1
|
Al-Wahaibi LH, Abou-Zied HA, Abdelrahman MH, Morcoss MM, Trembleau L, Youssif BGM, Bräse S. Design and synthesis new indole-based aromatase/iNOS inhibitors with apoptotic antiproliferative activity. Front Chem 2024; 12:1432920. [PMID: 39308851 PMCID: PMC11414412 DOI: 10.3389/fchem.2024.1432920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/26/2024] [Indexed: 09/25/2024] Open
Abstract
The present study details the design, synthesis, and bio-evaluation of indoles 3-16 as dual inhibitors of aromatase and inducible nitric oxide synthase (iNOS)with antiproliferative activity. The study evaluates the antiproliferative efficacy of 3-16 against various cancer cell lines, highlighting hybrids 12 and 16 for their exceptional activity with GI50 values of 25 nM and 28 nM, respectively. The inhibitory effects of the most active hybrids 5, 7, 12, and 16, on both aromatase and iNOS were evaluated. Compounds 12 and 16 were investigated for their apoptotic potential activity, and the results showed that the studied compounds enhance apoptosis by activating caspase-3, 8, and Bax and down-regulating the anti-apoptotic Bcl-2. Molecular docking studies are intricately discussed to confirm most active hybrids' 12- and 16-binding interactions with the aromatase active site. Additionally, our novel study discussed the ADME characteristics of derivatives 8-16, highlighting their potential as therapeutic agents with reduced toxicity.
Collapse
Affiliation(s)
- Lamya H. Al-Wahaibi
- Department of Chemistry, College of Sciences, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Hesham A. Abou-Zied
- Medicinal Chemistry Department, Faculty of Pharmacy, Deraya University, Minia, Egypt
| | - Mostafa H. Abdelrahman
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
| | - Martha M. Morcoss
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Nahda University, Beni-Suef, Egypt
| | - Laurent Trembleau
- School of Natural and Computing Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Bahaa G. M. Youssif
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Stefan Bräse
- Institute of Biological and Chemical Systems, IBCS-FMS, Karlsruhe Institute of Technology, Karlsruhe, Germany
| |
Collapse
|
2
|
Fernández-Vizcaíno E, Mateo R, Fernández de Mera IG, Mougeot F, Camarero PR, Ortiz-Santaliestra ME. Transgenerational effects of triazole fungicides on gene expression and egg compounds in non-exposed offspring: A case study using Red-Legged Partridges (Alectoris rufa). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171546. [PMID: 38479527 DOI: 10.1016/j.scitotenv.2024.171546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/04/2024] [Accepted: 03/04/2024] [Indexed: 03/26/2024]
Abstract
Triazole fungicides are widely used to treat cereal seeds before sowing. Granivorous birds like the Red-legged Partridge (Alectoris rufa) have high exposure risk because they ingest treated seeds that remain on the field surface. As triazole fungicides can act as endocrine disruptors, affecting sterol synthesis and reproduction in birds several months after exposure, we hypothesized that these effects could also impact subsequent generations of exposed birds. To test this hypothesis, we exposed adult partridges (F0) to seeds treated at commercial doses with four different formulations containing triazoles as active ingredients (flutriafol, prothioconazole, tebuconazole, and a mixture of the latter two), simulating field exposure during late autumn sowing. During the subsequent reproductive season, two to four months after exposure, we examined compound allocation of steroid hormones, cholesterol, vitamins, and carotenoids in eggs laid by exposed birds (F1), as well as the expression of genes encoding enzymes involved in sterol biosynthesis in one-day-old chicks of this F1. One year later, F1 animals were paired again to investigate the expression of the same genes in the F2 chicks. We found changes in the expression of some genes for all treatments and both generations. Additionally, we observed an increase in estrone levels in eggs from partridges treated with flutriafol compared to controls, a decrease in tocopherol levels in partridges exposed to the mixture of tebuconazole and prothioconazole, and an increase in retinol levels in partridges exposed to prothioconazole. Despite sample size limitations, this study provides novel insights into the mechanisms of action of the previously observed effects of triazole fungicide-treated seeds on avian reproduction with evidence that the effects can persist beyond the exposure windows, affecting unexposed offspring of partridges fed with treated seeds. The results highlight the importance of considering long-term chronic effects when assessing pesticide risks to wild birds.
Collapse
Affiliation(s)
- Elena Fernández-Vizcaíno
- Instituto de Investigación en Recursos Cinegéticos (IREC) CSIC-UCLM-JCCM, Ronda de Toledo 12, 13005 Ciudad Real, Spain.
| | - Rafael Mateo
- Instituto de Investigación en Recursos Cinegéticos (IREC) CSIC-UCLM-JCCM, Ronda de Toledo 12, 13005 Ciudad Real, Spain
| | - Isabel G Fernández de Mera
- Instituto de Investigación en Recursos Cinegéticos (IREC) CSIC-UCLM-JCCM, Ronda de Toledo 12, 13005 Ciudad Real, Spain
| | - François Mougeot
- Instituto de Investigación en Recursos Cinegéticos (IREC) CSIC-UCLM-JCCM, Ronda de Toledo 12, 13005 Ciudad Real, Spain
| | - Pablo R Camarero
- Instituto de Investigación en Recursos Cinegéticos (IREC) CSIC-UCLM-JCCM, Ronda de Toledo 12, 13005 Ciudad Real, Spain
| | - Manuel E Ortiz-Santaliestra
- Instituto de Investigación en Recursos Cinegéticos (IREC) CSIC-UCLM-JCCM, Ronda de Toledo 12, 13005 Ciudad Real, Spain
| |
Collapse
|
3
|
Rattner BA, Bean TG, Beasley VR, Berny P, Eisenreich KM, Elliott JE, Eng ML, Fuchsman PC, King MD, Mateo R, Meyer CB, O'Brien JM, Salice CJ. Wildlife ecological risk assessment in the 21st century: Promising technologies to assess toxicological effects. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2024; 20:725-748. [PMID: 37417421 DOI: 10.1002/ieam.4806] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/24/2023] [Accepted: 06/27/2023] [Indexed: 07/08/2023]
Abstract
Despite advances in toxicity testing and the development of new approach methodologies (NAMs) for hazard assessment, the ecological risk assessment (ERA) framework for terrestrial wildlife (i.e., air-breathing amphibians, reptiles, birds, and mammals) has remained unchanged for decades. While survival, growth, and reproductive endpoints derived from whole-animal toxicity tests are central to hazard assessment, nonstandard measures of biological effects at multiple levels of biological organization (e.g., molecular, cellular, tissue, organ, organism, population, community, ecosystem) have the potential to enhance the relevance of prospective and retrospective wildlife ERAs. Other factors (e.g., indirect effects of contaminants on food supplies and infectious disease processes) are influenced by toxicants at individual, population, and community levels, and need to be factored into chemically based risk assessments to enhance the "eco" component of ERAs. Regulatory and logistical challenges often relegate such nonstandard endpoints and indirect effects to postregistration evaluations of pesticides and industrial chemicals and contaminated site evaluations. While NAMs are being developed, to date, their applications in ERAs focused on wildlife have been limited. No single magic tool or model will address all uncertainties in hazard assessment. Modernizing wildlife ERAs will likely entail combinations of laboratory- and field-derived data at multiple levels of biological organization, knowledge collection solutions (e.g., systematic review, adverse outcome pathway frameworks), and inferential methods that facilitate integrations and risk estimations focused on species, populations, interspecific extrapolations, and ecosystem services modeling, with less dependence on whole-animal data and simple hazard ratios. Integr Environ Assess Manag 2024;20:725-748. © 2023 His Majesty the King in Right of Canada and The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC). Reproduced with the permission of the Minister of Environment and Climate Change Canada. This article has been contributed to by US Government employees and their work is in the public domain in the USA.
Collapse
Affiliation(s)
- Barnett A Rattner
- US Geological Survey, Eastern Ecological Science Center, Laurel, Maryland, USA
| | | | - Val R Beasley
- College of Veterinary Medicine, University of Illinois at Urbana, Champaign, Illinois, USA
| | | | - Karen M Eisenreich
- US Environmental Protection Agency, Washington, District of Columbia, USA
| | - John E Elliott
- Environment and Climate Change Canada, Delta, British Columbia, Canada
| | - Margaret L Eng
- Environment and Climate Change Canada, Dartmouth, Nova Scotia, Canada
| | | | - Mason D King
- Simon Fraser University, Burnaby, British Columbia, Canada
| | | | | | - Jason M O'Brien
- Environment and Climate Change Canada, Ottawa, Ontario, Canada
| | | |
Collapse
|
4
|
Pandey NK, Murmu A, Banjare P, Matore BW, Singh J, Roy PP. Integrated predictive QSAR, Read Across, and q-RASAR analysis for diverse agrochemical phytotoxicity in oat and corn: A consensus-based approach for risk assessment and prioritization. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:12371-12386. [PMID: 38228952 DOI: 10.1007/s11356-024-31872-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 01/02/2024] [Indexed: 01/18/2024]
Abstract
In the modern fast-paced lifestyle, time-efficient and nutritionally rich foods like corn and oat have gained popularity for their amino acids and antioxidant contents. The increasing demand for these cereals necessitates higher production which leads to dependency on agrochemicals, which can pose health risks through residual present in the plant products. To first report the phytotoxicity for corn and oat, our study employs QSAR, quantitative Read-Across and quantitative RASAR (q-RASAR). All developed QSAR and q-RASAR models were equally robust (R2 = 0.680-0.762, Q2Loo = 0.593-0.693, Q2F1 = 0.680-0.860) and find their superiority in either oat or corn model, respectively, based on MAE criteria. AD and PRI had been performed which confirm the reliability and predictability of the models. The mechanistic interpretation reveals that the symmetrical arrangement of electronegative atoms and polar groups directly influences the toxicity of compounds. The final phytotoxicity and prioritization are performed by the consensus approach which results into selection of 15 most toxic compounds for both species.
Collapse
Affiliation(s)
- Nilesh Kumar Pandey
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, 495009, India
| | - Anjali Murmu
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, 495009, India
| | | | - Balaji Wamanrao Matore
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, 495009, India
| | - Jagadish Singh
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, 495009, India
| | - Partha Pratim Roy
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, 495009, India.
| |
Collapse
|
5
|
Mohanty B. Pesticides exposure and compromised fitness in wild birds: Focusing on the reproductive endocrine disruption. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 199:105800. [PMID: 38458691 DOI: 10.1016/j.pestbp.2024.105800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 12/11/2023] [Accepted: 01/19/2024] [Indexed: 03/10/2024]
Abstract
Exposure of pesticides to wildlife species, especially on the aspect of endocrine disruption is of great concern. Wildlife species are more at risk to harmful exposures to the pesticides in their natural habitat through diet and several other means. Species at a higher tropic level in the food chain are more susceptible to the deleterious effects due to sequential biomagnifications of the pesticides/metabolites. Pesticides directly affect fitness of the species in the wild causing reproductive endocrine disruption impairing the hormones of the gonads and thyroid glands as reproduction is under the influence of cross regulations of these hormones. This review presents a comprehensive compilation of important literatures on the impact of the current use pesticides in disruption of both the hypothalamic-pituitary-gonadal and hypothalamic-pituitary-thyroid axes particularly in birds addressing impacts on the reproductive impairments and overall fitness. In addition to the epidemiological studies, laboratory investigations those provide supportive evidences of the probable mechanisms of disruption in the wild also have been incorporated in this review. To accurately predict the endocrine-disruption of the pesticides as well as to delineate the risk associated with potential cumulative effects, studies are to be more focused on the environmentally realistic exposure dose, mixture pesticide exposures and transgenerational effects. In addition, strategic screening/appropriate methodologies have to be developed to reveal the endocrine disruption potential of the contemporary use pesticides. Demand for adequate quantitative structure-activity relationships and insilico molecular docking studies for timely validation have been highlighted.
Collapse
|
6
|
Bellot P, Bichet C, Brischoux F, Fritsch C, Hope SF, Quesnot A, Angelier F. Experimental investigation of the effect of tebuconazole on three biomarkers of innate immunity in the house sparrow (Passer domesticus). ECOTOXICOLOGY (LONDON, ENGLAND) 2024; 33:119-129. [PMID: 38244180 DOI: 10.1007/s10646-024-02732-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/08/2024] [Indexed: 01/22/2024]
Abstract
Triazoles are among the most widely used fungicides in the world due to their efficacy against fungal crop diseases and their broad spectrum of action. Intensive use of triazoles has resulted in residual contamination in different compartments of agroecosystems and exposes non-target species to potential sublethal effects. Triazoles are known to be immunomodulators in medicine and therapeutic treatments, but very little data is available on their potential effect on immune parameters of non-target vertebrate species living in agroecosystems. In this study, we experimentally examined the impact of tebuconazole on three immune biomarkers (haemagglutination titre (HA), haemolysis titre (HL), and haptoglobin concentration (Hp)), as well as on the body condition of house sparrows (Passer domesticus). Our results suggest that tebuconazole had very little, if any, effect on the studied immune parameters. However, further studies are needed to better assess the effect of tebuconazole on bird immunity because (1) experimental individuals were kept under optimal conditions and the impact of tebuconazole on immunity may occur under suboptimal conditions, (2) only one concentration of tebuconazole was tested and its effect could be dose-dependent and (3) other complementary immunological biomarkers should be studied, given the complexity of the vertebrate immune system. Current knowledge on the potential effects of triazoles on the immunity of wild farmland vertebrates is still largely insufficient. Further physiological and immune studies should be conducted to better understand the effect of triazole fungicides on farmland birds.
Collapse
Affiliation(s)
- Pauline Bellot
- Centre d'Etudes Biologiques de Chizé, CNRS, La Rochelle Université, UMR 7372, 79360, Villiers en Bois, France.
| | - Coraline Bichet
- Centre d'Etudes Biologiques de Chizé, CNRS, La Rochelle Université, UMR 7372, 79360, Villiers en Bois, France
| | - François Brischoux
- Centre d'Etudes Biologiques de Chizé, CNRS, La Rochelle Université, UMR 7372, 79360, Villiers en Bois, France
| | - Clémentine Fritsch
- Laboratoire Chrono-Environnement, UMR 6249 CNRS, Université de Franche-Comté, F-25000, Besançon, France
| | - Sydney F Hope
- Centre d'Etudes Biologiques de Chizé, CNRS, La Rochelle Université, UMR 7372, 79360, Villiers en Bois, France
- Department of Psychology, Hunter College, City University of New York, New York, NY, 10065, USA
| | - Alice Quesnot
- Centre d'Etudes Biologiques de Chizé, CNRS, La Rochelle Université, UMR 7372, 79360, Villiers en Bois, France
| | - Frédéric Angelier
- Centre d'Etudes Biologiques de Chizé, CNRS, La Rochelle Université, UMR 7372, 79360, Villiers en Bois, France
| |
Collapse
|
7
|
Qiao K, Liang Z, Wang A, Wu Q, Yang S, Ma Y, Li S, Schiwy S, Jiang J, Zhou S, Ye Q, Hollert H, Gui W. Waterborne Tebuconazole Exposure Induces Male-Biased Sex Differentiation in Zebrafish ( Danio rerio) Larvae via Aromatase Inhibition. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:16764-16778. [PMID: 37890152 DOI: 10.1021/acs.est.3c03181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2023]
Abstract
Tebuconazole is a widely used fungicide for various crops that targets sterol 14-α-demethylase (CYP51) in fungi. However, attention has shifted to aromatase (CYP19) due to limited research indicating its reproductive impact on aquatic organisms. Herein, zebrafish were exposed to 0.5 mg/L tebuconazole at different developmental stages. The proportion of males increased significantly after long-term exposure during the sex differentiation phase (0-60, 5-60, and 19-60 days postfertilization (dpf)). Testosterone levels increased and 17β-estradiol and cyp19a1a expression levels decreased during the 5-60 dpf exposure, while the sex ratio was equally distributed on coexposure with 50 ng/L 17β-estradiol. Chemically activated luciferase gene expression bioassays determined that the male-biased sex differentiation was not caused by tebuconazole directly binding to sex hormone receptors. Protein expression and phosphorylation levels were specifically altered in the vascular endothelial growth factor signaling pathway despite excluding the possibility of tebuconazole directly interacting with kinases. Aromatase was selected for potential target analysis. Molecular docking and aromatase activity assays demonstrated the interactions between tebuconazole and aromatase, highlighting that tebuconazole poses a threat to fish populations by inducing a gender imbalance.
Collapse
Affiliation(s)
- Kun Qiao
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, P. R. China
- Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou 310058, P. R. China
- Department Evolutionary Ecology and Environmental Toxicology, Faculty Biological Sciences, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
| | - Zhuoying Liang
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, P. R. China
| | - Aoxue Wang
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, P. R. China
| | - Qiong Wu
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, P. R. China
- Patent Examination Cooperation (Henan) Center of the Patent Office, CNIPA, Zhengzhou 450046, P. R. China
| | - Siyu Yang
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, P. R. China
| | - Yongfang Ma
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, P. R. China
| | - Shuying Li
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, P. R. China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou 310058, P. R. China
| | - Sabrina Schiwy
- Department Evolutionary Ecology and Environmental Toxicology, Faculty Biological Sciences, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
| | - Jinhua Jiang
- Institute of Agro-Products Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, P. R. China
| | - Shengli Zhou
- Zhejiang Province Environmental Monitoring Center, Hangzhou 310012, P. R. China
| | - Qingfu Ye
- Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Henner Hollert
- Department Evolutionary Ecology and Environmental Toxicology, Faculty Biological Sciences, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
- Department Environmental Media Related Ecotoxicology, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, 57392 Schmallenberg, Germany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), 60325 Frankfurt am Main, Germany
| | - Wenjun Gui
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, P. R. China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou 310058, P. R. China
| |
Collapse
|
8
|
Bellot P, Brischoux F, Budzinski H, Dupont SM, Fritsch C, Hope SF, Michaud B, Pallud M, Parenteau C, Prouteau L, Rocchi S, Angelier F. Chronic exposure to tebuconazole alters thyroid hormones and plumage quality in house sparrows (Passer domesticus). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-28259-5. [PMID: 37365357 DOI: 10.1007/s11356-023-28259-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 06/10/2023] [Indexed: 06/28/2023]
Abstract
Triazoles belong to a family of fungicides that are ubiquitous in agroecosystems due to their widespread use in crops. Despite their efficiency in controlling fungal diseases, triazoles are also suspected to affect non-target vertebrate species through the disruption of key physiological mechanisms. Most studies so far have focused on aquatic animal models, and the potential impact of triazoles on terrestrial vertebrates has been overlooked despite their relevance as sentinel species of contaminated agroecosystems. Here, we examined the impact of tebuconazole on the thyroid endocrine axis, associated phenotypic traits (plumage quality and body condition) and sperm quality in wild-caught house sparrows (Passer domesticus). We experimentally exposed house sparrows to realistic concentrations of tebuconazole under controlled conditions and tested the impact of this exposure on the levels of thyroid hormones (T3 and T4), feather quality (size and density), body condition and sperm morphology. We found that exposure to tebuconazole caused a significant decrease in T4 levels, suggesting that this azole affects the thyroid endocrine axis, although T3 levels did not differ between control and exposed sparrows. Importantly, we also found that exposed females had an altered plumage structure (larger but less dense feathers) relative to control females. The impact of tebuconazole on body condition was dependent on the duration of exposure and the sex of individuals. Finally, we did not show any effect of exposure to tebuconazole on sperm morphology. Our study demonstrates for the first time that exposure to tebuconazole can alter the thyroid axis of wild birds, impact their plumage quality and potentially affect their body condition. Further endocrine and transcriptomic studies are now needed not only to understand the underlying mechanistic effects of tebuconazole on these variables, but also to further investigate their ultimate consequences on performance (i.e. reproduction and survival).
Collapse
Affiliation(s)
- Pauline Bellot
- Centre d'Etudes Biologiques de Chizé, UMR 7372, CNRS-La Rochelle Université, 79360, Villiers en Bois, France.
| | - François Brischoux
- Centre d'Etudes Biologiques de Chizé, UMR 7372, CNRS-La Rochelle Université, 79360, Villiers en Bois, France
| | - Hélène Budzinski
- CNRS-EPOC, UMR 5805, LPTC Research Group, University of Bordeaux, 33400, Talence, France
| | - Sophie M Dupont
- BOREA, MNHN, CNRS 8067, SU, IRD 207, UCN, UA, 97233, Schoelcher, Martinique, France
- LIENSs, UMR 7266 CNRS-La Rochelle Université, 2 Rue Olympe de Gouges, 17000, La Rochelle, France
| | - Clémentine Fritsch
- Laboratoire Chrono-Environnement, UMR 6249, CNRS/Université de Franche-Comté, F-25000, Besançon, France
| | - Sydney F Hope
- Centre d'Etudes Biologiques de Chizé, UMR 7372, CNRS-La Rochelle Université, 79360, Villiers en Bois, France
| | - Bruno Michaud
- Centre d'Etudes Biologiques de Chizé, UMR 7372, CNRS-La Rochelle Université, 79360, Villiers en Bois, France
| | - Marie Pallud
- Centre d'Etudes Biologiques de Chizé, UMR 7372, CNRS-La Rochelle Université, 79360, Villiers en Bois, France
| | - Charline Parenteau
- Centre d'Etudes Biologiques de Chizé, UMR 7372, CNRS-La Rochelle Université, 79360, Villiers en Bois, France
| | - Louise Prouteau
- CNRS-EPOC, UMR 5805, LPTC Research Group, University of Bordeaux, 33400, Talence, France
| | - Steffi Rocchi
- Laboratoire Chrono-Environnement, UMR 6249, CNRS/Université de Franche-Comté, F-25000, Besançon, France
| | - Frédéric Angelier
- Centre d'Etudes Biologiques de Chizé, UMR 7372, CNRS-La Rochelle Université, 79360, Villiers en Bois, France
| |
Collapse
|
9
|
Bellot P, Dupont SM, Brischoux F, Budzinski H, Chastel O, Fritsch C, Lourdais O, Prouteau L, Rocchi S, Angelier F. Experimental Exposure to Tebuconazole Affects Metabolism and Body Condition in a Passerine Bird, the House Sparrow (Passer domesticus). ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:2500-2511. [PMID: 35899983 DOI: 10.1002/etc.5446] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/01/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
Triazole compounds are among the most widely used fungicides in agroecosystems to protect crops from potential fungal diseases. Triazoles are suspected to have an impact on nontarget species due to their interactions with nonfungal sterol synthesis, and wild birds are likely to be contaminated by triazole fungicides because many of them live in agroecosystems. We experimentally tested whether exposure to environmental concentrations of a triazole could alter key integrative traits (metabolic rates and body condition) of an agroecosystem sentinel species, the house sparrow (Passer domesticus). Wild-caught adult sparrows were maintained in captivity and exposed (exposed group) or not (control group) for 7 continuous months to tebuconazole through drinking water. The metabolic rates of exposed and control sparrows were then measured at two different temperatures (12 °C and 25 °C), which correspond, respectively, to the thermoregulation and thermoneutrality temperatures of this species. We found that exposed sparrows had lower resting metabolic rates (i.e., measured at thermoneutrality, 25 °C) than controls. However, the thermoregulatory metabolic rates (i.e., measured at 12 °C) did not differ between exposed and control sparrows. Although the body mass and condition were not measured at the beginning of the exposure, sparrows at the time of the metabolic measurements 7 months after the onset of such exposure had a higher body condition than controls, supporting further the idea that tebuconazole affects metabolic functions. Our study demonstrates for the first time that the use of tebuconazole can alter metabolism and could potentially lead to adverse effects in birds. Environ Toxicol Chem 2022;41:2500-2511. © 2022 SETAC.
Collapse
Affiliation(s)
- Pauline Bellot
- Centre d'Etudes Biologiques de Chizé, CNRS-La Rochelle Université, UMR 7372, Villiers en Bois, France
| | - Sophie Marie Dupont
- Centre d'Etudes Biologiques de Chizé, CNRS-La Rochelle Université, UMR 7372, Villiers en Bois, France
| | - François Brischoux
- Centre d'Etudes Biologiques de Chizé, CNRS-La Rochelle Université, UMR 7372, Villiers en Bois, France
| | - Hélène Budzinski
- University of Bordeaux, CNRS-EPOC, UMR 5805, LPTC Research Group, Talence, France
| | - Olivier Chastel
- Centre d'Etudes Biologiques de Chizé, CNRS-La Rochelle Université, UMR 7372, Villiers en Bois, France
| | - Clémentine Fritsch
- Laboratoire Chrono-Environnement, UMR 6249 CNRS/Université Bourgogne Franche-Comté, Besançon, France
| | - Olivier Lourdais
- Centre d'Etudes Biologiques de Chizé, CNRS-La Rochelle Université, UMR 7372, Villiers en Bois, France
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| | - Louise Prouteau
- Centre d'Etudes Biologiques de Chizé, CNRS-La Rochelle Université, UMR 7372, Villiers en Bois, France
- University of Bordeaux, CNRS-EPOC, UMR 5805, LPTC Research Group, Talence, France
| | - Steffi Rocchi
- Laboratoire Chrono-Environnement, UMR 6249 CNRS/Université Bourgogne Franche-Comté, Besançon, France
- Service de Parasitologie-Mycologie, CHU Jean Minjoz, Besançon, France
| | - Frédéric Angelier
- Centre d'Etudes Biologiques de Chizé, CNRS-La Rochelle Université, UMR 7372, Villiers en Bois, France
| |
Collapse
|
10
|
Moreau J, Rabdeau J, Badenhausser I, Giraudeau M, Sepp T, Crépin M, Gaffard A, Bretagnolle V, Monceau K. Pesticide impacts on avian species with special reference to farmland birds: a review. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:790. [PMID: 36107257 DOI: 10.1007/s10661-022-10394-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 08/12/2022] [Indexed: 06/15/2023]
Abstract
For decades, we have observed a major biodiversity crisis impacting all taxa. Avian species have been particularly well monitored over the long term, documenting their declines. In particular, farmland birds are decreasing worldwide, but the contribution of pesticides to their decline remains controversial. Most studies addressing the effects of agrochemicals are limited to their assessment under controlled laboratory conditions, the determination of lethal dose 50 (LD50) values and testing in a few species, most belonging to Galliformes. They often ignore the high interspecies variability in sensitivity, delayed sublethal effects on the physiology, behaviour and life-history traits of individuals and their consequences at the population and community levels. Most importantly, they have entirely neglected to test for the multiple exposure pathways to which individuals are subjected in the field (cocktail effects). The present review aims to provide a comprehensive overview for ecologists, evolutionary ecologists and conservationists. We aimed to compile the literature on the effects of pesticides on bird physiology, behaviour and life-history traits, collecting evidence from model and wild species and from field and lab experiments to highlight the gaps that remain to be filled. We show how subtle nonlethal exposure might be pernicious, with major consequences for bird populations and communities. We finally propose several prospective guidelines for future studies that may be considered to meet urgent needs.
Collapse
Affiliation(s)
- Jérôme Moreau
- Équipe Écologie Évolutive, UMR CNRS 6282 Biogéosciences, Université Bourgogne Franche-Comté, Dijon, France
- UMR CNRS 7372 Centre d'Études Biologiques de Chizé, La Rochelle Université, 79360, Villiers-en-Bois, France
| | - Juliette Rabdeau
- UMR CNRS 7372 Centre d'Études Biologiques de Chizé, La Rochelle Université, 79360, Villiers-en-Bois, France
| | - Isabelle Badenhausser
- Unité de Recherche Pluridisciplinaire Prairies Plantes Fourragères, INRAE, 86600, Lusignan, France
| | - Mathieu Giraudeau
- UMR IRD, CREEC, Université de Montpellier, 224-CNRS 5290, Montpellier, France
- Centre de Recherche en Écologie Et Évolution de La Sante (CREES), Montpellier, France
- Littoral Environnement Et Sociétés (LIENSs), UMR 7266, CNRS- La Rochelle Université, La Rochelle, France
| | - Tuul Sepp
- Department of Zoology, University of Tartu, Tartu, Estonia
| | - Malaury Crépin
- UMR CNRS 7372 Centre d'Études Biologiques de Chizé, La Rochelle Université, 79360, Villiers-en-Bois, France
| | - Agathe Gaffard
- UMR CNRS 7372 Centre d'Études Biologiques de Chizé, La Rochelle Université, 79360, Villiers-en-Bois, France
| | - Vincent Bretagnolle
- UMR CNRS 7372 Centre d'Études Biologiques de Chizé, La Rochelle Université, 79360, Villiers-en-Bois, France
- LTSER "Zone Atelier Plaine & Val de Sèvre", CNRS, 79360, Villiers-en-Bois, France
| | - Karine Monceau
- UMR CNRS 7372 Centre d'Études Biologiques de Chizé, La Rochelle Université, 79360, Villiers-en-Bois, France.
| |
Collapse
|
11
|
Ahmed S, Prabahar AE, Saxena AK. Molecular docking-based interactions in QSAR studies on Mycobacterium tuberculosis ATP synthase inhibitors. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2022; 33:289-305. [PMID: 35532308 DOI: 10.1080/1062936x.2022.2066175] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 04/09/2022] [Indexed: 05/19/2023]
Abstract
Tuberculosis (TB) is a global threat with a large burden across the continents in terms of mortality, morbidity, and financial losses. The disease has evolved into multi-drug-resistant (MDR-TB) and extensively drug-resistant (XDR-TB) tuberculosis owing to numerous factors ranging from patients' non-compliance to demographical implications. There have been very few new drugs for resistant TB. Resistance has already been reported even for the newly introduced drug bedaquiline. An attempt has been made to integrate both structure-based and QSAR drug design techniques (QSAR-SBDD) for the identification of novel leads. The docking scores normally do not correlate with the activity. Hence, the docking results have been analysed in terms of the number of interactions rather than docking scores. The parameters derived from interactions have been used in developing the QSAR models. The best model shows a good correlation (r = 0.908) between the activity and interaction parameter 'C' describing the sum of all the interactions with each amino acid residue. This model also predicts external dataset with a good correlation (rext = 0.851) and can be used for the identification of novel chemical entities (NCEs) and repurposed drugs for TB therapeutics.
Collapse
Affiliation(s)
- S Ahmed
- Department of Pharmaceutical Chemistry, Global Institute of Pharmaceutical Education and Research, Kashipur, India
- Department of Pharmaceutical Chemistry, Teerthanker Mahaveer College of Pharmacy, Moradabad, India
| | - A E Prabahar
- Department of Pharmaceutical Chemistry, Teerthanker Mahaveer College of Pharmacy, Moradabad, India
| | - A K Saxena
- Department of Pharmaceutical Chemistry, Global Institute of Pharmaceutical Education and Research, Kashipur, India
| |
Collapse
|
12
|
Mukherjee RK, Kumar V, Roy K. Ecotoxicological QSTR and QSTTR Modeling for the Prediction of Acute Oral Toxicity of Pesticides against Multiple Avian Species. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:335-348. [PMID: 34905924 DOI: 10.1021/acs.est.1c05732] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The ever-increasing use of pesticides in response to the rising agricultural demand has threatened the existence of nontarget organisms like avian species, disrupting the global ecological integrity. Therefore, it is critical to protect and restore different endangered bird species from the perspective of ecosystem safety. In the present work, we have developed regression-based two-dimensional quantitative structure toxicity relationship (2D QSTR) and quantitative structure toxicity-toxicity relationship (QSTTR) models to estimate the toxicity of pesticides on five different avian species following the Organization for Economic Co-operation and Development (OECD) guidelines. Rigorous validation has been performed using different statistical internal and external validation parameters to ensure the robustness and interpretability of the developed models. From the developed models, it can be stated that the presence of electronegative and lipophilic features greatly enhance pesticide toxicity, whereas the hydrophilic characters are shown to have a detrimental impact on the toxicity of pesticides. Moreover, the developed QSTTR models have been employed to the in silico toxicity prediction of 124, 154, and 250 pesticides against bobwhite quail, ring-necked pheasant, and mallard duck species, respectively, extracted from the Office of Pesticides Program (OPP) Pesticide Ecotoxicity Database. The information obtained from the modeled descriptors might be used for pesticide risk assessment in the future, with the added benefit of providing an early caution of their possible negative impact on birds for regulatory purposes.
Collapse
Affiliation(s)
- Rajendra Kumar Mukherjee
- Drug Theoretics and Cheminformatics (DTC) Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Vinay Kumar
- Drug Theoretics and Cheminformatics (DTC) Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Kunal Roy
- Drug Theoretics and Cheminformatics (DTC) Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| |
Collapse
|
13
|
Bhunia SS, Saxena AK. Efficiency of Homology Modeling Assisted Molecular Docking in G-protein Coupled Receptors. Curr Top Med Chem 2021; 21:269-294. [PMID: 32901584 DOI: 10.2174/1568026620666200908165250] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/20/2020] [Accepted: 09/01/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Molecular docking is in regular practice to assess ligand affinity on a target protein crystal structure. In the absence of protein crystal structure, the homology modeling or comparative modeling is the best alternative to elucidate the relationship details between a ligand and protein at the molecular level. The development of accurate homology modeling (HM) and its integration with molecular docking (MD) is essential for successful, rational drug discovery. OBJECTIVE The G-protein coupled receptors (GPCRs) are attractive therapeutic targets due to their immense role in human pharmacology. The GPCRs are membrane-bound proteins with the complex constitution, and the understanding of their activation and inactivation mechanisms is quite challenging. Over the past decade, there has been a rapid expansion in the number of solved G-protein-coupled receptor (GPCR) crystal structures; however, the majority of the GPCR structures remain unsolved. In this context, HM guided MD has been widely used for structure-based drug design (SBDD) of GPCRs. METHODS The focus of this review is on the recent (i) developments on HM supported GPCR drug discovery in the absence of GPCR crystal structures and (ii) application of HM in understanding the ligand interactions at the binding site, virtual screening, determining receptor subtype selectivity and receptor behaviour in comparison with GPCR crystal structures. RESULTS The HM in GPCRs has been extremely challenging due to the scarcity in template structures. In such a scenario, it is difficult to get accurate HM that can facilitate understanding of the ligand-receptor interactions. This problem has been alleviated to some extent by developing refined HM based on incorporating active /inactive ligand information and inducing protein flexibility. In some cases, HM proteins were found to outscore crystal structures. CONCLUSION The developments in HM have been highly operative to gain insights about the ligand interaction at the binding site and receptor functioning at the molecular level. Thus, HM guided molecular docking may be useful for rational drug discovery for the GPCRs mediated diseases.
Collapse
Affiliation(s)
- Shome S Bhunia
- Global Institute of Pharmaceutical Education and Research, Kashipur, Uttarakhand, India
| | - Anil K Saxena
- Division of Medicinal and Process Chemistry, CSIR-CDRI, Lucknow 226031, India
| |
Collapse
|
14
|
Moreau J, Monceau K, Crépin M, Tochon FD, Mondet C, Fraikin M, Teixeira M, Bretagnolle V. Feeding partridges with organic or conventional grain triggers cascading effects in life-history traits. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 278:116851. [PMID: 33711629 DOI: 10.1016/j.envpol.2021.116851] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 02/24/2021] [Accepted: 02/26/2021] [Indexed: 06/12/2023]
Abstract
Farmland birds are declining across Europe and North America and the research of factors behind is the subject of extensive researches. Agricultural intensification is now recognized as a major factor governing the loss of biodiversity with strong evidence that pesticides induced direct bird mortality at a high dose. However, less attention has been given to the long-term effects of chronic exposure to low dose of pesticides. Here, we used an experimental procedure in which grey partridges were fed with untreated grains obtained from either organic (no pesticide) or conventional agriculture (with pesticide) for 26 weeks, thus strictly mimicking wild birds foraging on fields. We then examined a suite of life-history traits (ecophysiological and behavioural) that may ultimately, influence population dynamics. We show for the first time that ingesting low pesticide doses over a long period has long-term consequences on several major physiological pathways without inducing differential mortality. Compared to control partridges, birds exposed to chronic doses i) had less developed carotenoid-based ornaments due to lower concentrations of plasmatic carotenoids, ii) had higher activated immune system, iii) showed signs of physiological stress inducing a higher intestinal parasitic load, iv) had higher behavioural activity and body condition and v) showed lower breeding investment. Our results are consistent with a hormetic effect, in which exposure to a low dose of a chemical agent may induce a positive response, but our results also indicate that breeding adults may show impaired fitness traits bearing population consequences through reduced breeding investment or productivity. Given the current scale of use of pesticides in agrosystems, we suggest that such shifts in life-history traits may have a negative long-term impact on wild bird populations across agrosystems. We stress that long-term effects should no longer be ignored in pesticide risk assessment, where currently, only short-term effects are taken into account.
Collapse
Affiliation(s)
- Jérôme Moreau
- UMR CNRS 6282 Biogéosciences, Université Bourgogne Franche-Comté, 6 Boulevard Gabriel, 21000, Dijon, France; Centre D'Études Biologiques de Chizé, UMR 7372, CNRS & La Rochelle Université, 79360, Villiers-en-bois, France.
| | - Karine Monceau
- Centre D'Études Biologiques de Chizé, UMR 7372, CNRS & La Rochelle Université, 79360, Villiers-en-bois, France
| | - Malaury Crépin
- Centre D'Études Biologiques de Chizé, UMR 7372, CNRS & La Rochelle Université, 79360, Villiers-en-bois, France
| | - Flavie Derouin Tochon
- Centre D'Études Biologiques de Chizé, UMR 7372, CNRS & La Rochelle Université, 79360, Villiers-en-bois, France
| | - Cécilia Mondet
- Centre D'Études Biologiques de Chizé, UMR 7372, CNRS & La Rochelle Université, 79360, Villiers-en-bois, France
| | - Marie Fraikin
- Centre D'Études Biologiques de Chizé, UMR 7372, CNRS & La Rochelle Université, 79360, Villiers-en-bois, France
| | - Maria Teixeira
- UMR CNRS 6282 Biogéosciences, Université Bourgogne Franche-Comté, 6 Boulevard Gabriel, 21000, Dijon, France
| | - Vincent Bretagnolle
- Centre D'Études Biologiques de Chizé, UMR 7372, CNRS & La Rochelle Université, 79360, Villiers-en-bois, France; LTSER "Zone Atelier Plaine & Val de Sèvre", Villiers-en-Bois, 79360, France
| |
Collapse
|
15
|
Pes K, Friese A, Cox CJ, Laizé V, Fernández I. Biochemical and molecular responses of the Mediterranean mussel (Mytilus galloprovincialis) to short-term exposure to three commonly prescribed drugs. MARINE ENVIRONMENTAL RESEARCH 2021; 168:105309. [PMID: 33798995 DOI: 10.1016/j.marenvres.2021.105309] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 03/03/2021] [Accepted: 03/11/2021] [Indexed: 06/12/2023]
Abstract
Pharmaceuticals represent a group of emerging contaminants. The short-term effect (3 and 7 days) of warfarin (1 and 10 mg L-1), dexamethasone (0.392 and 3.92 mg L-1) and imidazole (0.013 and 0.13 mg L-1) exposure was evaluated on mussels (Mytilus galloprovincialis). Total antioxidant status, glutathione reductase, glutathione peroxidase (GPx) and superoxide dismutase enzyme activities, and the expression of genes involved in the xenobiotic response (ATP binding cassette subfamily B member 1 (abcb1) and several nuclear receptor family J (nr1j) isoforms), were evaluated. All nr1j isoforms are suggested to be the xenobiotic receptor orthologs of the NR1I family. All drugs increased GPx activity and altered the expression of particular nr1j isoforms. Dexamethasone exposure also decreased abcb1 expression. These findings raised some concerns regarding the release of these pharmaceuticals into the aquatic environment. Thus, further studies might be needed to perform an accurate environmental risk assessment of these 3 poorly studied drugs.
Collapse
Affiliation(s)
- Katia Pes
- Centro de Ciências do Mar (CCMAR), Universidade do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Annika Friese
- Centro de Ciências do Mar (CCMAR), Universidade do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Cymon J Cox
- Centro de Ciências do Mar (CCMAR), Universidade do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Vincent Laizé
- Centro de Ciências do Mar (CCMAR), Universidade do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Ignacio Fernández
- Aquaculture Research Center, Agro-Technological Institute of Castilla y León (ITACyL), Ctra. Arévalo, s/n. 40196 Zamarramala, Segovia, Spain.
| |
Collapse
|
16
|
Banjare P, Singh J, Roy PP. Predictive classification-based QSTR models for toxicity study of diverse pesticides on multiple avian species. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:17992-18003. [PMID: 33410022 DOI: 10.1007/s11356-020-11713-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 11/16/2020] [Indexed: 06/12/2023]
Abstract
Protection and restoration of different endangered bird species from pesticide exposure is crucial from the point of safety assessment of ecosystem. Toxicity predictions or risk assessment of pesticides by chemometric tools is one of the challenging fields in recent era. In the present study, classification-based quantitative structure toxicity relationship (QSTR) models were developed for a large dataset (516) of diverse pesticides on multiple avian species mallard duck, bobwhite quail, and zebra finch according to the Organization for Economic Co-operation and Development guidelines. The QSTR models were developed by linear discriminant analysis method with genetic algorithm for feature selection from 2D descriptors using QSAR-Co software. Different statistical metrics assured the reliability and robustness of the developed models. External compound prediction highlighted predictive nature of the models. The mechanistic interpretation suggested that presence of phosphate, halogens (Cl, Br), ether linkage, and NCOO influence the avian toxicity. Furthermore, model reliability was checked by the application of the standardization approach of the applicability domain (AD). Finally, the developed models provided a priori toxic and non-toxic classification for unknown pesticides (inside AD), with particular emphasis on organophosphate pesticides. The interspecies toxicity correlation and predictions encouraged for their further applicability for the fulfilment of data gaps in vital missing species.
Collapse
Affiliation(s)
- Purusottam Banjare
- Department of Medicinal and Pharmaceutical Chemistry, Institute of Pharmaceutical Sciences, Guru GhasidasVishwavidyalaya (A Central University), Bilaspur, 495009, India
| | - Jagadish Singh
- Department of Medicinal and Pharmaceutical Chemistry, Institute of Pharmaceutical Sciences, Guru GhasidasVishwavidyalaya (A Central University), Bilaspur, 495009, India
| | - Partha Pratim Roy
- Department of Medicinal and Pharmaceutical Chemistry, Institute of Pharmaceutical Sciences, Guru GhasidasVishwavidyalaya (A Central University), Bilaspur, 495009, India.
| |
Collapse
|
17
|
Lopez-Antia A, Ortiz-Santaliestra ME, Mougeot F, Camarero PR, Mateo R. Birds feeding on tebuconazole treated seeds have reduced breeding output. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 271:116292. [PMID: 33388683 DOI: 10.1016/j.envpol.2020.116292] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 11/23/2020] [Accepted: 12/10/2020] [Indexed: 06/12/2023]
Abstract
Drilled seeds are an important food resource for many farmland birds but may pose a serious risk when treated with pesticides. Most compounds currently used as seed treatment in the EU have low acute toxicity but may still affect birds in a sub-chronic or chronic way, especially considering that the sowing season lasts several weeks or months, resulting in a long exposure period for birds. Tebuconazole is a triazole fungicide widely used in agriculture but its toxicity to birds remains largely unknown. Our aim was to test if a realistic scenario of exposure to tebuconazole treated seeds affected the survival and subsequent reproduction of the red-legged partridge (Alectoris rufa). We fed captive partridges with wheat seeds treated with 0%, 20% or 100% of tebuconazole application rate during 25 days in late winter (i.e. tebuconazole dietary doses were approximately 0.2 and 1.1 mg/kg bw/day). We studied treatment effects on the physiology (i.e. body weight, biochemistry, immunology, oxidative stress, coloration) and reproduction of partridges. Exposed birds did not reduce food consumption but presented reduced plasmatic concentrations of lipids (triglycerides at both exposure doses, cholesterol at high dose) and proteins (high dose). The coloration of the eye ring was also reduced in the low dose group. Exposure ended 60 days before the first egg was laid, but still affected reproductive output: hatching rate was reduced by 23% and brood size was 1.5 times smaller in the high dose group compared with controls. No significant reproductive effects were found in the low dose group. Our results point to the need to study the potential endocrine disruption mechanism of this fungicide with lagged effects on reproduction. Risk assessments for tebuconazole use as seed treatment should be revised in light of these reported effects on bird reproduction.
Collapse
Affiliation(s)
- Ana Lopez-Antia
- Behavioural Ecology and Ecophysiology Group (BECO), Department of Biology, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium; Instituto de Investigación en Recursos Cinegéticos (IREC) CSIC-UCLM-JCCM, Ronda de Toledo 12, 13071, Ciudad Real, Spain.
| | - Manuel E Ortiz-Santaliestra
- Instituto de Investigación en Recursos Cinegéticos (IREC) CSIC-UCLM-JCCM, Ronda de Toledo 12, 13071, Ciudad Real, Spain
| | - François Mougeot
- Instituto de Investigación en Recursos Cinegéticos (IREC) CSIC-UCLM-JCCM, Ronda de Toledo 12, 13071, Ciudad Real, Spain
| | - Pablo R Camarero
- Instituto de Investigación en Recursos Cinegéticos (IREC) CSIC-UCLM-JCCM, Ronda de Toledo 12, 13071, Ciudad Real, Spain
| | - Rafael Mateo
- Instituto de Investigación en Recursos Cinegéticos (IREC) CSIC-UCLM-JCCM, Ronda de Toledo 12, 13071, Ciudad Real, Spain
| |
Collapse
|
18
|
Çıldır DS, Liman R. Cytogenetic and genotoxic assessment in Allium cepa exposed to imazalil fungicide. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:20335-20343. [PMID: 32242316 DOI: 10.1007/s11356-020-08553-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 03/23/2020] [Indexed: 06/11/2023]
Abstract
Imazalil (IMZ), a fungicide containing imidazole group, is extensively used for the prevention and treatment of fungal diseases in plants. Current study was performed to examine cyto-genotoxic potential of IMZ on Allium cepa roots by following Allium ana-telophase and single cell gel electrophoresis (comet) assays. The concentration which reduced the growth of the root tips of IMZ by 50% compared to the negative control group (EC50) was found to be 1 μg/mL by Allium root growth inhibition test. 0.5, 1, and 2 μg/mL concentrations of IMZ were exposed to Allium roots for intervals of 24, 48, 72, and 96 h. 10 μg/mL of methyl methane sulfonate (MMS) and distilled water were used as control groups, both positive and negative. Statistical analysis was performed by using one-way ANOVA with Duncan's multiple comparison tests at p ≤ 0.05 and Pearson correlation test at p = 0.01. IMZ showed cytotoxic effect by statistically decreasing root growth and mitotic index (MI) and also genotoxic effect by statistically increasing chromosomal aberrations (CAs) and DNA damage compared to the negative control group. With these cyto-genotoxic effects, it should be used carefully and further cyto-genotoxic mechanisms should be investigated along with other toxicity tests.
Collapse
Affiliation(s)
- Damla Selin Çıldır
- Molecular Biology and Genetics Department, Faculty of Arts and Sciences, Uşak University, 1 Eylül Campus, 64300, Uşak, Turkey
| | - Recep Liman
- Molecular Biology and Genetics Department, Faculty of Arts and Sciences, Uşak University, 1 Eylül Campus, 64300, Uşak, Turkey.
| |
Collapse
|
19
|
Chayawan C, Toma C, Benfenati E, Caballero Alfonso AY. Towards an Understanding of the Mode of Action of Human Aromatase Activity for Azoles through Quantum Chemical Descriptors-Based Regression and Structure Activity Relationship Modeling Analysis. Molecules 2020; 25:molecules25030739. [PMID: 32046297 PMCID: PMC7037385 DOI: 10.3390/molecules25030739] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/06/2020] [Accepted: 02/06/2020] [Indexed: 11/16/2022] Open
Abstract
Aromatase is an enzyme member of the cytochrome P450 superfamily coded by the CYP19A1 gene. Its main action is the conversion of androgens into estrogens, transforming androstenedione into estrone and testosterone into estradiol. This enzyme is present in several tissues and it has a key role in the maintenance of the balance of androgens and estrogens, and therefore in the regulation of the endocrine system. With regard to chemical safety and human health, azoles, which are used as agrochemicals and pharmaceuticals, are potential endocrine disruptors due to their agonist or antagonist interactions with the human aromatase enzyme. This theoretical study investigated the active agonist and antagonist properties of “chemical classes of azoles” to determine the relationships of azole interaction with CYP19A1, using stereochemical and electronic properties of the molecules through classification and multilinear regression (MLR) modeling. The antagonist activities for the same substituent on diazoles and triazoles vary with its chemical composition and its position and both heterocyclic systems require aromatic substituents. The triazoles require the spherical shape and diazoles have to be in proper proportion of the branching index and the number of ring systems for the inhibition. Considering the electronic aspects, triazole antagonist activity depends on the electrophilicity index that originates from interelectronic exchange interaction (ωHF) and the LUMO energy (ELUMOPM7), and the diazole antagonist activity originates from the penultimate orbital (EHOMONLPM7) of diazoles. The regression models for agonist activity show that it is opposed by the static charges but favored by the delocalized charges on the diazoles and thiazoles. This study proposes that the electron penetration of azoles toward heme group decides the binding behavior and stereochemistry requirement for antagonist activity against CYP19A1 enzyme.
Collapse
Affiliation(s)
- Chayawan Chayawan
- Laboratory of Environmental Chemistry and Toxicology, Department of Environmental Health Sciences, Istituto di RicercheFarmacologiche “Mario Negri”—IRCCS, Via Mario Negri, 2, 20156 Milano, Italy; (C.C.); (C.T.)
| | - Cosimo Toma
- Laboratory of Environmental Chemistry and Toxicology, Department of Environmental Health Sciences, Istituto di RicercheFarmacologiche “Mario Negri”—IRCCS, Via Mario Negri, 2, 20156 Milano, Italy; (C.C.); (C.T.)
| | - Emilio Benfenati
- Laboratory of Environmental Chemistry and Toxicology, Department of Environmental Health Sciences, Istituto di RicercheFarmacologiche “Mario Negri”—IRCCS, Via Mario Negri, 2, 20156 Milano, Italy; (C.C.); (C.T.)
- Correspondence: (E.B.); (A.Y.C.A.); Tel.: +39-023-901-4420 (E.B.); +39-388-794-3483 (A.Y.C.A.)
| | - Ana Y. Caballero Alfonso
- Laboratory of Environmental Chemistry and Toxicology, Department of Environmental Health Sciences, Istituto di RicercheFarmacologiche “Mario Negri”—IRCCS, Via Mario Negri, 2, 20156 Milano, Italy; (C.C.); (C.T.)
- Jozef Stefan International Postgraduate School, Jamovacesta 39, 1000 Ljubljana, Slovenia
- Correspondence: (E.B.); (A.Y.C.A.); Tel.: +39-023-901-4420 (E.B.); +39-388-794-3483 (A.Y.C.A.)
| |
Collapse
|
20
|
Devillers J, Devillers H. Toxicity profiling and prioritization of plant-derived antimalarial agents. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2019; 30:801-824. [PMID: 31565973 DOI: 10.1080/1062936x.2019.1665844] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 09/06/2019] [Indexed: 06/10/2023]
Abstract
Human malaria is the most widespread mosquito-borne life-threatening disease worldwide. In the absence of effective vaccines, prevention and treatment of malaria only depend on prophylaxis and drug-based therapy either in monotherapy or in combination. Unfortunately, the number of available antimalarial drugs presenting different mechanisms of action is rather limited. In addition, the appearance of drug-resistance in the parasite strains impacts the efficacy of the treatments. As a result, there is a crucial need to find new drugs to circumvent resistance problems. In the quest to identify new antimalarial agents a huge number of plant-derived compounds (PDCs) have been investigated. Surprisingly in the in silico PDC screening programs, toxicity filters are either never used or so simple that their interest is limited. In this context, the goal of this study was to show how to take advantage of validated toxicity QSAR models for refining the selection of PDCs. From an original data set of 507 PDCs collected from the literature, the use of toxicity filters for endocrine disruption, developmental toxicity, and hepatotoxicity in conjunction with classical pharmacokinetic filters allowed us to obtain a list of 31 compounds of potential interest. The pros and cons of such a strategy have been discussed.
Collapse
Affiliation(s)
| | - H Devillers
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay , Jouy-en-Josas , France
| |
Collapse
|
21
|
Lopez-Antia A, Ortiz-Santaliestra ME, Mougeot F, Camarero PR, Mateo R. Brood size is reduced by half in birds feeding on flutriafol-treated seeds below the recommended application rate. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 243:418-426. [PMID: 30216876 DOI: 10.1016/j.envpol.2018.08.078] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 08/03/2018] [Accepted: 08/23/2018] [Indexed: 06/08/2023]
Abstract
Despite the efforts of the European Commission to implement measures that offset the detrimental effects of agricultural intensification, farmland bird populations continue to decline. Pesticide use has been pointed out as a major cause of decline, with growing concern about those agro-chemicals that act as endocrine disruptors. We report here on the effects of flutriafol, a ubiquitous systemic fungicide used for cereal seed treatment, on the physiology and reproduction of a declining gamebird. Captive red-legged partridges (Alectoris rufa; n = 11-13 pairs per treatment) were fed wheat treated with 0%, 20% or 100% of the flutriafol application rate during 25 days in late winter. We studied treatment effects on the reproductive performance, carotenoid-based coloration and cellular immune responsiveness of adult partridges, and their relationship with changes in oxidative stress biomarkers and plasma biochemistry. We also studied the effect of parental exposure on egg antioxidant content and on the survival, growth and cellular immune response of offspring. Exposed partridges experienced physiological effects (reduced levels of cholesterol and triglycerides), phenotypical effects (a reduction in the carotenoid-based pigmentation of their eye rings), and most importantly, severe adverse effects on reproduction: a reduced clutch size and fertile egg ratio, and an overall offspring production reduced by more than 50%. No effects on body condition or cellular immune response of either exposed adult or their surviving offspring were observed. These results, together with previous data on field exposure in wild partridges, demonstrate that seed treatment with flutriafol represents a risk for granivorous birds; they also highlight a need to improve the current regulation system used for foreseeing and preventing negative impacts of Plant Protection Products on wildlife.
Collapse
Affiliation(s)
- Ana Lopez-Antia
- Behavioural Ecology and Ecophysiology Group (BECO), Department of Biology, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium; Instituto de Investigación en Recursos Cinegéticos (IREC) CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13071, Ciudad Real, Spain.
| | - Manuel E Ortiz-Santaliestra
- Instituto de Investigación en Recursos Cinegéticos (IREC) CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13071, Ciudad Real, Spain
| | - François Mougeot
- Instituto de Investigación en Recursos Cinegéticos (IREC) CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13071, Ciudad Real, Spain
| | - Pablo R Camarero
- Instituto de Investigación en Recursos Cinegéticos (IREC) CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13071, Ciudad Real, Spain
| | - Rafael Mateo
- Instituto de Investigación en Recursos Cinegéticos (IREC) CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13071, Ciudad Real, Spain
| |
Collapse
|
22
|
Gottardi M, Tyzack JD, Bender A, Cedergreen N. Can the inhibition of cytochrome P450 in aquatic invertebrates due to azole fungicides be estimated with in silico and in vitro models and extrapolated between species? AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 201:11-20. [PMID: 29859403 DOI: 10.1016/j.aquatox.2018.05.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 05/23/2018] [Accepted: 05/24/2018] [Indexed: 06/08/2023]
Abstract
Azole fungicides, designed to halt fungal growth by specific inhibition of fungal cytochrome P450 (CYP51), inhibit cytochrome P450s involved in the metabolism of xenobiotics in several non-target organisms thus raising environmental concern. The present study investigates the degree by which inhibition strengths of azoles toward cytochrome P450 in rat liver, the insect Chironomus riparius larvae and the snail Lymnaea stagnalis can be extrapolated from estimated in silico affinities. Azoles' affinities toward human cytochrome P450 isoforms involved in xenobiotic metabolism (CYP3A4, CYP2C9 and CYP2D6) as well as fungal CYP51 were estimated with a ligand-protein docking model based on the ChemScore scoring function. Estimated affinities toward the selected enzymatic structures correlated strongly with measured inhibition strengths in rat liver (ChemScore vs. logIC50 among cytochrome P450 isoforms: -0.662 < r < -0.891, n = 17 azoles), while weaker correlations were found for C. riparius larvae (-0.167 < r < -0.733, n = 9) and L. stagnalis (-0.084 < r < -0.648, n = 8). Inhibition strengths toward C. riparius and rat liver activities were found to be highly correlated to each other (r: 0.857) while no significant relationship was found between either of the species and L. stagnalis. The inhibition of cytochrome P450 due to azole fungicides could be estimated in vitro and to a lesser extent in silico for C. riparius but not for L. stagnalis, possibly due to different enzymatic susceptibility toward azole inhibition among the species.
Collapse
Affiliation(s)
- Michele Gottardi
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark
| | - Jonathan D Tyzack
- EMBL-EBI, Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1SD, United Kingdom
| | - Andreas Bender
- Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom
| | - Nina Cedergreen
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark.
| |
Collapse
|
23
|
Pardyak L, Kaminska A, Brzoskwinia M, Hejmej A, Kotula-Balak M, Jankowski J, Ciereszko A, Bilinska B. Differences in aromatase expression and steroid hormone concentrations in the reproductive tissues of male domestic turkeys (Meleagris gallopavo) with white and yellow semen. Br Poult Sci 2018; 59:591-603. [PMID: 29848062 DOI: 10.1080/00071668.2018.1483576] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
1. To show hormonal differences between male turkeys with yellow semen syndrome (YSS) and white, normal semen (WNS), the expression of aromatase, oestrogen receptor α (ERα), and oestrogen receptor β (ERβ) as well as testosterone and oestradiol concentrations in YSS and WNS testes, epididymis, and ductus deferens were examined. 2. To measure gene expression levels of aromatase and oestrogen receptors (ERs), three complementary techniques (real-time PCR, Western blot, and immunohistochemistry) were used, whereas steroid hormone levels were determined radio-immunologically. 3. Upregulation of aromatase and ERα mRNAs in YSS testes (P < 0.05; P < 0.01), epididymis (P < 0.001; P < 0.001), and ductus deferens (P < 0.05; P < 0.01) compared to those of WNS tissues was detected. Significant increases in the levels of aromatase and ERα proteins were detected in YSS testes (P < 0.001; P < 0.05), epididymis (P < 0.001; P < 0.001), and ductus deferens (P < 0.001; P < 0.05). The expression of ERβ mRNA and protein level was upregulated in the testes (P < 0.05; P < 0.01) and epididymis (P < 0.001; P < 0.01) but not in ductus deferens where it was downregulated (P < 0.01; P < 0.01). Increased intensity of immunoreactive proteins in YSS versus WNS reproductive tissues corroborated gene expression results. 4. Testosterone concentration diminished in YSS epididymis (P < 0.05) and ductus deferens (P < 0.05), but not in the testes, remaining at high level (P < 0.05) compared to WNS values. Concomitantly, increased oestradiol concentration was found in YSS testes (P < 0.05) and epididymis (P < 0.05) but decreased in the ductus deferens (P < 0.05). 5. From the published literature, this study is the first to demonstrate the ability for androgen aromatisation in the turkey reproductive tissues and to show the cellular targets for locally produced oestrogens. The data suggested that the androgen/oestrogen ratio is a mechanistic basis for amplification of differences between turkeys with white and yellow semen and that these results can have a relevance in applied sciences to widen the knowledge on domestic bird reproduction.
Collapse
Affiliation(s)
- L Pardyak
- a Department of Endocrinology , Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow , Krakow , Poland
| | - A Kaminska
- a Department of Endocrinology , Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow , Krakow , Poland
| | - M Brzoskwinia
- a Department of Endocrinology , Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow , Krakow , Poland
| | - A Hejmej
- a Department of Endocrinology , Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow , Krakow , Poland
| | - M Kotula-Balak
- a Department of Endocrinology , Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow , Krakow , Poland
| | - J Jankowski
- b Department of Poultry Science, Faculty of Animal Bioengineering , University of Warmia and Mazury in Olsztyn , Olsztyn , Poland
| | - A Ciereszko
- c Department of Gamete and Embryo Biology , Institute of Animal Reproduction and Food Research, Polish Academy of Sciences , Olsztyn , Poland
| | - B Bilinska
- a Department of Endocrinology , Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow , Krakow , Poland
| |
Collapse
|
24
|
Lee S, Barron MG. 3D-QSAR study of steroidal and azaheterocyclic human aromatase inhibitors using quantitative profile of protein-ligand interactions. J Cheminform 2018; 10:2. [PMID: 29349513 PMCID: PMC5773458 DOI: 10.1186/s13321-017-0253-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 12/08/2017] [Indexed: 11/10/2022] Open
Abstract
Aromatase is a member of the cytochrome P450 superfamily responsible for a key step in the biosynthesis of estrogens. As estrogens are involved in the control of important reproduction-related processes, including sexual differentiation and maturation, aromatase is a potential target for endocrine disrupting chemicals as well as breast cancer therapy. In this work, 3D-QSAR combined with quantitative profile of protein-ligand interactions was employed in the identification and characterization of critical steric and electronic features of aromatase-inhibitor complexes and the estimation of their quantitative contribution to inhibition potency. Bioactivity data on pIC50 values of 175 steroidal and 124 azaheterocyclic human aromatase inhibitors (AIs) were used for the 3D-QSAR analysis. For the quantitative description of the effects of the hydrophobic contact and nitrogen-heme-iron coordination on aromatase inhibition, the hydrophobicity density field model and the smallest dual descriptor Δf(r) S were introduced, respectively. The model revealed that hydrophobic contact and nitrogen-heme-iron coordination primarily determines inhibition potency of steroidal and azaheterocyclic AIs, respectively. Moreover, hydrogen bonds with key amino acid residues, in particular Asp309 and Met375, and interaction with the heme-iron are required for potent inhibition. Phe221 and Thr310 appear to be quite flexible and adopt different conformations according to a substituent at 4- or 6-position of steroids. Flexible docking results indicate that proper representation of the residues' flexibility is critical for reasonable description of binding of the structurally diverse inhibitors. Our results provide a quantitative and mechanistic understanding of inhibitory activity of steroidal and azaheterocyclic AIs of relevance to adverse outcome pathway development and rational drug design.
Collapse
Affiliation(s)
- Sehan Lee
- Gulf Ecology Division, U.S. Environmental Protection Agency, 1 Sabine Island Drive, Gulf Breeze, FL, 32561, USA.
| | - Mace G Barron
- Gulf Ecology Division, U.S. Environmental Protection Agency, 1 Sabine Island Drive, Gulf Breeze, FL, 32561, USA
| |
Collapse
|
25
|
Devillers J, Devillers H, Bro E, Millot F. Expert judgment based multicriteria decision models to assess the risk of pesticides on reproduction failures of grey partridge. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2017; 28:889-911. [PMID: 29206499 DOI: 10.1080/1062936x.2017.1402449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 11/04/2017] [Indexed: 06/07/2023]
Abstract
A suite of models is proposed for estimating the risk of pesticides against the grey partridge (Perdix perdix) and their clutches. Radio-tracked data of females, description and location of the clutches, and data on the pesticide treatments during the laying periods of the partridges were used as basic information. Quantitative structure-activity relationship (QSAR) and quantitative structure-property relationship (QSPR) modelling allowed us to characterize the pesticides by their 1-octanol/water partition coefficient (log P), vapour pressure, primary and ultimate biodegradation potential, acute toxicity (LD50) on P. perdix, and endocrine disruption potential. From these physicochemical and toxicological data, the system of integration of risk with interaction of scores (SIRIS) method was used to design scores of risk for pesticides, alone or in mixture. A program, written in R (version 3.1.1), called Simulation of Toxicity in Perdix perdix (SimToxPP), was designed for estimating the risk of substances, considered alone or in mixture, against the grey partridge during breeding. The software tool is flexible enough to simulate realistic in situ scenarios. Different examples of applications are shown. The advantages and limitations of the approach are briefly discussed.
Collapse
Affiliation(s)
| | - H Devillers
- b Micalis Institute, INRA, University Paris-Saclay , Jouy-en-Josas , France
| | - E Bro
- c Research Department , National Game and Wildlife Institute (ONCFS) , Auffargis , France
| | - F Millot
- c Research Department , National Game and Wildlife Institute (ONCFS) , Auffargis , France
| |
Collapse
|
26
|
Bhunia SS, Saxena AK. Molecular modelling studies in explaining the higher GPVI antagonistic activity of the racemic 2-(4-methoxyphenylsulfonyl)-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole-3-carboxamide than its enantiomers. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2017; 28:783-799. [PMID: 29135287 DOI: 10.1080/1062936x.2017.1396247] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 10/20/2017] [Indexed: 06/07/2023]
Abstract
The GPVI receptor on the platelets plays a major role in inhibiting arterial thrombosis with limited risk of bleeding and is considered a potential anti-thrombotic target for arterial thrombosis. In the reported anti-thrombotics, tetrahydropyridoindoles, the title compound was the best inhibitor of the collagen mediated platelet aggregation by antagonizing the platelet receptor GPVI. Interestingly, the racemic title compound showed better antagonism (IC50 racemate = 6.7 μM) than either of its enantiomers (IC50 S enantiomer = 25.3 μM; IC50 R enantiomer = 126.3 μM). In order to explain this, the molecular modelling approaches viz. site map analysis, protein-protein docking and molecular dynamics simulation were carried out, which led to the identification of a second binding site located near the primary antagonist binding site known to bind losartan. The induced fit docking studies for both the enantiomers at the primary and secondary binding sites showed that the S-enantiomer has better interactions at the primary binding site than the R-enantiomer, while the R-enantiomer has better interactions at the secondary site than the S-enantiomer. Hence, the overall interactions of the racemic compound containing equimolar mixture may be higher than any one of the enantiomers and may explain the higher activity than its enantiomers of the racemic compound.
Collapse
Affiliation(s)
- S S Bhunia
- a Division of Medicinal and Process Chemistry , CSIR-Central Drug Research Institute , Lucknow , India
| | - A K Saxena
- a Division of Medicinal and Process Chemistry , CSIR-Central Drug Research Institute , Lucknow , India
| |
Collapse
|
27
|
Bernabò I, Guardia A, Macirella R, Tripepi S, Brunelli E. Chronic exposures to fungicide pyrimethanil: multi-organ effects on Italian tree frog (Hyla intermedia). Sci Rep 2017; 7:6869. [PMID: 28761072 PMCID: PMC5537256 DOI: 10.1038/s41598-017-07367-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 06/28/2017] [Indexed: 12/15/2022] Open
Abstract
Amphibian habitats are easily contaminated by several pollutants, and in agricultural landscapes the likely exposure scenario is represented by pesticides. Many of these substances are known or suspected to act as endocrine disrupting chemicals (EDCs). The goal of the present study was to assess the effects of pyrimethanil, a common-used but also overlooked fungicide, on liver, kidney and gonadal differentiation of Hyla intermedia. Through a multi-organ evaluation, we demonstrated that a long term exposure to two environmentally relevant concentrations of pyrimethanil (5 and 50 µg/L) elicits a range of toxic responses. First we showed that pyrimethanil induces underdevelopment of ovaries and interferes with normal sexual differentiation, thus revealing the endocrine disruption potential of this fungicide. Moreover we revealed that all considered organs are seriously affected by this fungicide and both necrosis and apoptosis contribute to the histological response. This is the first report on the effects of pyrimethanil on gonads, liver and kidney histology of a non-model species and it demonstrates that the hazardous properties of this fungicide can result from several pathological processes affecting different key compartments of amphibian.
Collapse
Affiliation(s)
- Ilaria Bernabò
- Department of Biology, Ecology and Earth Science, University of Calabria, Via P. Bucci 4/B, 87036, Rende, Cosenza, Italy
| | - Antonello Guardia
- Department of Biology, Ecology and Earth Science, University of Calabria, Via P. Bucci 4/B, 87036, Rende, Cosenza, Italy
| | - Rachele Macirella
- Department of Biology, Ecology and Earth Science, University of Calabria, Via P. Bucci 4/B, 87036, Rende, Cosenza, Italy
| | - Sandro Tripepi
- Department of Biology, Ecology and Earth Science, University of Calabria, Via P. Bucci 4/B, 87036, Rende, Cosenza, Italy
| | - Elvira Brunelli
- Department of Biology, Ecology and Earth Science, University of Calabria, Via P. Bucci 4/B, 87036, Rende, Cosenza, Italy.
| |
Collapse
|
28
|
Bro E, Devillers J, Millot F, Decors A. Residues of plant protection products in grey partridge eggs in French cereal ecosystems. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:9559-73. [PMID: 26841780 PMCID: PMC4871908 DOI: 10.1007/s11356-016-6093-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 01/11/2016] [Indexed: 05/13/2023]
Abstract
The contamination of the eggs of farmland birds by currently used plant protection products (PPPs) is poorly documented despite a potential to adversely impact their breeding performance. In this context, 139 eggs of 52 grey partridge Perdix perdix clutches, collected on 12 intensively cultivated farmlands in France in 2010-2011, were analysed. Given the great diversity of PPPs applied on agricultural fields, we used exploratory GC/MS-MS and LC/MS-MS screenings measuring ca. 500 compounds. The limit of quantification was 0.01 mg/kg, a statutory reference. A total of 15 different compounds were detected in 24 clutches. Nine of them have been used by farmers to protect crops against fungi (difenoconazole, tebuconazole, cyproconazole, fenpropidin and prochloraz), insects (lambda-cyhalothrin and thiamethoxam/clothianidin) and weeds (bromoxynil and diflufenican). Some old PPPs were also detected (fipronil(+sulfone), HCH(α,β,δ isomers), diphenylamine, heptachlor(+epoxyde), DDT(Σisomers)), as well as PCBs(153, 180). Concentrations ranged between <0.01 and 0.05 mg/kg but reached 0.067 (thiamethoxam/clothianidin), 0.11 (heptachlor + epoxyde) and 0.34 (fenpropidin) mg/kg in some cases. These results testify an actual exposure of females and/or their eggs to PPPs in operational conditions, as well as to organochlorine pollutants or their residues, banned in France since several years if not several decades, that persistently contaminate the environment.Routes of exposure, probability to detect a contamination in the eggs, and effects on egg/embryo characteristics are discussed with regard to the scientific literature.
Collapse
Affiliation(s)
- Elisabeth Bro
- National Game and Wildlife Institute (ONCFS), Research Department, Saint Benoist, 78610, Auffargis, France.
| | - James Devillers
- Centre de Traitement de l'Information Scientifique, 3 chemin de la Gravière, 69140, Rillieux La Pape, France
| | - Florian Millot
- National Game and Wildlife Institute (ONCFS), Research Department, Saint Benoist, 78610, Auffargis, France
| | - Anouk Decors
- National Game and Wildlife Institute (ONCFS), Research Department, Saint Benoist, 78610, Auffargis, France
| |
Collapse
|