of nanomedicine caused by poor perfusion at the tumor site have significantly reduced radiotherapy efficacy. Vascular normalization has gained attention owing to its ability to relieve hypoxia and increase perfusion. The synergistic therapy of tumor vascular normalization and radiotherapy has become a new option to increase anti-cancer efficacy. However, the commonly used strategy of suppressing a single growth factor to induce vascular normalization is limited by tumor compensatory effects. In this work, we developed a strategy to inhibit oxidative stress in tumors by generating chelating agents in response to hydrogen peroxide, thereby inhibiting multi-angiogenic factors simultaneously to normalize blood vessels. Concretely, sodium alginate (SA) reacted with 8-quinoline boric acid (QBA) to form SA-QBA. Then gold nanoparticles (Au NPs) were modified with SA-QBA to obtain Au@SA-QBA. The system was simple in structure and could generate 8HQ in response to H2O2in vitro to inhibit oxidative stress and reduce the expression of VEGF, bFGF, and Ang-2. In vivo, the perfusion unit (PU) increased by 78% after Au@SA-QBA treatment, and the coverage of pericytes increased by 32%, which in turn induced vascular normalization. In addition, blood routine and blood biochemical tests confirmed its good biocompatibility and 8HQ was not detected in the supernatant after homogenization of major organs. More importantly, after the synergistic treatment of vascular normalization and radiotherapy (4 Gy), the tumor growth inhibition rate was increased by 38.6% compared to the Au@SA-treated group with negligible side effects to normal tissues.
Collapse
Affiliation(s)
- Xiaohui Wang
- Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Xiaoyan Niu
- Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Weizhou Sha
- Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Xiaoyue Feng
- Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Licheng Yu
- Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Zhenjie Zhang
- Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Wei Wang
- Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Zhi Yuan
- Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| |
Collapse
|
2
|
Kim HJ, Choi EW, Choi EJ, Kim HS, Kim J, Cho G, Kim H, Na S, Shin JH, Do SH, Park BJ. Non-thermal plasma promotes hair growth by improving the inter-follicular macroenvironment. RSC Adv 2021; 11:27880-27896. [PMID: 35480732 PMCID: PMC9037796 DOI: 10.1039/d1ra04625j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 08/11/2021] [Indexed: 12/13/2022] Open
Abstract
Non-thermal plasma (NTP) is widely used in the disinfection and surface modification of biomaterials. NTP treatment can regenerate and improve skin function; however, its effectiveness on hair follicle (HF) growth and its underlying mechanisms need to be elucidated. Herein, we propose an air-based NTP treatment, which generates exogenous nitric oxide (eNO), as a therapeutic strategy for hair growth. The topical application of air-based NTP generates large amounts of eNO, which can be directly detected using a microelectrode NO sensor, in the dermis of mouse dorsal skin. Additionally, NTP-induced eNO has no cytotoxicity in normal human skin cells and promotes hair growth by increasing capillary tube formation, cellular proliferation, and hair/angiogenesis-related protein expression. Furthermore, NTP treatment promotes hair growth with adipogenesis and activation of CD34+CD44+ stem cells and improves the inter-follicular macroenvironment via increased perifollicular vascularity in the mouse hair regrowth model. Given the importance of the hair follicle (HF) cycle ratio (growth vs. regression vs. resting) in diagnosing alopecia, NTP treatment upregulates the stem cell activity of the HF to promote the anagen : catagen : telogen ratio, leading to improved hair growth. We confirmed the upregulation of increasing Wnt/β-catenin signaling and activation of perifollicular adipose tissue and angiogenesis in HF regeneration. In conclusion, these results show that the eNO from NTP enhances the cellular activities of human skin cells and endothelial cells in vitro and stem cells in vivo, thereby increasing angiogenesis, adipogenesis, and hair growth in the skin dermis. Furthermore, the results of this study suggest that NTP treatment may be a highly efficient alternative in regenerative medicine for achieving enhanced hair growth. Non-thermal plasma (NTP) is widely used in the disinfection and surface modification of biomaterials.![]()
Collapse
Affiliation(s)
- Han-Jun Kim
- Department of Clinical Pathology, College of Veterinary Medicine, Konkuk University Seoul 05029 Republic of Korea +82 2 450 3706.,Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences, University of California - Los Angeles Los Angeles CA 90095 USA.,Terasaki Institute for Biomedical Innovation Los Angeles CA 90024 USA
| | - Eun-Wook Choi
- R&D Center, Prostemics Co., Ltd Seoul 04778 Republic of Korea
| | - Eun-Ji Choi
- Department of Clinical Pathology, College of Veterinary Medicine, Konkuk University Seoul 05029 Republic of Korea +82 2 450 3706
| | - Hyo-Sung Kim
- Department of Clinical Pathology, College of Veterinary Medicine, Konkuk University Seoul 05029 Republic of Korea +82 2 450 3706
| | - Junggil Kim
- Department of Electrical Biological Physics, Kwangwoon University Seoul 01897 Republic of Korea +82 2 940 8629
| | - Guangsup Cho
- Department of Electrical Biological Physics, Kwangwoon University Seoul 01897 Republic of Korea +82 2 940 8629
| | - Heesu Kim
- Department of Chemistry, Kwangwoon University Seoul 01897 Republic of Korea
| | - Seulgi Na
- Department of Chemistry, Kwangwoon University Seoul 01897 Republic of Korea
| | - Jae Ho Shin
- Department of Chemistry, Kwangwoon University Seoul 01897 Republic of Korea
| | - Sun Hee Do
- Department of Clinical Pathology, College of Veterinary Medicine, Konkuk University Seoul 05029 Republic of Korea +82 2 450 3706
| | - Bong Joo Park
- Department of Electrical Biological Physics, Kwangwoon University Seoul 01897 Republic of Korea +82 2 940 8629.,Institute of Biomaterials, Kwangwoon University Seoul 01897 Republic of Korea
| |
Collapse
|
3
|
Kubo Y, Drescher W, Fragoulis A, Tohidnezhad M, Jahr H, Gatz M, Driessen A, Eschweiler J, Tingart M, Wruck CJ, Pufe T. Adverse Effects of Oxidative Stress on Bone and Vasculature in Corticosteroid-Associated Osteonecrosis: Potential Role of Nuclear Factor Erythroid 2-Related Factor 2 in Cytoprotection. Antioxid Redox Signal 2021; 35:357-376. [PMID: 33678001 DOI: 10.1089/ars.2020.8163] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Significance: Osteonecrosis (ON) is characterized by bone tissue death due to disturbance of the nutrient artery. The detailed process leading to the necrotic changes has not been fully elucidated. Clinically, high-dose corticosteroid therapy is one of the main culprits behind osteonecrosis of the femoral head (ONFH). Recent Advances: Numerous studies have proposed that such ischemia concerns various intravascular mechanisms. Of all reported risk factors, the involvement of oxidative stress in the irreversible damage suffered by bone-related and vascular endothelial cells during ischemia simply cannot be overlooked. Several articles also have sought to elucidate oxidative stress in relation to ON using animal models or in vitro cell cultures. Critical Issues: However, as far as we know, antioxidant monotherapy has still not succeeded in preventing ONFH in humans. To provide this desideratum, we herein summarize the current knowledge about the influence of oxidative stress on ON, together with data about the preventive effects of administering antioxidants in corticosteroid-induced ON animal models. Moreover, oxidative stress is counteracted by nuclear factor erythroid 2-related factor 2 (Nrf2)-dependent cytoprotective network through regulating antioxidant expressions. Therefore, we also describe Nrf2 regulation and highlight its role in the pathology of ON. Future Directions: This is a review of all available literature to date aimed at developing a deeper understanding of the pathological mechanism behind ON from the perspective of oxidative stress. It may be hoped that this synthesis will spark the development of a prophylactic strategy to benefit corticosteroid-associated ONFH patients. Antioxid. Redox Signal. 35, 357-376.
Collapse
Affiliation(s)
- Yusuke Kubo
- Department of Anatomy and Cell Biology, RWTH Aachen University, Aachen, Germany
| | - Wolf Drescher
- Department of Orthopaedic Surgery, RWTH Aachen University, Aachen, Germany.,Department of Orthopaedics and Traumatology, Rummelsberg Hospital, Schwarzenbruck, Germany
| | | | | | - Holger Jahr
- Department of Anatomy and Cell Biology, RWTH Aachen University, Aachen, Germany
| | - Matthias Gatz
- Department of Orthopaedic Surgery, RWTH Aachen University, Aachen, Germany
| | - Arne Driessen
- Department of Orthopaedic Surgery, RWTH Aachen University, Aachen, Germany
| | - Jörg Eschweiler
- Department of Orthopaedic Surgery, RWTH Aachen University, Aachen, Germany
| | - Markus Tingart
- Department of Orthopaedic Surgery, RWTH Aachen University, Aachen, Germany
| | - Christoph Jan Wruck
- Department of Anatomy and Cell Biology, RWTH Aachen University, Aachen, Germany
| | - Thomas Pufe
- Department of Anatomy and Cell Biology, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
4
|
Tsai TH, Chen YJ, Wang LY, Hsieh CH. Impact of Local Liver Irradiation Concurrent Versus Sequential with Lenvatinib on Pharmacokinetics and Biodistribution. Cancers (Basel) 2021; 13:cancers13071598. [PMID: 33808407 PMCID: PMC8037784 DOI: 10.3390/cancers13071598] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/19/2021] [Accepted: 03/25/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Lenvatinib is a systemic treatment for patients with advanced hepatocellular carcinoma (HCC). Stereotactic body radiation therapy (SBRT) is an advanced technique of hypofractionated external beam radiotherapy (EBRT) that can be applied in patients with HCC. The current study showed that the area under the concentration–time curve of lenvatinib concentration (AUClenvatinib) increased by 148.8% with radiotherapy (RT)2Gy×3f’x (EBRT for the whole liver), and 68.9% with RT9Gy×3f’× (SBRT targeting a 1.5 × 1.5 cm region in the center of the liver) in the sequential regimen compared to the concurrent regimen in rats. Additionally, the AUClenvatinib was decreased by 50% in the concurrent regimen of both RT techniques with lenvatinib compared to the control group. The biodistribution of lenvatinib in the organs at risk was markedly decreased in the concurrent regimens. The radiation–drug interactions were between lenvatinib and RT, and showed sequential preferably. Abstract Concurrent and sequential regimens involving radiotherapy (RT) and lenvatinib were designed with off-target or stereotactic body radiation therapy (SBRT) doses in a freely moving rat model to evaluate the effect of RT on the pharmacokinetics (PK) of lenvatinib. Liver RT concurrent with lenvatinib decreased the area under the concentration–time curve of lenvatinib concentration (AUClenvatinib) by 51.1% with three fractions of 2 Gy (RT2Gy×3f’x, p = 0.03), and 48.9% with RT9Gy×3f’x (p = 0.03). The AUClenvatinib increased by 148.8% (p = 0.008) with RT2Gy×3f’x, and 68.9% (p = 0.009) with RT9Gy×3f’x in the sequential regimen compared to the concurrent regimen. There were no differences in the AUClenvatinib between RT2Gy×3f’x and RT9Gy×3f’x in the concurrent or sequential regimen. Both the RT2Gy×3f’x and RT9Gy×3f’x concurrent regimens markedly decreased the biodistribution of lenvatinib in the heart, liver, lung, spleen, and kidneys, which ranged from 31% to 100% for RT2Gy×3f’x, and 11% to 100% for RT9Gy×3f’x, compared to the sham regimen. The PK and biodistribution of lenvatinib can be modulated by simultaneous off-target irradiation and SBRT doses. The timing of lenvatinib administration with respect to RT, impacted the PK and biodistribution of the drug. Additionally, off-target and SBRT doses had a similar ability to modulate the effect of systemic therapy.
Collapse
Affiliation(s)
- Tung-Hu Tsai
- Institute of Traditional Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (T.-H.T.); (Y.-J.C.)
| | - Yu-Jen Chen
- Institute of Traditional Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (T.-H.T.); (Y.-J.C.)
- Departments of Radiation Oncology, Mackay Memorial Hospital, Taipei 104, Taiwan
- Department of Medical Research, China Medical University Hospital, Taichung 404, Taiwan
- Department of Nursing, MacKay Junior College of Medicine, Nursing and Management, Taipei 112, Taiwan
| | - Li-Ying Wang
- School and Graduate Institute of Physical Therapy, College of Medicine, National Taiwan University, Taipei 100, Taiwan;
- Physical Therapy Center, National Taiwan University Hospital, Taipei 100, Taiwan
| | - Chen-Hsi Hsieh
- Institute of Traditional Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (T.-H.T.); (Y.-J.C.)
- Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Division of Radiation Oncology, Department of Radiology, Far Eastern Memorial Hospital, New Taipei City 220, Taiwan
- Correspondence: or or ; Tel.: +886-2-8966-7000 (ext. 1033); Fax: +886-2-8966-0906
| |
Collapse
|
5
|
Effect of Synchronous Versus Sequential Regimens on the Pharmacokinetics and Biodistribution of Regorafenib with Irradiation. Pharmaceutics 2021; 13:pharmaceutics13030386. [PMID: 33805831 PMCID: PMC8035703 DOI: 10.3390/pharmaceutics13030386] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/10/2021] [Accepted: 03/11/2021] [Indexed: 02/07/2023] Open
Abstract
This study was performed to evaluate the interaction between conventional or high-dose radiotherapy (RT) and the pharmacokinetics (PK) of regorafenib in concurrent or sequential regimens for the treatment of hepatocellular carcinoma. Concurrent and sequential in vitro and in vivo studies of irradiation and regorafenib were designed. The interactions of RT and regorafenib in vitro were examined in the human hepatoma Huh-7, HA22T and Hep G2 cell lines. The RT–PK phenomenon and biodistribution of regorafenib under RT were confirmed in a free-moving rat model. Regorafenib inhibited the viability of Huh-7 cells in a dose-dependent manner. Apoptosis in Huh-7 cells was enhanced by RT followed by regorafenib treatment. In the concurrent regimen, RT decreased the area under the concentration versus time curve (AUC)regorafenib by 74% (p = 0.001) in the RT2 Gy × 3 fraction (f’x) group and by 69% (p = 0.001) in the RT9 Gy × 3 f’x group. The AUCregorafenib was increased by 182.8% (p = 0.011) in the sequential RT2Gy × 1 f’x group and by 213.2% (p = 0.016) in the sequential RT9Gy × 1 f’x group. Both concurrent regimens, RT2Gy × 3 f’x and RT9Gy × 3 f’x, clearly decreased the biodistribution of regorafenib in the heart, liver, lung, spleen and kidneys, compared to the control (regorafenib × 3 d) group. The concurrent regimens, both RT2Gy × 3 f’x and RT9Gy × 3 f’x, significantly decreased the biodistribution of regorafenib, compared with the control group. The PK of regorafenib can be modulated both by off-target irradiation and stereotactic body radiation therapy (SBRT).
Collapse
|
6
|
Wang X, Niu X, Zhang X, Zhang Z, Gao X, Wang W, Yuan Z. Construction of an AuHQ nano-sensitizer for enhanced radiotherapy efficacy through remolding tumor vasculature. J Mater Chem B 2021; 9:4365-4379. [PMID: 34013945 DOI: 10.1039/d1tb00515d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
As a radiotherapy sensitizer, gold-based nanomaterials can significantly enhance radiotherapy efficacy. However, the severe hypoxia and the low accumulation of nanomedicine at the tumor site caused by poor perfusion have seriously affected the effect of radiotherapy. Tumor vascular normalization has emerged as a new strategy for increasing the efficacy of radiotherapy due to its ability to relieve hypoxia and increase perfusion. However, a commonly used approach of blocking a single growth factor to induce vascular normalization is limited by the compensation effect of evasive drug resistance. In this work, we developed a strategy to simultaneously reduce the expression of multi-angiogenic growth factors by suppressing the oxidative stress effects in tumor. Herein, gold nanoparticles (Au NPs) were modified with 8-hydroxyquinoline (HQ) to obtain AuHQ. This system has a simple structure and could inhibit the production of reactive oxygen species in tumor cells by chelating iron ions, and attenuating the expression of angiopoietin-2, vascular endothelial growth factor and basic fibroblast growth factor in human umbilical vein endothelial cells. In vivo, AuHQ treatment increased pericyte coverage, modulated tumor leakage while alleviating tumor hypoxia and increased blood perfusion, thereby inducing tumor vascular normalization. Consequently, Au accumulation of the AuHQ group increased by 1.94 fold compared to that in the control group. Furthermore, the antitumor efficacy of radiotherapy was increased by 38% compared to the Au NPs-treated group. Therefore, AuHQ may be a promising nanomedicine for future cancer treatment.
Collapse
Affiliation(s)
- Xiaohui Wang
- Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Xiaoyan Niu
- Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Xiaolei Zhang
- Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Zhenjie Zhang
- Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Xuefeng Gao
- Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Wei Wang
- Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Zhi Yuan
- Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| |
Collapse
|
7
|
KSHV-induced ligand mediated activation of PDGF receptor-alpha drives Kaposi's sarcomagenesis. PLoS Pathog 2018; 14:e1007175. [PMID: 29985958 PMCID: PMC6053240 DOI: 10.1371/journal.ppat.1007175] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 07/19/2018] [Accepted: 06/22/2018] [Indexed: 12/20/2022] Open
Abstract
Kaposi’s sarcoma (KS) herpesvirus (KSHV) causes KS, an angiogenic AIDS-associated spindle-cell neoplasm, by activating host oncogenic signaling cascades through autocrine and paracrine mechanisms. Tyrosine kinase receptor (RTK) proteomic arrays, identified PDGF receptor-alpha (PDGFRA) as the predominantly-activated RTK in KSHV-induced mouse KS-tumors. We show that: 1) KSHV lytic replication and the vGPCR can activate PDGFRA through upregulation of its ligands PDGFA/B, which increase c-myc, VEGF and KSHV gene expression in infected cells 2) KSHV infected spindle cells of most AIDS-KS lesions display robust phospho-PDGFRA staining 3) blocking PDGFRA-signaling with N-acetyl-cysteine, RTK-inhibitors Imatinib and Sunitinib, or dominant-negative PDGFRA inhibits tumorigenesis 4) PDGFRA D842V activating-mutation confers resistance to Imatinib in mouse-KS tumorigenesis. Our data show that KSHV usurps sarcomagenic PDGFRA signaling to drive KS. This and the fact that PDGFRA drives non-viral sarcomas highlights the importance for KSHV-induced ligand-mediated activation of PDGFRA in KS sarcomagenesis and shows that this oncogenic axis could be successfully blocked to impede KS tumor growth. Signaling mimicry is a key mechanism whereby oncoviruses can usurp host-regulatory pathways leading to acquisition of tissue-specific cancer hallmarks. A critical question in the KS field is the identification of this host pathways activated by KSHV that could provide novel insights on KSHV-pathobiology, elucidating new druggable pathways. Here we show that KSHV lytic replication as well as the KSHV-oncogene vGPCR activates PDGFRA signaling through upregulation of its ligands PDGFA/B, and that blocking of PDGFRA signaling is anti-tumorigenic. This indicates that approaches that fully and stably inhibit PDGFR-signaling could lead to successful treatments for KS, validating this receptor-ligand signaling-axis as a therapeutic target.
Collapse
|
8
|
Osumi K, Matsuda S, Fujimura N, Matsubara K, Kitago M, Itano O, Ogino C, Shimizu N, Obara H, Kitagawa Y. Acceleration of wound healing by ultrasound activation of TiO2
in Escherichia coli
-infected wounds in mice. J Biomed Mater Res B Appl Biomater 2016; 105:2344-2351. [DOI: 10.1002/jbm.b.33774] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 07/22/2016] [Accepted: 08/01/2016] [Indexed: 01/13/2023]
Affiliation(s)
- Koji Osumi
- Department of Surgery; Tokyo Medical Center; Tokyo Japan
| | - Sachiko Matsuda
- Department of Surgery; Keio University School of Medicine; Tokyo Japan
| | - Naoki Fujimura
- Department of Surgery; Keio University School of Medicine; Tokyo Japan
| | - Kentaro Matsubara
- Department of Surgery; Keio University School of Medicine; Tokyo Japan
| | - Minoru Kitago
- Department of Surgery; Keio University School of Medicine; Tokyo Japan
| | - Osamu Itano
- Department of Surgery; Keio University School of Medicine; Tokyo Japan
| | - Chiaki Ogino
- Department of Chemical Science and Engineering, Graduate School of Engineering; Kobe University; Kobe Japan
| | - Nobuaki Shimizu
- Institute of Nature and Environmental Technology, Kanazawa University; Kanazawa Japan
| | - Hideaki Obara
- Department of Surgery; Keio University School of Medicine; Tokyo Japan
| | - Yuko Kitagawa
- Department of Surgery; Keio University School of Medicine; Tokyo Japan
| |
Collapse
|
9
|
Huang W, Li Y, Lin Y, Ye X, Zang D. Effects of leukemia inhibitory factor and basic fibroblast growth factor on free radicals and endogenous stem cell proliferation in a mouse model of cerebral infarction. Neural Regen Res 2015; 7:1469-74. [PMID: 25657681 PMCID: PMC4308777 DOI: 10.3969/j.issn.1673-5374.2012.19.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Accepted: 04/23/2012] [Indexed: 11/24/2022] Open
Abstract
The present study established a mouse model of cerebral infarction by middle cerebral artery occlusion, and monitored the effect of 25 μg/kg leukemia inhibitory factor and (or) basic fibroblast growth factor administration 2 hours after model establishment. Results showed that following administration, the number of endogenous neural stem cells in the infarct area significantly increased, malondialdehyde content in brain tissue homogenates significantly decreased, nitric oxide content, glutathione peroxidase and superoxide dismutase activity significantly elevated, and mouse motor function significantly improved as confirmed by the rotarod and bar grab tests. In particular, the effect of leukemia inhibitory factor in combination with basic fibroblast growth factor was the most significant. Results indicate that leukemia inhibitory factor and basic fibroblast growth factor can improve the microenvironment after cerebral infarction by altering free radical levels, improving the quantity of endogenous neural stem cells, and promoting neurological function of mice with cerebral infarction.
Collapse
Affiliation(s)
- Weihui Huang
- Department of Neurology, Tianjin First Center Hospital, Tianjin Medical University, Tianjin 300192, China
| | - Yadan Li
- Department of Neurology, Tianjin First Center Hospital, Tianjin Medical University, Tianjin 300192, China
| | - Yufeng Lin
- Department of Neurology, Tianjin First Center Hospital, Tianjin Medical University, Tianjin 300192, China
| | - Xue Ye
- Department of Neurology, Tianjin First Center Hospital, Tianjin Medical University, Tianjin 300192, China
| | - Dawei Zang
- Department of Neurology, Tianjin First Center Hospital, Tianjin Medical University, Tianjin 300192, China
| |
Collapse
|
10
|
Roy Chowdhury S, Sengupta S, Biswas S, Sinha TK, Sen R, Basak RK, Adhikari B, Bhattacharyya A. Bacterial fucose-rich polysaccharide stabilizes MAPK-mediated Nrf2/Keap1 signaling by directly scavenging reactive oxygen species during hydrogen peroxide-induced apoptosis of human lung fibroblast cells. Methods Enzymol 2014; 528:27-48. [PMID: 25412177 DOI: 10.1016/b978-0-12-405881-1.00002-1] [Citation(s) in RCA: 334] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Continuous free radical assault upsets cellular homeostasis and dysregulates associated signaling pathways to promote stress-induced cell death. In spite of the continuous development and implementation of effective therapeutic strategies, limitations in treatments for stress-induced toxicities remain. The purpose of the present study was to determine the potential therapeutic efficacy of bacterial fucose polysaccharides against hydrogen peroxide (H2O2)-induced stress in human lung fibroblast (WI38) cells and to understand the associated molecular mechanisms. In two different fermentation processes, Bacillus megaterium RB-05 biosynthesized two non-identical fucose polysaccharides; of these, the polysaccharide having a high-fucose content (∼ 42%) conferred the maximum free radical scavenging efficiency in vitro. Structural characterizations of the purified polysaccharides were performed using HPLC, GC-MS, and (1)H/(13)C/2D-COSY NMR. H2O2 (300 µM) insult to WI38 cells showed anti-proliferative effects by inducing intracellular reactive oxygen species (ROS) and by disrupting mitochondrial membrane permeability, followed by apoptosis. The polysaccharide (250 µg/mL) attenuated the cell death process by directly scavenging intracellular ROS rather than activating endogenous antioxidant enzymes. This process encompasses inhibition of caspase-9/3/7, a decrease in the ratio of Bax/Bcl2, relocalization of translocated Bax and cytochrome c, upregulation of anti-apoptotic members of the Bcl2 family and a decrease in the phosphorylation of MAPKs (mitogen activated protein kinases). Furthermore, cellular homeostasis was re-established via stabilization of MAPK-mediated Nrf2/Keap1 signaling and transcription of downstream cytoprotective genes. This molecular study uniquely introduces a fucose-rich bacterial polysaccharide as a potential inhibitor of H2O2-induced stress and toxicities.
Collapse
Affiliation(s)
- Sougata Roy Chowdhury
- Materials Science Centre, Indian Institute of Technology Kharagpur, West Bengal, India; Immunology lab, Department of Zoology, University of Calcutta, West Bengal, India
| | - Suman Sengupta
- Immunology lab, Department of Zoology, University of Calcutta, West Bengal, India
| | - Subir Biswas
- Immunology lab, Department of Zoology, University of Calcutta, West Bengal, India
| | - Tridib Kumar Sinha
- Materials Science Centre, Indian Institute of Technology Kharagpur, West Bengal, India
| | - Ramkrishna Sen
- Department of Biotechnology, Indian Institute of Technology Kharagpur, West Bengal, India
| | - Ratan Kumar Basak
- Materials Science Centre, Indian Institute of Technology Kharagpur, West Bengal, India
| | - Basudam Adhikari
- Materials Science Centre, Indian Institute of Technology Kharagpur, West Bengal, India
| | | |
Collapse
|
11
|
Soner BC, Sahin AS. Cardiovascular effects of resveratrol and atorvastatin treatments in an H 2O 2-induced stress model. Exp Ther Med 2014; 8:1660-1664. [PMID: 25289077 PMCID: PMC4186369 DOI: 10.3892/etm.2014.1956] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Accepted: 09/01/2014] [Indexed: 11/25/2022] Open
Abstract
Oxidative stress has been implicated in the pathophysiology of several types of cardiovascular disease (CVD). Statins are widely used to inhibit the progression of atherosclerosis and reduce the incidence of CVD. Certain over-the-counter products, including resveratrol, show similar effects to statins and may thus be used in conjunction with statins for the treatment of the majority of patients with CVD. The aim of the present study was to evaluate the effects of atorvastatin, resveratrol and resveratrol + atorvastatin (R+A) pretreatment on myocardial contractions and vascular endothelial functions in the presence of H2O2 as an experimental model of oxidative stress in rats. Four groups were established and referred to as the control, atorvastatin, resveratrol and R+A groups. Atorvastatin (40 mg/kg, per oral) and/or resveratrol (30 mg/kg, intraperitoneal) treatments were administered for 14 days. On the 15th day, the thoracic aortas and hearts of the rats were dissected and placed into isolated organ baths. Vascular responses to cumulative doses of H2O2 (1×10−8–1×10−4 M H2O2) with and without N (G)-nitro-L-arginine methyl ester (L-NAME) incubation were measured. In addition, myocardial electrical stimulation (ES) responses to various H2O2 concentrations (1×10−7–1×10−5 M H2O2) were evaluated. In the control and atorvastatin groups, H2O2 application caused a significant dose-dependent decrease in the ES-induced contractions in the myocardial tissue of rats. In the resveratrol and R+A groups, H2O2 application did not significantly affect myocardial contraction at any dose. In all groups, incubation with L-NAME caused a significant augmentation in the H2O2 response, revealing that this effect was mediated via the vascular endothelium. In conclusion, pretreatment with R+A for CVD appears to be superior to pretreatment with either agent alone.
Collapse
Affiliation(s)
- Burak Cem Soner
- Department of Medical Pharmacology, Meram Medical Faculty, Necmettin Erbakan University, Konya 42080, Turkey
| | - Ayşe Saide Sahin
- Department of Medical Pharmacology, Meram Medical Faculty, Necmettin Erbakan University, Konya 42080, Turkey
| |
Collapse
|
12
|
Anguria P, Kitinya J, Ntuli S, Carmichael T. The role of heredity in pterygium development. Int J Ophthalmol 2014; 7:563-73. [PMID: 24967209 DOI: 10.3980/j.issn.2222-3959.2014.03.31] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 03/01/2014] [Indexed: 11/02/2022] Open
Abstract
Several risk factors, which include heredity, ultra-violet (UV) light and chronic inflammation, contribute to pterygium development. However, there is no report integrating these factors in the pathogenesis of pterygium. The aim of this review is to describe the connection between heredity, UV, and inflammation in pterygium development. Existing reports indicate that sunlight exposure is the main factor in pterygium occurrence by inducing growth factor production or chronic inflammation or DNA damage. Heredity may be a factor. Our studies on factors in pterygium occurrence and recurrence identify that heredity is crucial for pterygium to develop, and that sunlight is only a trigger, and that chronic inflammation promotes pterygium enlargement. We propose that genetic factors may interfere with the control of fibrovascular proliferation while UV light or (sunlight) most likely only triggers pterygium development by inducing growth factors which promote vibrant fibrovascular proliferation in predisposed individuals. It also just triggers inflammation and collagenolysis, which may be promoters of the enlargement of the fibrovascular mass. Pterygium probably occurs in the presence of exuberant collagen production and profuse neovascularisation.
Collapse
Affiliation(s)
- Peter Anguria
- Department of Neurosciences, Division of Ophthalmology, University of the Witwatersrand Johannesburg, 7 York Road, Park Town 2193, South Africa
| | - James Kitinya
- Department of Anatomic Pathology, University of Limpopo Polokwane Campus, Private Bag X9316 Polokwane 0700, South Africa
| | - Sam Ntuli
- Department of Public Health Medicine, University of Limpopo Polokwane Campus, Private Bag X9316 Polokwane 0700, South Africa
| | - Trevor Carmichael
- Department of Neurosciences, Division of Ophthalmology, University of the Witwatersrand Johannesburg, 7 York Road, Park Town 2193, South Africa
| |
Collapse
|
13
|
Rodiño-Janeiro BK, Paradela-Dobarro B, Castiñeiras-Landeira MI, Raposeiras-Roubín S, González-Juanatey JR, Álvarez E. Current status of NADPH oxidase research in cardiovascular pharmacology. Vasc Health Risk Manag 2013; 9:401-28. [PMID: 23983473 PMCID: PMC3750863 DOI: 10.2147/vhrm.s33053] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The implications of reactive oxygen species in cardiovascular disease have been known for some decades. Rationally, therapeutic antioxidant strategies combating oxidative stress have been developed, but the results of clinical trials have not been as good as expected. Therefore, to move forward in the design of new therapeutic strategies for cardiovascular disease based on prevention of production of reactive oxygen species, steps must be taken on two fronts, ie, comprehension of reduction-oxidation signaling pathways and the pathophysiologic roles of reactive oxygen species, and development of new, less toxic, and more selective nicotinamide adenine dinucleotide phosphate (NADPH) oxidase inhibitors, to clarify both the role of each NADPH oxidase isoform and their utility in clinical practice. In this review, we analyze the value of NADPH oxidase as a therapeutic target for cardiovascular disease and the old and new pharmacologic agents or strategies to prevent NADPH oxidase activity. Some inhibitors and different direct or indirect approaches are available. Regarding direct NADPH oxidase inhibition, the specificity of NADPH oxidase is the focus of current investigations, whereas the chemical structure-activity relationship studies of known inhibitors have provided pharmacophore models with which to search for new molecules. From a general point of view, small-molecule inhibitors are preferred because of their hydrosolubility and oral bioavailability. However, other possibilities are not closed, with peptide inhibitors or monoclonal antibodies against NADPH oxidase isoforms continuing to be under investigation as well as the ongoing search for naturally occurring compounds. Likewise, some different approaches include inhibition of assembly of the NADPH oxidase complex, subcellular translocation, post-transductional modifications, calcium entry/release, electron transfer, and genetic expression. High-throughput screens for any of these activities could provide new inhibitors. All this knowledge and the research presently underway will likely result in development of new drugs for inhibition of NADPH oxidase and application of therapeutic approaches based on their action, for the treatment of cardiovascular disease in the next few years.
Collapse
Affiliation(s)
- Bruno K Rodiño-Janeiro
- Health Research Institute of Santiago de Compostela, Santiago de Compostela,
Spain
- European Molecular Biology Laboratory, Grenoble, France
| | | | | | - Sergio Raposeiras-Roubín
- Health Research Institute of Santiago de Compostela, Santiago de Compostela,
Spain
- Cardiology Department, University Clinic Hospital of Santiago de Compostela,
Santiago de Compostela, Spain
| | - José R González-Juanatey
- Health Research Institute of Santiago de Compostela, Santiago de Compostela,
Spain
- Cardiology Department, University Clinic Hospital of Santiago de Compostela,
Santiago de Compostela, Spain
- Medicine Department, University of Santiago de Compostela, Santiago de Compostela,
Spain
| | - Ezequiel Álvarez
- Health Research Institute of Santiago de Compostela, Santiago de Compostela,
Spain
- Medicine Department, University of Santiago de Compostela, Santiago de Compostela,
Spain
| |
Collapse
|
14
|
Bolisetty S, Jaimes EA. Mitochondria and reactive oxygen species: physiology and pathophysiology. Int J Mol Sci 2013; 14:6306-44. [PMID: 23528859 PMCID: PMC3634422 DOI: 10.3390/ijms14036306] [Citation(s) in RCA: 176] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 03/08/2013] [Accepted: 03/11/2013] [Indexed: 02/06/2023] Open
Abstract
The air that we breathe contains nearly 21% oxygen, most of which is utilized by mitochondria during respiration. While we cannot live without it, it was perceived as a bane to aerobic organisms due to the generation of reactive oxygen and nitrogen metabolites by mitochondria and other cellular compartments. However, this dogma was challenged when these species were demonstrated to modulate cellular responses through altering signaling pathways. In fact, since this discovery of a dichotomous role of reactive species in immune function and signal transduction, research in this field grew at an exponential pace and the pursuit for mechanisms involved began. Due to a significant number of review articles present on the reactive species mediated cell death, we have focused on emerging novel pathways such as autophagy, signaling and maintenance of the mitochondrial network. Despite its role in several processes, increased reactive species generation has been associated with the origin and pathogenesis of a plethora of diseases. While it is tempting to speculate that anti-oxidant therapy would protect against these disorders, growing evidence suggests that this may not be true. This further supports our belief that these reactive species play a fundamental role in maintenance of cellular and tissue homeostasis.
Collapse
Affiliation(s)
- Subhashini Bolisetty
- Nephrology Division, University of Alabama at Birmingham, Birmingham, AL 35294, USA; E-Mail:
| | - Edgar A. Jaimes
- Nephrology Division, University of Alabama at Birmingham, Birmingham, AL 35294, USA; E-Mail:
- Veterans Affairs Medical Center, Birmingham, AL 35233, USA
| |
Collapse
|
15
|
|
16
|
Machalińska A, Kawa MP, Marlicz W, Machaliński B. Complement system activation and endothelial dysfunction in patients with age-related macular degeneration (AMD): possible relationship between AMD and atherosclerosis. Acta Ophthalmol 2012; 90:695-703. [PMID: 22067048 DOI: 10.1111/j.1755-3768.2011.02295.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Age-related macular degeneration (AMD) shares several pathological and epidemiological similarities with systemic atherosclerosis (AS). First, an association between AS and AMD is apparent from the analyses of the histological and biochemical structure of atherosclerotic plaques in the vascular walls and retinal drusen, the hallmark of AMD. Second, there is considerable evidence implicating endothelial dysfunction in the pathogenesis of both disorders, and cellular oxidative stress appears to be a common denominator underlying this process. Moreover, there are observations that the complement system (CS) triggering inflammatory response contributes to the onset and advancement of both diseases. The CS plays a role in the generation of drusen and neovascularization in AMD as well as in vascular endothelium activation, cell damage and ultimately atherosclerotic plaque formation in the course of systemic arteriosclerosis. It is widely recognized that both AMD and AS are not only related to local stimulation of the CS, but also result in its systemic activation. In addition, a specific Y402H polymorphism of the complement inhibitor factor H has been found to be associated with the incidence of both AMD and AS. Here, we propose a linking hypothesis between CS activation, endothelial dysfunction and the pathogenesis of two common and age-related pathological processes, AS and AMD. We also discuss the potential therapeutic value of pharmacological modulation of CS activation in these disorders.
Collapse
Affiliation(s)
- Anna Machalińska
- Department of Ophthalmology, Pomeranian Medical University, Szczecin, Poland
| | | | | | | |
Collapse
|
17
|
Zangar RC, Bollinger N, Weber TJ, Tan RM, Markillie LM, Karin NJ. Reactive oxygen species alter autocrine and paracrine signaling. Free Radic Biol Med 2011; 51:2041-7. [PMID: 21963990 PMCID: PMC3219223 DOI: 10.1016/j.freeradbiomed.2011.09.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Revised: 09/01/2011] [Accepted: 09/01/2011] [Indexed: 12/12/2022]
Abstract
Cytochrome P450 (P450) 3A4 (CYP3A4) is the most abundant P450 protein in human liver and intestine and is highly inducible by a variety of drugs and other compounds. The P450 catalytic cycle is known to uncouple and release reactive oxygen species (ROS), but the effects of ROS from P450 and other enzymes in the endoplasmic reticulum have been poorly studied from the perspective of effects on cell biology. In this study, we expressed low levels of CYP3A4 in HepG2 cells, a human hepatocarcinoma cell line, and examined effects on intracellular levels of ROS and on the secretion of a variety of growth factors that are important in extracellular communication. Using the redox-sensitive dye RedoxSensor red, we demonstrate that CYP3A4 expression increases levels of ROS in viable cells. A custom ELISA microarray platform was employed to demonstrate that expression of CYP3A4 increased secretion of amphiregulin, intracellular adhesion molecule 1, matrix metalloprotease 2, platelet-derived growth factor (PDGF), and vascular endothelial growth factor, but suppressed secretion of CD14. The antioxidant N-acetylcysteine suppressed all P450-dependent changes in protein secretion except for CD14. Quantitative RT-PCR demonstrated that changes in protein secretion were consistently associated with corresponding changes in gene expression. Inhibition of the NF-κB pathway blocked P450 effects on PDGF secretion. CYP3A4 expression also altered protein secretion in human mammary epithelial cells and C10 mouse lung cells. Overall, these results suggest that increased ROS production in the endoplasmic reticulum alters the secretion of proteins that have key roles in paracrine and autocrine signaling.
Collapse
Affiliation(s)
- Richard C Zangar
- Cell Biology and Biochemistry, Pacific Northwest National Laboratory, Richland, WA 99354, USA.
| | | | | | | | | | | |
Collapse
|
18
|
Sen S, Chen S, Feng B, Wu Y, Lui E, Chakrabarti S. American ginseng (Panax quinquefolius) prevents glucose-induced oxidative stress and associated endothelial abnormalities. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2011; 18:1110-1117. [PMID: 21840692 DOI: 10.1016/j.phymed.2011.06.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Revised: 06/16/2011] [Accepted: 06/16/2011] [Indexed: 05/31/2023]
Abstract
PURPOSE Ginseng (Araliaceae), demonstrates widespread biological effects because of its purported antioxidant and other properties. The present study was undertaken to investigate the effects of American ginseng root extract on glucose-induced oxidative stress and associated oxidative damage to human umbilical vein endothelial cells (HUVECs). METHODS Following pretreatment with various concentrations of ginseng (alcoholic extract), HUVECs were incubated with various concentrations of d-glucose ranging from 5 to 25mmol/l for 24h. l-Glucose was used at a concentration of 25mmol/l as a control. RESULTS Glucose-induced oxidative stress detected by intracellular reactive oxygen species accumulation, superoxide anion generation and DNA damage in HUVECs were significantly prevented by ginseng. Treatment of HUVECs with ginseng further led to significant prevention of glucose-induced NF-κB activation. Glucose-induced increase in fibronectin (FN), EDB(+)FN (a splice variant of FN), endothelin-1 (ET-1) and vascular endothelial growth factor (VEGF) mRNAs and protein levels were also prevented by ginseng treatment. CONCLUSION These data indicate that American ginseng prevented glucose-induced damage in the HUVECs through its antioxidant properties.
Collapse
Affiliation(s)
- Subhrojit Sen
- Dept. of Pathology, University of Western Ontario, Schulich School of Medicine and Dentistry, London, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
19
|
Arjunan KP, Friedman G, Fridman A, Clyne AM. Non-thermal dielectric barrier discharge plasma induces angiogenesis through reactive oxygen species. J R Soc Interface 2011; 9:147-57. [PMID: 21653568 DOI: 10.1098/rsif.2011.0220] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Vascularization plays a key role in processes such as wound healing and tissue engineering. Non-thermal plasma, which primarily produces reactive oxygen species (ROS), has recently emerged as an efficient tool in medical applications including blood coagulation, sterilization and malignant cell apoptosis. Liquids and porcine aortic endothelial cells were treated with a non-thermal dielectric barrier discharge plasma in vitro. Plasma treatment of phosphate-buffered saline (PBS) and serum-free medium increased ROS concentration in a dose-dependent manner, with a higher concentration observed in serum-free medium compared with PBS. Species concentration inside cells peaked 1 h after treatment, followed by a decrease 3 h post treatment. Endothelial cells treated with a plasma dose of 4.2 J cm(-2) had 1.7 times more cells than untreated samples 5 days after plasma treatment. The 4.2 J cm(-2) plasma dose increased two-dimensional migration distance by 40 per cent compared with untreated control, while the number of cells that migrated through a three-dimensional collagen gel increased by 15 per cent. Tube formation was also enhanced by plasma treatment, with tube lengths in plasma-treated samples measuring 2.6 times longer than control samples. A fibroblast growth factor-2 (FGF-2) neutralizing antibody and ROS scavengers abrogated these angiogenic effects. These data indicate that plasma enhanced proliferation, migration and tube formation is due to FGF-2 release induced by plasma-produced ROS. Non-thermal plasma may be used as a potential tool for applying ROS in precise doses to enhance vascularization.
Collapse
Affiliation(s)
- Krishna Priya Arjunan
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA
| | | | | | | |
Collapse
|
20
|
Lavi R, Shainberg A, Shneyvays V, Hochauser E, Isaac A, Zinman T, Friedmann H, Lubart R. Detailed analysis of reactive oxygen species induced by visible light in various cell types. Lasers Surg Med 2010; 42:473-80. [PMID: 20662023 DOI: 10.1002/lsm.20919] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND AND OBJECTIVE Light in the visible and near infrared region stimulates various cellular processes, and thus has been used for therapeutic purposes. One of the proposed mechanisms is based on cellular production of reactive oxygen species (ROS) in response to illumination. In the present study, we followed visible light (VL)-induced hydroxyl radicals in various cell types and cellular sites using the electron paramagnetic resonance (EPR) spin-trapping technique. MATERIALS AND METHODS Fibroblasts, sperm cells, cardiomyocytes, and skeletal muscle cells were irradiated with broadband (400-800 nm) VL. To detect ROS, the EPR spin-trapping technique coupled with the spin-traps 5,5-dimethyl pyrroline-N-oxide (DMPO) or 5-(diethoxyphosphoryl)-5-methyl-1-pyrroline-N-oxide (DEPMPO) were used. To investigate the cellular sites of ROS formation, the cell-permeable molecule, isopropanol, or the nonpermeable proteins, bovine serum albumin (BSA) and superoxide dismutase (SOD), were introduced to the cells before irradiation. ROS production in mitochondria was measured using the fluorescent probe, MitoTracker Red (MTR). RESULTS AND CONCLUSIONS The concentration of .OH increased both with illumination time and with cell concentration, and decreased when N(2) was bubbled into the cell culture, suggesting that VL initiates a photochemical reaction via endogenous photosensitizers. VL was found to stimulate ROS generation both in membrane and cytoplasm. In addition, fluorescent measurments confirmed the mitochondria to be target for light-cell interaction. The findings support the hypothesis that ROS are generated in various cellular sites following light illumination.
Collapse
Affiliation(s)
- Ronit Lavi
- Department of Chemistry, Bar-Ilan University, Ramat-Gan 52900, Israel.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Galzerano D, Capogrosso C, Di Michele S, Galzerano A, Paparello P, Lama D, Gaudio C. New standards in hypertension and cardiovascular risk management: focus on telmisartan. Vasc Health Risk Manag 2010; 6:113-33. [PMID: 20448797 PMCID: PMC2860444 DOI: 10.2147/vhrm.s7857] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Indexed: 12/21/2022] Open
Abstract
Blockade of the renin–angiotensin system is an important approach in managing high blood pressure, and has increasingly been shown to affect cardiovascular disease processes mediated by angiotensin II throughout the cardiovascular and renal continua. Telmisartan is an angiotensin II receptor blocker (ARB) displaying unique pharmacologic properties, including a longer half life than any other ARB, that result in large and sustained reductions of blood pressure. In patients with mild-to-moderate hypertension, telmisartan has proved superior to other antihypertensive agents (valsartan, losartan, ramipril, perindopril, and atenolol) in controlling blood pressure particularly towards the end of the dosing interval. There is also clinical evidence that telmisartan reduces left ventricular hypertrophy, reduces arterial stiffness and the recurrence of atrial fibrillation, and confers renoprotection. The ONgoing Telmisartan Alone and in combination with Ramipril Global Endpoint Trial (ONTARGET®) study has demonstrated that telmisartan has similar cardiovascular protective effects to ramipril in a large, high-risk patient population but was better tolerated. The powerful and sustained blood pressure control apparent in clinical trials, together with cardiovascular protection and tolerability demonstrated in ONTARGET® means that telmisartan may be a preferred option for patients with hypertension.
Collapse
|
22
|
Krzystek-Korpacka M, Neubauer K, Matusiewicz M. Platelet-derived growth factor-BB reflects clinical, inflammatory and angiogenic disease activity and oxidative stress in inflammatory bowel disease. Clin Biochem 2009; 42:1602-9. [PMID: 19679116 DOI: 10.1016/j.clinbiochem.2009.08.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2009] [Revised: 07/31/2009] [Accepted: 08/01/2009] [Indexed: 12/13/2022]
Abstract
OBJECTIVES The goal of the studies was the evaluation of platelet-stored (serum) and circulating (plasma) pools of platelet-derived growth factor (PDGF)-BB in inflammatory bowel disease (IBD) and the assessment of a possible application of PDGF as the disease marker. DESIGN AND METHODS Serum and plasma PDGF-BB were measured in 134 IBD patients and 81 controls and evaluated with respect to the disease status, endoscopic, inflammatory, and angiogenic activity. The diagnostic utility was evaluated using ROC analysis. RESULTS PDGF was increased exclusively in active IBD regardless the disease type and associated with its clinical and endoscopic activity. Serum- and plasma-PDGF were poorly interrelated. Plasma-PDGF better reflected oxidative stress whereas serum-PDGF reflected inflammation and angiogenesis. In multivariate analysis, platelets alone explained about 30% in the PDGF variability and seemed to mediate most of the observed relationships. CONCLUSIONS IBD is associated with the increases in platelet-stored and circulating PDGF, which correspond with the disease clinical, endoscopic, inflammatory, and angiogenic activity and IBD-associated oxidative stress. However, PDGF as an active-IBD marker was not better than currently applied C-reactive protein, erythrocyte sedimentation rate and platelets.
Collapse
|
23
|
Wu H, Xia X, Jiang C, Wu J, Zhang S, Zheng Z, Liu W, Zhang Y, Ren H, Wei C, Xu X. High glucose attenuates insulin-induced VEGF expression in bovine retinal microvascular endothelial cells. Eye (Lond) 2009; 24:145-51. [PMID: 19557019 DOI: 10.1038/eye.2009.157] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
PURPOSE To investigate the effect of high glucose on insulin-induced vascular endothelial growth factor (VEGF) expression in bovine retinal microvascular endothelial cells (BRECs) and to probe into related mechanisms. METHODS BRECs were isolated as primary cultures and identified by immunostaining. Passage cells were initially exposed to normal (5 mM) or high glucose (30 mM) for 3 days, and equimolar L-glucose was supplemented for osmotic equation. BRECs were then treated with 100 nM insulin for 24 h or not, and cells were prepared for the determination of VEGF mRNA expression by real-time PCR. VEGF protein was determined by human umbilical vein endothelial cell proliferation assay, immunofluorescence, and ELISA. BRECs were treated with 5 or 30 mM glucose for 3 days and then cells cultured with 5 mM glucose were exposed to the PI3-K inhibitor wortmannin (100 nM), the P42/44 mitogen-activated protein kinase (MAPK) inhibitor U0126 (50 microM), or to the protein kinase C (PKC) inhibitor GF109203X (2 microM) 1 h before addition of 100 nM insulin. Twenty-four hours after incubation with insulin, the cells were subjected to real-time PCR and ELISA analyses. RESULTS Insulin or high glucose alone markedly increased VEGF mRNA and protein levels in BRECs (P<0.05, two-way ANOVA). However, the combination of insulin and high glucose displayed a weaker effect in promoting VEGF expression than did insulin alone (P<0.05, t-test). Pretreatment of cells with PI3-K inhibitor significantly (P<0.05, one-way ANOVA) suppressed the insulin-induced VEGF expression; neither pretreatment with the PKC inhibitor nor with the P42/p44 MAPK inhibitor showed an effect on the expression of VEGF at the mRNA or protein level (P>0.05, one-way ANOVA). CONCLUSIONS Both insulin and high glucose can markedly increase VEGF expression in BRECs at the mRNA and protein level. We propose that insulin may upregulate VEGF expression through the PI3-K signalling pathway in BRECs, and high glucose may attenuate insulin-induced VEGF expression by impairing PI3-K signalling pathways.
Collapse
Affiliation(s)
- H Wu
- Department of Ophthalmology, The First People's Hospital Affiliated to Shanghai Jiaotong University, Shanghai, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Huang BF, Wang W, Fu YC, Zhou XH, Wang X. The effect of quercetin on neointima formation in a rat artery balloon injury model. Pathol Res Pract 2009; 205:515-23. [PMID: 19243898 DOI: 10.1016/j.prp.2009.01.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2008] [Revised: 01/08/2009] [Accepted: 01/14/2009] [Indexed: 02/05/2023]
Abstract
This study aimed at investigating the effect of quercetin on neointima hyperplasia in the abdominal aorta of rats after balloon injury and expressions of related growth factors. Fifty-four healthy male Sprague-Dawley rats were randomly divided into five groups: a sham-operation group (sham, n=6), a control group (control, n=12), and three quercetin-treated groups: Q50 group (50mg/kg body weight/day, n=12), Q100 group (100mg/kg body weight/day, n=12), and Q200 group (200mg/kg body weight/day, n=12) 3 days before balloon injury until the end of the experiment. Fourteen days after injury, rats were killed, and the abdominal aortas were harvested. Hematoxylin-eosin staining showed that quercetin significantly reduced the neointimal areas and the intimal to medial ratio in the Q100 and Q200 groups 14 days after injury. Immunohistochemical analysis showed that quercetin significantly inhibited PCNA, PDGF-BB, b-FGF, and TGF-beta1 expressions in the neointima. Masson's trichrome showed that quercetin significantly reduced collagen deposition in the neointima. We concluded that quercetin significantly inhibited neointimal hyperplasia in rat abdominal aorta 14 days after injury in relatively high doses. This effect of quercetin might be partially attributed to the suppression of PDGF-BB, b-FGF, and TGF-beta1 expressions.
Collapse
Affiliation(s)
- Bao-Feng Huang
- Department of Cardiology, First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | | | | | | | | |
Collapse
|
25
|
Ye J, Li Y, Hamasaki T, Nakamichi N, Komatsu T, Kashiwagi T, Teruya K, Nishikawa R, Kawahara T, Osada K, Toh K, Abe M, Tian H, Kabayama S, Otsubo K, Morisawa S, Katakura Y, Shirahata S. Inhibitory effect of electrolyzed reduced water on tumor angiogenesis. Biol Pharm Bull 2008; 31:19-26. [PMID: 18175936 DOI: 10.1248/bpb.31.19] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Vascular endothelial growth factor (VEGF) is a key mediator of tumor angiogenesis. Tumor cells are exposed to higher oxidative stress compared to normal cells. Numerous reports have demonstrated that the intracellular redox (oxidation/reduction) state is closely associated with the pattern of VEGF expression. Electrolyzed reduced water (ERW) produced near the cathode during the electrolysis of water scavenged intracellular H(2)O(2) and decreased the release of H(2)O(2) from a human lung adenocarcinoma cell line, A549, and down-regulated both VEGF transcription and protein secretion in a time-dependent manner. To investigate the signal transduction pathway involved in regulating VEGF expression, mitogen-activated kinase (MAPK) specific inhibitors, SB203580 (p38 MAPK inhibitor), PD98059 (ERK1/2 inhibitor) and JNKi (c-Jun N-terminal protein kinase inhibitor) were applied. The results showed that only PD98059 blocks VEGF expression, suggesting an important role for ERK1/2 in regulating VEGF expression in A549 cells. As well, ERW inhibited the activation of extracellular signal-regulated kinase (ERK) in a time-dependent manner. Co-culture experiments to analyze in vitro tubule formation assay revealed that A549 cell-derived conditioned medium significantly stimulated the formation of vascular tubules in all analyzed parameters; tubule total area, tubule junction, number of tubules, and total tubule length. ERW counteracted the effect of A549 cell-conditioned medium and decreased total tube length (p<0.01). The present study demonstrated that ERW down-regulated VEGF gene transcription and protein secretion through inactivation of ERK.
Collapse
Affiliation(s)
- Jun Ye
- Graduate School of Systems Life Sciences, Kyushu University, Higashi-ku, Fukuoka 812-8581, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Pulsed Electromagnetic Fields Accelerate Normal and Diabetic Wound Healing by Increasing Endogenous FGF-2 Release. Plast Reconstr Surg 2008; 121:130-141. [DOI: 10.1097/01.prs.0000293761.27219.84] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
27
|
Ye J, Li Y, Hamasaki T, Nakamichi N, Kawahara T, Osada K, Teruya K, Kato Y, Toh K, Abe M, Katakura Y, Noguchi K, Shirahata S. Catalyser-21(TM), a mineral water derived from leaf soil, inhibits tumor cell invasion and angiogenesis. Cytotechnology 2007; 55:61-70. [PMID: 19002995 PMCID: PMC2104553 DOI: 10.1007/s10616-007-9073-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2007] [Accepted: 03/30/2007] [Indexed: 12/11/2022] Open
Abstract
Catalyser-21(TM) is a mineral water derived from natural leaf soil containing various organic and inorganic substances. Previous reports suggested a possibility that Catalyser-21(TM) has antioxidative potential and could inhibit angiogenesis and cancer cell invasiveness. Angiogenesis is a prerequisite for cancer cells to spread to surrounding tissues. Vascular endothelial growth factor (VEGF) is a major angiogenic factor in the formation of blood capillaries by cancer cells to supply nutrients and oxygen for their sustained growth. Matrix metalloproteinase-2 (MMP-2) is another key enzyme for cancer cell metastasis. To assess the anti-angiogenic activity of Catalyser-21(TM), we first examined cell viability using a human cervical cancer cell line, HeLa, and a fibrosarcoma cell line, HT1080. The results showed that Catalyser-21(TM) decreased the viability of both cell types in a dose-dependent manner. Flow cytometric analysis proved that Catalyser-21(TM) scavenges intracellular H(2)O(2) in both cell types. RT-PCR demonstrated that both VEGF and MMP-2 gene transcription was suppressed after Catalyser-21(TM) treatment. Both Matrigel and tubule formation experiments showed an effect of Catalyser-21(TM). These results suggest that Catalyser-21(TM) has potential as an anti-tumor agent.
Collapse
Affiliation(s)
- Jun Ye
- />Graduate School of Systems Life Sciences, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka, 812-8581 Japan
- />Key Laboratory of the Ministry of Education for Cell Biology and Tumor Cell Engineering, School of Life Science, Xiamen University, Fujian, China
| | - Yuping Li
- />School of Life Sciences, Nanchang University of Science and Technology, Nanchang, 330006 Jiangxi Province China
- />Department of Genetic Resources Technology, Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka, 812-8581 Japan
| | - Takeki Hamasaki
- />Department of Genetic Resources Technology, Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka, 812-8581 Japan
| | - Noboru Nakamichi
- />Functional Water Cell Analysis Center Co. Ltd, Fukuoka, 812-0000 Japan
| | - Takeshi Kawahara
- />Integrated Department of Sciences of Functional Foods, Graduate School of Agriculture, Shinshu University, 8304 Minamiminowa, Kamiina, Nagano, 399-4598 Japan
| | - Kazuhiro Osada
- />Department of Genetic Resources Technology, Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka, 812-8581 Japan
| | - Kiichiro Teruya
- />Graduate School of Systems Life Sciences, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka, 812-8581 Japan
- />Department of Genetic Resources Technology, Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka, 812-8581 Japan
| | - Yuko Kato
- />Department of Industrial Chemistry, Faculty of Engineering, Tohwa University, 1-1-1 Chikushigaoka, Minami-ku, Fukuoka, 815-8510 Japan
| | - Kazuko Toh
- />Department of Genetic Resources Technology, Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka, 812-8581 Japan
| | - Masumi Abe
- />Department of Genetic Resources Technology, Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka, 812-8581 Japan
| | - Yoshinori Katakura
- />Graduate School of Systems Life Sciences, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka, 812-8581 Japan
- />Department of Genetic Resources Technology, Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka, 812-8581 Japan
| | - Katsumi Noguchi
- />Noguchi General Institute Co. Ltd, 4-5-8 Kokyu, Miyazaki, 880-0913 Japan
| | - Sanetaka Shirahata
- />Graduate School of Systems Life Sciences, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka, 812-8581 Japan
- />Department of Genetic Resources Technology, Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka, 812-8581 Japan
| |
Collapse
|
28
|
Tzeng HP, Yang RS, Ueng TH, Liu SH. Upregulation of Cyclooxygenase-2 by Motorcycle Exhaust Particulate-Induced Reactive Oxygen Species Enhances Rat Vascular Smooth Muscle Cell Proliferation. Chem Res Toxicol 2007; 20:1170-6. [PMID: 17645304 DOI: 10.1021/tx700084z] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Long-term exposure to particulate air pollution has been implicated as a risk factor for cardiovascular disease and mortality. Short-term exposure has also been suggested to contribute to complications of atherosclerosis. Aberrant regulation of smooth muscle cell proliferation is thought to associate with the pathophysiology of vascular disorders such as atherosclerosis. In this study, we investigate the influence of organic extracts of motorcycle exhaust particulates (MEPE) on rat vascular smooth muscle cell (VSMC) proliferation and related regulation signaling. Exposure of VSMCs to MEPE (10-100 microg/mL) enhanced serum-induced VSMC proliferation. The expression of proliferating cell nuclear antigen (PCNA) was also enhanced in the presence of MEPE. VSMCs treated with MEPE induced the increase in the extent of cyclooxygenase (COX)-2 mRNA and protein expression and prostaglandin E 2 production, whereas the level of COX-1 protein was unchanged. Moreover, MEPE increased the production of reactive oxygen species (ROS) in VSMCs in a dose-dependent manner. MEPE could also trigger time-dependently extracellular signal-regulated kinase (ERK)1/2 phosphorylation in VSMCs, which was attenuated by antioxidants N-acetylcysteine (NAC) and pyrrolidinedithiocarbamate (PDTC). The level of translocation of nuclear factor (NF)-kappaB-p65 in the nuclei of VSMCs was also increased under MEPE exposure. The potentiating effect of MEPE on serum-induced VSMC proliferation could be abolished by COX-2 selective inhibitor NS-398, specific ERK inhibitor PD98059, and antioxidants NAC and PDTC. Taken together, these findings suggest that MEPE may contribute to the enhancement of the pathogenesis of cardiovascular diseases by augmenting proliferation of VSMCs through a ROS-regulated ERK1/2-activated COX-2 signaling pathway.
Collapse
MESH Headings
- Acetylcysteine/pharmacology
- Animals
- Antioxidants/pharmacology
- Cell Proliferation/drug effects
- Cells, Cultured
- Cyclooxygenase 1/analysis
- Cyclooxygenase 1/metabolism
- Cyclooxygenase 2/analysis
- Cyclooxygenase 2/metabolism
- Dose-Response Relationship, Drug
- Extracellular Signal-Regulated MAP Kinases/metabolism
- Motorcycles
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/enzymology
- Muscle, Smooth, Vascular/metabolism
- NF-kappa B/metabolism
- Prostaglandins E, Synthetic/metabolism
- Pyrrolidines/pharmacology
- RNA, Messenger/metabolism
- Rats
- Rats, Sprague-Dawley
- Reactive Oxygen Species/analysis
- Reactive Oxygen Species/metabolism
- Thiocarbamates/pharmacology
- Up-Regulation
- Vehicle Emissions/toxicity
Collapse
Affiliation(s)
- Huei-Ping Tzeng
- Institute of Toxicology and Department of Orthopaedics, College of Medicine, National Taiwan University, Taipei, Taiwan
| | | | | | | |
Collapse
|
29
|
Doyle B, Caplice N. Plaque neovascularization and antiangiogenic therapy for atherosclerosis. J Am Coll Cardiol 2007; 49:2073-80. [PMID: 17531655 DOI: 10.1016/j.jacc.2007.01.089] [Citation(s) in RCA: 174] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2006] [Revised: 12/12/2006] [Accepted: 01/18/2007] [Indexed: 10/23/2022]
Abstract
The concept that neovascularization of the vessel wall may play a fundamental role in the pathophysiology of atherosclerosis was proposed more than a century ago. In recent years, supportive experimental evidence for this hypothesis (such as the finding that neointimal microvessels may increase delivery of cellular and soluble lesion components to the vessel wall) has been underscored by clinical studies associating plaque angiogenesis with more rapidly progressive high-grade disease. Attention has also focused on a possible role for microvessel-derived intraplaque hemorrhage in the development of acute lesion instability. The interest of clinicians in this phenomenon has been spurred by the potential to target vessel wall neovascularization with angiogenesis inhibitors, a therapeutic approach that has been associated with impressive reductions in plaque progression in animal models of vascular disease. The rationale for pursuing an "antiangiogenic" strategy in the treatment of patients with vascular disease, and a framework for further preclinical evaluation of such therapy, is presented here.
Collapse
Affiliation(s)
- Brendan Doyle
- Division of Cardiovascular Diseases, Molecular Medicine Program, Mayo Clinic, Rochester, Minnesota, USA
| | | |
Collapse
|
30
|
Abstract
Reactive oxygen species (ROS) are recently proposed to be involved in tumor metastasis which is a complicated processes including epithelial-mesenchymal transition (EMT), migration, invasion of the tumor cells and angiogenesis around the tumor lesion. ROS generation may be induced intracellularly, in either NADPH oxidase- or mitochondria-dependent manner, by growth factors and cytokines (such as TGFbeta and HGF) and tumor promoters (such as TPA) capable of triggering cell adhesion, EMT and migration. As a signaling messenger, ROS are able to oxidize the critical target molecules such as PKC and protein tyrosine phosphates (PTPs), which are relevant to tumor cell invasion. PKC contain multiple cysteine residues that can be oxidized and activated by ROS. Inactivation of multiple PTPs by ROS may relieve the tyrosine phosphorylation-dependent signaling. Two of the down-stream molecules regulated by ROS are MAPK and PAK. MAPKs cascades were established to be a major signal pathway for driving tumor cell metastasis, which are mediated by PKC, TGF-beta/Smad and integrin-mediated signaling. PAK is an effector of Rac-mediated cytoskeletal remodeling that is responsible for cell migration and angiogenesis. There are several transcriptional factors such as AP1, Ets, Smad and Snail regulating a lot of genes relevant to metastasis. AP-1 and Smad can be activated by PKC activator and TGF-beta1, respectively, in a ROS dependent manner. On the other hand, Est-1 can be upregulated by H2O2 via an antioxidant response element in the promoter. The ROS-regulated genes relevant to EMT and metastasis include E-cahedrin, integrin and MMP. Comprehensive understanding of the ROS-triggered signaling transduction, transcriptional activation and regulation of gene expressions will help strengthen the critical role of ROS in tumor progression and devising strategy for chemo-therapeutic interventions.
Collapse
Affiliation(s)
- Wen-Sheng Wu
- Department of Medical Technology, Tzu Chi University, No. 701, Chung Yang Rd, Sec 3, Hualien 970, Taiwan.
| |
Collapse
|
31
|
Lu J, Zhu SM, Zang WJ, Xu XL, Luo HL, Yu XJ, Wang SP, Kong SS, Wu J, Horie M, Sun L. Protective Mechanism of Adenosine to the Rat Arterial Endothelial Dysfunction Induced by Hydrogen Peroxide. Biol Pharm Bull 2007; 30:1206-11. [PMID: 17603154 DOI: 10.1248/bpb.30.1206] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study was designed to examine the in vitro effects of adenosine (Ado) on hydrogen peroxide-induced endothelial dysfunction in rats. Endothelial dysfunction was induced by exposing isolated rat mesenteric arteries to hydrogen peroxide (0.5 mM) for 12 h using an organ culture system. The protective effects of adenosine were tested by exposing isolated mesenteric arteries to adenosine (3 x 10(-7) mol/l, 10(-6) mol/l, 3 x 10(-6) mol/l)+hydrogen peroxide (0.5 mM) for 12 h. This exposure to hydrogen peroxide induced a significant concentration-dependent inhibition of endothelium-dependent relaxation (EDR). Coculture of segments of mesenteric artery with adenosine (3 x 10(-7), 10(-6), and 3 x 10(-6) mol/l) attenuated the hydrogen peroxide-induced impairment of vasorelaxation. This impairment was accompanied by a reduction in nitrite/nitrate, nitric oxide (NO) synthase (NOS), superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activities and an increasing in malondislehyde (MDA) and lactate dehydrogenase (LDH) activities in the aorta. These results indicate that adenosine can be used to attenuate hydrogen peroxide-induced endothelial dysfunction, an effect that may be related to antioxidation, thus enhancing NO production by preventing the decrease in NOS.
Collapse
Affiliation(s)
- Jun Lu
- Department of Pharmacology, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
|
33
|
Fadini GP, Sartore S, Schiavon M, Albiero M, Baesso I, Cabrelle A, Agostini C, Avogaro A. Diabetes impairs progenitor cell mobilisation after hindlimb ischaemia-reperfusion injury in rats. Diabetologia 2006; 49:3075-84. [PMID: 17072586 DOI: 10.1007/s00125-006-0401-6] [Citation(s) in RCA: 218] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2006] [Accepted: 07/04/2006] [Indexed: 12/11/2022]
Abstract
AIMS/HYPOTHESIS A reduction in the number of endothelial progenitor cells (EPCs) is considered a plausible cause of increased cardiovascular risk in diabetes mellitus. The aim of this study was to test the hypothesis that weak bone marrow mobilisation is responsible for the decrease in circulating EPCs in diabetes. MATERIALS AND METHODS We employed a model of hindlimb ischaemia-reperfusion (I/R) injury to study mobilisation of EPCs in control and streptozotocin diabetic rats. EPCs were defined by flow cytometry as Sca-1(+) and Sca-1(+)c-kit(+) peripheral blood cells and further characterised by the expression of CD31, von Willebrand factor and fetal liver kinase-1. Capillary density was evaluated by immunofluorescent staining of vWF. We also determined plasma levels of stromal cell-derived factor (SDF-1) and vascular endothelial growth factor (VEGF) by ELISA and muscle expression of hypoxia-induced factor (HIF-1alpha) by Western blotting. RESULTS In control rats, EPCs showed a mobilisation curve within 7 days, while diabetic rats were completely unable to mobilise EPCs after I/R injury. As a consequence, diabetic rats showed no compensatory increase in muscle capillary density. Defective EPC mobilisation in diabetes was associated with altered release of SDF-1 and VEGF and inability to upregulate muscle HIF-1alpha. Both insulin administration and premedication with granulocyte-colony stimulating factor and stem cell factor led to partial recovery in post-ischaemic mobilisation of EPCs in diabetic rats. CONCLUSIONS/INTERPRETATION Defective ischaemia-induced bone marrow mobilisation of EPCs impedes compensatory angiogenesis in ischaemic tissues of diabetic animals. Growth factor administration together with blood glucose control may offer a rational therapeutic strategy for diabetic ischaemic syndromes.
Collapse
Affiliation(s)
- G P Fadini
- Department of Clinical and Experimental Medicine, Metabolic Diseases Division, University of Padua Medical School, Via Giustiniani, 2, Padua, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Cheng G, Kim MJ, Jia G, Agrawal DK. Involvement of chloride channels in IGF-I-induced proliferation of porcine arterial smooth muscle cells. Cardiovasc Res 2006; 73:198-207. [PMID: 17126821 PMCID: PMC1852543 DOI: 10.1016/j.cardiores.2006.10.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2006] [Revised: 10/13/2006] [Accepted: 10/19/2006] [Indexed: 02/04/2023] Open
Abstract
OBJECTIVE The existence of Cl- channels in vascular smooth muscle cells (VSMCs) has been increasingly investigated, but the biological functions are not yet clear. Insulin-like growth factor (IGF)-I affects proliferation and migration of VSMCs, and dysregulation of this axis may be involved in atherogenesis and intimal hyperplasia. We examined the effects of Cl- channel blockers on IGF-I-induced proliferation in porcine VSMCs. The siRNA approach was used to support the role of ClC-2, a member of the volume-regulated Cl- channel family, in cell proliferation of VSMCs. METHODS AND RESULTS The IGF-I-induced VSMC proliferation was significantly suppressed by the Cl- channel blockers NPPB and IAA94 but not by DIDS. IGF-I-induced cell proliferation parallels a significant increase in the endogenous expression of ClC-2 mRNA and protein. Inhibitors of PI3-kinase, LY294002 and wortmannin, significantly attenuated the IGF-I-upregulated ClC-2 expression and cell proliferation. We observed ClC-2-like Cl- current, and this current was augmented by IGF-I. SiRNA specifically targeted to ClC-2 abolished IGF-I-induced cell proliferation. CONCLUSION Our data demonstrate that ClC-2 plays a role in IGF-1-induced regulation of VSMC proliferation in cardiovascular diseases.
Collapse
Affiliation(s)
- Gang Cheng
- Departments of Biomedical Sciences, Creighton University School of Medicine, Omaha, NE
- Internal Medicine, Creighton University School of Medicine, Omaha, NE
| | - Min-Jung Kim
- Departments of Biomedical Sciences, Creighton University School of Medicine, Omaha, NE
- Internal Medicine, Creighton University School of Medicine, Omaha, NE
| | - Guanghong Jia
- Departments of Biomedical Sciences, Creighton University School of Medicine, Omaha, NE
- Internal Medicine, Creighton University School of Medicine, Omaha, NE
| | - Devendra K. Agrawal
- Departments of Biomedical Sciences, Creighton University School of Medicine, Omaha, NE
- Internal Medicine, Creighton University School of Medicine, Omaha, NE
- Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, NE
| |
Collapse
|
35
|
Hickey M, Krikun G, Kodaman P, Schatz F, Carati C, Lockwood CJ. Long-term progestin-only contraceptives result in reduced endometrial blood flow and oxidative stress. J Clin Endocrinol Metab 2006; 91:3633-8. [PMID: 16757524 DOI: 10.1210/jc.2006-0724] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT Because of their safety and efficacy, long-term progestin-only contraceptives (LTPOCs) are well-suited for women with restricted access to health care. However, abnormal uterine bleeding (AUB) causes half of all users to discontinue therapy within 12 months. Endometria of LTPOC-treated patients display aberrant angiogenesis with abnormally enlarged, thin-walled, fragile blood vessels, inflammation, and focal hemorrhage. In this study, similar effects were observed with a new third-generation implantable LTPOC. OBJECTIVE We hypothesized that LTPOC reduces uterine and endometrial blood flow, leading to hypoxia/reperfusion, which triggers the generation of reactive oxygen species. The latter induce aberrant angiogenesis, causing AUB. DESIGN Endometrial perfusion was measured by laser-Doppler fluxmetry in women requesting LTPOCs. Endometrial biopsies were obtained for in vivo and in vitro experiments. SETTING The study was conducted in the Yale University School of Medicine and Family-Planning Center in Western Australia. PATIENTS Seven women 18 yr or older requesting implantable LTPOCs were recruited in Western Australia. INTERVENTION Women received etonorgestrel implants. MAIN OUTCOME LTPOC treatment resulted in reduced endometrial perfusion and increased endometrial oxidative damage. CONCLUSIONS We propose that LTPOCs result in hypoxia reperfusion, which leads to aberrant angiogenesis resulting in AUB.
Collapse
Affiliation(s)
- M Hickey
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University, School of Medicine, 333 Cedar Street, New Haven, Connecticut, 06520-8063, USA
| | | | | | | | | | | |
Collapse
|
36
|
Carnesecchi S, Carpentier JL, Foti M, Szanto I. Insulin-induced vascular endothelial growth factor expression is mediated by the NADPH oxidase NOX3. Exp Cell Res 2006; 312:3413-24. [PMID: 16949073 DOI: 10.1016/j.yexcr.2006.07.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2005] [Revised: 06/24/2006] [Accepted: 07/14/2006] [Indexed: 11/24/2022]
Abstract
Vascular endothelial growth factor (VEGF) is the most potent stimulatory factor of angiogenesis. Its expression is induced by reactive oxygen species (ROS) in hypoxic conditions and by insulin in normoxic cells. Both ROS and insulin can activate mitogen-activated protein kinases (MAPKs) and induce the transcriptional factor Sp1, components that are essential for VEGF gene expression. The aim of this study was to investigate the role of ROS producing NADPH oxidase enzymes (NOX-es) in insulin-regulated VEGF gene activation. To achieve this goal we chose HepG2 cells as our model system as these cells express the NADPH oxidase isoform NOX3 and respond to insulin stimulation with enhanced ROS production and mRNA transcription and production of VEGF. We demonstrate that in control cells insulin stimulation leads to H2O2 generation, a biphasic activation of p42/44 MAPK and the induction of both Sp1 and HIF-1alpha. Transfection of NOX3-specific siRNA abrogates H2O2 production and inhibits exclusively the second phase of p42/44 MAPK phosphorylation and Sp1 DNA binding and thus prevents upregulation of VEGF-A mRNA expression. In conclusion, our results demonstrate that NOX3, a ROS generating NADPH oxidase, plays an integral role in insulin-induced p42/44 MAPK signal transmission and VEGF-A production.
Collapse
Affiliation(s)
- Stephanie Carnesecchi
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | | | | | | |
Collapse
|
37
|
Paliege A, Pasumarthy A, Parsumathy A, Mizel D, Yang T, Schnermann J, Bachmann S. Effect of apocynin treatment on renal expression of COX-2, NOS1, and renin in Wistar-Kyoto and spontaneously hypertensive rats. Am J Physiol Regul Integr Comp Physiol 2006; 290:R694-700. [PMID: 16467505 DOI: 10.1152/ajpregu.00219.2005] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Macula densa (MD) cells of the juxtaglomerular apparatus (JGA) synthesize type 1 nitric oxide synthase (NOS1) and type 2 cyclooxygenase (COX-2). Both nitric oxide (NO) and prostaglandins have been considered to mediate or modulate the control of renin secretion. Reactive oxygen species (ROS) produced locally by NADPH oxidase may influence NO bioavailability. We have tested the hypothesis that in hypertension elevated ROS levels may modify the expression of NOS1 and COX-2 in the JGA, thereby interacting with juxtaglomerular signaling. To this end, spontaneously hypertensive rats (SHR) and Wistar-Kyoto control rats (WKY) received the specific NADPH oxidase inhibitor, apocynin, during 3 wk. Renal functional and histochemical parameters, plasma renin activity (PRA), and as a measure of ROS activity, urinary isoprostane excretion (IP) were evaluated. Compared with WKY, IP levels in untreated SHR were 2.2-fold increased, and NOS1 immunoreactiviy (IR) of JGA 1.5-fold increased, whereas COX-2 IR was reduced to 35%, renin IR to 51%, and PRA to 7%. Apocynin treatment reduced IP levels in SHR to 52%, NOS1 IR to 69%, and renin IR to 62% of untreated SHR, whereas renin mRNA, COX-2 IR, glomerular filtration rate, PRA, and systolic blood pressure remained unchanged. WKY revealed no changes under apocynin treatment. These data show that NADPH oxidase is an important contributor to elevated levels of ROS in hypertension. Upregulation of MD NOS1 in SHR may have the potential of blunting the functional impact of ROS at the level of bioavailable NO. Downregulated COX-2 and renin levels in SHR are apparently unrelated to oxidative stress, since apocynin treatment had no effect on these parameters.
Collapse
Affiliation(s)
- A Paliege
- Medical Faculty of the Charité, Department of Vegetative Anatomy, Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
Excessive production of reactive oxygen species in the vasculature contributes to cardiovascular pathogenesis. Among biologically relevant and abundant reactive oxygen species, superoxide (O2*-) and hydrogen peroxide (H2O2) appear most important in redox signaling. Whereas O2*- predominantly induces endothelial dysfunction by rapidly inactivating nitric oxide (NO*), H2O2 influences different aspects of endothelial cell function via complex mechanisms. This review discusses recent advances establishing a critical role of H2O2 in the development of vascular disease, in particular, atherosclerosis, and mechanisms whereby vascular NAD(P)H oxidase-derived H2O2 amplifies its own production. Recent studies have shown that H2O2 stimulates reactive oxygen species production via enhanced intracellular iron uptake, mitochondrial damage, and sources of vascular NAD(P)H oxidases, xanthine oxidase, and uncoupled endothelial nitric oxide synthase (eNOS). This self-propagating phenomenon likely prolongs H2O2-dependent pathological signaling in vascular cells, thus contributing to vascular disease development. The latest progress on Nox functions in vascular cells is also discussed [Nox for NAD(P)H oxidases, representing a family of novel NAD(P)H oxidases].
Collapse
Affiliation(s)
- Hua Cai
- Section of Cardiology, Department of Medicine, The Division of Biological Sciences and Pritzker School of Medicine, The University of Chicago, Ill 60637, USA.
| |
Collapse
|
39
|
Kau HC, Tsai CC, Lee CF, Kao SC, Hsu WM, Liu JH, Wei YH. Increased oxidative DNA damage, 8-hydroxydeoxy- guanosine, in human pterygium. Eye (Lond) 2005; 20:826-31. [PMID: 16113633 DOI: 10.1038/sj.eye.6702064] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
PURPOSE Chronic exposure to ultraviolet (UV) light is a widely accepted aetiological factor in the development of pterygium. UV radiation may induce production of reactive oxygen species via photosensitized oxidation, thus causing oxidative damage. This study was conducted to test the hypothesis that oxidative damage to DNA is increased in pterygium. METHODS Immunohistochemical analysis employing a monoclonal antibody specific for 8-hydroxy-2'-deoxyguanosine (8-OHdG), a ubiquitous maker of oxidative stress, was performed in three patients with primary pterygium. The levels of 8-OHdG in DNA isolated from the other 29 pterygium specimens and their adjacent normal conjunctival tissues were determined using enzyme-linked immunosorbent assay (ELISA). RESULTS Immunohistochemistry of 8-OHdG showed a distinct pattern of more extensive and intense staining in the nuclei of pterygium tissue compared with that in their adjacent normal conjunctiva. ELISA also revealed that the average level of 8-OHdG in the pterygium tissues was 4.7-fold higher than that of the corresponding normal conjunctiva (P<0.001). CONCLUSIONS The increased levels of 8-OHdG in the pterygium tissues indicate that oxidative stress could play a role in the development of pterygium. These findings provide new information to better understand the pathogenesis of pterygium and are useful in the prevention and treatment of this disease.
Collapse
Affiliation(s)
- H-C Kau
- Department of Ophthalmology, Taoyuan Veterans Hospital, Taoyuan, Taiwan
| | | | | | | | | | | | | |
Collapse
|
40
|
Schalkwijk CG, Stehouwer CDA. Vascular complications in diabetes mellitus: the role of endothelial dysfunction. Clin Sci (Lond) 2005; 109:143-59. [PMID: 16033329 DOI: 10.1042/cs20050025] [Citation(s) in RCA: 444] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The endothelium is a complex organ with a multitude of properties essential for control of vascular functions. Dysfunction of the vascular endothelium is regarded as an important factor in the pathogenesis of diabetic micro- and macro-angiopathy. Endothelial dysfunction in Type I and II diabetes complicated by micro- or macro-albuminuria is generalized in that it affects many aspects of endothelial function and occurs not only in the kidney. The close linkage between microalbuminuria and endothelial dysfunction in diabetes is an attractive explanation for the fact that microalbuminuria is a risk marker for atherothrombosis. In Type I diabetes, endothelial dysfunction precedes and may cause diabetic microangiopathy, but it is not clear whether endothelial dysfunction is a feature of the diabetic state itself. In Type II diabetes, endothelial function is impaired from the onset of the disease and is strongly related to adverse outcomes. It is not clear whether impaired endothelial function is caused by hyperglycaemia or by other factors. Impaired endothelial function is closely associated with and may contribute to insulin resistance regardless of the presence of diabetes. Endothelial dysfunction in diabetes originates from three main sources. Hyperglycaemia and its immediate biochemical sequelae directly alter endothelial function or influence endothelial cell functioning indirectly by the synthesis of growth factors, cytokines and vasoactive agents in other cells. Finally, the components of the metabolic syndrome can impair endothelial function.
Collapse
Affiliation(s)
- Casper G Schalkwijk
- Department of Internal Medicine, Academic Hospital Maastricht, The Netherlands.
| | | |
Collapse
|
41
|
Agarwal A, Gupta S, Sharma RK. Role of oxidative stress in female reproduction. Reprod Biol Endocrinol 2005; 3:28. [PMID: 16018814 PMCID: PMC1215514 DOI: 10.1186/1477-7827-3-28] [Citation(s) in RCA: 907] [Impact Index Per Article: 45.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2005] [Accepted: 07/14/2005] [Indexed: 01/18/2023] Open
Abstract
In a healthy body, ROS (reactive oxygen species) and antioxidants remain in balance. When the balance is disrupted towards an overabundance of ROS, oxidative stress (OS) occurs. OS influences the entire reproductive lifespan of a woman and even thereafter (i.e. menopause). OS results from an imbalance between prooxidants (free radical species) and the body's scavenging ability (antioxidants). ROS are a double-edged sword - they serve as key signal molecules in physiological processes but also have a role in pathological processes involving the female reproductive tract. ROS affect multiple physiological processes from oocyte maturation to fertilization, embryo development and pregnancy. It has been suggested that OS modulates the age-related decline in fertility. It plays a role during pregnancy and normal parturition and in initiation of preterm labor. Most ovarian cancers appear in the surface epithelium, and repetitive ovulation has been thought to be a causative factor. Ovulation-induced oxidative base damage and damage to DNA of the ovarian epithelium can be prevented by antioxidants. There is growing literature on the effects of OS in female reproduction with involvement in the pathophysiology of preeclampsia, hydatidiform mole, free radical-induced birth defects and other situations such as abortions. Numerous studies have shown that OS plays a role in the pathophysiology of infertility and assisted fertility. There is some evidence of its role in endometriosis, tubal and peritoneal factor infertility and unexplained infertility. This article reviews the role OS plays in normal cycling ovaries, follicular development and cyclical endometrial changes. It also discusses OS-related female infertility and how it influences the outcomes of assisted reproductive techniques. The review comprehensively explores the literature for evidence of the role of oxidative stress in conditions such as abortions, preeclampsia, hydatidiform mole, fetal embryopathies, preterm labour and preeclampsia and gestational diabetes. The review also addresses the growing literature on the role of nitric oxide species in female reproduction. The involvement of nitric oxide species in regulation of endometrial and ovarian function, etiopathogenesis of endometriosis, and maintenance of uterine quiescence, initiation of labour and ripening of cervix at parturition is discussed. Complex interplay between cytokines and oxidative stress in the etiology of female reproductive disorders is discussed. Oxidant status of the cell modulates angiogenesis, which is critical for follicular growth, corpus luteum formation endometrial differentiation and embryonic growth is also highlighted in the review. Strategies to overcome oxidative stress and enhance fertility, both natural and assisted are delineated. Early interventions being investigated for prevention of preeclampsia are enumerated. Trials investigating combination intervention strategy of vitamin E and vitamin C supplementation in preventing preeclampsia are highlighted. Antioxidants are powerful and there are few trials investigating antioxidant supplementation in female reproduction. However, before clinicians recommend antioxidants, randomized controlled trials with sufficient power are necessary to prove the efficacy of antioxidant supplementation in disorders of female reproduction. Serial measurement of oxidative stress biomarkers in longitudinal studies may help delineate the etiology of some of the diosorders in female reproduction such as preeclampsia.
Collapse
Affiliation(s)
- Ashok Agarwal
- Center for Advanced Research in Human Reproduction, Infertility, and Sexual Function, Glickman Urological Institute and Department of Obstetrics-Gynecology; The Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| | - Sajal Gupta
- Center for Advanced Research in Human Reproduction, Infertility, and Sexual Function, Glickman Urological Institute and Department of Obstetrics-Gynecology; The Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| | - Rakesh K Sharma
- Center for Advanced Research in Human Reproduction, Infertility, and Sexual Function, Glickman Urological Institute and Department of Obstetrics-Gynecology; The Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| |
Collapse
|