1
|
Lu X, Xie Q, Pan X, Zhang R, Zhang X, Peng G, Zhang Y, Shen S, Tong N. Type 2 diabetes mellitus in adults: pathogenesis, prevention and therapy. Signal Transduct Target Ther 2024; 9:262. [PMID: 39353925 PMCID: PMC11445387 DOI: 10.1038/s41392-024-01951-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/21/2024] [Accepted: 08/06/2024] [Indexed: 10/03/2024] Open
Abstract
Type 2 diabetes (T2D) is a disease characterized by heterogeneously progressive loss of islet β cell insulin secretion usually occurring after the presence of insulin resistance (IR) and it is one component of metabolic syndrome (MS), and we named it metabolic dysfunction syndrome (MDS). The pathogenesis of T2D is not fully understood, with IR and β cell dysfunction playing central roles in its pathophysiology. Dyslipidemia, hyperglycemia, along with other metabolic disorders, results in IR and/or islet β cell dysfunction via some shared pathways, such as inflammation, endoplasmic reticulum stress (ERS), oxidative stress, and ectopic lipid deposition. There is currently no cure for T2D, but it can be prevented or in remission by lifestyle intervention and/or some medication. If prevention fails, holistic and personalized management should be taken as soon as possible through timely detection and diagnosis, considering target organ protection, comorbidities, treatment goals, and other factors in reality. T2D is often accompanied by other components of MDS, such as preobesity/obesity, metabolic dysfunction associated steatotic liver disease, dyslipidemia, which usually occurs before it, and they are considered as the upstream diseases of T2D. It is more appropriate to call "diabetic complications" as "MDS-related target organ damage (TOD)", since their development involves not only hyperglycemia but also other metabolic disorders of MDS, promoting an up-to-date management philosophy. In this review, we aim to summarize the underlying mechanism, screening, diagnosis, prevention, and treatment of T2D, especially regarding the personalized selection of hypoglycemic agents and holistic management based on the concept of "MDS-related TOD".
Collapse
Affiliation(s)
- Xi Lu
- Department of Endocrinology and Metabolism, Research Centre for Diabetes and Metabolism, West China Hospital, Sichuan University, Chengdu, China
| | - Qingxing Xie
- Department of Endocrinology and Metabolism, Research Centre for Diabetes and Metabolism, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaohui Pan
- Department of Endocrinology and Metabolism, Research Centre for Diabetes and Metabolism, West China Hospital, Sichuan University, Chengdu, China
| | - Ruining Zhang
- Department of Endocrinology and Metabolism, Research Centre for Diabetes and Metabolism, West China Hospital, Sichuan University, Chengdu, China
| | - Xinyi Zhang
- Department of Endocrinology and Metabolism, Research Centre for Diabetes and Metabolism, West China Hospital, Sichuan University, Chengdu, China
| | - Ge Peng
- Department of Endocrinology and Metabolism, Research Centre for Diabetes and Metabolism, West China Hospital, Sichuan University, Chengdu, China
| | - Yuwei Zhang
- Department of Endocrinology and Metabolism, Research Centre for Diabetes and Metabolism, West China Hospital, Sichuan University, Chengdu, China
| | - Sumin Shen
- Department of Endocrinology and Metabolism, Research Centre for Diabetes and Metabolism, West China Hospital, Sichuan University, Chengdu, China
| | - Nanwei Tong
- Department of Endocrinology and Metabolism, Research Centre for Diabetes and Metabolism, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
2
|
Saputra F, Kishida M, Hu SY. Nitrate and Nitrite Exposure Induces Visual Impairments in Adult Zebrafish. TOXICS 2024; 12:518. [PMID: 39058170 PMCID: PMC11281020 DOI: 10.3390/toxics12070518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/10/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024]
Abstract
Nitrate and nitrite have emerged as increasingly common environmental pollutants, posing significant risks to various forms of life within ecosystems. To understand their impact on the visual system of zebrafish, adult zebrafish were exposed to environmentally relevant concentrations of nitrate (10 mg/L) and nitrite (1 mg/L) for 7 days. Visual behaviors were examined using optomotor and avoidance response. The eyeballs of the zebrafish were collected for H&E staining, IHC, and qPCR. Exposure decreased visual behavior and the thickness of most retinal layers. Exposure decreased expression of pax6a, pax6b, gpx1a, and bcl2a. Exposure increased expression of esr1, esr1a, esr2b, cyp19a1b, sod1a, nos2a, casps3, and tp53, and increased retinal brain aromatase expression by IHC. Collectively, our findings demonstrate that nitrate and nitrite exposure negatively impacted the visual system of adult zebrafish, highlighting the potential hazards of these environmental pollutants on aquatic organisms.
Collapse
Affiliation(s)
- Febriyansyah Saputra
- Graduate School of Science and Technology, Kumamoto University, Kumamoto 860-8555, Japan;
| | - Mitsuyo Kishida
- Graduate School of Science and Technology, Kumamoto University, Kumamoto 860-8555, Japan;
| | - Shao-Yang Hu
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, Pingtung 912, Taiwan
| |
Collapse
|
3
|
Reddy SK, Devi V, Seetharaman ATM, Shailaja S, Bhat KMR, Gangaraju R, Upadhya D. Cell and molecular targeted therapies for diabetic retinopathy. Front Endocrinol (Lausanne) 2024; 15:1416668. [PMID: 38948520 PMCID: PMC11211264 DOI: 10.3389/fendo.2024.1416668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 05/27/2024] [Indexed: 07/02/2024] Open
Abstract
Diabetic retinopathy (DR) stands as a prevalent complication in the eye resulting from diabetes mellitus, predominantly associated with high blood sugar levels and hypertension as individuals age. DR is a severe microvascular complication of both type I and type II diabetes mellitus and the leading cause of vision impairment. The critical approach to combatting and halting the advancement of DR lies in effectively managing blood glucose and blood pressure levels in diabetic patients; however, this is seldom achieved. Both human and animal studies have revealed the intricate nature of this condition involving various cell types and molecules. Aside from photocoagulation, the sole therapy targeting VEGF molecules in the retina to prevent abnormal blood vessel growth is intravitreal anti-VEGF therapy. However, a substantial portion of cases, approximately 30-40%, do not respond to this treatment. This review explores distinctive pathophysiological phenomena of DR and identifiable cell types and molecules that could be targeted to mitigate the chronic changes occurring in the retina due to diabetes mellitus. Addressing the significant research gap in this domain is imperative to broaden the treatment options available for managing DR effectively.
Collapse
Affiliation(s)
- Shivakumar K. Reddy
- Centre for Molecular Neurosciences, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Vasudha Devi
- Department of Pharmacology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Amritha T. M. Seetharaman
- Department of Ophthalmology, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - S. Shailaja
- Department of Ophthalmology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Kumar M. R. Bhat
- Department of Anatomy, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Rajashekhar Gangaraju
- Department of Ophthalmology, The University of Tennessee Health Science Center, Memphis, TN, United States
- Department of Anatomy & Neurobiology, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Dinesh Upadhya
- Centre for Molecular Neurosciences, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
4
|
Pan X, Tan X, McDonald J, Kaminga AC, Chen Y, Dai F, Qiu J, Zhao K, Peng Y. Chemokines in diabetic eye disease. Diabetol Metab Syndr 2024; 16:115. [PMID: 38790059 PMCID: PMC11127334 DOI: 10.1186/s13098-024-01297-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 02/20/2024] [Indexed: 05/26/2024] Open
Abstract
BACKGROUND Diabetic eye disease is a common micro-vascular complication of diabetes and a leading cause of decreased vision and blindness in people of working age worldwide.Although previous studies have shown that chemokines system may be a player in pathogenesis of diabetic eye disease, it is unclear which chemokines play the most important role.To date, there is no meta-analysis which has investigated the role of chemokines in diabetic eye disease.We hope this study will contribute to a better understanding of both the signaling pathways of the chemokines in the pathophysiological process, and more reliable therapeutic targets for diabetic eye disease. METHODS Embase, PubMed, Web of Science and Cochrane Library systematically searched for relevant studies from inception to Sep 1, 2023. A random-effect model was used and standardized mean differences (SMDs) and 95% confidence intervals (CIs) were calculated to summarize the associated measure between chemokines concentrations and diabetic eye disease. Network meta-analysis to rank chemokines-effect values according to ranked probabilities. RESULTS A total of 33 different chemokines involving 11,465 subjects (6559 cases and 4906 controls) were included in the meta-analysis. Results of the meta-analysis showed that concentrations of CC and CXC chemokines in the diabetic eye disease patients were significantly higher than those in the controls. Moreover, network meta-analysis showed that the effect of CCL8, CCL2, CXCL8 and CXCL10 were ranked highest in terms of probabilities. Concentrations of CCL8, CCL2, CXCL8 and CXCL10 may be associated with diabetic eye disease, especially in diabetic retinopathy and diabetic macular edema. CONCLUSION Our study suggests that CCL2 and CXCL8 may play key roles in pathogenesis of diabetic eye disease. Future research should explore putative mechanisms underlying these links, with the commitment to develop novel prophylactic and therapeutic for diabetic eye disease.
Collapse
Affiliation(s)
- Xiongfeng Pan
- Pediatrics Research Institute of Hunan Province, Hunan Children's Hospital, 86 Ziyuan Rd, Changsha, Hunan, People's Republic of China, 410007.
- The Affiliated Children's Hospital of Xiangya School of Medicine, Central South University, Changsha, China.
| | - Xinrui Tan
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Judy McDonald
- McLaughlin Centre for Population Health Risk Assessment, University of Ottawa, Ottawa, ON, Canada
| | | | - Yuyao Chen
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Feizhao Dai
- Department of Ophthalmology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Jun Qiu
- Pediatrics Research Institute of Hunan Province, Hunan Children's Hospital, 86 Ziyuan Rd, Changsha, Hunan, People's Republic of China, 410007
| | - Kunyan Zhao
- School of Public Health, University of South China, Hengyang, China
| | - Yunlong Peng
- Department of Epidemiology and Health Statistics, Medical College of Soochow University, Suzhou, China
| |
Collapse
|
5
|
Vinci MC, Costantino S, Damiano G, Rurali E, Rinaldi R, Vigorelli V, Sforza A, Carulli E, Pirola S, Mastroiacovo G, Raucci A, El-Osta A, Paneni F, Pompilio G. Persistent epigenetic signals propel a senescence-associated secretory phenotype and trained innate immunity in CD34 + hematopoietic stem cells from diabetic patients. Cardiovasc Diabetol 2024; 23:107. [PMID: 38553774 PMCID: PMC10981360 DOI: 10.1186/s12933-024-02195-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 03/11/2024] [Indexed: 04/01/2024] Open
Abstract
BACKGROUND Diabetes-induced trained immunity contributes to the development of atherosclerosis and its complications. This study aimed to investigate in humans whether epigenetic signals involved in immune cell activation and inflammation are initiated in hematopoietic stem/progenitor cells (HSPCs) and transferred to differentiated progeny. METHODS AND RESULTS High glucose (HG)-exposure of cord blood (CB)-derived HSPCs induced a senescent-associated secretory phenotype (SASP) characterized by cell proliferation lowering, ROS production, telomere shortening, up-regulation of p21 and p27genes, upregulation of NFkB-p65 transcription factor and increased secretion of the inflammatory cytokines TNFα and IL6. Chromatin immunoprecipitation assay (ChIP) of p65 promoter revealed that H3K4me1 histone mark accumulation and methyltransferase SetD7 recruitment, along with the reduction of repressive H3K9me3 histone modification, were involved in NFkB-p65 upregulation of HG-HSPCs, as confirmed by increased RNA polymerase II engagement at gene level. The differentiation of HG-HSPCs into myeloid cells generated highly responsive monocytes, mainly composed of intermediate subsets (CD14hiCD16+), that like the cells from which they derive, were characterized by SASP features and similar epigenetic patterns at the p65 promoter. The clinical relevance of our findings was confirmed in sternal BM-derived HSPCs of T2DM patients. In line with our in vitro model, T2DM HSPCs were characterized by SASP profile and SETD7 upregulation. Additionally, they generated, after myeloid differentiation, senescent monocytes mainly composed of proinflammatory intermediates (CD14hiCD16+) characterized by H3K4me1 accumulation at NFkB-p65 promoter. CONCLUSIONS Hyperglycemia induces marked chromatin modifications in HSPCs, which, once transmitted to the cell progeny, contributes to persistent and pathogenic changes in immune cell function and composition.
Collapse
Affiliation(s)
- Maria Cristina Vinci
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino IRCCS, Via C. Parea 4, 20138, Milan, Italy.
| | - Sarah Costantino
- Center for Translational and Experimental Cardiology (CTEC), Department of Cardiology, University Hospital Zurich and University of Zürich, Zurich, Switzerland
- University Heart Center, University Hospital Zurich, Zurich, Switzerland
| | - Giulia Damiano
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino IRCCS, Via C. Parea 4, 20138, Milan, Italy
| | - Erica Rurali
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino IRCCS, Via C. Parea 4, 20138, Milan, Italy
| | - Raffaella Rinaldi
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino IRCCS, Via C. Parea 4, 20138, Milan, Italy
| | - Vera Vigorelli
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino IRCCS, Via C. Parea 4, 20138, Milan, Italy
| | - Annalisa Sforza
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino IRCCS, Via C. Parea 4, 20138, Milan, Italy
| | - Ermes Carulli
- Dipartimento Di Scienze Cliniche E Di Comunità, Università Di Milano, Milan, Italy
- Doctoral Programme in Translational Medicine, Università Di Milano, 20122, Milan, Italy
| | - Sergio Pirola
- Department of Cardiac Surgery, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | | | - Angela Raucci
- Unit of Experimental Cardio-Oncology and Cardiovascular Aging, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Assam El-Osta
- Epigenetics in Human Health and Disease Program, Baker Heart and Diabetes Institute, Melbourne, VIC, 3004, Australia
| | - Francesco Paneni
- Center for Translational and Experimental Cardiology (CTEC), Department of Cardiology, University Hospital Zurich and University of Zürich, Zurich, Switzerland.
- University Heart Center, University Hospital Zurich, Zurich, Switzerland.
| | - Giulio Pompilio
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino IRCCS, Via C. Parea 4, 20138, Milan, Italy
- Department of Biomedical, Surgical and Dental Sciences, Università Degli Studi di Milano, Milan, Italy
| |
Collapse
|
6
|
McCurry CM, Sunilkumar S, Subrahmanian SM, Yerlikaya EI, Toro AL, VanCleave AM, Stevens SA, Barber AJ, Sundstrom JM, Dennis MD. NLRP3 Inflammasome Priming in the Retina of Diabetic Mice Requires REDD1-Dependent Activation of GSK3β. Invest Ophthalmol Vis Sci 2024; 65:34. [PMID: 38546584 PMCID: PMC10981446 DOI: 10.1167/iovs.65.3.34] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 03/04/2024] [Indexed: 04/01/2024] Open
Abstract
Purpose Inflammasome activation has been implicated in the development of retinal complications caused by diabetes. This study was designed to identify signaling events that promote retinal NOD-, LRR-, and pyrin domain-containing protein 3 (NLRP3) inflammasome activation in response to diabetes. Methods Diabetes was induced in mice by streptozotocin administration. Retinas were examined after 16 weeks of diabetes. Human MIO-M1 Müller cells were exposed to hyperglycemic culture conditions. Genetic and pharmacological interventions were used to interrogate signaling pathways. Visual function was assessed in mice using a virtual optomotor system. Results In the retina of diabetic mice and in Müller cell cultures, NLRP3 and interleukin-1β (IL-1β) were increased in response to hyperglycemic conditions and the stress response protein Regulated in Development and DNA damage 1 (REDD1) was required for the effect. REDD1 deletion prevented caspase-1 activation in Müller cells exposed to hyperglycemic conditions and reduced IL-1β release. REDD1 promoted nuclear factor κB signaling in cells exposed to hyperglycemic conditions, which was necessary for an increase in NLRP3. Expression of a constitutively active GSK3β variant restored NLRP3 expression in REDD1-deficient cells exposed to hyperglycemic conditions. GSK3 activity was necessary for increased NLRP3 expression in the retina of diabetic mice and in cells exposed to hyperglycemic conditions. Müller glia-specific REDD1 deletion prevented increased retinal NLRP3 levels and deficits in contrast sensitivity in diabetic mice. Conclusions The data support a role for REDD1-dependent activation of GSK3β in NLRP3 inflammasome transcriptional priming and in the production of IL-1β by Müller glia in response to diabetes.
Collapse
Affiliation(s)
- Christopher M. McCurry
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania, United States
| | - Siddharth Sunilkumar
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania, United States
| | - Sandeep M. Subrahmanian
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania, United States
| | - Esma I. Yerlikaya
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania, United States
| | - Allyson L. Toro
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania, United States
| | - Ashley M. VanCleave
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania, United States
| | - Shaunaci A. Stevens
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania, United States
| | - Alistair J. Barber
- Department of Ophthalmology, Penn State College of Medicine, Hershey, Pennsylvania, United States
| | - Jeffery M. Sundstrom
- Department of Ophthalmology, Penn State College of Medicine, Hershey, Pennsylvania, United States
| | - Michael D. Dennis
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania, United States
- Department of Ophthalmology, Penn State College of Medicine, Hershey, Pennsylvania, United States
| |
Collapse
|
7
|
Gao P, Cao Y, Ma L. Regulation of soluble epoxide hydrolase in renal-associated diseases: insights from potential mechanisms to clinical researches. Front Endocrinol (Lausanne) 2024; 15:1304547. [PMID: 38425758 PMCID: PMC10902052 DOI: 10.3389/fendo.2024.1304547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 02/01/2024] [Indexed: 03/02/2024] Open
Abstract
In recent years, numerous experimental studies have underscored the pivotal role of soluble epoxide hydrolase (sEH) in renal diseases, demonstrating the reno-protective effects of sEH inhibitors. The nexus between sEH and renal-associated diseases has garnered escalating attention. This review endeavors to elucidate the potential molecular mechanisms of sEH in renal diseases and emphasize the critical role of sEH inhibitors as a prospective treatment modality. Initially, we expound upon the correlation between sEH and Epoxyeicosatrienoic acids (EETs) and also addressing the impact of sEH on other epoxy fatty acids, delineate prevalent EPHX2 single nucleotide polymorphisms (SNPs) associated with renal diseases, and delve into sEH-mediated potential mechanisms, encompassing oxidative stress, inflammation, ER stress, and autophagy. Subsequently, we delineate clinical research pertaining to sEH inhibition or co-inhibition of sEH with other inhibitors for the regulation of renal-associated diseases, covering conditions such as acute kidney injury, chronic kidney diseases, diabetic nephropathy, and hypertension-induced renal injury. Our objective is to validate the potential role of sEH inhibitors in the treatment of renal injuries. We contend that a comprehensive comprehension of the salient attributes of sEH, coupled with insights from clinical experiments, provides invaluable guidance for clinicians and presents promising therapeutic avenues for patients suffering from renal diseases.
Collapse
Affiliation(s)
| | - Yongtong Cao
- Department of Clinical Laboratory, China-Japan Friendship Hospital, Beijing, China
| | - Liang Ma
- Department of Clinical Laboratory, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
8
|
Zhang W, Yao J, Chen C, Wang J, Zhou A. Fetuin-B Overexpression Promotes Inflammation in Diabetic Retinopathy Through Activating Microglia and the NF-κB Signaling Pathway. Curr Eye Res 2024; 49:168-179. [DOI: https:/doi.org/10.1080/02713683.2023.2276683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 10/21/2023] [Indexed: 02/14/2024]
Affiliation(s)
- Wenyi Zhang
- Department of Ophthalmology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Jing Yao
- Department of Ophthalmology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Chen Chen
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Jianming Wang
- Department of Ophthalmology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Aiyi Zhou
- Department of Ophthalmology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
9
|
Zhang W, Yao J, Chen C, Wang J, Zhou A. Fetuin-B Overexpression Promotes Inflammation in Diabetic Retinopathy Through Activating Microglia and the NF-κB Signaling Pathway. Curr Eye Res 2024; 49:168-179. [PMID: 37883127 DOI: 10.1080/02713683.2023.2276683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 10/21/2023] [Indexed: 10/27/2023]
Abstract
PURPOSE To investigate the expression, source, role, and mechanism of Fetuin-B (FETUB) in diabetic retinopathy (DR). METHODS ELISA and immunofluorescence were used to analyze the concentration of FETUB in plasma, aqueous fluid, and tissue specimens of patients with DR and healthy controls. Immunofluorescence, q-PCR, and western blotting were used to examine the expression of FETUB in DR mice and cells cultured with different concentrations of glucose. BV2 microglia cell line and DR mice were treated using FETUB recombination protein and FETUB shRNA to explore the function of FETUB in DR by q-PCR, western blotting, and immunofluorescence. RESULTS FETUB concentrations in plasma, aqueous fluid, and tissue specimens were significantly increased in DR patients. The mice in DR group had a higher concentration of FETUB in the retina and liver tissues than those in the control group, and the expression of FETUB was increased in both ARPE19 and BV2 cells under a high-glucose environment. The ratio of p-P65 (Phospho-P65)/P65 and the expression levels of TNF-α, VEGF, and ionized calcium binding adaptor molecule (IBA)-1 were increased in BV2 cells cultured with FETUB recombinant protein, while they were decreased in BV2 cells transfected with FETUB shRNA. Immunofluorescence staining showed that there were more IBA-1+ activated microglia in the retinas of the FETUB recombination protein group than in the retinas of the DR group, and there were fewer IBA-1+ activated microglia in the retinas of the FETUB shRNA group than in the retinas of the DR group. CONCLUSIONS FETUB sourced from endocrine, autocrine, and paracrine pathways could promote inflammation in DR by activating the NF-κB pathway and microglia.
Collapse
Affiliation(s)
- Wenyi Zhang
- Department of Ophthalmology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jing Yao
- Department of Ophthalmology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Chen Chen
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Jianming Wang
- Department of Ophthalmology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Aiyi Zhou
- Department of Ophthalmology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
10
|
Zhang LC, Li N, Xu M, Chen JL, He H, Liu J, Wang TH, Zuo ZF. Salidroside protects RGC from pyroptosis in diabetes-induced retinopathy associated with NLRP3, NFEZL2 and NGKB1, revealed by network pharmacology analysis and experimental validation. Eur J Med Res 2024; 29:60. [PMID: 38243268 PMCID: PMC10799395 DOI: 10.1186/s40001-023-01578-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 12/07/2023] [Indexed: 01/21/2024] Open
Abstract
OBJECTIVE To investigate the effect of salidroside (SAL) in protecting retinal ganglion cell (RGC) from pyroptosis and explore associated molecular network mechanism in diabetic retinapathy (DR) rats. METHODS HE, Nissl and immunofluorescence staining were used to observe the retinal morphological change, and the related target genes for salidroside, DR and pyroptosis were downloaded from GeneCard database. Then Venny, PPI, GO, KEGG analysis and molecular docking were used to reveal molecular network mechanism of SAL in inhibiting the pyroptosis of RGC. Lastly, all hub genes were confirmed by using qPCR. RESULTS HE and Nissl staining showed that SAL could improve the pathological structure known as pyroptosis in diabetic retina, and the fluorescence detection of pyroptosis marker in DM group was the strongest, while they decreased in the SAL group(P < 0.05)). Network pharmacological analysis showed 6 intersecting genes were obtained by venny analysis. GO and KEGG analysis showed 9 biological process, 3 molecular function and 3 signaling pathways were involved. Importantly, molecular docking showed that NFE2L2, NFKB1, NLRP3, PARK2 and SIRT1 could combine with salidroside, and qPCR validates the convincible change of CASP3, NFE2L2, NFKB1, NLRP3, PARK2 and SIRT1. CONCLUSION Salidroside can significantly improve diabetes-inducedRGC pyrotosis in retina, in which, the underlying mechanism is associated with the NLRP3, NFEZL2 and NGKB1 regulation.
Collapse
Affiliation(s)
- Lan-Chun Zhang
- Department of Laboratory Animal Science, Institute of Neuroscience, Kunming Medical University, Kunming, 650500, China
| | - Na Li
- Department of Laboratory Animal Science, Institute of Neuroscience, Kunming Medical University, Kunming, 650500, China
- Liaoning Key Laboratory of Diabetic Cognitive and Perceptive Dysfunction, Jinzhou Medical University, Jinzhou, China
| | - Min Xu
- Liaoning Key Laboratory of Diabetic Cognitive and Perceptive Dysfunction, Jinzhou Medical University, Jinzhou, China
- Department of Anatomy, College of Basic Medicine, Jinzhou Medical University, Jinzhou, 121000, China
| | - Ji-Lin Chen
- Department of Laboratory Animal Science, Institute of Neuroscience, Kunming Medical University, Kunming, 650500, China
| | - Hua He
- Department of Pharmacology, Haiyuan College of Kunming Medical University, Kunming, 650106, Yunnan, China
| | - Jia Liu
- Department of Pharmacology, Haiyuan College of Kunming Medical University, Kunming, 650106, Yunnan, China
| | - Ting-Hua Wang
- Department of Laboratory Animal Science, Institute of Neuroscience, Kunming Medical University, Kunming, 650500, China.
- Liaoning Key Laboratory of Diabetic Cognitive and Perceptive Dysfunction, Jinzhou Medical University, Jinzhou, China.
- Department of Anatomy, College of Basic Medicine, Jinzhou Medical University, Jinzhou, 121000, China.
| | - Zhong-Fu Zuo
- Liaoning Key Laboratory of Diabetic Cognitive and Perceptive Dysfunction, Jinzhou Medical University, Jinzhou, China.
- Department of Anatomy, College of Basic Medicine, Jinzhou Medical University, Jinzhou, 121000, China.
| |
Collapse
|
11
|
Youjun D, Huang Y, Lai Y, Ma Z, Wang X, Chen B, Ding X, Tan Q. Mechanisms of resveratrol against diabetic wound by network pharmacology and experimental validation. Ann Med 2023; 55:2280811. [PMID: 37967241 PMCID: PMC10653769 DOI: 10.1080/07853890.2023.2280811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/30/2023] [Indexed: 11/17/2023] Open
Abstract
BACKGROUND Resveratrol (RSV) that possesses anti-oxidative, anti-inflammatory, and pro-angiogenic effects is an effective drug for diabetic wound (DW), while its pharmacological mechanism remains to be elucidated. In this study, we apply network pharmacology and experimental validation approach to reveal the potential mechanism of RSV against DW. METHODS We obtained potential targets for RSV and DW from the publicly available database. Using interaction networks and conducting GO and KEGG pathway enrichment analyses, we constructed target-pathway networks to explore the relationship between RSV and DW. To validate the pharmacological mechanism of RSV, we induced the DW model. RESULTS Ninety overlapped targets between RSV and DW were obtained, and the hub genes of the PPI network included TNF, IL-6, CASP3, MAPK3, VEGFA, IL-1β, AKT1, and JUN. Based on target-pathway networks, the AGE-RAGE signalling pathway was involved in the RSV treatment of DW. Furthermore, in vivo experiments revealed that RSV significantly promoted wound healing in diabetic mice and attenuated the expression of pro-inflammatory cytokines in wound tissue. Meanwhile, RSV could inhibit the AGE-RAGE signalling pathway and thus reduce the activation of NF-κB. CONCLUSION This study initially revealed the biological mechanism of RSV for treating DW through multi-target and multi-pathway. AGE-RAGE, FoxO, MAPK, PI3K-AKT and other signalling pathways may be the main pathways of RSV in treating DW. RSV reduces the inflammatory response by inhibiting the AGE-RAGE signalling pathway, which in turn promotes DW healing.
Collapse
Affiliation(s)
- Ding Youjun
- Nanjing Drum Tower Hospital, Clinical College of Jiangsu University, Nanjing, China
- Department of Emergency Surgery, The Fourth Affiliated Hospital of Jiangsu University (Zhenjiang Fourth People’s Hospital), Zhenjiang, China
| | - Yumeng Huang
- Nanjing Drum Tower Hospital, Clinical College of Jiangsu University, Nanjing, China
| | - Yongxian Lai
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhouji Ma
- Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China
| | - Xin Wang
- Jintan Affiliated Hospital of Jiangsu University, Changzhou, China
| | - Bin Chen
- Institute of Plant Resources and Chemistry, Nanjing Research Institute for Comprehensive Utilization of Wild Plants, Nanjing, China
| | - Xiaofeng Ding
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qian Tan
- Nanjing Drum Tower Hospital, Clinical College of Jiangsu University, Nanjing, China
- Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China
- Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| |
Collapse
|
12
|
Hussain A, Ashique S, Afzal O, Altamimi MA, Malik A, Kumar S, Garg A, Sharma N, Farid A, Khan T, Altamimi ASA. A correlation between oxidative stress and diabetic retinopathy: An updated review. Exp Eye Res 2023; 236:109650. [PMID: 37734426 DOI: 10.1016/j.exer.2023.109650] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/09/2023] [Accepted: 09/12/2023] [Indexed: 09/23/2023]
Abstract
Oxidative stress (OS) is a cytopathic outcome of excessively generated reactive oxygen species (ROS), down regulated antioxidant defense signaling pathways, and the imbalance between the produced radicals and their clearance. It plays a role in the genesis of several illnesses, especially hyperglycemia and its effects. Diabetic retinal illness, a micro vascular side effect of the condition, is the prime reason of diabetic related blindness. The OS (directly or indirectly) is associated with diabetic retinopathy (DR) and related consequences. The OS is responsible to induce and interfere the metabolic signaling pathways to enhance influx of the polyol cascades and hexosamine pathways, stimulate Protein Kinase-C (PKC) variants, and accumulate advanced glycation end products (AGEs). Additionally, the inequity between the scavenging and generation of ROS is caused by the epigenetic alteration caused by hyperglycemia that suppresses the antioxidant defense system. Induced by an excessive buildup of ROS, retinal changes in structure and function include mitochondrial damage, cellular death, inflammation, and lipid peroxidation. Therefore, it is crucial to comprehend and clarify the mechanisms connected to oxidative stress that underlie the development of DR.
Collapse
Affiliation(s)
- Afzal Hussain
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia.
| | - Sumel Ashique
- Department of Pharmaceutics, Pandaveswar School of Pharmacy, Pandaveswar, West Bengal, 713346, India
| | - Obaid Afzal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj, 11942, Saudi Arabia
| | - Mohammad A Altamimi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Abdul Malik
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Shubneesh Kumar
- Department of Pharmaceutics, Bharat Institute of Technology, School of Pharmacy, Meerut, Uttar Pradesh, 250103, India
| | - Ashish Garg
- Department of Pharmaceutics, Guru Ramdas Khalsa Institute of Science and Technology (Pharmacy), Jabalpur, Madhya Pradesh, India
| | - Nidhi Sharma
- Graduate Assistant, Department of Biomedical Engineering University of Connecticut, UCONN, Storrs Campus, 263 Farmington Ave, Farmington, CT, 06030, USA
| | - Arshad Farid
- Gomal Center of Biochemistry and Biotechnology, Gomal University, D.I. Khan, KPK, Pakistan
| | - Tasneem Khan
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Abdulmalik S A Altamimi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj, 11942, Saudi Arabia
| |
Collapse
|
13
|
Majd H, Amin S, Ghazizadeh Z, Cesiulis A, Arroyo E, Lankford K, Majd A, Farahvashi S, Chemel AK, Okoye M, Scantlen MD, Tchieu J, Calder EL, Le Rouzic V, Shibata B, Arab A, Goodarzi H, Pasternak G, Kocsis JD, Chen S, Studer L, Fattahi F. Deriving Schwann cells from hPSCs enables disease modeling and drug discovery for diabetic peripheral neuropathy. Cell Stem Cell 2023; 30:632-647.e10. [PMID: 37146583 PMCID: PMC10249419 DOI: 10.1016/j.stem.2023.04.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 01/11/2023] [Accepted: 04/10/2023] [Indexed: 05/07/2023]
Abstract
Schwann cells (SCs) are the primary glia of the peripheral nervous system. SCs are involved in many debilitating disorders, including diabetic peripheral neuropathy (DPN). Here, we present a strategy for deriving SCs from human pluripotent stem cells (hPSCs) that enables comprehensive studies of SC development, physiology, and disease. hPSC-derived SCs recapitulate the molecular features of primary SCs and are capable of in vitro and in vivo myelination. We established a model of DPN that revealed the selective vulnerability of SCs to high glucose. We performed a high-throughput screen and found that an antidepressant drug, bupropion, counteracts glucotoxicity in SCs. Treatment of hyperglycemic mice with bupropion prevents their sensory dysfunction, SC death, and myelin damage. Further, our retrospective analysis of health records revealed that bupropion treatment is associated with a lower incidence of neuropathy among diabetic patients. These results highlight the power of this approach for identifying therapeutic candidates for DPN.
Collapse
Affiliation(s)
- Homa Majd
- Department of Cellular and Molecular Pharmacology, UCSF, San Francisco, CA 94158, USA; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, UCSF, San Francisco, CA 94158, USA
| | - Sadaf Amin
- Department of Surgery, Weill Cornell Medicine, New York, NY 10065, USA
| | - Zaniar Ghazizadeh
- Department of Surgery, Weill Cornell Medicine, New York, NY 10065, USA
| | - Andrius Cesiulis
- Department of Cellular and Molecular Pharmacology, UCSF, San Francisco, CA 94158, USA; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, UCSF, San Francisco, CA 94158, USA
| | - Edgardo Arroyo
- Neuroscience Research Center, Yale University School of Medicine and VA Healthcare System, West Haven, CT 06516, USA; Department of Neurology, Yale University School of Medicine and VA Healthcare System, West Haven, CT 06516, USA
| | - Karen Lankford
- Neuroscience Research Center, Yale University School of Medicine and VA Healthcare System, West Haven, CT 06516, USA; Department of Neurology, Yale University School of Medicine and VA Healthcare System, West Haven, CT 06516, USA
| | - Alireza Majd
- Department of Cellular and Molecular Pharmacology, UCSF, San Francisco, CA 94158, USA; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, UCSF, San Francisco, CA 94158, USA
| | - Sina Farahvashi
- Department of Cellular and Molecular Pharmacology, UCSF, San Francisco, CA 94158, USA; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, UCSF, San Francisco, CA 94158, USA
| | - Angeline K Chemel
- Department of Cellular and Molecular Pharmacology, UCSF, San Francisco, CA 94158, USA; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, UCSF, San Francisco, CA 94158, USA
| | - Mesomachukwu Okoye
- Department of Cellular and Molecular Pharmacology, UCSF, San Francisco, CA 94158, USA; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, UCSF, San Francisco, CA 94158, USA
| | - Megan D Scantlen
- Department of Cellular and Molecular Pharmacology, UCSF, San Francisco, CA 94158, USA; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, UCSF, San Francisco, CA 94158, USA
| | - Jason Tchieu
- The Center for Stem Cell Biology, Sloan-Kettering Institute for Cancer Research, New York, NY 10065, USA; Developmental Biology Program, Sloan-Kettering Institute for Cancer Research, New York, NY 10065, USA
| | - Elizabeth L Calder
- The Center for Stem Cell Biology, Sloan-Kettering Institute for Cancer Research, New York, NY 10065, USA; Developmental Biology Program, Sloan-Kettering Institute for Cancer Research, New York, NY 10065, USA
| | - Valerie Le Rouzic
- Molecular Pharmacology Program, Sloan-Kettering Institute for Cancer Research, New York, NY 10065, USA; Department of Neurology, Sloan-Kettering Institute for Cancer Research, New York, NY 10065, USA
| | - Bradley Shibata
- Biological Electron Microscopy Facility, UCD, Davis, CA 95616, USA
| | - Abolfazl Arab
- Department of Biochemistry and Biophysics, UCSF, San Francisco, CA 94158, USA
| | - Hani Goodarzi
- Department of Biochemistry and Biophysics, UCSF, San Francisco, CA 94158, USA; Department of Urology, UCSF, San Francisco, CA 94158, USA
| | - Gavril Pasternak
- Molecular Pharmacology Program, Sloan-Kettering Institute for Cancer Research, New York, NY 10065, USA; Department of Neurology, Sloan-Kettering Institute for Cancer Research, New York, NY 10065, USA
| | - Jeffery D Kocsis
- Neuroscience Research Center, Yale University School of Medicine and VA Healthcare System, West Haven, CT 06516, USA; Department of Neurology, Yale University School of Medicine and VA Healthcare System, West Haven, CT 06516, USA
| | - Shuibing Chen
- Department of Surgery, Weill Cornell Medicine, New York, NY 10065, USA; Center of Genomic Health, Weill Cornell Medicine, New York, NY 10065, USA
| | - Lorenz Studer
- The Center for Stem Cell Biology, Sloan-Kettering Institute for Cancer Research, New York, NY 10065, USA; Developmental Biology Program, Sloan-Kettering Institute for Cancer Research, New York, NY 10065, USA.
| | - Faranak Fattahi
- Department of Cellular and Molecular Pharmacology, UCSF, San Francisco, CA 94158, USA; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, UCSF, San Francisco, CA 94158, USA; Program in Craniofacial Biology, UCSF, San Francisco, CA 94110, USA.
| |
Collapse
|
14
|
Li N, Guo XL, Xu M, Chen JL, Wang YF, Xiao YG, Gao AS, Zhang LC, Liu XZ, Wang TH. Network pharmacology mechanism of Scutellarin to inhibit RGC pyroptosis in diabetic retinopathy. Sci Rep 2023; 13:6504. [PMID: 37081038 PMCID: PMC10119430 DOI: 10.1038/s41598-023-33665-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 04/17/2023] [Indexed: 04/22/2023] Open
Abstract
To investigate the effect of scutellarin (SCU) in diabetic retinopathy (DR) and explore the associated molecular network mechanism. The animal model of DR was established from diabetic mellitus (DM) rats by intraperitoneally injected streptozotocin (STZ) at dosage 55 mg/kg. Meanwhile, SCU was intraperitoneally administrated to protect retina from cell pyroptosis induced by DM, and cell pyroptosis was detected by using HE, Nissl staining, and immunofluorescence recognition. Moreover, the hub gene involving in pyroptosis in DR was screened by bioinformatics and network pharmacology, designated as Venny intersection screen, GO and KEGG analysis, PPI protein interaction, and molecular docking. Lastly, the expressional change of hub genes were validated with experimental detection. Cell pyroptosis of the DR, specifically in retina ganglion cells (RGC), was induced in DM rats; SCU administration results in significant inhibition in the cell pyroptosis in DR. Mechanically, 4084 genes related to DR were screened from GeneCards and OMIM databases, and 120 SCU therapeutic targets were obtained, by using GeneCards, TCMSP with Swiss Target Prediction databases. Moreover, 357 targets related to pyroptosis were found using GenenCards database, and Drug, disease and phenotypic targets were analyzed online using the Draw Venn Diagram website, and 12 cross targets were obtained. Through GO function and KEGG pathway enrichment analysis, 659 BP related items, 7 CC related items, 30 MF related items, and 70 signal pathways were screened out; Of these, eleven proteins screened from cross-target PPI network were subsequently docked with the SCU, and their expressions including caspase-1, IL-1β, IL-18, GSDMD and NLRP3 in RGC indicated by immunofluorescence, and the mRNA expression for caspase-1 in DR indicated by quantitative PCR, were successfully validated. SCU can effectively protect RGC pyroptosis in DR, and underlying mechanisms are involved in the inhibition of caspase-1, GSDMD, NLRP3, IL-1β and IL-18. Our findings therefore provide crucial evidence to support the clinic practice of SCU for the treatment of DR, and explained the underlying molecular network mechanism.
Collapse
Affiliation(s)
- Na Li
- Department of Anatomy, College of Basic Medicine, Jinzhou Medical University, Jinzhou, 121001, China
- Animal Center, Kunming Medical University, Kunming, 650500, China
| | - Xi-Liang Guo
- Department of Anatomy, College of Basic Medicine, Jinzhou Medical University, Jinzhou, 121001, China
| | - Min Xu
- Department of Anatomy, College of Basic Medicine, Jinzhou Medical University, Jinzhou, 121001, China
| | - Ji-Lin Chen
- Department of Anatomy, College of Basic Medicine, Jinzhou Medical University, Jinzhou, 121001, China
- Animal Center, Kunming Medical University, Kunming, 650500, China
| | - Yu-Fei Wang
- Department of Anatomy, College of Basic Medicine, Jinzhou Medical University, Jinzhou, 121001, China
| | - Yu-Gao Xiao
- Department of Anatomy, College of Basic Medicine, Jinzhou Medical University, Jinzhou, 121001, China
| | - An-Shun Gao
- The First People's Hospital of Luquan Yi and Miao Autonomous County, Luquan, 651500, China
| | - Lan-Chun Zhang
- Animal Center, Kunming Medical University, Kunming, 650500, China.
| | - Xue-Zheng Liu
- Department of Anatomy, College of Basic Medicine, Jinzhou Medical University, Jinzhou, 121001, China.
| | - Ting-Hua Wang
- Department of Anatomy, College of Basic Medicine, Jinzhou Medical University, Jinzhou, 121001, China.
- Animal Center, Kunming Medical University, Kunming, 650500, China.
- Institute of Neuroscience, Kunming Medical University, Kunming, 650500, China.
| |
Collapse
|
15
|
Shu DY, Chaudhary S, Cho KS, Lennikov A, Miller WP, Thorn DC, Yang M, McKay TB. Role of Oxidative Stress in Ocular Diseases: A Balancing Act. Metabolites 2023; 13:187. [PMID: 36837806 PMCID: PMC9960073 DOI: 10.3390/metabo13020187] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/22/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
Redox homeostasis is a delicate balancing act of maintaining appropriate levels of antioxidant defense mechanisms and reactive oxidizing oxygen and nitrogen species. Any disruption of this balance leads to oxidative stress, which is a key pathogenic factor in several ocular diseases. In this review, we present the current evidence for oxidative stress and mitochondrial dysfunction in conditions affecting both the anterior segment (e.g., dry eye disease, keratoconus, cataract) and posterior segment (age-related macular degeneration, proliferative vitreoretinopathy, diabetic retinopathy, glaucoma) of the human eye. We posit that further development of therapeutic interventions to promote pro-regenerative responses and maintenance of the redox balance may delay or prevent the progression of these major ocular pathologies. Continued efforts in this field will not only yield a better understanding of the molecular mechanisms underlying the pathogenesis of ocular diseases but also enable the identification of novel druggable redox targets and antioxidant therapies.
Collapse
Affiliation(s)
- Daisy Y. Shu
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| | - Suman Chaudhary
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| | - Kin-Sang Cho
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| | - Anton Lennikov
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| | - William P. Miller
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| | - David C. Thorn
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Menglu Yang
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| | - Tina B. McKay
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
16
|
Kowluru RA. Cross Talks between Oxidative Stress, Inflammation and Epigenetics in Diabetic Retinopathy. Cells 2023; 12:300. [PMID: 36672234 PMCID: PMC9857338 DOI: 10.3390/cells12020300] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/06/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
Diabetic retinopathy, one of the most devastating complications of diabetes, is a multifactorial progressing disease with a very complex etiology. Although many metabolic, molecular, functional and structural changes have been identified in the retina and its vasculature, the exact molecular mechanism of its pathogenesis still remains elusive. Sustained high-circulating glucose increases oxidative stress in the retina and also activates the inflammatory cascade. Free radicals increase inflammatory mediators, and inflammation can increase production of free radicals, suggesting a positive loop between them. In addition, diabetes also facilitates many epigenetic modifications that can influence transcription of a gene without changing the DNA sequence. Several genes associated with oxidative stress and inflammation in the pathogenesis of diabetic retinopathy are also influenced by epigenetic modifications. This review discusses cross-talks between oxidative stress, inflammation and epigenetics in diabetic retinopathy. Since epigenetic changes are influenced by external factors such as environment and lifestyle, and they can also be reversed, this opens up possibilities for new strategies to inhibit the development/progression of this sight-threatening disease.
Collapse
Affiliation(s)
- Renu A Kowluru
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University, Detroit, MI 48201, USA
| |
Collapse
|
17
|
Alharbi KS, Nadeem MS, Afzal O, Alzarea SI, Altamimi ASA, Almalki WH, Mubeen B, Iftikhar S, Shah L, Kazmi I. Gingerol, a Natural Antioxidant, Attenuates Hyperglycemia and Downstream Complications. Metabolites 2022; 12:metabo12121274. [PMID: 36557312 PMCID: PMC9782005 DOI: 10.3390/metabo12121274] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/04/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022] Open
Abstract
Hyperglycemia is seen in approximately 68 percent of patients admitted to a medical intensive care unit (ICU). In many acute circumstances, such as myocardial infarction, brain, injury and stroke, it is an independent predictor of mortality. Hyperglycemia is induced by a mix of genetic, environmental, and immunologic variables in people with type 1 diabetes. These factors cause pancreatic beta cell death and insulin insufficiency. Insulin resistance and irregular insulin production cause hyperglycemia in type 2 diabetes patients. Hyperglycemia activates a number of complicated interconnected metabolic processes. Hyperglycemia is a major contributor to the onset and progression of diabetes' secondary complications such as neuropathy, nephropathy, retinopathy, cataracts, periodontitis, and bone and joint issues. Studies on the health benefits of ginger and its constituent's impact on hyperglycemia and related disorders have been conducted and gingerol proved to be a potential pharmaceutically active constituent of ginger (Zingiber officinale) that has been shown to lower blood sugar levels, because it possesses antioxidant properties and it functions as an antioxidant in the complicated biochemical process that causes hyperglycemia to be activated. Gingerol not only helps in treating hyperglycemia but also shows effectivity against diseases related to it, such as cardiopathy, kidney failure, vision impairments, bone and joint problems, and teeth and gum infections. Moreover, fresh ginger has various gingerol analogues, with 6-gingerol being the most abundant. However, it is necessary to investigate the efficacy of its other analogues against hyperglycemia and associated disorders at various concentrations in order to determine the appropriate dose for treating these conditions.
Collapse
Affiliation(s)
- Khalid Saad Alharbi
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia
| | - Muhammad Shahid Nadeem
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Correspondence: (M.S.N.); (I.K.)
| | - Obaid Afzal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Sami I. Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia
| | - Abdulmalik S. A. Altamimi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Bismillah Mubeen
- Institute of Molecular Biology and Biotechnology (IMBB), The University of Lahore, Lahore 54000, Pakistan
| | - Saima Iftikhar
- School of Biological Sciences, University of Punjab, Lahore 54000, Pakistan
| | - Luqman Shah
- Department of Biochemistry, Faculty of Science, Hazara University, Mansehra 21300, Pakistan
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Correspondence: (M.S.N.); (I.K.)
| |
Collapse
|
18
|
Meng F, Guo B, Ma YQ, Li KW, Niu FJ. Puerarin: A review of its mechanisms of action and clinical studies in ophthalmology. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 107:154465. [PMID: 36166943 DOI: 10.1016/j.phymed.2022.154465] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 09/07/2022] [Accepted: 09/18/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Pueraria is the common name of the dried root of either Pueraria montana var. lobata (Willd.) Maesen & S.M.Almeida ex Sanjappa & Predeep (syn. Pueraria lobata (Willd.) Ohwi) or Pueraria montana var. thomsonii (Benth.) M.R.Almeida (syn. Pueraria thomsonii Benth.). Puerarin is a C-glucoside of the isoflavone daidzein extracted from Pueraria. It has been widely investigated to explore its therapeutic role in eye diseases and the molecular mechanisms. PURPOSE To collect the available literature from 2000 to 2022 on puerarin in the treatment of ocular diseases and suggest the future required directions to improve its medicinal value. METHOD The content of this review was obtained from databases such as Web of Science, PubMed, Google Scholar, China National Knowledge Infrastructure (CNKI), and the Wanfang Database. RESULTS The search yielded 428 articles, of which 159 articles were included after excluding duplicate articles and articles related to puerarin but less relevant to the topic of the review. In eleven articles, the bioavailability of puerarin was discussed. Despite puerarin possesses diverse biological activities, its bioavailability on its own is poor. There are 95 articles in which the therapeutic mechanisms of puerarin in ocular diseases was reported. Of these, 54 articles discussed the various signalling pathways related to occular diseases affected by puerarin. The other 41 articles discussed specific biological activities of puerarin. It plays a therapeutic role in ophthalmopathy via regulating nuclear factor kappa-B (NF-ĸB), mitogen-activated protein kinases (MAPKs), PI3K/AKT, JAK/STAT, protein kinase C (PKC) and other related pathways, affecting the expression of tumour necrosis factor α (TNF-α), interleukin-1β (IL-1β), intercellular adhesion molecule-1 (ICAM-1), monocyte chemoattractant protein-1 (MCP-1), superoxide dismutase (SOD), B-cell lymphoma-2 (Bcl-2) and other cytokines resulting in anti-inflammatory, antioxidant and anti-apoptotic effects. The clinical applications of puerarin in ophthalmology were discussed in 25 articles. Eleven articles discussed the toxicity of puerarin. The literature suggests that puerarin has a good curative effect and can be used safely in clinical practice. CONCLUSION This review has illustrated the diverse applications of puerarin acting on ocular diseases and suggested that puerarin can be used for treating diabetic retinopathy, retinal vascular occlusion, glaucoma and other ocular diseases in the clinic. Some ocular diseases are the result of the combined action of multiple factors, and the effect of puerarin on different factors needs to be further studied to improve a more complete mechanism of action of puerarin. In addition, it is necessary to increase the number of subjects in clinical trials and conduct clinical trials for other ocular diseases. The information presented here will guide future research studies.
Collapse
Affiliation(s)
- Fan Meng
- Shandong University of Traditional Chinese Medicine, Daxue Road 4655, Ji'nan 250355, China
| | - Bin Guo
- Shandong University of Traditional Chinese Medicine, Daxue Road 4655, Ji'nan 250355, China
| | - Yi-Qing Ma
- Shandong University of Traditional Chinese Medicine, Daxue Road 4655, Ji'nan 250355, China
| | - Kun-Wei Li
- Shandong University of Traditional Chinese Medicine, Daxue Road 4655, Ji'nan 250355, China.
| | - Feng-Ju Niu
- Shandong University of Traditional Chinese Medicine, Daxue Road 4655, Ji'nan 250355, China.
| |
Collapse
|
19
|
Wang M, Sheng KJ, Fang JC, Zhao H, Lu SM, Liu ZY, Chen BT. Redox signaling in diabetic retinopathy and opportunity for therapeutic intervention through natural products. Eur J Med Chem 2022; 244:114829. [DOI: 10.1016/j.ejmech.2022.114829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 09/14/2022] [Accepted: 10/01/2022] [Indexed: 11/28/2022]
|
20
|
Yang J, Liu Z. Mechanistic Pathogenesis of Endothelial Dysfunction in Diabetic Nephropathy and Retinopathy. Front Endocrinol (Lausanne) 2022; 13:816400. [PMID: 35692405 PMCID: PMC9174994 DOI: 10.3389/fendo.2022.816400] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 03/28/2022] [Indexed: 12/15/2022] Open
Abstract
Diabetic nephropathy (DN) and diabetic retinopathy (DR) are microvascular complications of diabetes. Microvascular endothelial cells are thought to be the major targets of hyperglycemic injury. In diabetic microvasculature, the intracellular hyperglycemia causes damages to the vascular endothelium, via multiple pathophysiological process consist of inflammation, endothelial cell crosstalk with podocytes/pericytes and exosomes. In addition, DN and DR diseases development are involved in several critical regulators including the cell adhesion molecules (CAMs), the vascular endothelial growth factor (VEGF) family and the Notch signal. The present review attempts to gain a deeper understanding of the pathogenesis complexities underlying the endothelial dysfunction in diabetes diabetic and retinopathy, contributing to the development of new mechanistic therapeutic strategies against diabetes-induced microvascular endothelial dysfunction.
Collapse
Affiliation(s)
- Jing Yang
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center For Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Zhangsuo Liu
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center For Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
21
|
Hirsch GE, Heck TG. Inflammation, oxidative stress and altered heat shock response in type 2 diabetes: the basis for new pharmacological and non-pharmacological interventions. Arch Physiol Biochem 2022; 128:411-425. [PMID: 31746233 DOI: 10.1080/13813455.2019.1687522] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Type 2 diabetes mellitus (DM2) is a chronic disease characterised by variable degrees of insulin resistance and impaired insulin secretion. Besides, several pieces of evidence have shown that chronic inflammation, oxidative stress, and 70 kDa heat shock proteins (HSP70) are strongly involved in DM2 and its complications, and various pharmacological and non-pharmacological treatment alternatives act in these processes/molecules to modulate them and ameliorate the disease. Besides, uncontrolled hyperglycaemia is related to several complications as diabetic retinopathy, neuropathy and hepatic, renal and cardiac complications. In this review, we address discuss the involvement of different inflammatory and pro-oxidant pathways related to DM2, and we described molecular targets modulated by therapeutics currently available to treat DM2.
Collapse
Affiliation(s)
- Gabriela Elisa Hirsch
- Research Group in Physiology, Department of Life Sciences, Regional University of Northwestern Rio Grande do Sul State (UNIJUÍ), Rua do Comércio, Brazil
- Postgraduate Program in Integral Attention to Health (PPGAIS-UNIJUÍ/UNICRUZ), Regional University of Northwestern region of the state of Rio Grande do Sul (UNIJUÍ), Rua do Comércio, Brazil
| | - Thiago Gomes Heck
- Research Group in Physiology, Department of Life Sciences, Regional University of Northwestern Rio Grande do Sul State (UNIJUÍ), Rua do Comércio, Brazil
- Postgraduate Program in Integral Attention to Health (PPGAIS-UNIJUÍ/UNICRUZ), Regional University of Northwestern region of the state of Rio Grande do Sul (UNIJUÍ), Rua do Comércio, Brazil
| |
Collapse
|
22
|
Di S, An X, Pang B, Wang T, Wu H, Wang J, Li M. Yiqi Tongluo Fang could preventive and delayed development and formation of diabetic retinopathy through antioxidant and anti-inflammatory effects. Biomed Pharmacother 2022; 148:112254. [PMID: 35183405 DOI: 10.1016/j.biopha.2021.112254] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 09/24/2021] [Accepted: 09/26/2021] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Yiqi Tongluo Fang (YQTLF) is an effective prescription for the treatment of diabetic retinopathy (DR), but its mechanism of action remains unclear. METHOD The content of YQTLF was determined using liquid and gas chromatography-mass spectrometry (LC-MS and GC-MS, respectively). Twenty-five Sprague Dawley (SD) rats were randomly selected as the normal control group. One hundred SD streptozotocin-induced diabetes (type 1) rats were randomly divided into diabetic control, diabetic+insulin+ calcium dobesilate (CaD), and diabetic+insulin+ YQTLF groups, with 25 rats in each group. Bodyweight level was measured every 2 weeks. After 12 weeks of gavage, the glucose levels, lipids, oxidative stress, inflammation, retinal histopathology, and the blood-retinal barrier were assessed in each group. The p38 MAPK pathway was changed to explore its internal mechanism. The measurement data were expressed as mean ± standard deviation, and different statistical methods were used according to a normal distribution, square error, or not. RESULTS A total of 1024 valid peaks were identified in YQTLF using GC-MS. YQTLF significantly lowered the fasting blood glucose levels in diabetic rats. YQTLF early inhibited changes in retinal histology, capillaries, cells, and tight junction proteins (such as ZO-1, occludin, claudin-5, and VE-cadherin) before the formation and development of DR. These findings correlated with the alleviation of glucolipid metabolism, inflammation, and oxidative stress. The lncRNA MALAT1 and the PRC 2/p38 MAPK-related pathway, such as the expression of EZH2, SUZ12, EED, p38 MAPK, MMP-9, and VEGFR, were also correlated. CONCLUSION We have demonstrated the molecular and cellular mechanisms underlying the preventive and delayed development and formation of DR. YQTLF prevents changes in dyslipidemia, retinal histology, capillaries, cells, and tight junction proteins. These protective effects appear to be linked to its antioxidant and anti-inflammatory effects, which prevent the activation of intracellular signaling pathways, such as the lncRNA MALAT1 and PRC 2/p38 MAPK-related pathway.
Collapse
Affiliation(s)
- Sha Di
- Department of Endocrinology, Guang'anmen Hospital of China, Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Xuedong An
- Department of Endocrinology, Guang'anmen Hospital of China, Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Bing Pang
- Department of Endocrinology, Guang'anmen Hospital of China, Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Tiange Wang
- Department of Endocrinology, Guang'anmen Hospital of China, Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Haohan Wu
- Clinical Medical College, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jia Wang
- General Department, Guang'anmen Hospital of China, Academy of Chinese Medical Sciences, Beijing 100053, China.
| | - Min Li
- Molecular Biology Laboratory, Guang'anmen Hospital of China Academy of Chinese Medical Sciences, Beijing 100053, China.
| |
Collapse
|
23
|
Atef MM, Shafik NM, Hafez YM, Watany MM, Selim A, Shafik HM, Safwat El-Deeb O. The evolving role of long noncoding RNA HIF1A-AS2 in diabetic retinopathy: a cross-link axis between hypoxia, oxidative stress and angiogenesis via MAPK/VEGF-dependent pathway. Redox Rep 2022; 27:70-78. [PMID: 35285425 PMCID: PMC8928809 DOI: 10.1080/13510002.2022.2050086] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Background Diabetic retinopathy (DR) signifies a frequent serious diabetic complication influencing retinal structure and function. Dysregulation of lncRNAs drives a wide array of human diseases especially diabetes; thus, we aimed to study lncRNA HIF1A-AS2 role and its interplay with hypoxia, oxidative stress (OS), and angiogenesis in DR. Materials and methods 60 DM patients in addition to 15 healthy subjects. were enrolled. LncRNA HIF1A-AS2 mRNA relative gene expression was assessed. Hypoxia inducible factor 1-alpha (HIF-1α), vascular endothelial growth factor (VEGF), mitogen activated protein kinase (MAPK), and endoglin levels were assessed. Detection of DNA damage using comet assay, and Redox status parameters were also detected. Results LncRNA HIF1A-AS2 expression was significantly increased in diabetic patients with the highest levels in proliferative DR patients. Moreover, HIFα, VEGF, MAPK, and Endogolin levels were significantly higher in the diabetic patients compared to control group with the highest levels in in proliferative DR patients. Significant DNA damage in comet assay was observed to be the highest in this group. Conclusion We observed for the first time the imminent role of long noncoding RNA HIF1A-AS2 in DR throughout its stages and its interplay with hypoxia, OS, and angiogenesis via MAPK/VEGF-dependent pathway.
Collapse
Affiliation(s)
- Marwa Mohamed Atef
- Medical Biochemistry Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Noha M. Shafik
- Medical Biochemistry Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Yasser Mostafa Hafez
- Internal Medicine Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Mona Mohamed Watany
- Clinical pathology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Amal Selim
- Internal Medicine Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Heba M. Shafik
- Ophthalmology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Omnia Safwat El-Deeb
- Medical Biochemistry Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| |
Collapse
|
24
|
Mounirou BAM, Adam ND, Yakoura AKH, Aminou MSM, Liu YT, Tan LY. Diabetic Retinopathy: An Overview of Treatments. Indian J Endocrinol Metab 2022; 26:111-118. [PMID: 35873941 PMCID: PMC9302419 DOI: 10.4103/ijem.ijem_480_21] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 03/04/2022] [Accepted: 03/16/2022] [Indexed: 11/21/2022] Open
Abstract
Diabetic retinopathy (DR), substantially impacts the quality of life of diabetic patients, it remains, in developed countries, the leading cause of vision loss in working-age adults (20-65 years). Currently, about 90 million diabetics suffer from DR. DR is a silent complication that in its early stages is asymptomatic. However, over time, chronic hyperglycemia can lead to sensitive retinal damage, leading to fluid accumulation and retinal haemorrhage (HM), resulting in cloudy or blurred vision. It can, therefore, lead to severe visual impairment or even blindness if left untreated. It can be classified into nonproliferative diabetic retinopathy (NPDR) and proliferative diabetic retinopathy (PDR). NPDR is featured with intraretinal microvasculature changes and can be further divided into mild, moderate, and severe stages that may associate with diabetic macular oedema (DME). PDR involves the formation and growth of new blood vessels (retinal neovascularisation) under low oxygen conditions. Early identification and treatment are key priorities for reducing the morbidity of diabetic eye disease. In the early stages of DR, a tight control of glycemia, blood pressure, plasma lipids, and regular monitoring can help prevent its progression to more advanced stages. In advanced stages, the main treatments of DR include intraocular injections of anti-vascular endothelial growth factor (VEGF) antibodies, laser treatments, and vitrectomy. The aim of this review is to provide a comprehensive overview of the published literature pertaining to the latest progress in the treatment of DR.
Collapse
Affiliation(s)
- Bassirou A. M. Mounirou
- Department of Endocrinology and Metabolic Diseases, First Affiliated Hospital of Jiamusi University, Jiamusi, China
| | - Nouhou D. Adam
- Department of Ophthalmology, Lamorde National Hospital, Niamey, Niger
| | | | - Mahamane S. M. Aminou
- Department of Endocrinology and Metabolic Diseases, General Reference Hospital of Niamey, Niger
| | - Yu T. Liu
- Department of Ophthalmology, Lamorde National Hospital, Niamey, Niger
| | - Li Y. Tan
- Department of Endocrinology and Metabolic Diseases, First Affiliated Hospital of Jiamusi University, Jiamusi, China
| |
Collapse
|
25
|
Maslinic Acid Protects against Streptozotocin-Induced Diabetic Retinopathy by Activating Nrf2 and Suppressing NF-κB. J Ophthalmol 2022; 2022:3044202. [PMID: 35265366 PMCID: PMC8901311 DOI: 10.1155/2022/3044202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/15/2022] [Accepted: 01/19/2022] [Indexed: 12/17/2022] Open
Abstract
This study tested the protective effect of maslinic acid (MA) against diabetic retinopathy (DR) in rats with type 1 diabetes mellitus (T1DM) and investigated possible mechanisms of action. DM was introduced by streptozotocin (STZ) (65 mg/kg, i.p.). Control and STZ (T1DM) were divided into 2 subgroups, which received either the vehicle or MA (80 mg/kg). Serum, pancreases, and retinas were collected for further use. MA significantly reduced fasting glucose levels in the control and T1DM rats but enhanced fasting insulin levels and partially increased the size of the islets of Langerhans and the number of β-cells in T1DM rats. In addition, MA significantly improved the retina structure by preventing the reduction in the area between the inner and outer limiting membranes (ILM and OLM, respectively) and increasing the number of cells forming the ganglion cell layer (GCL), inner nuclear layer (INL), and outer nuclear layer (ONL). Associated with these effects, MA significantly reduced the total levels of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6), as well as the nuclear levels of NF-κB p65, mRNA levels of Bax, and protein levels of cleaved caspase-3 in the retinas of T1DM rats. However, MA significantly lowered levels of reactive oxygen species (ROS) and malondialdehyde (MDA) but significantly increased the nuclear levels of Nrf2, protein levels of Bcl2, and total levels of superoxide dismutase (SOD) and reduced glutathione (GSH) in the retinas of the control and T1DM rats. In conclusion, MA prevents DR by antioxidant potential mediated by the activation of Nrf2.
Collapse
|
26
|
Chu PM, Yu CC, Tsai KL, Hsieh PL. Regulation of Oxidative Stress by Long Non-Coding RNAs in Vascular Complications of Diabetes. Life (Basel) 2022; 12:life12020274. [PMID: 35207562 PMCID: PMC8877270 DOI: 10.3390/life12020274] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/30/2022] [Accepted: 02/10/2022] [Indexed: 11/16/2022] Open
Abstract
Diabetes mellitus is a well-known metabolic disorder with numerous complications, such as macrovascular diseases (e.g., coronary heart disease, diabetic cardiomyopathy, stroke, and peripheral vascular disease), microvascular diseases (e.g., diabetic nephropathy, retinopathy, and diabetic cataract), and neuropathy. Multiple contributing factors are implicated in these complications, and the accumulation of oxidative stress is one of the critical ones. Several lines of evidence have suggested that oxidative stress may induce epigenetic modifications that eventually contribute to diabetic vascular complications. As one kind of epigenetic regulator involved in various disorders, non-coding RNAs have received great attention over the past few years. Non-coding RNAs can be roughly divided into short (such as microRNAs; ~21–25 nucleotides) or long non-coding RNAs (lncRNAs; >200 nucleotides). In this review, we briefly discussed the research regarding the roles of various lncRNAs, such as MALAT1, MEG3, GAS5, SNHG16, CASC2, HOTAIR, in the development of diabetic vascular complications in response to the stimulation of oxidative stress.
Collapse
Affiliation(s)
- Pei-Ming Chu
- Department of Anatomy, School of Medicine, China Medical University, Taichung 404333, Taiwan;
| | - Cheng-Chia Yu
- Institute of Oral Sciences, Chung Shan Medical University, Taichung 40201, Taiwan;
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
- School of Dentistry, Chung Shan Medical University, Taichung 40201, Taiwan
| | - Kun-Ling Tsai
- Department of Physical Therapy, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan;
- Institute of Allied Health Sciences, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Pei-Ling Hsieh
- Department of Anatomy, School of Medicine, China Medical University, Taichung 404333, Taiwan;
- Correspondence:
| |
Collapse
|
27
|
Sadashiv, Sharma P, Dwivedi S, Tiwari S, Singh PK, Pal A, Kumar S. Micro (mi) RNA and Diabetic Retinopathy. Indian J Clin Biochem 2022; 37:267-274. [DOI: 10.1007/s12291-021-01018-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 11/30/2021] [Indexed: 11/24/2022]
|
28
|
Kowluru RA. Long Noncoding RNAs and Mitochondrial Homeostasis in the Development of Diabetic Retinopathy. Front Endocrinol (Lausanne) 2022; 13:915031. [PMID: 35733767 PMCID: PMC9207305 DOI: 10.3389/fendo.2022.915031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 04/29/2022] [Indexed: 11/13/2022] Open
Abstract
Retinopathy is one of the most devastating complications of diabetes, which a patient fears the most. Hyperglycemic environment results in many structural, functional, molecular and biochemical abnormalities in the retina, and overproduction of mitochondrial superoxide, induced by hyperglycemic milieu, is considered to play a central role in the development of diabetic retinopathy. Expression of many genes associated with maintaining mitochondrial homeostasis is also altered. Recent research has shown that several long noncoding RNAs, RNAs with more than 200 nucleotides but without any reading frames, are aberrantly expressed in diabetes, and altered expression of these long noncoding RNAs is now being implicated in the development of diabetes and its complications including retinopathy. This review focuses the role of long noncoding RNAs in the development of diabetic retinopathy, with a special emphasis on the maintenance of mitochondrial homeostasis.
Collapse
|
29
|
He S, Gu C, Su T, Qiu Q. Research Progress of circRNAs in Inflammatory Mechanisms of Diabetic Retinopathy: An Emerging Star with Potential Therapeutic Targets. Curr Eye Res 2021; 47:165-178. [PMID: 34963381 DOI: 10.1080/02713683.2021.1995002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
PURPOSE We summarized the existing studies to elaborate the biogenesis and function of circRNAs, the effect of aberrant circRNAs expression in the mechanism of inflammation and diabetic retinopathy (DR) respectively and further explored the vital roles of circRNAs in inflammation involved in DR. Methods: We conducted a systematical literature search of abundant electronic databases (PubMed, GeneMedical and MEDLINE) up to August 2021. Results: In this review, we exhibited the biogenesis and function of circRNAs and highlighted the components of inflammatory mediators implicated in DR. Numerous circRNAs, such as circHIPK3, circZNF609, circRNA_0084043, circ_0002570, circ_0041795, circEhmt1 and circ-ITCH were discovered to play vital roles in inflammation involved in DR, which provided new ideas for diagnosis and treatment of DR. Moreover, we proposed not only the epigenetic functions of circRNAs but also novel forms of the inflammatory response, including pyroptosis, to inspire further exploration and creative research in this field. Conclusion: CircRNAs were implicated in the progression and development of inflammation in DR via aberrant expression and modulation of gene expression, serving as an emerging star with potential therapeutic targets.
Collapse
Affiliation(s)
- Shuai He
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China.,Department of Ophthalmology, National Clinical Research Center for Eye Diseases; Shanghai Key Laboratory of Ocular Fundus Diseases; Shanghai Engineering Center for Visual Science and Photomedicine; Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Department of Ophthalmology, Shanghai, PR China
| | - Chufeng Gu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China.,Department of Ophthalmology, National Clinical Research Center for Eye Diseases; Shanghai Key Laboratory of Ocular Fundus Diseases; Shanghai Engineering Center for Visual Science and Photomedicine; Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Department of Ophthalmology, Shanghai, PR China
| | - Tong Su
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China.,Department of Ophthalmology, National Clinical Research Center for Eye Diseases; Shanghai Key Laboratory of Ocular Fundus Diseases; Shanghai Engineering Center for Visual Science and Photomedicine; Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Department of Ophthalmology, Shanghai, PR China
| | - Qinghua Qiu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China.,Department of Ophthalmology, National Clinical Research Center for Eye Diseases; Shanghai Key Laboratory of Ocular Fundus Diseases; Shanghai Engineering Center for Visual Science and Photomedicine; Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Department of Ophthalmology, Shanghai, PR China.,Department of Ophthalmology, Shigatse People's Hospital, Shigatse, Xizang, PR China
| |
Collapse
|
30
|
Nonarath HJ, Hall AE, SenthilKumar G, Abroe B, Eells JT, Liedhegner ES. 670nm photobiomodulation modulates bioenergetics and oxidative stress, in rat Müller cells challenged with high glucose. PLoS One 2021; 16:e0260968. [PMID: 34860856 PMCID: PMC8641888 DOI: 10.1371/journal.pone.0260968] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 11/21/2021] [Indexed: 12/14/2022] Open
Abstract
Diabetic retinopathy (DR), the most common complication of diabetes mellitus, is associated with oxidative stress, nuclear factor-κB (NFκB) activation, and excess production of vascular endothelial growth factor (VEGF) and intracellular adhesion molecule-1 (ICAM-1). Muller glial cells, spanning the entirety of the retina, are involved in DR inflammation. Mitigation of DR pathology currently occurs via invasive, frequently ineffective therapies which can cause adverse effects. The application of far-red to near-infrared (NIR) light (630-1000nm) reduces oxidative stress and inflammation in vitro and in vivo. Thus, we hypothesize that 670nm light treatment will diminish oxidative stress preventing downstream inflammatory mechanisms associated with DR initiated by Muller cells. In this study, we used an in vitro model system of rat Müller glial cells grown under normal (5 mM) or high (25 mM) glucose conditions and treated with a 670 nm light emitting diode array (LED) (4.5 J/cm2) or no light (sham) daily. We report that a single 670 nm light treatment diminished reactive oxygen species (ROS) production and preserved mitochondrial integrity in this in vitro model of early DR. Furthermore, treatment for 3 days in culture reduced NFκB activity to levels observed in normal glucose and prevented the subsequent increase in ICAM-1. The ability of 670nm light treatment to prevent early molecular changes in this in vitro high glucose model system suggests light treatment could mitigate early deleterious effects modulating inflammatory signaling and diminishing oxidative stress.
Collapse
Affiliation(s)
- Hannah J. Nonarath
- Department of Biomedical Sciences, College of Health Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, United States of America
| | - Alexandria E. Hall
- Department of Biomedical Sciences, College of Health Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, United States of America
| | - Gopika SenthilKumar
- Department of Biomedical Sciences, College of Health Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, United States of America
| | - Betsy Abroe
- Department of Biomedical Sciences, College of Health Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, United States of America
| | - Janis T. Eells
- Department of Biomedical Sciences, College of Health Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, United States of America
| | - Elizabeth S. Liedhegner
- Department of Biomedical Sciences, College of Health Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
31
|
Valle MS, Russo C, Malaguarnera L. Protective role of vitamin D against oxidative stress in diabetic retinopathy. Diabetes Metab Res Rev 2021; 37:e3447. [PMID: 33760363 DOI: 10.1002/dmrr.3447] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 02/01/2021] [Accepted: 02/15/2021] [Indexed: 02/06/2023]
Abstract
Diabetic retinopathy (DR) is a microvascular complication of diabetes mellitus. There is much evidence showing that a high level of mitochondrial overproduction of reactive oxygen species in the diabetic retina contributes in modifying cellular signalling and leads to retinal cell damage and finally to the development of DR pathogenesis. In the last few decades, it has been reported that vitamin D is involved in DR pathogenesis. Vitamin D, traditionally known as an essential nutrient crucial in bone metabolism, has also been proven to be a very effective antioxidant. It has been demonstrated that it modulates the production of advanced glycosylated end products, as well as several pathways including protein kinase C, the polyol pathway leading to the reduction of free radical formation. It prevents the translocation of nuclear factor kappa B, preventing the inflammatory response, acting as an immunomodulator, and modulates autophagy and apoptosis. In this review, we explore the molecular mechanisms by which vitamin D protects the eye from oxidative stress, in order to evaluate whether vitamin D supplementation may be useful to mitigate the deleterious effects of free radicals in DR.
Collapse
Affiliation(s)
- Maria Stella Valle
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Cristina Russo
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Lucia Malaguarnera
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| |
Collapse
|
32
|
Orhan C, Er B, Deeh PBD, Bilgic AA, Ojalvo SP, Komorowski JR, Sahin K. Different Sources of Dietary Magnesium Supplementation Reduces Oxidative Stress by Regulation Nrf2 and NF-κB Signaling Pathways in High-Fat Diet Rats. Biol Trace Elem Res 2021; 199:4162-4170. [PMID: 33409912 DOI: 10.1007/s12011-020-02526-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 11/29/2020] [Indexed: 12/31/2022]
Abstract
Magnesium (Mg) is an essential mineral required for many physiological processes, including ionic balances in ocular tissues. We compared the effects of different Mg-chelates (Mg oxide, MgO vs. Mg picolinate, MgPic) on retinal function in a high-fat diet (HFD) rats. Forty-two rats were divided into six groups and treated orally for 8 weeks as follows: Control, MgO, MgPic, HFD, HFD + MgO, and HFD + MgPic. Mg was administered at 500 mg of elemental Mg/kg of diet. HFD intake increased the levels of retinal MDA and NF-κB, INOS, ICAM, and VEGF but downregulated Nrf2. However, in rats supplemented with MgO and MgPic, the retinal MDA level was decreased, compared with the control and HFD rats. Activities of antioxidant enzymes (SOD, CAT, and GPx) were increased in HFD animals given Mg-chelates (p < 0.001), MgPic being the most effective. Mg supplementation significantly decreased the expression levels of NF-κB, INOS, ICAM, and VEGF in HFD rats while increasing the level of Nrf2 (p < 0.001). Mg supplementation significantly decreased the levels of NF-κB, INOS, ICAM, and VEGF and increased Nrf2 level in HFD rats (p < 0.001), with stronger effects seen from MgPic. Mg attenuated retinal oxidative stress and neuronal inflammation and could be considered as an effective treatment for ocular diseases.
Collapse
Affiliation(s)
- Cemal Orhan
- Department of Animal Nutrition, Faculty of Veterinary Medicine, Firat University, 23119, Elazig, Turkey
| | - Besir Er
- Department of Molecular Biology, Faculty of Science, Firat University, Elazig, Turkey
| | | | - Ahmet Alp Bilgic
- Department of Ophthalmology, Sabuncuoglu Serefeddin Research and Training Hospital, Amasya University, Amasya, Turkey
| | | | | | - Kazim Sahin
- Department of Animal Nutrition, Faculty of Veterinary Medicine, Firat University, 23119, Elazig, Turkey.
| |
Collapse
|
33
|
Yu F, Ko ML, Ko GYP. MicroRNA-150 and its target ETS-domain transcription factor 1 contribute to inflammation in diabetic photoreceptors. J Cell Mol Med 2021; 25:10724-10735. [PMID: 34704358 PMCID: PMC8581325 DOI: 10.1111/jcmm.17012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/30/2021] [Accepted: 10/04/2021] [Indexed: 12/13/2022] Open
Abstract
Obesity‐associated type 2 diabetes (T2D) is on the rise in the United States due to the obesity epidemic, and 60% of T2D patients develop diabetic retinopathy (DR) in their lifetime. Chronic inflammation is a hallmark of obesity and T2D and a well‐accepted major contributor to DR, and retinal photoreceptors are a major source of intraocular inflammation and directly contribute to vascular abnormalities in diabetes. However, how diabetic insults cause photoreceptor inflammation is not well known. In this study, we used a high‐fat diet (HFD)‐induced T2D mouse model and cultured photoreceptors treated with palmitic acid (PA) to decipher major players that mediate high‐fat‐induced photoreceptor inflammation. We found that PA‐elicited microRNA‐150 (miR‐150) decreases with a consistent upregulation of ETS‐domain transcription factor 1 (Elk1), a downstream target of miR‐150, in PA‐elicited photoreceptor inflammation. We compared wild‐type (WT) and miR‐150 null (miR‐150−/−) mice fed with an HFD and found that deletion of miR‐150 exacerbated HFD‐induced photoreceptor inflammation in conjunction with upregulated ELK1. We further delineated the critical cellular localization of phosphorylated ELK1 at serine 383 (pELK1S383) and found that decreased miR‐150 exacerbated the T2D‐induced inflammation in photoreceptors by upregulating ELK1 and pELK1S383, and knockdown of ELK1 alleviated PA‐elicited photoreceptor inflammation.
Collapse
Affiliation(s)
- Fei Yu
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Michael L Ko
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA.,Department of Biology, Division of Natural and Physical Sciences, Blinn College, Bryan, Texas, USA
| | - Gladys Y-P Ko
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA.,Texas A&M Institute for Neuroscience, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
34
|
Rodríguez ML, Millán I, Ortega ÁL. Cellular targets in diabetic retinopathy therapy. World J Diabetes 2021; 12:1442-1462. [PMID: 34630899 PMCID: PMC8472497 DOI: 10.4239/wjd.v12.i9.1442] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/08/2021] [Accepted: 08/03/2021] [Indexed: 02/06/2023] Open
Abstract
Despite the existence of treatment for diabetes, inadequate metabolic control triggers the appearance of chronic complications such as diabetic retinopathy. Diabetic retinopathy is considered a multifactorial disease of complex etiology in which oxidative stress and low chronic inflammation play essential roles. Chronic exposure to hyperglycemia triggers a loss of redox balance that is critical for the appearance of neuronal and vascular damage during the development and progression of the disease. Current therapies for the treatment of diabetic retinopathy are used in advanced stages of the disease and are unable to reverse the retinal damage induced by hyperglycemia. The lack of effective therapies without side effects means there is an urgent need to identify an early action capable of preventing the development of the disease and its pathophysiological consequences in order to avoid loss of vision associated with diabetic retinopathy. Therefore, in this review we propose different therapeutic targets related to the modulation of the redox and inflammatory status that, potentially, can prevent the development and progression of the disease.
Collapse
Affiliation(s)
- María Lucía Rodríguez
- Department of Physiology, Faculty of Pharmacy, University of Valencia, Burjassot 46100, Valencia, Spain
| | - Iván Millán
- Neonatal Research Group, Health Research Institute La Fe, Valencia 46026, Valencia, Spain
| | - Ángel Luis Ortega
- Department of Physiology, Faculty of Pharmacy, University of Valencia, Burjassot 46100, Valencia, Spain
| |
Collapse
|
35
|
Lem DW, Gierhart DL, Davey PG. A Systematic Review of Carotenoids in the Management of Diabetic Retinopathy. Nutrients 2021; 13:2441. [PMID: 34371951 PMCID: PMC8308772 DOI: 10.3390/nu13072441] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/08/2021] [Accepted: 07/12/2021] [Indexed: 12/21/2022] Open
Abstract
Diabetic retinopathy, which was primarily regarded as a microvascular disease, is the leading cause of irreversible blindness worldwide. With obesity at epidemic proportions, diabetes-related ocular problems are exponentially increasing in the developed world. Oxidative stress due to hyperglycemic states and its associated inflammation is one of the pathological mechanisms which leads to depletion of endogenous antioxidants in retina in a diabetic patient. This contributes to a cascade of events that finally leads to retinal neurodegeneration and irreversible vision loss. The xanthophylls lutein and zeaxanthin are known to promote retinal health, improve visual function in retinal diseases such as age-related macular degeneration that has oxidative damage central in its etiopathogenesis. Thus, it can be hypothesized that dietary supplements with xanthophylls that are potent antioxidants may regenerate the compromised antioxidant capacity as a consequence of the diabetic state, therefore ultimately promoting retinal health and visual improvement. We performed a comprehensive literature review of the National Library of Medicine and Web of Science databases, resulting in 341 publications meeting search criteria, of which, 18 were found eligible for inclusion in this review. Lutein and zeaxanthin demonstrated significant protection against capillary cell degeneration and hyperglycemia-induced changes in retinal vasculature. Observational studies indicate that depletion of xanthophyll carotenoids in the macula may represent a novel feature of DR, specifically in patients with type 2 or poorly managed type 1 diabetes. Meanwhile, early interventional trials with dietary carotenoid supplementation show promise in improving their levels in serum and macular pigments concomitant with benefits in visual performance. These findings provide a strong molecular basis and a line of evidence that suggests carotenoid vitamin therapy may offer enhanced neuroprotective effects with therapeutic potential to function as an adjunct nutraceutical strategy for management of diabetic retinopathy.
Collapse
Affiliation(s)
- Drake W. Lem
- College of Optometry, Western University of Health Sciences, 309 E Second St, Pomona, CA 91766, USA;
| | | | - Pinakin Gunvant Davey
- College of Optometry, Western University of Health Sciences, 309 E Second St, Pomona, CA 91766, USA;
| |
Collapse
|
36
|
Lem DW, Gierhart DL, Davey PG. Carotenoids in the Management of Glaucoma: A Systematic Review of the Evidence. Nutrients 2021; 13:1949. [PMID: 34204051 PMCID: PMC8228567 DOI: 10.3390/nu13061949] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/01/2021] [Accepted: 06/04/2021] [Indexed: 12/23/2022] Open
Abstract
Primary open-angle glaucoma (POAG) remains a leading cause of irreversible blindness globally. Recent evidence further substantiates sustained oxidative stress, and compromised antioxidant defenses are key drivers in the onset of glaucomatous neurodegeneration. Overwhelming oxidative injury is likely attributed to compounding mitochondrial dysfunction that worsens with age-related processes, causing aberrant formation of free radical species. Thus, a compromised systemic antioxidant capacity exacerbates further oxidative insult in glaucoma, leading to apoptosis, neuroinflammation, and subsequent tissue injury. The purpose of this systematic review is to investigate the neuroprotective benefits of the macular carotenoids lutein, zeaxanthin, and meso-zeaxanthin on glaucomatous neurodegeneration for the purpose of adjunctive nutraceutical treatment in glaucoma. A comprehensive literature search was conducted in three databases (PubMed, Cochrane Library, and Web of Science) and 20 records were identified for screening. Lutein demonstrated enhanced neuroprotection on retinal ganglion cell survival and preserved synaptic activity. In clinical studies, a protective trend was seen with greater dietary consumption of carotenoids and risk of glaucoma, while greater carotenoid levels in macular pigment were largely associated with improved visual performance in glaucomatous eyes. The data suggest that carotenoid vitamin therapy exerts synergic neuroprotective benefits and has the capacity to serve adjunctive therapy in the management of glaucoma.
Collapse
Affiliation(s)
- Drake W. Lem
- College of Optometry, Western University of Health Sciences, 309 E Second St, Pomona, CA 91766, USA;
| | | | - Pinakin Gunvant Davey
- College of Optometry, Western University of Health Sciences, 309 E Second St, Pomona, CA 91766, USA;
| |
Collapse
|
37
|
Wang SS, Liao X, Liu F, Zhang Q, Qiu JJ, Fu SH. miR-132 mediates cell permeability and migration by targeting occludin in high-glucose -induced ARPE-19 cells. Endocr J 2021; 68:531-541. [PMID: 33563844 DOI: 10.1507/endocrj.ej20-0277] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
This study investigated the effects and mechanisms of miR-132 related to the permeability and mobility of human retinal pigment epithelium ARPE-19 cells in high-glucose (HG) condition. ARPE-19 cells were cultured in normal and HG condition and identified by immunofluorescence staining. Cell viability was assessed by the MTT assay, cell permeability was assessed by the FITC-dextran assay and cell mobility was assessed by the wound healing assay. Different miRNA and mRNA expression levels were determined by quantitative real-time polymerase chain reaction (RT-qPCR). The expression of tight junction-related proteins was determined by Western blot assay and immunofluorescence. The interaction between occludin and miR-132 was confirmed by a dual-luciferase reporter assay. We revealed that HG-treated ARPE-19 cells exhibited significantly increased miR-132 expression, decreased expression of the tight-junction markers including occludin and E-cadherin, and increased cell mobility and permeability. Occludin is a direct target of miR-132, which could regulate cell viability, mobility and permeability under HG condition through the JAK/STAT3 signaling pathway. These are the first data to suggest that miR-132 may contribute to the progression of diabetic retinopathy (DR) and that targeting the effect of miR-132 on occudin and the JAK/STAT3 pathway could represent a novel effective DR-treatment strategy.
Collapse
Affiliation(s)
- Shan-Shan Wang
- Department of Ophthalmology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, P. R. China
| | - Xing Liao
- Department of Ophthalmology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, P. R. China
| | - Fei Liu
- Department of Ophthalmology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, P. R. China
| | - Qian Zhang
- Department of Ophthalmology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, P. R. China
| | - Jing-Jing Qiu
- Department of Ophthalmology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, P. R. China
| | - Shu-Hua Fu
- Department of Ophthalmology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, P. R. China
| |
Collapse
|
38
|
Nebbioso M, Lambiase A, Armentano M, Tucciarone G, Sacchetti M, Greco A, Alisi L. Diabetic retinopathy, oxidative stress, and sirtuins: an in depth look in enzymatic patterns and new therapeutic horizons. Surv Ophthalmol 2021; 67:168-183. [PMID: 33864872 DOI: 10.1016/j.survophthal.2021.04.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 04/03/2021] [Accepted: 04/05/2021] [Indexed: 12/16/2022]
Abstract
Diabetic retinopathy (DR) is one of the leading causes of blindness in the world. DR represents the most common microvascular complication of diabetes, and its incidence is constantly rising. The complex interactions between inflammation, oxidative stress, and the production of free oxygen radicals caused by prolonged exposure to hyperglycemia determine the development of DR. Sirtuins (SIRTs) are a recently discovered class of 7 histone deacetylases involved in cellular senescence, regulation of cell cycle, metabolic pathways, and DNA repair. SIRTs participate in the progress of several pathologies such as cancer, neurodegeneration, and metabolic diseases. In DR sirtuins 1,3,5, and 6 play an important role as they regulate the activation of the inflammatory response, insulin sensibility, and both glycolysis and gluconeogenesis. A wide spectrum of direct and indirect activators of SIRTs pathways (e.g., antagomiR, resveratrol, or glycyrrhizin) is currently being developed to treat the inflammatory cascade occurring in DR. We focus on the main metabolic and inflammatory pathways involving SIRTs and DR, as well as recent evidence on SIRTs activators that may be employed as novel therapeutic approaches to DR.
Collapse
Affiliation(s)
- Marcella Nebbioso
- Department of Sense Organs, Faculty of Medicine and Odontology, Policlinico Umberto I. Sapienza University of Rome, v. le del Policlinico 155, 00161 Rome, Italy
| | - Alessandro Lambiase
- Department of Sense Organs, Faculty of Medicine and Odontology, Policlinico Umberto I. Sapienza University of Rome, v. le del Policlinico 155, 00161 Rome, Italy.
| | - Marta Armentano
- Department of Sense Organs, Faculty of Medicine and Odontology, Policlinico Umberto I. Sapienza University of Rome, v. le del Policlinico 155, 00161 Rome, Italy
| | - Giosuè Tucciarone
- Department of Sense Organs, Faculty of Medicine and Odontology, Policlinico Umberto I. Sapienza University of Rome, v. le del Policlinico 155, 00161 Rome, Italy
| | - Marta Sacchetti
- Department of Sense Organs, Faculty of Medicine and Odontology, Policlinico Umberto I. Sapienza University of Rome, v. le del Policlinico 155, 00161 Rome, Italy
| | - Antonio Greco
- Department of Sense Organs, Faculty of Medicine and Odontology, Policlinico Umberto I. Sapienza University of Rome, v. le del Policlinico 155, 00161 Rome, Italy
| | - Ludovico Alisi
- Department of Sense Organs, Faculty of Medicine and Odontology, Policlinico Umberto I. Sapienza University of Rome, v. le del Policlinico 155, 00161 Rome, Italy
| |
Collapse
|
39
|
Miller WP, Sunilkumar S, Dennis MD. The stress response protein REDD1 as a causal factor for oxidative stress in diabetic retinopathy. Free Radic Biol Med 2021; 165:127-136. [PMID: 33524531 PMCID: PMC7956244 DOI: 10.1016/j.freeradbiomed.2021.01.041] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/19/2021] [Accepted: 01/21/2021] [Indexed: 12/12/2022]
Abstract
Diabetic Retinopathy (DR) is a major cause of visual dysfunction, yet much remains unknown regarding the specific molecular events that contribute to diabetes-induced retinal pathophysiology. Herein, we review the impact of oxidative stress on DR, and explore evidence that supports a key role for the stress response protein regulated in development and DNA damage (REDD1) in the development of diabetes-induced oxidative stress and functional defects in vision. It is well established that REDD1 mediates the cellular response to a number of diverse stressors through repression of the central metabolic regulator known as mechanistic target of rapamycin complex 1 (mTORC1). A growing body of evidence also supports that REDD1 acts independent of mTORC1 to promote oxidative stress by both enhancing the production of reactive oxygen species and suppressing the antioxidant response. Collectively, there is strong preclinical data to support a key role for REDD1 in the development and progression of retinal complications caused by diabetes. Furthermore, early proof-of-concept clinical trials have found a degree of success in combating ischemic retinal disease through intravitreal delivery of an siRNA targeting the REDD1 mRNA. Overall, REDD1-associated signaling represents an intriguing target for novel clinical therapies that go beyond addressing the symptoms of diabetes by targeting the underlying molecular mechanisms that contribute to DR.
Collapse
Affiliation(s)
- William P Miller
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA, 17033, USA
| | - Siddharth Sunilkumar
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA, 17033, USA
| | - Michael D Dennis
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA, 17033, USA; Department of Ophthalmology, Penn State College of Medicine, Hershey, PA, 17033, USA.
| |
Collapse
|
40
|
Chen J, Shao Y, Sasore T, Moiseyev G, Zhou K, Ma X, Du Y, Ma JX. Interphotoreceptor Retinol-Binding Protein Ameliorates Diabetes-Induced Retinal Dysfunction and Neurodegeneration Through Rhodopsin. Diabetes 2021; 70:788-799. [PMID: 33334874 PMCID: PMC7897347 DOI: 10.2337/db20-0609] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 12/10/2020] [Indexed: 12/12/2022]
Abstract
Patients with diabetes often experience visual defects before any retinal pathologies are detected. The molecular mechanism for the visual defects in early diabetes has not been elucidated. Our previous study reported that in early diabetic retinopathy (DR), rhodopsin levels were reduced due to impaired 11-cis-retinal regeneration. Interphotoreceptor retinol-binding protein (IRBP) is a visual cycle protein and important for 11-cis-retinal generation. IRBP levels are decreased in the vitreous and retina of DR patients and animal models. To determine the role of IRBP downregulation in the visual defects in early DR, we induced diabetes in transgenic mice overexpressing IRBP in the retina. IRBP overexpression prevented diabetes-induced decline of retinal function. Furthermore, IRBP overexpression also prevented decreases of rhodopsin levels and 11-cis-retinal generation in diabetic mice. Diabetic IRBP transgenic mice also showed ameliorated retinal oxidative stress, inflammation, apoptosis, and retinal degeneration compared with diabetic wild-type mice. These findings suggest that diabetes-induced IRBP downregulation impairs the regeneration of 11-cis-retinal and rhodopsin, leading to retinal dysfunction in early DR. Furthermore, increased 11-cis-retinal-free opsin constitutively activates the phototransduction pathway, leading to increased oxidative stress and retinal neurodegeneration. Therefore, restored IRBP expression in the diabetic retina may confer a protective effect against retinal degeneration in DR.
Collapse
Affiliation(s)
- Jianglei Chen
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Yan Shao
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
- Tianjin Medical University Eye Hospital, Eye Institute & School of Optometry and Ophthalmology, Tianjin, China
| | - Temmy Sasore
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Gennadiy Moiseyev
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Kelu Zhou
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Xiang Ma
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Yanhong Du
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Jian-Xing Ma
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| |
Collapse
|
41
|
Orhan C, Tuzcu M, Gencoglu H, Sahin E, Sahin N, Ozercan IH, Namjoshi T, Srivastava V, Morde A, Rai D, Padigaru M, Sahin K. Different Doses of β-Cryptoxanthin May Secure the Retina from Photooxidative Injury Resulted from Common LED Sources. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6672525. [PMID: 33628377 PMCID: PMC7895591 DOI: 10.1155/2021/6672525] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 01/27/2021] [Accepted: 02/01/2021] [Indexed: 01/01/2023]
Abstract
Retinal damage associated with loss of photoreceptors is a hallmark of eye diseases such as age-related macular degeneration (AMD) and diabetic retinopathy. Potent nutritional antioxidants were previously shown to abate the degenerative process in AMD. β-Cryptoxanthin (BCX) is an essential dietary carotenoid with antioxidant, anti-inflammatory, and provitamin A activity. It is a potential candidate for developing intervention strategies to delay the development/progression of AMD. In the current study, the effect of a novel, highly purified BCX oral formulation on the rat retinal damage model was evaluated. Rats were fed with BCX for four weeks at the doses of 2 and 4 mg/kg body weight in the form of highly bioavailable oil suspension, followed by retinal damage by exposing to the bright light-emitting diode (LED) light (750 lux) for 48 hrs. Animals were sacrificed after 48 hours, and eyes and blood samples were collected and analyzed. BCX supplementations (2 and 4 mg/kg) showed improvements in the visual condition as demonstrated by histopathology of the retina and measured parameters such as total retinal thickness and outer nuclear layer thickness. BCX supplementation helped reduce the burden of oxidative stress as seen by decreased serum and retinal tissue levels of malondialdehyde (MDA) and restored the antioxidant enzyme activities in BCX groups. Further, BCX supplementation modulated inflammatory markers (IL-1β, IL-6, and NF-κB), apoptotic proteins (Bax, Bcl-2, caspase 3), growth proteins and factors (GAP43, VEGF), glial and neuronal proteins (GFAP, NCAM), and heme oxygenase-1 (HO-1), along with the mitochondrial stress markers (ATF4, ATF6, Grp78, Grp94) in the rat retinal tissue. This study indicates that oral supplementation of BCX exerts a protective effect on light-induced retinal damage in the rats via reducing oxidative stress and inflammation, also protected against mitochondrial DNA damage and cellular death.
Collapse
Affiliation(s)
- Cemal Orhan
- Department of Animal Nutrition, Faculty of Veterinary Science, Firat University, Elazig 23119, Turkey
| | - Mehmet Tuzcu
- Division of Biology, Faculty of Science, Firat University, Elazig 23119, Turkey
| | - Hasan Gencoglu
- Division of Biology, Faculty of Science, Firat University, Elazig 23119, Turkey
| | - Emre Sahin
- Department of Animal Nutrition, Faculty of Veterinary Science, Firat University, Elazig 23119, Turkey
| | - Nurhan Sahin
- Department of Animal Nutrition, Faculty of Veterinary Science, Firat University, Elazig 23119, Turkey
| | | | - Tejas Namjoshi
- OmniActive Health Technologies, Biotechnology Park, Pune 411057, India
| | | | - Abhijeet Morde
- OmniActive Health Technologies, Wagle Estate, Thane 400604, India
| | - Deshanie Rai
- OmniActive Health Technologies Inc, Morristown, NJ 07960, USA
| | | | - Kazim Sahin
- Department of Animal Nutrition, Faculty of Veterinary Science, Firat University, Elazig 23119, Turkey
| |
Collapse
|
42
|
Cai F, Jiang H, Li Y, Li Q, Yang C. Upregulation of long non-coding RNA SNHG16 promotes diabetes-related RMEC dysfunction via activating NF-κB and PI3K/AKT pathways. MOLECULAR THERAPY-NUCLEIC ACIDS 2021; 24:512-527. [PMID: 33898104 PMCID: PMC8056184 DOI: 10.1016/j.omtn.2021.01.035] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 01/25/2021] [Indexed: 12/19/2022]
Abstract
Diabetic retinopathy (DR) is a severe diabetes-induced eye disease, in which its pathological phenomena basically include abnormal proliferation, migration, and angiogenesis of microvascular endothelial cells in the retina. Long non-coding RNAs (lncRNAs) have been proven to be important regulators in various biological processes, but their participation in DR remains largely undiscovered. In the present study, we aimed to unveil the role of lncRNA small nucleolar RNA host gene 16 (SNHG16) in regulating the functions of human retinal microvascular endothelial cells (hRMECs) under a high-glucose (HG) condition. We found that SNHG16 expression was significantly upregulated in hRMECs treated with HG. Functionally, SNHG16 could facilitate hRMEC proliferation, migration, and angiogenesis. Moreover, SNHG16 was associated with nuclear factor κB (NF-κB) and phosphatidylinositol 3-kinase (PI3K)/AKT pathways. Mechanistically, SNHG16 could promote hRMEC dysfunction by sequestering microRNA (miR)-146a-5p and miR-7-5p to act as a competing endogenous RNA (ceRNA) with interleukin-1 receptor-associated kinase 1 (IRAK1) and insulin receptor substrate 1 (IRS1). In conclusion, our results illustrated the potential role of SNHG16 in facilitating hRMEC dysfunction under HG treatment, providing a novel approach for DR therapy.
Collapse
Affiliation(s)
- Fei Cai
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Huanzong Jiang
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yan Li
- Operation Room, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Qin Li
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Chao Yang
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
43
|
Kang Q, Yang C. Oxidative stress and diabetic retinopathy: Molecular mechanisms, pathogenetic role and therapeutic implications. Redox Biol 2020; 37:101799. [PMID: 33248932 PMCID: PMC7767789 DOI: 10.1016/j.redox.2020.101799] [Citation(s) in RCA: 418] [Impact Index Per Article: 104.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 10/29/2020] [Accepted: 11/10/2020] [Indexed: 12/18/2022] Open
Abstract
Oxidative stress, a cytopathic outcome of excessive generation of ROS and the repression of antioxidant defense system for ROS elimination, is involved in the pathogenesis of multiple diseases, including diabetes and its complications. Retinopathy, a microvascular complication of diabetes, is the primary cause of acquired blindness in diabetic patients. Oxidative stress has been verified as one critical contributor to the pathogenesis of diabetic retinopathy. Oxidative stress can both contribute to and result from the metabolic abnormalities induced by hyperglycemia, mainly including the increased flux of the polyol pathway and hexosamine pathway, the hyper-activation of protein kinase C (PKC) isoforms, and the accumulation of advanced glycation end products (AGEs). Moreover, the repression of the antioxidant defense system by hyperglycemia-mediated epigenetic modification also leads to the imbalance between the scavenging and production of ROS. Excessive accumulation of ROS induces mitochondrial damage, cellular apoptosis, inflammation, lipid peroxidation, and structural and functional alterations in retina. Therefore, it is important to understand and elucidate the oxidative stress-related mechanisms underlying the progress of diabetic retinopathy. In addition, the abnormalities correlated with oxidative stress provide multiple potential therapeutic targets to develop safe and effective treatments for diabetic retinopathy. Here, we also summarized the main antioxidant therapeutic strategies to control this disease. Oxidative stress can both contribute to and result from hyperglycemia-induced metabolic abnormalities in retina. Genes important in regulation of ROS are epigenetically modified, increasing ROS accumulation in retina. Oxidative stress is closely associated with the pathological changes in the progress of diabetic retinopathy. Antioxidants ameliorate retinopathy through targeting multiple steps of oxidative stress.
Collapse
Affiliation(s)
- Qingzheng Kang
- Institute for Advanced Study, Shenzhen University, Nanshan District, Shenzhen, 518060, China; Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Chunxue Yang
- Department of Pathology, The University of Hong Kong, Hong Kong SAR, 999077, China.
| |
Collapse
|
44
|
López-Contreras AK, Martínez-Ruiz MG, Olvera-Montaño C, Robles-Rivera RR, Arévalo-Simental DE, Castellanos-González JA, Hernández-Chávez A, Huerta-Olvera SG, Cardona-Muñoz EG, Rodríguez-Carrizalez AD. Importance of the Use of Oxidative Stress Biomarkers and Inflammatory Profile in Aqueous and Vitreous Humor in Diabetic Retinopathy. Antioxidants (Basel) 2020; 9:antiox9090891. [PMID: 32962301 PMCID: PMC7555116 DOI: 10.3390/antiox9090891] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 09/03/2020] [Accepted: 09/10/2020] [Indexed: 12/23/2022] Open
Abstract
Diabetic retinopathy is one of the leading causes of visual impairment and morbidity worldwide, being the number one cause of blindness in people between 27 and 75 years old. It is estimated that ~191 million people will be diagnosed with this microvascular complication by 2030. Its pathogenesis is due to alterations in the retinal microvasculature as a result of a high concentration of glucose in the blood for a long time which generates numerous molecular changes like oxidative stress. Therefore, this narrative review aims to approach various biomarkers associated with the development of diabetic retinopathy. Focusing on the molecules showing promise as detection tools, among them we consider markers of oxidative stress (TAC, LPO, MDA, 4-HNE, SOD, GPx, and catalase), inflammation (IL-6, IL-1ß, IL-8, IL-10, IL-17A, TNF-α, and MMPs), apoptosis (NF-kB, cyt-c, and caspases), and recently those that have to do with epigenetic modifications, their measurement in different biological matrices obtained from the eye, including importance, obtaining process, handling, and storage of these matrices in order to have the ability to detect the disease in its early stages.
Collapse
Affiliation(s)
- Ana Karen López-Contreras
- Department of Physiology, Health Sciences University Center, Institute of Clinical and Experimental Therapeutics, University of Guadalajara, Guadalajara, Jalisco 44340, Mexico; (A.K.L.-C.); (M.G.M.-R.); (C.O.-M.); (R.R.R.-R.); (D.E.A.-S.); (J.A.C.-G.); (A.H.-C.); (E.G.C.-M.)
| | - María Guadalupe Martínez-Ruiz
- Department of Physiology, Health Sciences University Center, Institute of Clinical and Experimental Therapeutics, University of Guadalajara, Guadalajara, Jalisco 44340, Mexico; (A.K.L.-C.); (M.G.M.-R.); (C.O.-M.); (R.R.R.-R.); (D.E.A.-S.); (J.A.C.-G.); (A.H.-C.); (E.G.C.-M.)
| | - Cecilia Olvera-Montaño
- Department of Physiology, Health Sciences University Center, Institute of Clinical and Experimental Therapeutics, University of Guadalajara, Guadalajara, Jalisco 44340, Mexico; (A.K.L.-C.); (M.G.M.-R.); (C.O.-M.); (R.R.R.-R.); (D.E.A.-S.); (J.A.C.-G.); (A.H.-C.); (E.G.C.-M.)
| | - Ricardo Raúl Robles-Rivera
- Department of Physiology, Health Sciences University Center, Institute of Clinical and Experimental Therapeutics, University of Guadalajara, Guadalajara, Jalisco 44340, Mexico; (A.K.L.-C.); (M.G.M.-R.); (C.O.-M.); (R.R.R.-R.); (D.E.A.-S.); (J.A.C.-G.); (A.H.-C.); (E.G.C.-M.)
| | - Diana Esperanza Arévalo-Simental
- Department of Physiology, Health Sciences University Center, Institute of Clinical and Experimental Therapeutics, University of Guadalajara, Guadalajara, Jalisco 44340, Mexico; (A.K.L.-C.); (M.G.M.-R.); (C.O.-M.); (R.R.R.-R.); (D.E.A.-S.); (J.A.C.-G.); (A.H.-C.); (E.G.C.-M.)
- Department of Ophthalmology, Hospital Civil de Guadalajara “Fray Antonio Alcalde”, Guadalajara, Jalisco 44280, Mexico
| | - José Alberto Castellanos-González
- Department of Physiology, Health Sciences University Center, Institute of Clinical and Experimental Therapeutics, University of Guadalajara, Guadalajara, Jalisco 44340, Mexico; (A.K.L.-C.); (M.G.M.-R.); (C.O.-M.); (R.R.R.-R.); (D.E.A.-S.); (J.A.C.-G.); (A.H.-C.); (E.G.C.-M.)
- Department of Ophthalmology, Specialties Hospital of the National Occidental Medical Center, Mexican Institute of Social Security, Guadalajara, Jalisco 44329, Mexico
| | - Abel Hernández-Chávez
- Department of Physiology, Health Sciences University Center, Institute of Clinical and Experimental Therapeutics, University of Guadalajara, Guadalajara, Jalisco 44340, Mexico; (A.K.L.-C.); (M.G.M.-R.); (C.O.-M.); (R.R.R.-R.); (D.E.A.-S.); (J.A.C.-G.); (A.H.-C.); (E.G.C.-M.)
| | - Selene Guadalupe Huerta-Olvera
- Medical and Life Sciences Department, La Ciénega University Center, University of Guadalajara, Ocotlán, Jalisco 47810, Mexico;
| | - Ernesto German Cardona-Muñoz
- Department of Physiology, Health Sciences University Center, Institute of Clinical and Experimental Therapeutics, University of Guadalajara, Guadalajara, Jalisco 44340, Mexico; (A.K.L.-C.); (M.G.M.-R.); (C.O.-M.); (R.R.R.-R.); (D.E.A.-S.); (J.A.C.-G.); (A.H.-C.); (E.G.C.-M.)
| | - Adolfo Daniel Rodríguez-Carrizalez
- Department of Physiology, Health Sciences University Center, Institute of Clinical and Experimental Therapeutics, University of Guadalajara, Guadalajara, Jalisco 44340, Mexico; (A.K.L.-C.); (M.G.M.-R.); (C.O.-M.); (R.R.R.-R.); (D.E.A.-S.); (J.A.C.-G.); (A.H.-C.); (E.G.C.-M.)
- Correspondence:
| |
Collapse
|
45
|
Association between daily sunlight exposure duration and diabetic retinopathy in Korean adults with diabetes: A nationwide population-based cross-sectional study. PLoS One 2020; 15:e0237149. [PMID: 32764774 PMCID: PMC7413474 DOI: 10.1371/journal.pone.0237149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 07/21/2020] [Indexed: 11/21/2022] Open
Abstract
Purpose To investigate the association between daily sunlight exposure duration and diabetic retinopathy in Korean adults with diabetes. Methods This study used data from the 2008–2011 Korea National Health and Nutrition Examination Survey. Overall, 1,089 patients with diabetes aged >40 years were included. The duration of daily sunlight exposure was assessed via health interviews. Comprehensive ophthalmic evaluations, including standard retinal fundus photography after pupil dilation, were conducted. Diabetic retinopathy was graded using the modified Airlie House Classification. Multivariate logistic regression analysis was performed to analyze the association between daily sunlight exposure duration and the diagnosis of diabetic retinopathy and non-proliferative diabetic retinopathy. Results The risk of diabetic retinopathy was 2.66 times higher in the group with ≥5 h of daily sunlight exposure than in the group with less exposure after adjusting for risk factors such as duration of diabetes, serum hemoglobin A1c level, hypertension, and dyslipidemia (P = 0.023). Furthermore, the risk of non-proliferative diabetic retinopathy was 3.13 times higher in the group with ≥5 h of daily sunlight exposure than in the group with less exposure (P = 0.009). In patients with diabetes for <10 years, the risks of diabetic retinopathy and non-proliferative diabetic retinopathy were 4.26 and 4.82 times higher in the group with ≥5 h of daily sunlight exposure than the group with less exposure, respectively (P < 0.05). Conclusions This study revealed that sunlight exposure for ≥5 h a day was significantly associated with an increased risk of diabetic retinopathy and non-proliferative diabetic retinopathy in Korean patients with diabetes. The risks were significantly higher in patients with diabetes for <10 years. Therefore, reducing daily sunlight exposure could be an early preventive strategy against diabetic retinopathy in people with diabetes.
Collapse
|
46
|
Martins B, Amorim M, Reis F, Ambrósio AF, Fernandes R. Extracellular Vesicles and MicroRNA: Putative Role in Diagnosis and Treatment of Diabetic Retinopathy. Antioxidants (Basel) 2020; 9:E705. [PMID: 32759750 PMCID: PMC7463887 DOI: 10.3390/antiox9080705] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/01/2020] [Accepted: 08/02/2020] [Indexed: 02/07/2023] Open
Abstract
Diabetic retinopathy (DR) is a complex, progressive, and heterogenous retinal degenerative disease associated with diabetes duration. It is characterized by glial, neural, and microvascular dysfunction, being the blood-retinal barrier (BRB) breakdown a hallmark of the early stages. In advanced stages, there is formation of new blood vessels, which are fragile and prone to leaking. This disease, if left untreated, may result in severe vision loss and eventually legal blindness. Although there are some available treatment options for DR, most of them are targeted to the advanced stages of the disease, have some adverse effects, and many patients do not adequately respond to the treatment, which demands further research. Oxidative stress and low-grade inflammation are closely associated processes that play a critical role in the development of DR. Retinal cells communicate with each other or with another one, using cell junctions, adhesion contacts, and secreted soluble factors that can act in neighboring or long-distance cells. Another mechanism of cell communication is via secreted extracellular vesicles (EVs), through exchange of material. Here, we review the current knowledge on deregulation of cell-to-cell communication through EVs, discussing the changes in miRNA expression profiling in body fluids and their role in the development of DR. Thereafter, current and promising therapeutic agents for preventing the progression of DR will be discussed.
Collapse
Affiliation(s)
- Beatriz Martins
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (B.M.); (M.A.); (F.R.); (A.F.A.)
- Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Madania Amorim
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (B.M.); (M.A.); (F.R.); (A.F.A.)
- Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Flávio Reis
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (B.M.); (M.A.); (F.R.); (A.F.A.)
- Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3000-548 Coimbra, Portugal
| | - António Francisco Ambrósio
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (B.M.); (M.A.); (F.R.); (A.F.A.)
- Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3000-548 Coimbra, Portugal
- Association for Innovation and Biomedical Research on Light and Image (AIBILI), 3000-548 Coimbra, Portugal
| | - Rosa Fernandes
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (B.M.); (M.A.); (F.R.); (A.F.A.)
- Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3000-548 Coimbra, Portugal
- Association for Innovation and Biomedical Research on Light and Image (AIBILI), 3000-548 Coimbra, Portugal
| |
Collapse
|
47
|
Purohith R, Nagalingaswamy NP, Shivananju NS. Dietary Carotenoids in Managing Metabolic Syndrome and Role of PPARs in the Process. CURRENT NUTRITION & FOOD SCIENCE 2020. [DOI: 10.2174/1573401315666190619111557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Metabolic syndrome is a collective term that denotes disorder in metabolism, symptoms of
which include hyperglycemia, hyperlipidemia, hypertension, and endothelial dysfunction. Diet is a
major predisposing factor in the development of metabolic syndrome, and dietary intervention is
necessary for both prevention and management. The bioactive constituents of food play a key role in
this process. Micronutrients such as vitamins, carotenoids, amino acids, flavonoids, minerals, and
aromatic pigment molecules found in fruits, vegetables, spices, and condiments are known to have
beneficial effects in preventing and managing metabolic syndrome. There exists a well-established
relationship between oxidative stress and major pathological conditions such as inflammation, metabolic
syndrome, and cancer. Consequently, dietary antioxidants are implicated in the remediation of
these complications. The mechanism of action and targets of dietary antioxidants as well as their
effects on related pathways are being extensively studied and elucidated in recent times. This review
attempts a comprehensive study of the role of dietary carotenoids in alleviating metabolic syndromewith
an emphasis on molecular mechanism-in the light of recent advances.
Collapse
Affiliation(s)
- Raghunandan Purohith
- Department of Biotechnology, Sri Jayachamarajendra Engineering College, JSS Science and Technology University, JSS Technical Institutions Campus, Mysuru 570005, India
| | - Nagendra P.M. Nagalingaswamy
- Department of Biotechnology, Sri Jayachamarajendra Engineering College, JSS Science and Technology University, JSS Technical Institutions Campus, Mysuru 570005, India
| | - Nanjunda S. Shivananju
- Department of Biotechnology, Sri Jayachamarajendra Engineering College, JSS Science and Technology University, JSS Technical Institutions Campus, Mysuru 570005, India
| |
Collapse
|
48
|
Update on the Effects of Antioxidants on Diabetic Retinopathy: In Vitro Experiments, Animal Studies and Clinical Trials. Antioxidants (Basel) 2020; 9:antiox9060561. [PMID: 32604941 PMCID: PMC7346101 DOI: 10.3390/antiox9060561] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 06/22/2020] [Accepted: 06/23/2020] [Indexed: 12/14/2022] Open
Abstract
Current therapies for diabetic retinopathy (DR) incorporate blood glucose and blood pressure control, vitrectomy, photocoagulation, and intravitreal injections of anti-vascular endothelial growth factors or corticosteroids. Nonetheless, these techniques have not been demonstrated to completely stop the evolution of this disorder. The pathophysiology of DR is not fully known, but there is more and more evidence indicating that oxidative stress is an important mechanism in the progression of DR. In this sense, antioxidants have been suggested as a possible therapy to reduce the complications of DR. In this review we aim to assemble updated information in relation to in vitro experiments, animal studies and clinical trials dealing with the effect of the antioxidants on DR.
Collapse
|
49
|
Liu CH, Huang S, Britton WR, Chen J. MicroRNAs in Vascular Eye Diseases. Int J Mol Sci 2020; 21:ijms21020649. [PMID: 31963809 PMCID: PMC7014392 DOI: 10.3390/ijms21020649] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 01/16/2020] [Indexed: 12/12/2022] Open
Abstract
Since the discovery of the first microRNA (miRNA) decades ago, studies of miRNA biology have expanded in many biomedical research fields, including eye research. The critical roles of miRNAs in normal development and diseases have made miRNAs useful biomarkers or molecular targets for potential therapeutics. In the eye, ocular neovascularization (NV) is a leading cause of blindness in multiple vascular eye diseases. Current anti-angiogenic therapies, such as anti-vascular endothelial growth factor (VEGF) treatment, have their limitations, indicating the need for investigating new targets. Recent studies established the roles of various miRNAs in the regulation of pathological ocular NV, suggesting miRNAs as both biomarkers and therapeutic targets in vascular eye diseases. This review summarizes the biogenesis of miRNAs, and their functions in the normal development and diseases of the eye, with a focus on clinical and experimental retinopathies in both human and animal models. Discovery of novel targets involving miRNAs in vascular eye diseases will provide insights for developing new treatments to counter ocular NV.
Collapse
Affiliation(s)
| | | | | | - Jing Chen
- Correspondence: ; Tel.: +1-617-919-2525
| |
Collapse
|
50
|
Gohari-Lasaki S, Sharafshah A, Abbaspour S, Keshavarz P. Single locus and haplotype association of ENPP1 gene variants with the development of retinopathy among type 2 diabetic patients. Int Ophthalmol 2020; 40:639-647. [PMID: 31902046 DOI: 10.1007/s10792-019-01224-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 11/14/2019] [Indexed: 12/15/2022]
Abstract
PURPOSE The present study was designed to investigate the associations of ENPP1 variants (rs997509, rs1799774, rs1044498 (K121Q), and rs7754561) with diabetic retinopathy (DR) derived from type 2 diabetes mellitus (T2DM). METHODS Total 501 T2DM patients with and without DR were studied as the case and control group, respectively. All four variants were genotyped by TaqMan assay. Statistical analyses were performed through SNPAlyze and SPSS software. RESULTS The statistical analysis of clinical characteristics represented significant differences of HbA1c, and fasting blood sugar between two study groups. The results indicated that among four studied variants, rs997509 and rs7754561 were significantly associated with DR under recessive (P = 0.01) and dominant (P = 0.01) models of inheritance, respectively. One haplotype (T-A-T-A) with a frequency higher than 0.05 was associated with the increased risk of DR (P = 0.04). Genotype-phenotype sub-analysis of rs997509 and rs7754561 showed that only rs7754561 had significant associations with systolic and diastolic blood pressures (P = 0.03 and P = 0.01, respectively); more specifically, A allele carriers of rs7754561 were in a higher risk of blood pressures. CONCLUSIONS This study suggested that rs997509 and rs7754561 were associated with the increased risk of DR among Iranians with T2DM and rs7754561 might be a potential genetic marker for prognosis and diagnosis of DR.
Collapse
Affiliation(s)
- Sahar Gohari-Lasaki
- Cellular and Molecular Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Alireza Sharafshah
- Cellular and Molecular Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Saima Abbaspour
- School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Parvaneh Keshavarz
- Cellular and Molecular Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran.
| |
Collapse
|