1
|
Mathew-Steiner SS, Roy S, Sen CK. Collagen in Wound Healing. Bioengineering (Basel) 2021; 8:63. [PMID: 34064689 PMCID: PMC8151502 DOI: 10.3390/bioengineering8050063] [Citation(s) in RCA: 322] [Impact Index Per Article: 80.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/27/2021] [Accepted: 05/01/2021] [Indexed: 12/12/2022] Open
Abstract
Normal wound healing progresses through inflammatory, proliferative and remodeling phases in response to tissue injury. Collagen, a key component of the extracellular matrix, plays critical roles in the regulation of the phases of wound healing either in its native, fibrillar conformation or as soluble components in the wound milieu. Impairments in any of these phases stall the wound in a chronic, non-healing state that typically requires some form of intervention to guide the process back to completion. Key factors in the hostile environment of a chronic wound are persistent inflammation, increased destruction of ECM components caused by elevated metalloproteinases and other enzymes and improper activation of soluble mediators of the wound healing process. Collagen, being central in the regulation of several of these processes, has been utilized as an adjunct wound therapy to promote healing. In this work the significance of collagen in different biological processes relevant to wound healing are reviewed and a summary of the current literature on the use of collagen-based products in wound care is provided.
Collapse
Affiliation(s)
| | | | - Chandan K. Sen
- Indiana Center for Regenerative Medicine and Engineering, School of Medicine, Indiana University, Indianapolis, IN 46202, USA; (S.S.M.-S.); (S.R.)
| |
Collapse
|
2
|
Winkler F, Herz K, Rieck S, Kimura K, Hu T, Röll W, Hesse M, Fleischmann BK, Wenzel D. PECAM/eGFP transgenic mice for monitoring of angiogenesis in health and disease. Sci Rep 2018; 8:17582. [PMID: 30514882 PMCID: PMC6279819 DOI: 10.1038/s41598-018-36039-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 11/12/2018] [Indexed: 12/16/2022] Open
Abstract
For the monitoring of vascular growth as well as adaptive or therapeutic (re)vascularization endothelial-specific reporter mouse models are valuable tools. However, currently available mouse models have limitations, because not all endothelial cells express the reporter in all developmental stages. We have generated PECAM/eGFP embryonic stem (ES) cell and mouse lines where the reporter gene labels PECAM+ endothelial cells and vessels with high specificity. Native eGFP expression and PECAM staining were highly co-localized in vessels of various organs at embryonic stages E9.5, E15.5 and in adult mice. Expression was found in large and small arteries, capillaries and in veins but not in lymphatic vessels. Also in the bone marrow arteries and sinusoidal vessel were labeled, moreover, we could detect eGFP in some CD45+ hematopoietic cells. We also demonstrate that this labeling is very useful to monitor sprouting in an aortic ring assay as well as vascular remodeling in a murine injury model of myocardial infarction. Thus, PECAM/eGFP transgenic ES cells and mice greatly facilitate the monitoring and quantification of endothelial cells ex vivo and in vivo during development and injury.
Collapse
Affiliation(s)
- Florian Winkler
- Institute of Physiology I, Life&Brain Center, Medical Faculty, University of Bonn, Bonn, Germany
| | - Katia Herz
- Institute of Physiology I, Life&Brain Center, Medical Faculty, University of Bonn, Bonn, Germany
| | - Sarah Rieck
- Institute of Physiology I, Life&Brain Center, Medical Faculty, University of Bonn, Bonn, Germany
| | - Kenichi Kimura
- Institute of Physiology I, Life&Brain Center, Medical Faculty, University of Bonn, Bonn, Germany
| | - Tianyuan Hu
- Institute of Physiology I, Life&Brain Center, Medical Faculty, University of Bonn, Bonn, Germany
| | - Wilhelm Röll
- Department of Cardiac Surgery, Medical Faculty, University of Bonn, Bonn, Germany
| | - Michael Hesse
- Institute of Physiology I, Life&Brain Center, Medical Faculty, University of Bonn, Bonn, Germany
| | - Bernd K Fleischmann
- Institute of Physiology I, Life&Brain Center, Medical Faculty, University of Bonn, Bonn, Germany
| | - Daniela Wenzel
- Institute of Physiology I, Life&Brain Center, Medical Faculty, University of Bonn, Bonn, Germany.
| |
Collapse
|
3
|
Witte J, Mühlbauer M, Braun D, Steinbach A, Golchert J, Rettig R, Grisk O. Renal Soluble Guanylate Cyclase Is Downregulated in Sunitinib-Induced Hypertension. J Am Heart Assoc 2018; 7:e009557. [PMID: 30371202 PMCID: PMC6222942 DOI: 10.1161/jaha.118.009557] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Background The tyrosine kinase inhibitor sunitinib causes hypertension associated with reduced nitric oxide (NO) availability, elevated renal vascular resistance, and decreased fractional sodium excretion. We tested whether (1) nitrate supplementation mitigates sunitinib‐induced hypertension and NO contributes less to renal vascular resistance as well as fractional sodium excretion regulation in sunitinib‐treated rats than in controls; and (2) renal soluble guanylate cyclase (sGC) is downregulated and sGC activation lowers arterial pressure in rats with sunitinib‐induced hypertension. Methods and Results Arterial pressure responses to nitrate supplementation and the effects of systemic and intrarenal NO synthase (NOS) inhibition on renal hemodynamics and fractional sodium excretion were assessed in sunitinib‐treated rats and controls. Renal NOS and sGC mRNA as well as protein abundances were determined by quantitative polymerase chain reaction and Western blot. The effect of the sGC activator cinaciguat on arterial pressure was investigated in sunitinib‐treated rats. Nitrate supplementation did not mitigate sunitinib‐induced hypertension. Endothelium‐dependent reductions in renal vascular resistance were similar in control and sunitinib‐treated animals without and with systemic NOS inhibition. Selective intrarenal NOS inhibition lowered renal medullary blood flow in control but not in sunitinib‐treated rats without significant effects on fractional sodium excretion. Renal cortical sGC mRNA and sGC α1‐subunit protein abundance were less in sunitinib‐treated rats than in controls, and cinaciguat effectively lowered arterial pressure by 15‐20 mm Hg in sunitinib‐treated rats. Conclusions Renal cortical sGC is downregulated in the presence of intact endothelium‐dependent renal vascular resistance regulation in developing sunitinib‐induced hypertension. This suggests that sGC downregulation occurs outside the renal vasculature, increases renal sodium retention, and contributes to nitrate resistance of sunitinib‐induced hypertension.
Collapse
Affiliation(s)
- Jeannine Witte
- 1 Institute of Physiology University of Greifswald Greifswald Germany
| | - Melanie Mühlbauer
- 1 Institute of Physiology University of Greifswald Greifswald Germany
| | - Diana Braun
- 1 Institute of Physiology University of Greifswald Greifswald Germany
| | - Antje Steinbach
- 1 Institute of Physiology University of Greifswald Greifswald Germany
| | - Janine Golchert
- 2 Interfaculty Institute for Genetics and Functional Genomics University of Greifswald Greifswald Germany
| | - Rainer Rettig
- 1 Institute of Physiology University of Greifswald Greifswald Germany
| | - Olaf Grisk
- 1 Institute of Physiology University of Greifswald Greifswald Germany
| |
Collapse
|
4
|
Shear-Induced Nitric Oxide Production by Endothelial Cells. Biophys J 2017; 111:208-21. [PMID: 27410748 DOI: 10.1016/j.bpj.2016.05.034] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 04/30/2016] [Accepted: 05/23/2016] [Indexed: 02/06/2023] Open
Abstract
We present a biochemical model of the wall shear stress-induced activation of endothelial nitric oxide synthase (eNOS) in an endothelial cell. The model includes three key mechanotransducers: mechanosensing ion channels, integrins, and G protein-coupled receptors. The reaction cascade consists of two interconnected parts. The first is rapid activation of calcium, which results in formation of calcium-calmodulin complexes, followed by recruitment of eNOS from caveolae. The second is phosphorylation of eNOS by protein kinases PKC and AKT. The model also includes a negative feedback loop due to inhibition of calcium influx into the cell by cyclic guanosine monophosphate (cGMP). In this feedback, increased nitric oxide (NO) levels cause an increase in cGMP levels, so that cGMP inhibition of calcium influx can limit NO production. The model was used to predict the dynamics of NO production by an endothelial cell subjected to a step increase of wall shear stress from zero to a finite physiologically relevant value. Among several experimentally observed features, the model predicts a highly nonlinear, biphasic transient behavior of eNOS activation and NO production: a rapid initial activation due to the very rapid influx of calcium into the cytosol (occurring within 1-5 min) is followed by a sustained period of activation due to protein kinases.
Collapse
|
5
|
Chao CY, Lii CK, Ye SY, Li CC, Lu CY, Lin AH, Liu KL, Chen HW. Docosahexaenoic acid inhibits vascular endothelial growth factor (VEGF)-induced cell migration via the GPR120/PP2A/ERK1/2/eNOS signaling pathway in human umbilical vein endothelial cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:4152-8. [PMID: 24734983 DOI: 10.1021/jf5007165] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Cell migration plays an important role in angiogenesis and wound repair. Vascular endothelial growth factor (VEGF) is an endothelial cell-specific mitogen that is essential for endothelial cell survival, proliferation, and migration. Docosahexaenoic acid (DHA), an n-3 polyunsaturated fatty acid, shows both anti-inflammatory and antioxidant activities in vitro and in vivo. This study investigated the molecular mechanism by which DHA down-regulates VEGF-induced cell migration. HUVECs were used as the study model, and the MTT assay, Western blot, wound-healing assay, and phosphatase activity assay were used to explore the effects of DHA on cell migration. GPR120 is the putative receptor for DHA action. The results showed that DHA, PD98059 (an ERK1/2 inhibitor), and GW9508 (a GPR120 agonist) inhibited VEGF-induced cell migration. In contrast, pretreatment with okadaic acid (OA, a PP2A inhibitor) and S-nitroso-N-acetyl-DL-penicillamine (an NO donor) reversed the inhibition of cell migration by DHA. VEGF-induced cell migration was accompanied by phosphorylation of ERK1/2 and eNOS. Treatment of HUVECs with DHA increased PP2A enzyme activity and decreased VEGF-induced phosphorylation of ERK1/2 and eNOS. However, pretreatment with OA significantly decreased DHA-induced PP2A enzyme activity and reversed the DHA inhibition of VEGF-induced ERK1/2 and eNOS phosphorylation. These results suggest that stimulation of PP2A activity and inhibition of the VEGF-induced ERK1/2/eNOS signaling pathway may be involved in the DHA suppression of VEGF-induced cell migration. Thus, the effect of DHA on angiogenesis and wound repair is at least partly by virtue of its attenuation of cell migration.
Collapse
Affiliation(s)
- Che-Yi Chao
- Department of Health and Nutrition Biotechnology, Asia University , Taichung, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Sharma BK, Srinivasan R, Kapil S, Singla B, Saini N, Chawla YK, Chakraborti A, Duseja A, Kalra N, Dhiman RK. Serum levels of angiogenic and anti-angiogenic factors: their prognostic relevance in locally advanced hepatocellular carcinoma. Mol Cell Biochem 2013; 383:103-12. [PMID: 23912396 DOI: 10.1007/s11010-013-1759-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Accepted: 07/10/2013] [Indexed: 12/11/2022]
Abstract
Hepatocellular carcinoma (HCC) is a prototype tumor wherein angiogenesis plays a vital role in its progression. The role of VEGF, a major angiogenic factor in HCC is known; however, the role of anti-angiogenic factors simultaneously with the angiogenic factors has not been studied before. Hence, in this study, the serum levels of major angiogenic [Vascular Endothelial Growth Factor (VEGF), angiopoietin-2 (Ang-2)] and anti-angiogenic (endostatin, angiostatin) factors were analyzed and correlated with clinico-radiological features and with outcome. A total of 150 patients (50 HCC, 50 cirrhosis and 50 chronic hepatitis) and 50 healthy controls were enrolled in this study. Serum levels of VEGF, Ang-2, endostatin, and angiostatin were estimated by enzyme-linked immunosorbent assay. HCC shows significantly elevated serum levels of angiogenic factors VEGF and Ang-2 and of anti-angiogenic factors endostatin and angiostatin. ROC curve analysis for serum VEGF yielded an optimal cut-off value of 225.14 pg/ml, with a sensitivity of 78 % and specificity of 84.7 % for a diagnosis of HCC and its distinction from other group. Using this value, the univariate and multivariate analysis revealed significantly poor outcome in patients with higher levels of serum VEGF (p = 0.009). Combinatorial analysis revealed that patients with higher levels of both angiogenic and anti-angiogenic factors showed poor outcome. Serum VEGF correlates with poor survival of HCC patients and, therefore, serves as a non-invasive biomarker of poor prognosis. Moreover, elevated levels of anti-angiogenic factors occur endogenously in HCC patients.
Collapse
Affiliation(s)
- Bal Krishan Sharma
- Departments of Hepatology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Malan D, Elischer A, Hesse M, Wickström SA, Fleischmann BK, Bloch W. Deletion of integrin linked kinase in endothelial cells results in defective RTK signaling caused by caveolin 1 mislocalization. Development 2013; 140:987-95. [PMID: 23404105 DOI: 10.1242/dev.091298] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Integrin linked kinase (ILK) connects the ILK-Pinch-Parvin complex with integrin adhesion sites. Because of the functional relevance of integrin-linked signaling for endothelial cell (EC) biology, we have explored this pathway in Ilk(-/-) embryonic stem (ES) cells differentiated into ECs and vessel-like structures. We have focused in particular on the mechanistic relevance of ILK-Pinch-Parvin complex-related signaling for EC development and tube formation. Our analysis revealed that the formation of vessel-like structures was strongly reduced in Ilk(-/-) ES cells and that this phenotype could be rescued by re-expression of ILK in ES cells. ECs were MACS sorted from wild-type (WT) and Ilk(-/-) ES cells and functional analysis using intracellular calcium imaging as the read-out yielded a complete lack of vascular endothelial growth factor- and epidermal growth factor-dependent responses. The possibility of a caveolin 1-related defect was investigated by transfecting WT and Ilk(-/-) ECs with a caveolin 1-EGFP fusion protein. Time-lapse microscopy showed that the prominent phenotype is due to altered dynamics of caveolin 1 and to a lack of positioning of caveolin 1 in the vicinity of the plasma membrane and that it is rescued by re-expressing ILK in the Ilk(-/-) ES cells. We also found that the defect is caused by the perturbed organization of microtubules and cortical actin filaments. Thus, ILK is required as a scaffold to allow actin-microtubule interactions and correct positioning of caveolin 1 close to the plasma membrane. This is crucial for signaling compartmentalization in ECs and explains the key role of ILK for EC development and function.
Collapse
Affiliation(s)
- Daniela Malan
- Institute of Physiology I, Life and Brain Center, University of Bonn, Bonn, NRW, 53105, Germany
| | | | | | | | | | | |
Collapse
|
8
|
Høye AM, Couchman JR, Wewer UM, Fukami K, Yoneda A. The newcomer in the integrin family: integrin α9 in biology and cancer. Adv Biol Regul 2012; 52:326-339. [PMID: 22781746 DOI: 10.1016/j.jbior.2012.03.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Accepted: 03/23/2012] [Indexed: 06/01/2023]
Abstract
Integrins are heterodimeric transmembrane receptors regulating cell-cell and cell-extracellular matrix interactions. Of the 24 integrin heterodimers identified in humans, α9β1 integrin is one of the least studied. α9, together with α4, comprise a more recent evolutionary sub-family of integrins that is only found in vertebrates. Since α9 was thought to have similar functions as α4, due to many shared ligands, it was a rather overlooked integrin until recently, when its importance for survival after birth was highlighted upon investigation of the α9 knockout mouse. α9β1 is expressed on a wide variety of cell types, interacts with many ligands for example fibronectin, tenascin-C and ADAM12, and has been shown to have important functions in processes such as cell adhesion and migration, lung development, lymphatic and venous valve development, and in wound healing. This has sparked an interest to investigate α9β1-mediated signaling and its regulation. This review gives an overview of the recent progress in α9β1-mediated biological and pathological processes, and discusses its potential as a target for cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Anette M Høye
- Department of Biomedical Sciences, The Faculty of Health and Medical Sciences, and Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen Biocenter, Ole Maaløes Vej 5, Copenhagen N 2200, Denmark
| | | | | | | | | |
Collapse
|
9
|
Ou J, Li J, Pan F, Xie G, Zhou Q, Huang H, Liang H. Endostatin suppresses colorectal tumor-induced lymphangiogenesis by inhibiting expression of fibronectin extra domain A and integrin α9. J Cell Biochem 2011; 112:2106-14. [PMID: 21465533 DOI: 10.1002/jcb.23130] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Endostatin is a natural occurring anti-angiogenic peptide and has been shown to inhibit tumor lymphangiogenesis by suppressing the expression of tumor-stimulating growth factors. We have previously shown that fibronectin alternative extra domain A (EDA) facilitates lymphangiogenesis of colorectal tumors. Since it is known that EDA interacts with integrin α9 in the lymphatic endothelial cells (LECs), we hypothesized that endostatin may target EDA-integrin α9 pathway to inhibit colorectal tumor-induced lymphangiogenesis. To test this hypothesis, we examined the effect of endostatin on EDA secreted by SW480 colorectal cancer cells and treated human LECs with different doses of endostatin in the presence of conditional medium from SW480 cells. We found that endostatin significantly reduced EDA secretion by SW480 cells and the expression of integrin α9 in LECs. Immunofluorescence studies showed that EDA and integrin α9 colocalized on the cell membrane of LECs and these colocalizations were dramatically reduced by endostatin. Co-immunoprecipitation studies demonstrated that EDA interacted with integrin α9 in LECs, and showed that endostatin treatment inhibited the formation of EDA-integrin α9 complex in LECs. Furthermore, we found that the arrangement and polarity of LEC cytoskeletons were destroyed by endostatin substantially, leading to a reduced formation of tube-like structures of LECs and a suppressed chemotaxis of LECs toward SW480 cells. Consistently, EDA and integrin α9 expressions as well as lymphangiogenesis were significantly suppressed by endostatin in colorectal cancer xenografts. In conclusion, our results suggest that endostatin reduces colorectal tumor-induced lymphangiogenesis, at least in part, by inhibiting EDA-integrin α9 pathway.
Collapse
Affiliation(s)
- Juanjuan Ou
- Department of Oncology and Southwest Cancer Center, Southwest Hospital, The Third Military Medical University, Chongqing, P. R. China
| | | | | | | | | | | | | |
Collapse
|
10
|
Steinritz D, Bölck B, Schwarz J, Balszuweit F, Dühr S, Ibrahim M, Bloch W, Thiermann H, Kehe K. Effect of N-Acetyl Cysteine and α-Linolenic Acid on Sulfur Mustard Caused Impairment of In Vitro Endothelial Tube Formation. Toxicol Sci 2010; 118:521-9. [DOI: 10.1093/toxsci/kfq271] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
11
|
Blum K, Chen AL, Chen TJ, Downs BW, Braverman ER, Kerner M, Savarimuthu S, Bajaj A, Madigan M, Blum SH, Reinl G, Giordano J, Dinubile N. Healing enhancement of chronic venous stasis ulcers utilizing H-WAVE(R) device therapy: a case series. CASES JOURNAL 2010; 3:54. [PMID: 20181141 PMCID: PMC2831833 DOI: 10.1186/1757-1626-3-54] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Accepted: 02/10/2010] [Indexed: 11/25/2022]
Abstract
Introduction Approximately 15% (more than 2 million individuals, based on these estimates) of all people with diabetes will develop a lower-extremity ulcer during the course of the disease. Ultimately, between 14% and 20% of patients with lower-extremity diabetic ulcers will require amputation of the affected limb. Analysis of the 1995 Medicare claims revealed that lower-extremity ulcer care accounted for $1.45 billion in Medicare costs. Therapies that promote rapid and complete healing and reduce the need for expensive surgical procedures would impact these costs substantially. One such example is the electrotherapeutic modality utilizing the H-Wave® device therapy and program. It has been recently shown in acute animal experiments that the H-Wave® device stimulation induces a nitric oxide-dependent increase in microcirculation of the rat Cremaster skeletal muscle. Moreover, chronic H-wave® device stimulation of rat hind limbs not only increases blood flow but induces measured angiogenesis. Coupling these findings strongly suggests that H-Wave® device stimulation promotes rapid and complete healing without need of expensive surgical procedures. Case presentation We decided to do a preliminary evaluation of the H-Wave® device therapy and program in three seriously afflicted diabetic patients. Patient 1 had chronic venous stasis for 6 years. Patient 2 had chronic recurrent leg ulcerations. Patient 3 had a chronic venous stasis ulcer for 2 years. All were dispensed a home H-Wave® unit. Patient 1 had no other treatment, patient 2 had H-Wave® therapy along with traditional compressive therapy, and patient 3 had no other therapy. For patient 1, following treatment the ulcer completely healed with the H-Wave® device and program after 3 months. For patient 2, by one month complete ulcer closure occurred. Patient 3 had a completely healed ulcer after 9 months. Conclusions While most diabetic ulcers can be treated successfully on an outpatient basis, a significant proportion will persist and become infected. Based on this preliminary case series investigation we found that three patients prescribed H-Wave® home treatment demonstrate accelerated healing with excellent results. While these results are encouraging, additional large scale investigation is warranted before any interpretation is given to these interesting outcomes.
Collapse
Affiliation(s)
- Kenneth Blum
- Department of Psychiatry, University of Florida College of Medicine, Gainesville, Fl, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Miller TW, Isenberg JS, Roberts DD. Molecular regulation of tumor angiogenesis and perfusion via redox signaling. Chem Rev 2009; 109:3099-124. [PMID: 19374334 PMCID: PMC2801866 DOI: 10.1021/cr8005125] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
| | | | - David D. Roberts
- To whom correspondence should be addressed: NIH, Building 10, Room 2A33, 10 Center Dr, MSC1500, Bethesda, Maryland 20892,
| |
Collapse
|
13
|
Isenberg JS, Martin-Manso G, Maxhimer JB, Roberts DD. Regulation of nitric oxide signalling by thrombospondin 1: implications for anti-angiogenic therapies. Nat Rev Cancer 2009; 9:182-94. [PMID: 19194382 PMCID: PMC2796182 DOI: 10.1038/nrc2561] [Citation(s) in RCA: 220] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In addition to long-term regulation of angiogenesis, angiogenic growth factor signalling through nitric oxide (NO) acutely controls blood flow and haemostasis. Inhibition of this pathway may account for the hypertensive and pro-thrombotic side effects of the vascular endothelial growth factor antagonists that are currently used for cancer treatment. The first identified endogenous angiogenesis inhibitor, thrombospondin 1, also controls tissue perfusion, haemostasis and radiosensitivity by antagonizing NO signalling. We examine the role of these and other emerging activities of thrombospondin 1 in cancer. Clarifying how endogenous and therapeutic angiogenesis inhibitors regulate vascular NO signalling could facilitate development of more selective inhibitors.
Collapse
Affiliation(s)
- Jeff S Isenberg
- Hemostasis and Vascular Biology Research Institute and the Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | | | | | | |
Collapse
|
14
|
Haorah J, Ramirez SH, Schall K, Smith D, Pandya R, Persidsky Y. Oxidative stress activates protein tyrosine kinase and matrix metalloproteinases leading to blood-brain barrier dysfunction. J Neurochem 2007; 101:566-76. [PMID: 17250680 DOI: 10.1111/j.1471-4159.2006.04393.x] [Citation(s) in RCA: 252] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The blood-brain barrier (BBB) formed by brain microvascular endothelial cells (BMVEC) regulates the passage of molecules and leukocytes in and out of the brain. Oxidative stress is a major underlying cause of neurodegenerative and neuroinflammatory disorders and BBB injury associated with them. Using human BMVEC grown on porous membranes covered with basement membrane (BM) matrix (BBB models), we demonstrated that reactive oxygen species (ROS) augmented permeability and monocyte migration across BBB. ROS activated matrix metalloproteinases (MMP-1, -2, and -9) and decreased tissue inhibitors of MMPs (TIMP-1 and -2) in a protein tyrosine kinase (PTK)-dependent manner. Increase in MMPs and PTK activities paralleled degradation of BM protein and enhanced tyrosine phosphorylation of tight junction (TJ) protein. These effects and enhanced permeability/monocyte migration were prevented by inhibitors of MMPs, PTKs, or antioxidant suggesting that oxidative stress caused BBB injury via degradation of BM protein by activated MMPs and by PTK-mediated TJ protein phosphorylation. These findings point to new therapeutic interventions ameliorating BBB dysfunction in neurological disorders such as stroke or neuroinflammation.
Collapse
Affiliation(s)
- James Haorah
- Center for Neurovirology and Neurodegenerative Disorders, Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska 68198-5215, USA.
| | | | | | | | | | | |
Collapse
|