1
|
Liu Z, Petinrin OO, Chen N, Toseef M, Liu F, Zhu Z, Qi F, Wong KC. Identification and evaluation of candidate COVID-19 critical genes and medicinal drugs related to plasma cells. BMC Infect Dis 2024; 24:1099. [PMID: 39363208 PMCID: PMC11451256 DOI: 10.1186/s12879-024-10000-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 09/25/2024] [Indexed: 10/05/2024] Open
Abstract
The ongoing COVID-19 pandemic, caused by the SARS-CoV-2 virus, represents one of the most significant global health crises in recent history. Despite extensive research into the immune mechanisms and therapeutic options for COVID-19, there remains a paucity of studies focusing on plasma cells. In this study, we utilized the DESeq2 package to identify differentially expressed genes (DEGs) between COVID-19 patients and controls using datasets GSE157103 and GSE152641. We employed the xCell algorithm to perform immune infiltration analyses, revealing notably elevated levels of plasma cells in COVID-19 patients compared to healthy individuals. Subsequently, we applied the Weighted Gene Co-expression Network Analysis (WGCNA) algorithm to identify COVID-19 related plasma cell module genes. Further, positive cluster biomarker genes for plasma cells were extracted from single-cell RNA sequencing data (GSE171524), leading to the identification of 122 shared genes implicated in critical biological processes such as cell cycle regulation and viral infection pathways. We constructed a robust protein-protein interaction (PPI) network comprising 89 genes using Cytoscape, and identified 20 hub genes through cytoHubba. These genes were validated in external datasets (GSE152418 and GSE179627). Additionally, we identified three potential small molecules (GSK-1070916, BRD-K89997465, and idarubicin) that target key hub genes in the network, suggesting a novel therapeutic approach. These compounds were characterized by their ability to down-regulate AURKB, KIF11, and TOP2A effectively, as evidenced by their low free binding energies determined through computational analyses using cMAP and AutoDock. This study marks the first comprehensive exploration of plasma cells' role in COVID-19, offering new insights and potential therapeutic targets. It underscores the importance of a systematic approach to understanding and treating COVID-19, expanding the current body of knowledge and providing a foundation for future research.
Collapse
Affiliation(s)
- Zhe Liu
- Institute for Hepatology, The Second Affiliated Hospital, School of Medicine, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen, Guangdong Province, 518112, China
- Department of Computer Science, City University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | | | - Nanjun Chen
- Department of Computer Science, City University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Muhammad Toseef
- Department of Computer Science, City University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Fang Liu
- Rocgene (Beijing) Technology Co., Ltd, Beijing, Beijing, 102200, China
| | - Zhongxu Zhu
- HIM-BGI Omics Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China.
| | - Furong Qi
- Institute for Hepatology, The Second Affiliated Hospital, School of Medicine, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen, Guangdong Province, 518112, China.
| | - Ka-Chun Wong
- Department of Computer Science, City University of Hong Kong, Hong Kong, Hong Kong SAR, China.
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen, China.
| |
Collapse
|
2
|
Agrawal N, Dhakrey P, Pathak S. A comprehensive review on the research progress of PTP1B inhibitors as antidiabetics. Chem Biol Drug Des 2023; 102:921-938. [PMID: 37232059 DOI: 10.1111/cbdd.14275] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/17/2023] [Accepted: 05/17/2023] [Indexed: 05/27/2023]
Abstract
Diabetes mellitus (DM) is a serious global health concern affecting over 500 million people. To put it simply, it is one of the most dangerous metabolic illnesses. Insulin resistance is the root cause of 90% of all instances of diabetes, all of which are classified as Type 2 DM. Untreated, it poses a hazard to civilization since it can lead to terrifying consequences and even death. Oral hypoglycemic medicines presently available act in a variety of ways, targeting various organs and pathways. The use of protein tyrosine phosphatase 1B (PTP1B) inhibitors, on the contrary, is a novel and effective method of controlling type 2 diabetes. PTP1B is a negative insulin signaling pathway regulator; hence, inhibiting PTP1B increases insulin sensitivity, glucose absorption, and energy expenditure. PTP1B inhibitors also restore leptin signaling and are considered a potential obesity target. In this review, we have compiled a summary of the most recent advances in synthetic PTP1B inhibitors from 2015 to 2022 which have scope to be developed as clinical antidiabetic drugs.
Collapse
Affiliation(s)
- Neetu Agrawal
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Parth Dhakrey
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Shilpi Pathak
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| |
Collapse
|
3
|
Babkov DA, Zhukovskaya ON, Brigadirova AA, Prilepskaya DR, Kolodina AA, Abbas AHS, Morkovnik AS, Sobhia ME, Ghosh K, Spasov AA. Discovery and evaluation of biphenyl derivatives of 2-iminobenzimidazoles as prototype dual PTP1B inhibitors and AMPK activators with in vivo antidiabetic activity. Chem Biol Drug Des 2023; 101:896-914. [PMID: 36546307 DOI: 10.1111/cbdd.14198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/28/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022]
Abstract
This work describes the synthesis of series hydrobromides of N-(4-biphenyl)methyl-N'-dialkylaminoethyl-2-iminobenzimidazoles, which, due to the presence of two privileged structural fragments (benzimidazole and biphenyl moieties), can be considered as bi-privileged structures. Compound 7a proved to activate AMP-activated kinase (AMPK) and simultaneously inhibit protein tyrosine phosphatase 1B (PTP1B) with similar potency. This renders it an interesting prototype of potential antidiabetic agents with a dual-target mechanism of action. Using prove of concept in vivo study, we show that dual-targeting compound 7a has a disease-modifying effect in a rat model of type 2 diabetes mellitus via improving insulin sensitivity and lipid metabolism.
Collapse
Affiliation(s)
- Denis A Babkov
- Department of Pharmacology & Bioinformatics, Volgograd State Medical University, Volgograd, Russia
- Scientific Center for Innovative Drugs, Volgograd State Medical University, Volgograd, Russia
| | - Olga N Zhukovskaya
- Institute of Physical and Organic Chemistry, Southern Federal University, Rostov-on-Don, Russia
| | - Anastasia A Brigadirova
- Department of Pharmacology & Bioinformatics, Volgograd State Medical University, Volgograd, Russia
| | - Diana R Prilepskaya
- Department of Pharmacology & Bioinformatics, Volgograd State Medical University, Volgograd, Russia
| | - Alexandra A Kolodina
- Institute of Physical and Organic Chemistry, Southern Federal University, Rostov-on-Don, Russia
| | - Abbas Haider S Abbas
- Institute of Physical and Organic Chemistry, Southern Federal University, Rostov-on-Don, Russia
| | - Anatolii S Morkovnik
- Institute of Physical and Organic Chemistry, Southern Federal University, Rostov-on-Don, Russia
| | - M Elizabeth Sobhia
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), SAS Nagar, India
| | - Ketan Ghosh
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), SAS Nagar, India
| | - Alexander A Spasov
- Department of Pharmacology & Bioinformatics, Volgograd State Medical University, Volgograd, Russia
| |
Collapse
|
4
|
Computational Methods in Cooperation with Experimental Approaches to Design Protein Tyrosine Phosphatase 1B Inhibitors in Type 2 Diabetes Drug Design: A Review of the Achievements of This Century. Pharmaceuticals (Basel) 2022; 15:ph15070866. [PMID: 35890163 PMCID: PMC9322956 DOI: 10.3390/ph15070866] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/10/2022] [Accepted: 07/12/2022] [Indexed: 02/04/2023] Open
Abstract
Protein tyrosine phosphatase 1B (PTP1B) dephosphorylates phosphotyrosine residues and is an important regulator of several signaling pathways, such as insulin, leptin, and the ErbB signaling network, among others. Therefore, this enzyme is considered an attractive target to design new drugs against type 2 diabetes, obesity, and cancer. To date, a wide variety of PTP1B inhibitors that have been developed by experimental and computational approaches. In this review, we summarize the achievements with respect to PTP1B inhibitors discovered by applying computer-assisted drug design methodologies (virtual screening, molecular docking, pharmacophore modeling, and quantitative structure–activity relationships (QSAR)) as the principal strategy, in cooperation with experimental approaches, covering articles published from the beginning of the century until the time this review was submitted, with a focus on studies conducted with the aim of discovering new drugs against type 2 diabetes. This review encourages the use of computational techniques and includes helpful information that increases the knowledge generated to date about PTP1B inhibition, with a positive impact on the route toward obtaining a new drug against type 2 diabetes with PTP1B as a molecular target.
Collapse
|
5
|
Petrou A, Zagaliotis P, Theodoroula NF, Mystridis GA, Vizirianakis IS, Walsh TJ, Geronikaki A. Thiazole/Thiadiazole/Benzothiazole Based Thiazolidin-4-One Derivatives as Potential Inhibitors of Main Protease of SARS-CoV-2. Molecules 2022; 27:2180. [PMID: 35408577 PMCID: PMC9000570 DOI: 10.3390/molecules27072180] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/21/2022] [Accepted: 03/25/2022] [Indexed: 01/27/2023] Open
Abstract
Since the time of its appearance until present, COVID-19 has spread worldwide, with over 71 million confirmed cases and over 1.6 million deaths reported by the World Health Organization (WHO). In addition to the fact that cases of COVID-19 are increasing worldwide, the Delta and Omicron variants have also made the situation more challenging. Herein, we report the evaluation of several thiazole/thiadiazole/benzothiazole based thiazolidinone derivatives which were chosen from 112 designed derivatives by docking as potential molecules to inhibit the main protease of SARS-CoV-2. The contained experimental data revealed that among the fifteen compounds chosen, five compounds (k3, c1, n2, A2, A1) showed inhibitory activity with IC50 within the range of 0.01-34.4 μΜ. By assessing the cellular effects of these molecules, we observed that they also had the capacity to affect the cellular viability of human normal MRC-5 cells, albeit with a degree of variation. More specifically, k3 which is the most promising compound with the higher inhibitory capacity to SARS-CoV-2 protease (0.01 μΜ) affects in vitro cellular viability only by 57% at the concentration of 0.01 μM after 48 h in culture. Overall, these data provide evidence on the potential antiviral activity of these molecules to inhibit the main protease of SARS-CoV-2, a fact that sheds light on the chemical structure of the thiazole/thiadiazole/benzothiazole based thiazolidin-4-one derivatives as potential candidates for COVID-19 therapeutics.
Collapse
Affiliation(s)
- Anthi Petrou
- School of Pharmacy, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Panagiotis Zagaliotis
- Division of Infectious Diseases, Weill Cornell Medicine, New York, NY 10065, USA;
- Laboratory of Pharmacology, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (N.F.T.); (G.A.M.); (I.S.V.)
| | - Nikoleta F. Theodoroula
- Laboratory of Pharmacology, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (N.F.T.); (G.A.M.); (I.S.V.)
| | - George A. Mystridis
- Laboratory of Pharmacology, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (N.F.T.); (G.A.M.); (I.S.V.)
| | - Ioannis S. Vizirianakis
- Laboratory of Pharmacology, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (N.F.T.); (G.A.M.); (I.S.V.)
- Department of Life and Health Sciences, University of Nicosia, Nicosia CY-1700, Cyprus
| | - Thomas J. Walsh
- Center for Innovative Therapeutics and Diagnostics, Richmond, VA 23223, USA; or
| | - Athina Geronikaki
- School of Pharmacy, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| |
Collapse
|
6
|
Recent Updates on Development of Protein-Tyrosine Phosphatase 1B Inhibitors for Treatment of Diabetes, Obesity and Related Disorders. Bioorg Chem 2022; 121:105626. [DOI: 10.1016/j.bioorg.2022.105626] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/19/2021] [Accepted: 01/13/2022] [Indexed: 01/30/2023]
|
7
|
Petrou A, Fesatidou M, Geronikaki A. Thiazole Ring-A Biologically Active Scaffold. Molecules 2021; 26:3166. [PMID: 34070661 PMCID: PMC8198555 DOI: 10.3390/molecules26113166] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/15/2021] [Accepted: 05/20/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Thiazole is a good pharmacophore nucleus due to its various pharmaceutical applications. Its derivatives have a wide range of biological activities such as antioxidant, analgesic, and antimicrobial including antibacterial, antifungal, antimalarial, anticancer, antiallergic, antihypertensive, anti-inflammatory, and antipsychotic. Indeed, the thiazole scaffold is contained in more than 18 FDA-approved drugs as well as in numerous experimental drugs. OBJECTIVE To summarize recent literature on the biological activities of thiazole ring-containing compounds Methods: A literature survey regarding the topics from the year 2015 up to now was carried out. Older publications were not included, since they were previously analyzed in available peer reviews. RESULTS Nearly 124 research articles were found, critically analyzed, and arranged regarding the synthesis and biological activities of thiazoles derivatives in the last 5 years.
Collapse
Affiliation(s)
| | | | - Athina Geronikaki
- School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.P.); (M.F.)
| |
Collapse
|
8
|
Thiazole-based and thiazolidine-based protein tyrosine phosphatase 1B inhibitors as potential anti-diabetes agents. Med Chem Res 2020. [DOI: 10.1007/s00044-020-02668-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
9
|
Kousaxidis A, Petrou A, Lavrentaki V, Fesatidou M, Nicolaou I, Geronikaki A. Aldose reductase and protein tyrosine phosphatase 1B inhibitors as a promising therapeutic approach for diabetes mellitus. Eur J Med Chem 2020; 207:112742. [PMID: 32871344 DOI: 10.1016/j.ejmech.2020.112742] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 08/06/2020] [Indexed: 02/07/2023]
Abstract
Diabetes mellitus is a metabolic disease characterized by high blood glucose levels and usually associated with several chronic pathologies. Aldose reductase and protein tyrosine phosphatase 1B enzymes have identified as two novel molecular targets associated with the onset and progression of type II diabetes and related comorbidities. Although many inhibitors against these enzymes have already found in the field of diabetic mellitus, the research for discovering more effective and selective agents with optimal pharmacokinetic properties continues. In addition, dual inhibition of these target proteins has proved as a promising therapeutic approach. A variety of diverse scaffolds are presented in this review for the future design of potent and selective inhibitors of aldose reductase and protein tyrosine phosphatase 1B based on the most important structural features of both enzymes. The discovery of novel dual aldose reductase and protein tyrosine phosphatase 1B inhibitors could be effective therapeutic molecules for the treatment of insulin-resistant type II diabetes mellitus. The methods used comprise a literature survey and X-ray crystal structures derived from Protein Databank (PDB). Despite the available therapeutic options for type II diabetes mellitus, the inhibitors of aldose reductase and protein tyrosine phosphatase 1B could be two promising approaches for the effective treatment of hyperglycemia and diabetes-associated pathologies. Due to the poor pharmacokinetic profile and low in vivo efficacy of existing inhibitors of both targets, the research turned to more selective and cell-permeable agents as well as multi-target molecules.
Collapse
Affiliation(s)
- Antonios Kousaxidis
- School of Health, Department of Pharmacy, Aristotle University of Thessaloniki, 54124, Greece
| | - Anthi Petrou
- School of Health, Department of Pharmacy, Aristotle University of Thessaloniki, 54124, Greece
| | - Vasiliki Lavrentaki
- School of Health, Department of Pharmacy, Aristotle University of Thessaloniki, 54124, Greece
| | - Maria Fesatidou
- School of Health, Department of Pharmacy, Aristotle University of Thessaloniki, 54124, Greece
| | - Ioannis Nicolaou
- School of Health, Department of Pharmacy, Aristotle University of Thessaloniki, 54124, Greece
| | - Athina Geronikaki
- School of Health, Department of Pharmacy, Aristotle University of Thessaloniki, 54124, Greece.
| |
Collapse
|
10
|
Patel AD, Pasha TY, Lunagariya P, Shah U, Bhambharoliya T, Tripathi RKP. A Library of Thiazolidin-4-one Derivatives as Protein Tyrosine Phosphatase 1B (PTP1B) Inhibitors: An Attempt To Discover Novel Antidiabetic Agents. ChemMedChem 2020; 15:1229-1242. [PMID: 32390300 DOI: 10.1002/cmdc.202000055] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/28/2020] [Indexed: 01/18/2023]
Abstract
Protein tyrosine phosphatase 1B (PTP1B) is an important target for the treatment of diabetes. A series of thiazolidin-4-one derivatives 8-22 was designed, synthesized and investigated as PTP1B inhibitors. The new molecules inhibited PTP1B with IC50 values in the micromolar range. 5-(Furan-2-ylmethylene)-2-(4-nitrophenylimino)thiazolidin-4-one (17) exhibited potency with a competitive type of enzyme inhibition. structure-activity relationship studies revealed various structural facets important for the potency of these analogues. The findings revealed a requirement for a nitro group-including hydrophobic heteroaryl ring for PTP1B inhibition. Molecular docking studies afforded good correlation with experimental results. H-bonding and π-π interactions were responsible for optimal binding and effective stabilization of virtual protein-ligand complexes. Furthermore, in-silico pharmacokinetic properties of test compounds predicted their drug-like characteristics for potential oral use as antidiabetic agents.Additionally, a binding site model demonstrating crucial pharmacophoric characteristics influencing potency and binding affinity of inhibitors has been proposed, which can be employed in the design of future potential PTP1B inhibitors.
Collapse
Affiliation(s)
- Ashish D Patel
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, Changa, Anand, 388421, India.,Department of Pharmaceutical Chemistry Parul Institute of Pharmacy, Parul University, Vadodara, Gujarat, 391760, India
| | - Thopallada Y Pasha
- Shri Adichunchanagiri College of Pharmacy, Adichunchanagiri University, B G Nagara, Karnataka, 571448, India
| | - Paras Lunagariya
- Smt. R. D. Gardi B. Pharmacy College, Rajkot, Gujarat, 360110, India
| | - Umang Shah
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, Changa, Anand, 388421, India
| | - Tushar Bhambharoliya
- Wilson College of Textiles, North Carolina State University, North Carolina, 27606, USA
| | - Rati K P Tripathi
- Department of Pharmaceutical Science Sushruta School of Medical and Paramedical Sciences, Assam University (A Central University), Silchar, Assam, 788011, India.,Department of Pharmaceutical Chemistry Parul Institute of Pharmacy, Parul University, Vadodara, Gujarat, 391760, India
| |
Collapse
|
11
|
Eleftheriou P, Amanatidou D, Petrou A, Geronikaki A. In Silico Evaluation of the Effectivity of Approved Protease Inhibitors against the Main Protease of the Novel SARS-CoV-2 Virus. Molecules 2020; 25:molecules25112529. [PMID: 32485894 PMCID: PMC7321236 DOI: 10.3390/molecules25112529] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/22/2020] [Accepted: 05/25/2020] [Indexed: 12/11/2022] Open
Abstract
The coronavirus disease, COVID-19, caused by the novel coronavirus SARS-CoV-2, which first emerged in Wuhan, China and was made known to the World in December 2019 turned into a pandemic causing more than 126,124 deaths worldwide up to April 16th, 2020. It has 79.5% sequence identity with SARS-CoV-1 and the same strategy for host cell invasion through the ACE-2 surface protein. Since the development of novel drugs is a long-lasting process, researchers look for effective substances among drugs already approved or developed for other purposes. The 3D structure of the SARS-CoV-2 main protease was compared with the 3D structures of seven proteases, which are drug targets, and docking analysis to the SARS-CoV-2 protease structure of thirty four approved and on-trial protease inhibitors was performed. Increased 3D structural similarity between the SARS-CoV-2 main protease, the HCV protease and α-thrombin was found. According to docking analysis the most promising results were found for HCV protease, DPP-4, α-thrombin and coagulation Factor Xa known inhibitors, with several of them exhibiting estimated free binding energy lower than −8.00 kcal/mol and better prediction results than reference compounds. Since some of the compounds are well-tolerated drugs, the promising in silico results may warrant further evaluation for viral anticipation. DPP-4 inhibitors with anti-viral action may be more useful for infected patients with diabetes, while anti-coagulant treatment is proposed in severe SARS-CoV-2 induced pneumonia.
Collapse
Affiliation(s)
- Phaedra Eleftheriou
- Department of Biomedical Sciences, School of Health, International Hellenic University, 57400 Thessaloniki, Greece;
- Correspondence: (P.E.); (A.G.)
| | - Dionysia Amanatidou
- Department of Biomedical Sciences, School of Health, International Hellenic University, 57400 Thessaloniki, Greece;
| | - Anthi Petrou
- Department of Pharmaceutical Chemistry, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Athina Geronikaki
- Department of Pharmaceutical Chemistry, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
- Correspondence: (P.E.); (A.G.)
| |
Collapse
|
12
|
Varshney K, Gupta AK, Rawat A, Srivastava R, Mishra A, Saxena M, Srivastava AK, Jain S, Saxena AK. Synthesis,
SAR
and docking studies of substituted aryl phenylthiazolyl phenylcarboxamide as potential protein tyrosine phosphatase 1B (
PTP
1B) inhibitors. Chem Biol Drug Des 2019; 94:1378-1389. [DOI: 10.1111/cbdd.13515] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 02/24/2019] [Accepted: 03/03/2019] [Indexed: 01/03/2023]
Affiliation(s)
- Kanika Varshney
- Medicinal and Process Chemistry Division Central Drug Research Institute Lucknow India
- Department of Chemistry Lucknow University Lucknow India
| | - Amit K. Gupta
- Department of Integrative Biology and Pharmacology McGovern Medical School University of Texas Health Science Center at Houston Houston Texas
| | - Arun Rawat
- Biochemistry Division Central Drug Research Institute Lucknow India
| | - Rohit Srivastava
- Biochemistry Division Central Drug Research Institute Lucknow India
| | - Akansha Mishra
- Biochemistry Division Central Drug Research Institute Lucknow India
| | | | | | - Sudha Jain
- Department of Chemistry Lucknow University Lucknow India
| | - Anil K. Saxena
- Medicinal and Process Chemistry Division Central Drug Research Institute Lucknow India
| |
Collapse
|
13
|
Tratrat C, Haroun M, Xenikakis I, Liaras K, Tsolaki E, Eleftheriou P, Petrou A, Aldhubiab B, Attimarad M, Venugopala KN, Harsha S, Elsewedy HS, Geronikaki A, Soković M. Design, Synthesis, Evaluation of Antimicrobial Activity and Docking Studies of New Thiazole-based Chalcones. Curr Top Med Chem 2019; 19:356-375. [PMID: 30706816 DOI: 10.2174/1568026619666190129121933] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 12/20/2018] [Accepted: 01/22/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Thiazole derivates as well as chalcones, are very important scaffold for medicinal chemistry. Literature survey revealed that they possess wide spectrum of biological activities among which are anti-inflammatory and antimicrobial. OBJECTIVES The current studies describe the synthesis and evaluation of antimicrobial activity of twenty eight novel thiazole-based chalcones. METHODS The designed compounds were synthesized using classical methods of organic synthesis. The in vivo evaluation of antimicrobial activity was performed by microdilution method. RESULTS All compounds have shown antibacterial properties better than that of ampicillin and in many cases better than streptomycin. As far as the antifungal activity is concerned, all compounds possess much higher activity than reference drugs bifonazole and ketoconazole. The most sensitive bacterial species was B. cereus (MIC 6.5-28.4 µmol × 10-2/mL and MBC 14.2-105.0 µmol × 10-2/mL) while the most resistant ones were L. monocytogenes (MIC 21.4-113.6 µmol × 10-2/mL) and E. coli (MIC 10.7- 113.6 µmol × 10-2/mL) and MBC at 42.7-358.6 µmol × 10-2/mL and 21.4-247.2 µmol × 10-2/mL, respectively. All the compounds exhibited antibacterial activity against the three resistant strains, MRSA, P. aeruginosa and E.coli. with MIC and MBC in the range of 0.65-11.00 µmol/mL × 10-2 and 1.30-16.50 µmol/mL × 10-2. Docking studies were performed. CONCLUSION Twenty-eight novel thiazole-based chalcones were designed, synthesized and evaluated for antimicrobial activity. The results showed that these derivatives could be lead compounds in search of new potent antimicrobial agents. Docking studies indicated that DNA gyrase, GyrB and MurA inhibition may explain the antibacterial activity.
Collapse
Affiliation(s)
- Christophe Tratrat
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Michelyne Haroun
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Iakovos Xenikakis
- School of Health, Faculty of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Konstantinos Liaras
- School of Health, Faculty of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Evangelia Tsolaki
- School of Health, Faculty of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Phaedra Eleftheriou
- Department of Medical Laboratory Studies, School of Health and Medical Care, Alexander Technological Educational Institute of Thessaloniki, 54700, Sindos, Thessaloniki, Greece
| | - Anthi Petrou
- School of Health, Faculty of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Bandar Aldhubiab
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Mahesh Attimarad
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Katharigatta N Venugopala
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia.,Department of Biotechnology and Food Technology, Faculty of Applied Sciences, Durban University of Technology, Durban 4001, South Africa
| | - Sree Harsha
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Heba S Elsewedy
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Athina Geronikaki
- School of Health, Faculty of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Marina Soković
- Institute for Biological Research "S. Stankovic", Mycological Laboratory, University of Belgrade, Belgrade 11000, Serbia
| |
Collapse
|
14
|
Eleftheriou P, Geronikaki A, Petrou A. PTP1b Inhibition, A Promising Approach for the Treatment of Diabetes Type II. Curr Top Med Chem 2019; 19:246-263. [PMID: 30714526 DOI: 10.2174/1568026619666190201152153] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 12/18/2018] [Accepted: 01/07/2019] [Indexed: 01/29/2023]
Abstract
BACKGROUND Diabetes Mellitus (DM), is a metabolic disorder characterized by high blood glucose levels. The main types of diabetes mellitus are Diabetes mellitus type I, Diabetes mellitus type II, gestational diabetes and Diabetes of other etiology. Diabetes type II, the Non Insulin Dependent Type (NIDDM) is the most common type, characterized by the impairment in activation of the intracellular mechanism leading to the insertion and usage of glucose after interaction of insulin with its receptor, known as insulin resistance. Although, a number of drugs have been developed for the treatment of diabetes type II, their ability to reduce blood glucose levels is limited, while several side effects are also observed. Furthermore, none of the market drugs targets the enhancement of the action of the intracellular part of insulin receptor or recuperation of the glucose transport mechanism in GLUT4 dependent cells. The Protein Tyrosine Phosphatase (PTP1b) is the main enzyme involved in insulin receptor desensitization and has become a drug target for the treatment of Diabetes type II. Several PTP1b inhibitors have already been found, interacting with the binding site of the enzyme, surrounding the catalytic amino acid Cys215 and the neighboring area or with the allosteric site of the enzyme, placed at a distance of 20 Å from the active site, around Phe280. However, the research continues for finding more potent inhibitors with increased cell permeability and specificity. OBJECTIVE The aim of this review is to show the attempts made in developing of Protein Tyrosine Phosphatase (PTP1b) inhibitors with high potency, selectivity and bioavailability and to sum up the indications for favorable structural characteristics of effective PTP1b inhibitors. METHODS The methods used include a literature survey and the use of Protein Structure Databanks such as PuBMed Structure and RCSB and the tools they provide. CONCLUSION The research for finding PTP1b inhibitors started with the design of molecules mimicking the Tyrosine substrate of the enzyme. The study revealed that an aromatic ring connected to a polar group, which preferably enables hydrogen bond formation, is the minimum requirement for small inhibitors binding to the active site surrounding Cys215. Molecules bearing two hydrogen bond donor/acceptor (Hb d/a) groups at a distance of 8.5-11.5 Å may form more stable complexes, interacting simultaneously with a secondary area A2. Longer molecules with two Hb d/a groups at a distance of 17 Å or 19 Å may enable additional interactions with secondary sites (B and C) that confer stability as well as specificity. An aromatic ring linked to polar or Hb d/a moieties is also required for allosteric inhibitors. A lower distance between Hb d/a moieties, around 7.5 Å may favor allosteric interaction. Permanent inhibition of the enzyme by oxidation of the catalytic Cys215 has also been referred. Moreover, covalent modification of Cys121, placed near but not inside the catalytic pocket has been associated with permanent inhibition of the enzyme.
Collapse
Affiliation(s)
- Phaedra Eleftheriou
- Department of Medical Laboratory Studies, School of Health and Medical Care, Alexander Technological Educational Institute of Thessaloniki, Thessaloniki 57400, Greece
| | - Athina Geronikaki
- Department of Pharmacy, School of Health, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece
| | - Anthi Petrou
- Department of Pharmacy, School of Health, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece
| |
Collapse
|
15
|
Busquets O, Eritja À, López BM, Ettcheto M, Manzine PR, Castro-Torres RD, Verdaguer E, Olloquequi J, Vázquez-Carrera M, Auladell C, Folch J, Camins A. Role of brain c-Jun N-terminal kinase 2 in the control of the insulin receptor and its relationship with cognitive performance in a high-fat diet pre-clinical model. J Neurochem 2019; 149:255-268. [PMID: 30734928 DOI: 10.1111/jnc.14682] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 12/20/2018] [Accepted: 02/01/2019] [Indexed: 12/20/2022]
Abstract
Insulin resistance has negative consequences on the physiological functioning of the nervous system. The appearance of type 3 diabetes in the brain leads to the development of the sporadic form of Alzheimer's disease. The c-Jun N-terminal kinases (JNK), a subfamily of the Mitogen Activated Protein Kinases, are enzymes composed by three different isoforms with differential modulatory activity against the insulin receptor (IR) and its substrate. This research focused on understanding the regulatory role of JNK2 on the IR, as well as study the effect of a high-fat diet (HFD) in the brain. Our observations determined how JNK2 ablation did not induce compensatory responses in the expression of the other isoforms but led to an increase in JNKs total activity. HFD-fed animals also showed an increased activity profile of the JNKs. These animals also displayed endoplasmic reticulum stress and up-regulation of the protein tyrosine phosphatase 1B (PTP1B) and the suppressor of cytokine signalling 3 protein. Consequently, a reduction in insulin sensitivity was detected and it is correlated with a decrease on the signalling of the IR. Moreover, cognitive impairment was observed in all groups but only wild-type genotype animals fed with HFD showed neuroinflammatory responses. In conclusion, HFD and JNK2 absence cause alterations in normal cognitive activity by altering the signalling of the IR. These affectations are related to the appearance of endoplasmic reticulum stress and an increase in the levels of inhibitory proteins like PTP1B and suppressor of cytokine signalling 3 protein. Cover Image for this issue: doi: 10.1111/jnc.14502.
Collapse
Affiliation(s)
- Oriol Busquets
- Departament de Farmacologia, Toxicologia i Química Terapèutica, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Barcelona, Spain.,Departament de Bioquímica i Biotecnologia, Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, Reus, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.,Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
| | - Àuria Eritja
- Departament de Farmacologia, Toxicologia i Química Terapèutica, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Barcelona, Spain
| | - Blanca M López
- Departament de Farmacologia, Toxicologia i Química Terapèutica, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Barcelona, Spain
| | - Miren Ettcheto
- Departament de Farmacologia, Toxicologia i Química Terapèutica, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Barcelona, Spain.,Departament de Bioquímica i Biotecnologia, Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, Reus, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.,Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
| | - Patricia R Manzine
- Departament de Farmacologia, Toxicologia i Química Terapèutica, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Barcelona, Spain.,Department of Gerontology, Federal University of São Carlos (UFSCar), São Carlos, SP, Brazil
| | - Rubén D Castro-Torres
- Departament de Farmacologia, Toxicologia i Química Terapèutica, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Barcelona, Spain.,Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain.,Departamento de Biología Celular y Molecular, C.U.C.B.A., Universidad de Guadalajara y División de Neurociencias, Guadalajara, Jalisco, Mexico
| | - Ester Verdaguer
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.,Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain.,Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Jordi Olloquequi
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Talca, Chile
| | - Manuel Vázquez-Carrera
- Departament de Farmacologia, Toxicologia i Química Terapèutica, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Barcelona, Spain.,Institut de Recerca Sant Joan de Déu (IR-SJD), Barcelona, Spain
| | - Carme Auladell
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.,Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain.,Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Jaume Folch
- Departament de Bioquímica i Biotecnologia, Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, Reus, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Antoni Camins
- Departament de Farmacologia, Toxicologia i Química Terapèutica, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.,Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
16
|
Kostrzewa T, Sahu KK, Gorska-Ponikowska M, Tuszynski JA, Kuban-Jankowska A. Synthesis of small peptide compounds, molecular docking, and inhibitory activity evaluation against phosphatases PTP1B and SHP2. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:4139-4147. [PMID: 30584278 PMCID: PMC6287413 DOI: 10.2147/dddt.s186614] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Background The protein tyrosine phosphatases PTP1B and SHP2 are promising drug targets in treatment design for breast cancer. Searching for specific inhibitors of their activity has recently become the challenge of many studies. Previous work has indicated that the promising PTP inhibitors may be small compounds that are able to bind and interact with amino residues from the binding site. Purpose The main goal of our study was to synthesize and analyze the effect of selected small peptide inhibitors on oncogenic PTP1B and SHP2 enzymatic activity and viability of MCF7 breast cancer cells. We also performed computational analysis of peptides binding with allosteric sites of PTP1B and SHP2 phosphatases. Methods We measured the inhibitory activity of compounds utilizing recombinant enzymes and MCF7 cell line. Computational analysis involved docking studies of binding conformation and interactions of inhibitors with allosteric sites of phosphatases. Results The results showed that the tested compounds decrease the enzymatic activity of phosphatases PTP1B and SHP2 with IC50 values in micromolar ranges. We observed higher inhibitory activity of dipeptides than tripeptides. Phe-Asp was the most effective against SHP2 enzymatic activity, with IC50=5.2±0.4 µM. Micromolar concentrations of tested dipeptides also decreased the viability of MCF7 breast cancer cells, with higher inhibitory activity observed for the Phe-Asp peptide. Moreover, the peptides tested were able to bind and interact with allosteric sites of PTP1B and SHP2 phosphatases. Conclusion Our research showed that small peptide compounds can be considered for the design of specific inhibitors of oncogenic protein tyrosine phosphatases.
Collapse
Affiliation(s)
- Tomasz Kostrzewa
- Department of Medical Chemistry, Medical University of Gdańsk, Gdańsk, Poland,
| | - Kamlesh K Sahu
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada
| | | | - Jack A Tuszynski
- Department of Oncology, University of Alberta, Edmonton, AB, Canada
| | | |
Collapse
|
17
|
5-Adamantan thiadiazole-based thiazolidinones as antimicrobial agents. Design, synthesis, molecular docking and evaluation. Bioorg Med Chem 2018; 26:4664-4676. [PMID: 30107969 DOI: 10.1016/j.bmc.2018.08.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 07/24/2018] [Accepted: 08/02/2018] [Indexed: 01/23/2023]
Abstract
In continuation of our efforts to develop new compounds with antimicrobial properties we describe design, synthesis, molecular docking study and evaluation of antimicrobial activity of seventeen novel 2-{[5-(adamantan-1-yl)-1,3,4-thiadiazol-2-yl]-imino}-5-arylidene-1,3-thiazolidin-4-ones. All compounds showed antibacterial activity against eight Gram positive and Gram negative bacterial species. Twelve out of seventeen compounds were more potent than streptomycin and all compounds exhibited higher potency than ampicillin. Compounds were also tested against three resistant bacterial strains: MRSA, P. aeruginosa and E. coli. The best antibacterial potential against ATCC and resistant strains was observed for compound 8 (2-{[5-(adamantan-1-yl)-1,3,4-thiadiazol-2-yl]-imino}-5-(4-nitrobenzylidene)-1,3thiazolidin-4-one). The most sensitive bacterium appeared to be S. typhimirium, followed by B. cereus while L. monocitogenes and M. flavus were the most resistant. Compounds were also tested for their antifungal activity against eight fungal species. All compounds exhibited antifungal activity better than the reference drugs bifonazole and ketokonazole (3-115 times). It was found that compound 8 appeared again to be the most potent. Molecular docking studies on E. coli MurB, MurA as well as C. albicans CYP 51 and dihydrofolate reductase were used for the prediction of mechanism of antibacterial and antifungal activities confirming the experimental results.
Collapse
|
18
|
Tsolaki E, Eleftheriou P, Kartsev V, Geronikaki A, Saxena AK. Application of Docking Analysis in the Prediction and Biological Evaluation of the Lipoxygenase Inhibitory Action of Thiazolyl Derivatives of Mycophenolic Acid. Molecules 2018; 23:E1621. [PMID: 29970872 PMCID: PMC6099768 DOI: 10.3390/molecules23071621] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 06/21/2018] [Accepted: 06/27/2018] [Indexed: 12/25/2022] Open
Abstract
5-LOX inhibition is among the desired characteristics of anti-inflammatory drugs, while 15-LOX has also been considered as a drug target. Similarity in inhibition behavior between soybean LOX-1 and human 5-LOX has been observed and soybean LOX (sLOX) type 1b has been used for the evaluation of LOX inhibition in drug screening for years. After prediction of LOX inhibition by PASS and docking as well as toxicity by PROTOX and ToxPredict sixteen (E)-N-(thiazol-2-yl)-6-(4-hydroxy-6-methoxy-7-methyl-3-oxo-1,3-dihydroisobenzofuran-5-yl)-4-methylhex-4-enamide derivatives with lengths varying from about 15⁻20 Å were evaluated in vitro for LOX inhibitory action using the soybean lipoxygenase sLOX 1b. Docking analysis was performed using soybean LOX L-1 (1YGE), soybean LOX-3 (1JNQ), human 5-LOX (3O8Y and 3V99) and mammalian 15-LOX (1LOX) structures. Different dimensions of target center and docking boxes and a cavity prediction algorithm were used. The compounds exhibited inhibitory action between 2.5 μΜ and 165 μΜ. Substituents with an electronegative atom at two-bond proximity to position 4 of the thiazole led to enhanced activity. Docking results indicated that the LOX structures 1JNQ, 3V99 and 1LOX can effectively be used for estimation of LOX inhibition and amino acid interactions of these compounds.
Collapse
Affiliation(s)
- Evangelia Tsolaki
- Department of Pharmaceutical Chemistry, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | - Phaedra Eleftheriou
- Department of Medical Laboratories, School of Health and Care Professions, Alexander Technological Educational Institute of Thessaloniki, 54700 Thessaloniki, Greece.
| | | | - Athina Geronikaki
- Department of Pharmaceutical Chemistry, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | - Anil K Saxena
- Division of Medicinal & Process Chemistry, Central Drug Research Institute, 226031 Lucknow, India.
| |
Collapse
|