1
|
Giles AV, Edwards L, Covian R, Lucotte BM, Balaban RS. Cardiac nitric oxide scavenging: role of myoglobin and mitochondria. J Physiol 2024; 602:73-91. [PMID: 38041645 PMCID: PMC10872739 DOI: 10.1113/jp284446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 10/27/2023] [Indexed: 12/03/2023] Open
Abstract
Vascular production of nitric oxide (NO) regulates vascular tone. However, highly permeable NO entering the cardiomyocyte would profoundly impact metabolism and signalling without scavenging mechanisms. The purpose of this study was to establish mechanisms of cardiac NO scavenging. Quantitative optical studies of normoxic working hearts demonstrated that micromolar NO concentrations did not alter mitochondria redox state or respiration despite detecting NO oxidation of oxymyoglobin to metmyoglobin. These data are consistent with proposals that the myoglobin/myoglobin reductase (Mb/MbR) system is the major NO scavenging site. However, kinetic studies in intact hearts reveal a minor role (∼9%) for the Mb/MbR system in NO scavenging. In vitro, oxygenated mitochondria studies confirm that micromolar concentrations of NO bind cytochrome oxidase (COX) and inhibit respiration. Mitochondria had a very high capacity for NO scavenging, importantly, independent of NO binding to COX. NO is also known to quickly react with reactive oxygen species (ROS) in vitro. Stimulation of NO scavenging with antimycin and its inhibition by substrate depletion are consistent with NO interacting with ROS generated in Complex I or III under aerobic conditions. Extrapolating these in vitro data to the intact heart supports the hypothesis that mitochondria are a major site of cardiac NO scavenging. KEY POINTS: Cardiomyocyte scavenging of vascular nitric oxide (NO) is critical in maintaining normal cardiac function. Myoglobin redox cycling via myoglobin reductase has been proposed as a major NO scavenging site in the heart. Non-invasive optical spectroscopy was used to monitor the effect of NO on mitochondria and myoglobin redox state in intact beating heart and isolated mitochondria. These non-invasive studies reveal myoglobin/myoglobin reductase plays a minor role in cardiac NO scavenging. A high capacity for NO scavenging by heart mitochondria was demonstrated, independent of cytochrome oxidase binding but dependent on oxygen and high redox potentials consistent with generation of reactive oxygen species.
Collapse
Affiliation(s)
- Abigail V Giles
- Laboratory of Cardiac Energetics, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Lanelle Edwards
- Laboratory of Cardiac Energetics, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Raul Covian
- Laboratory of Cardiac Energetics, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Bertrand M. Lucotte
- Laboratory of Cardiac Energetics, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Robert S Balaban
- Laboratory of Cardiac Energetics, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
2
|
Piacenza L, Zeida A, Trujillo M, Radi R. The superoxide radical switch in the biology of nitric oxide and peroxynitrite. Physiol Rev 2022; 102:1881-1906. [PMID: 35605280 DOI: 10.1152/physrev.00005.2022] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Lucìa Piacenza
- Departamento de Bioquímica, Facultad de Medicina; Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Uruguay
| | - Ari Zeida
- Departamento de Bioquímica, Facultad de Medicina; Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, Uruguay
| | - Madia Trujillo
- Departamento de Bioquímica, Facultad de Medicina; Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, Uruguay
| | - Rafael Radi
- Departamento de Bioquímica, Facultad de Medicina; Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
3
|
Kirca M, Kleinbongard P, Soetkamp D, Heger J, Csonka C, Ferdinandy P, Schulz R. Interaction between connexin 43 and nitric oxide synthase in mice heart mitochondria. J Cell Mol Med 2015; 19:815-25. [PMID: 25678382 PMCID: PMC4395196 DOI: 10.1111/jcmm.12499] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 10/22/2014] [Indexed: 01/07/2023] Open
Abstract
Connexin 43 (Cx43), which is highly expressed in the heart and especially in cardiomyocytes, interferes with the expression of nitric oxide synthase (NOS) isoforms. Conversely, Cx43 gene expression is down-regulated by nitric oxide derived from the inducible NOS. Thus, a complex interplay between Cx43 and NOS expression appears to exist. As cardiac mitochondria are supposed to contain a NOS, we now investigated the expression of NOS isoforms and the nitric oxide production rate in isolated mitochondria of wild-type and Cx43-deficient (Cx43(Cre-ER(T)/fl) ) mice hearts. Mitochondria were isolated from hearts using differential centrifugation and purified via Percoll gradient ultracentrifugation. Isolated mitochondria were stained with an antibody against the mitochondrial marker protein adenine-nucleotide-translocator (ANT) in combination with either a neuronal NOS (nNOS) or an inducible NOS (iNOS) antibody and analysed using confocal laser scanning microscopy. The nitric oxide formation was quantified in purified mitochondria using the oxyhaemoglobin assay. Co-localization of predominantly nNOS (nNOS: 93 ± 4.1%; iNOS: 24.6 ± 7.5%) with ANT was detected in isolated mitochondria of wild-type mice. In contrast, iNOS expression was increased in Cx43(Cre-ER(T)/fl) mitochondria (iNOS: 90.7 ± 3.2%; nNOS: 53.8 ± 17.5%). The mitochondrial nitric oxide formation was reduced in Cx43(Cre-ER(T)/fl) mitochondria (0.14 ± 0.02 nmol/min./mg protein) in comparison to wild-type mitochondria (0.24 ± 0.02 nmol/min./mg). These are the first data demonstrating, that a reduced mitochondrial Cx43 content is associated with a switch of the mitochondrial NOS isoform and the respective mitochondrial rate of nitric oxide formation.
Collapse
Affiliation(s)
- Mücella Kirca
- Physiologisches Institut, Justus-Liebig-Universität, Giessen, Germany; Institute for Pathophysiology, West German Heart and Vascular Center, University Schhool of Medicine Essen, Essen, Germany
| | | | | | | | | | | | | |
Collapse
|
4
|
Kim A. A panoramic overview of mitochondria and mitochondrial redox biology. Toxicol Res 2015; 30:221-34. [PMID: 25584141 PMCID: PMC4289922 DOI: 10.5487/tr.2014.30.4.221] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 12/22/2014] [Accepted: 12/24/2014] [Indexed: 01/27/2023] Open
Abstract
Mitochondria dysfunction was first described in the 1960s. However, the extent and mechanisms of mitochondria dysfunction’s role in cellular physiology and pathology has only recently begun to be appreciated. To adequately evaluate mitochondria-mediated toxicity, it is not only necessary to understand mitochondria biology, but discerning mitochondrial redox biology is also essential. The latter is intricately tied to mitochondrial bioenergetics. Mitochondrial free radicals, antioxidants, and antioxidant enzymes are players in mitochondrial redox biology. This review will provide an across-the-board, albeit not in-depth, overview of mitochondria biology and mitochondrial redox biology. With accumulating knowledge on mitochondria biology and mitochondrial redox biology, we may devise experimental methods with adequate sensitivity and specificity to evaluate mitochondrial toxicity, especially in vivo in living organisms, in the near future.
Collapse
Affiliation(s)
- Aekyong Kim
- School of Pharmacy, Catholic University of Daegu, Gyeongbuk, Korea
| |
Collapse
|
5
|
O-Uchi J, Ryu SY, Jhun BS, Hurst S, Sheu SS. Mitochondrial ion channels/transporters as sensors and regulators of cellular redox signaling. Antioxid Redox Signal 2014; 21:987-1006. [PMID: 24180309 PMCID: PMC4116125 DOI: 10.1089/ars.2013.5681] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
SIGNIFICANCE Mitochondrial ion channels/transporters and the electron transport chain (ETC) serve as key sensors and regulators for cellular redox signaling, the production of reactive oxygen species (ROS) and nitrogen species (RNS) in mitochondria, and balancing cell survival and death. Although the functional and pharmacological characteristics of mitochondrial ion transport mechanisms have been extensively studied for several decades, the majority of the molecular identities that are responsible for these channels/transporters have remained a mystery until very recently. RECENT ADVANCES Recent breakthrough studies uncovered the molecular identities of the diverse array of major mitochondrial ion channels/transporters, including the mitochondrial Ca2+ uniporter pore, mitochondrial permeability transition pore, and mitochondrial ATP-sensitive K+ channel. This new information enables us to form detailed molecular and functional characterizations of mitochondrial ion channels/transporters and their roles in mitochondrial redox signaling. CRITICAL ISSUES Redox-mediated post-translational modifications of mitochondrial ion channels/transporters and ETC serve as key mechanisms for the spatiotemporal control of mitochondrial ROS/RNS generation. FUTURE DIRECTIONS Identification of detailed molecular mechanisms for redox-mediated regulation of mitochondrial ion channels will enable us to find novel therapeutic targets for many diseases that are associated with cellular redox signaling and mitochondrial ion channels/transporters.
Collapse
Affiliation(s)
- Jin O-Uchi
- 1 Department of Medicine, Center for Translational Medicine, Jefferson Medical College, Thomas Jefferson University , Philadelphia, Pennsylvania
| | | | | | | | | |
Collapse
|
6
|
Ortiz F, García JA, Acuña-Castroviejo D, Doerrier C, López A, Venegas C, Volt H, Luna-Sánchez M, López LC, Escames G. The beneficial effects of melatonin against heart mitochondrial impairment during sepsis: inhibition of iNOS and preservation of nNOS. J Pineal Res 2014; 56:71-81. [PMID: 24117944 DOI: 10.1111/jpi.12099] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 09/20/2013] [Indexed: 01/17/2023]
Abstract
While it is accepted that the high production of nitric oxide (NO˙) by the inducible nitric oxide synthase (iNOS) impairs cardiac mitochondrial function during sepsis, the role of neuronal nitric oxide synthase (nNOS) may be protective. During sepsis, there is a significantly increase in the expression and activity of mitochondrial iNOS (i-mtNOS), which parallels the changes in cytosolic iNOS. The existence of a constitutive NOS form (c-mtNOS) in heart mitochondria has been also described, but its role in the heart failure during sepsis remains unclear. Herein, we analyzed the changes in mitochondrial oxidative stress and bioenergetics in wild-type and nNOS-deficient mice during sepsis, and the role of melatonin, a known antioxidant, in these changes. Sepsis was induced by cecal ligation and puncture, and heart mitochondria were analyzed for NOS expression and activity, nitrites, lipid peroxidation, glutathione and glutathione redox enzymes, oxidized proteins, and respiratory chain activity in vehicle- and melatonin-treated mice. Our data show that sepsis produced a similar induction of iNOS/i-mtNOS and comparable inhibition of the respiratory chain activity in wild-type and in nNOS-deficient mice. Sepsis also increased mitochondrial oxidative/nitrosative stress to a similar extent in both mice strains. Melatonin administration inhibited iNOS/i-mtNOS induction, restored mitochondrial homeostasis in septic mice, and preserved the activity of nNOS/c-mtNOS. The effects of melatonin were unrelated to the presence or the absence of nNOS. Our observations show a lack of effect of nNOS on heart bioenergetic impairment during sepsis and further support the beneficial actions of melatonin in sepsis.
Collapse
Affiliation(s)
- Francisco Ortiz
- Centro de Investigación Biomédica, Parque Tecnológico de Ciencias de la Salud, Instituto de Biotecnología, Universidad de Granada, Granada, Spain; Departamento de Fisiología, Facultad de Medicina, Universidad de Granada, Granada, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Campos JC, Gomes KMS, Ferreira JCB. Impact of exercise training on redox signaling in cardiovascular diseases. Food Chem Toxicol 2013; 62:107-19. [PMID: 23978413 DOI: 10.1016/j.fct.2013.08.035] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 08/05/2013] [Accepted: 08/18/2013] [Indexed: 02/07/2023]
Abstract
Reactive oxygen and nitrogen species regulate a wide array of signaling pathways that governs cardiovascular physiology. However, oxidant stress resulting from disrupted redox signaling has an adverse impact on the pathogenesis and progression of cardiovascular diseases. In this review, we address how redox signaling and oxidant stress affect the pathophysiology of cardiovascular diseases such as ischemia-reperfusion injury, hypertension and heart failure. We also summarize the benefits of exercise training in tackling the hyperactivation of cellular oxidases and mitochondrial dysfunction seen in cardiovascular diseases.
Collapse
Affiliation(s)
- Juliane C Campos
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | | | | |
Collapse
|
8
|
Nitric oxide in skeletal muscle: role on mitochondrial biogenesis and function. Int J Mol Sci 2012; 13:17160-84. [PMID: 23242154 PMCID: PMC3546744 DOI: 10.3390/ijms131217160] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 12/04/2012] [Accepted: 12/05/2012] [Indexed: 01/18/2023] Open
Abstract
Nitric oxide (NO) has been implicated in several cellular processes as a signaling molecule and also as a source of reactive nitrogen species (RNS). NO is produced by three isoenzymes called nitric oxide synthases (NOS), all present in skeletal muscle. While neuronal NOS (nNOS) and endothelial NOS (eNOS) are isoforms constitutively expressed, inducible NOS (iNOS) is mainly expressed during inflammatory responses. Recent studies have demonstrated that NO is also involved in the mitochondrial biogenesis pathway, having PGC-1α as the main signaling molecule. Increased NO synthesis has been demonstrated in the sarcolemma of skeletal muscle fiber and NO can also reversibly inhibit cytochrome c oxidase (Complex IV of the respiratory chain). Investigation on cultured skeletal myotubes treated with NO donors, NO precursors or NOS inhibitors have also showed a bimodal effect of NO that depends on the concentration used. The present review will discuss the new insights on NO roles on mitochondrial biogenesis and function in skeletal muscle. We will also focus on potential therapeutic strategies based on NO precursors or analogs to treat patients with myopathies and mitochondrial deficiency.
Collapse
|
9
|
Zaobornyj T, Ghafourifar P. Strategic localization of heart mitochondrial NOS: a review of the evidence. Am J Physiol Heart Circ Physiol 2012; 303:H1283-93. [PMID: 23023869 DOI: 10.1152/ajpheart.00674.2011] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Heart mitochondria play a central role in cell energy provision and in signaling. Nitric oxide (NO) is a free radical with primary regulatory functions in the heart and involved in a broad array of key processes in cardiac metabolism. Specific NO synthase (NOS) isoforms are confined to distinct locations in cardiomyocytes. The present article reviews the chemical reactions through which NO interacts with biomolecules and exerts some of its crucial roles. Specifically, the article discusses the reactions of NO with mitochondrial targets and the subcellular localization of NOS within the myocardium and analyzes the available data about heart mitochondrial NOS activity and identity. The article also describes the regulation of heart mtNOS by the distinctive mitochondrial environment by showing the effects of Ca(2+), O(2), l-arginine, mitochondrial transmembrane potential, and the metabolic states on heart mitochondrial NO production. The article depicts the effects of NO on heart function and highlights the relevance of NO production within mitochondria. Finally, the evidence on the functional implications of heart mitochondrial NOS is delineated with emphasis on chronic hypoxia and ischemia-reperfusion studies.
Collapse
Affiliation(s)
- Tamara Zaobornyj
- Laboratory of Free Radical Biology, School of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires, Argentina.
| | | |
Collapse
|
10
|
Marcu R, Rapino S, Trinei M, Valenti G, Marcaccio M, Pelicci PG, Paolucci F, Giorgio M. Electrochemical study of hydrogen peroxide formation in isolated mitochondria. Bioelectrochemistry 2011; 85:21-8. [PMID: 22197548 DOI: 10.1016/j.bioelechem.2011.11.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Revised: 11/16/2011] [Accepted: 11/22/2011] [Indexed: 12/31/2022]
Abstract
Mitochondrial respiration generates reactive oxygen species that are involved in physiological and pathological processes. The majority of methods, with exception of electron paramagnetic resonance, used to evaluate the identity, the rate and the conditions of the reactive oxygen species produced by mitochondria, are mainly based on oxidation sensitive markers. Following latest electrochemical methodology, we implemented a novel electrochemical assay for the investigation of aerobic metabolism in preparations of isolated mitochondria through simultaneous measurement of O₂ consumption and reactive species production. This electrochemical assay reveals active H₂O₂ production by respiring mouse liver mitochondria, and shows that ATP synthase activation and moderate depolarization increase the rate of H₂O₂ formation, suggesting that ATP synthesizing (state 3) mitochondria might contribute to oxidative stress or signaling.
Collapse
Affiliation(s)
- Raluca Marcu
- Experimental Oncology Dept. European Institute of Oncology, Via Adamello 16, 20139 Milan, Italy
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Martínez-Ruiz A, Cadenas S, Lamas S. Nitric oxide signaling: classical, less classical, and nonclassical mechanisms. Free Radic Biol Med 2011; 51:17-29. [PMID: 21549190 DOI: 10.1016/j.freeradbiomed.2011.04.010] [Citation(s) in RCA: 237] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Revised: 03/10/2011] [Accepted: 04/04/2011] [Indexed: 12/20/2022]
Abstract
Although nitric oxide (NO) was identified more than 150 years ago and its effects were clinically tested in the form of nitroglycerine, it was not until the decades of 1970-1990 that it was described as a gaseous signal transducer. Since then, a canonical pathway linked to cyclic GMP (cGMP) as its quintessential effector has been established, but other modes of action have emerged and are now part of the common body of knowledge within the field. Classical (or canonical) signaling involves the selective activation of soluble guanylate cyclase, the generation of cGMP, and the activation of specific kinases (cGMP-dependent protein kinases) by this cyclic nucleotide. Nonclassical signaling alludes to the formation of NO-induced posttranslational modifications (PTMs), especially S-nitrosylation, S-glutathionylation, and tyrosine nitration. These PTMs are governed by specific biochemical mechanisms as well as by enzymatic systems. In addition, a less classical but equally important pathway is related to the interaction between NO and mitochondrial cytochrome c oxidase, which might have important implications for cell respiration and intermediary metabolism. Cross talk trespassing these necessarily artificial conceptual boundaries is progressively being identified and hence an integrated systems biology approach to the comprehension of NO function will probably emerge in the near future.
Collapse
Affiliation(s)
- Antonio Martínez-Ruiz
- Servicio de Inmunología, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria Princesa (IP), Madrid, Spain
| | | | | |
Collapse
|
12
|
Aguirre E, López-Bernardo E, Cadenas S. Functional evidence for nitric oxide production by skeletal-muscle mitochondria from lipopolysaccharide-treated mice. Mitochondrion 2011; 12:126-31. [PMID: 21664300 DOI: 10.1016/j.mito.2011.05.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2010] [Revised: 05/06/2011] [Accepted: 05/25/2011] [Indexed: 01/07/2023]
Abstract
The possible existence of a mitochondrially localized nitric oxide (NO) synthase (mtNOS) is controversial. To clarify this, we studied the ability of intact mitochondria to generate NO and the effect of mitochondrial NO on respiration. Respiratory rates and oxygen kinetics (P(50) values) were determined by high-resolution respirometry in skeletal-muscle mitochondria from control mice and mice injected with Escherichia coli lipopolysaccharide (LPS). In the presence of the NOS substrate L-arginine, mitochondria from LPS-treated mice had lower respiration rates and higher P(50) values than control animals. These effects were prevented by the NOS inhibitor L-NMMA. Our results suggest that mitochondrially derived NO is generated by an LPS-inducible NOS protein other than iNOS and modulates oxygen consumption in mouse skeletal muscle.
Collapse
Affiliation(s)
- Enara Aguirre
- Department of Regenerative Cardiology, Centro Nacional de Investigaciones Cardiovasculares, Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | | | | |
Collapse
|
13
|
Regulation of mitochondrial processes by protein S-nitrosylation. Biochim Biophys Acta Gen Subj 2011; 1820:712-21. [PMID: 21397666 DOI: 10.1016/j.bbagen.2011.03.008] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Revised: 02/21/2011] [Accepted: 03/04/2011] [Indexed: 12/24/2022]
Abstract
BACKGROUND Nitric oxide (NO) exerts powerful physiological effects through guanylate cyclase (GC), a non-mitochondrial enzyme, and through the generation of protein cysteinyl-NO (SNO) adducts-a post-translational modification relevant to mitochondrial biology. A small number of SNO proteins, generated by various mechanisms, are characteristically found in mammalian mitochondria and influence the regulation of oxidative phosphorylation and other aspects of mitochondrial function. SCOPE OF REVIEW The principles by which mitochondrial SNO proteins are formed and their actions, independently or collectively with NO binding to heme, iron-sulfur centers, or to glutathione (GSH) are reviewed on a molecular background of SNO-based signal transduction. MAJOR CONCLUSIONS Mitochondrial SNO-proteins have been demonstrated to inhibit Complex I of the electron transport chain, to modulate mitochondrial reactive oxygen species (ROS) production, influence calcium-dependent opening of the mitochondrial permeability transition pore (MPTP), promote selective importation of mitochondrial protein, and stimulate mitochondrial fission. The ease of reversibility and the affirmation of regulated S-nitros(yl)ating and denitros(yl)ating enzymatic reactions support hypotheses that SNO regulates the mitochondrion through redox mechanisms. SNO modification of mitochondrial proteins, whether homeostatic or adaptive (physiological), or pathogenic, is an area of active investigation. GENERAL SIGNIFICANCE Mitochondrial SNO proteins are associated with mainly protective, bur some pathological effects; the former mainly in inflammatory and ischemia/reperfusion syndromes and the latter in neurodegenerative diseases. Experimentally, mitochondrial SNO delivery is also emerging as a potential new area of therapeutics. This article is part of a Special Issue entitled: Regulation of cellular processes by S-nitrosylation.
Collapse
|
14
|
Effects of rotenone and pyridaben on complex I electron transfer and on mitochondrial nitric oxide synthase functional activity. J Bioenerg Biomembr 2010; 42:405-12. [DOI: 10.1007/s10863-010-9309-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Accepted: 08/29/2010] [Indexed: 12/14/2022]
|
15
|
Laraspata D, Gorgoglione V, La Piana G, Palmitessa V, Marzulli D, Lofrumento NE. Interaction of nitric oxide with the activity of cytosolic NADH/cytochrome c electron transport system. Arch Biochem Biophys 2009; 489:99-109. [PMID: 19653993 DOI: 10.1016/j.abb.2009.07.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2009] [Revised: 07/28/2009] [Accepted: 07/30/2009] [Indexed: 10/20/2022]
Abstract
Nitric oxide ((.)NO) generated by the dissociation of S-nitrosoglutathione or added as gaseous solution, inhibits the oxidation of exogenous NADH supported by the activity of the cytosolic NADH/cyto-c electron transport pathway. The inhibition is immediate, very strong, higher at lower oxygen concentration, independent on the (.)NO concentration and remains constant as long as (.)NO is no more available and then is spontaneously removed. The data obtained, not in contrast with those reported with isolated cytochrome oxidase (Cox), strengthen a new concept: reduced cytochrome c (cyto-c) and (.)NO behave as two substrates of Cox, which promotes their oxidation with molecular oxygen as a co-substrate. In the presence of (.)NO, Cox exhibits the property of switching from cyto-c oxidase to (.)NO oxidase activity. With an "all or nothing" process Cox becomes an efficient (.)NO scavenger. The persistence of membrane potential, even in the presence of high inhibition of oxygen uptake, could be tentatively correlated to the protective effect of (.)NO on the ischaemic-reperfusion injury.
Collapse
Affiliation(s)
- Daniela Laraspata
- Department of Biochemistry and Molecular Biology, University of Bari, Bari, Italy
| | | | | | | | | | | |
Collapse
|
16
|
Finocchietto PV, Franco MC, Holod S, Gonzalez AS, Converso DP, Antico Arciuch VG, Serra MP, Poderoso JJ, Carreras MC. Mitochondrial nitric oxide synthase: a masterpiece of metabolic adaptation, cell growth, transformation, and death. Exp Biol Med (Maywood) 2009; 234:1020-8. [PMID: 19546350 DOI: 10.3181/0902-mr-81] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Mitochondria are specialized organelles that control energy metabolism and also activate a multiplicity of pathways that modulate cell proliferation and mitochondrial biogenesis or, conversely, promote cell arrest and programmed cell death by a limited number of oxidative or nitrative reactions. Nitric oxide (NO) regulates oxygen uptake by reversible inhibition of cytochrome oxidase and the production of superoxide anion from the mitochondrial electron transfer chain. In this sense, NO produced by mtNOS will set the oxygen uptake level and contribute to oxidation-reduction reaction (redox)-dependent cell signaling. Modulation of translocation and activation of neuronal nitric oxide synthase (mtNOS activity) under different physiologic or pathologic conditions represents an adaptive response properly modulated to adjust mitochondria to different cell challenges.
Collapse
Affiliation(s)
- Paola V Finocchietto
- Laboratory of Oxygen Metabolism, University Hospital, 1120 Buenos Aires, Argentina.
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Stowe DF, Camara AKS. Mitochondrial reactive oxygen species production in excitable cells: modulators of mitochondrial and cell function. Antioxid Redox Signal 2009; 11:1373-414. [PMID: 19187004 PMCID: PMC2842133 DOI: 10.1089/ars.2008.2331] [Citation(s) in RCA: 341] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2008] [Revised: 01/12/2009] [Accepted: 01/13/2009] [Indexed: 12/14/2022]
Abstract
The mitochondrion is a major source of reactive oxygen species (ROS). Superoxide (O(2)(*-)) is generated under specific bioenergetic conditions at several sites within the electron-transport system; most is converted to H(2)O(2) inside and outside the mitochondrial matrix by superoxide dismutases. H(2)O(2) is a major chemical messenger that, in low amounts and with its products, physiologically modulates cell function. The redox state and ROS scavengers largely control the emission (generation scavenging) of O(2)(*-). Cell ischemia, hypoxia, or toxins can result in excess O(2)(*-) production when the redox state is altered and the ROS scavenger systems are overwhelmed. Too much H(2)O(2) can combine with Fe(2+) complexes to form reactive ferryl species (e.g., Fe(IV) = O(*)). In the presence of nitric oxide (NO(*)), O(2)(*-) forms the reactant peroxynitrite (ONOO(-)), and ONOOH-induced nitrosylation of proteins, DNA, and lipids can modify their structure and function. An initial increase in ROS can cause an even greater increase in ROS and allow excess mitochondrial Ca(2+) entry, both of which are factors that induce cell apoptosis and necrosis. Approaches to reduce excess O(2)(*-) emission include selectively boosting the antioxidant capacity, uncoupling of oxidative phosphorylation to reduce generation of O(2)(*-) by inducing proton leak, and reversibly inhibiting electron transport. Mitochondrial cation channels and exchangers function to maintain matrix homeostasis and likely play a role in modulating mitochondrial function, in part by regulating O(2)(*-) generation. Cell-signaling pathways induced physiologically by ROS include effects on thiol groups and disulfide linkages to modify posttranslationally protein structure to activate/inactivate specific kinase/phosphatase pathways. Hypoxia-inducible factors that stimulate a cascade of gene transcription may be mediated physiologically by ROS. Our knowledge of the role played by ROS and their scavenging systems in modulation of cell function and cell death has grown exponentially over the past few years, but we are still limited in how to apply this knowledge to develop its full therapeutic potential.
Collapse
Affiliation(s)
- David F Stowe
- Anesthesiology Research Laboratories, Department of Anesthesiology, The Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA.
| | | |
Collapse
|
18
|
Venkatakrishnan P, Nakayasu ES, Almeida IC, Miller RT. Absence of nitric-oxide synthase in sequentially purified rat liver mitochondria. J Biol Chem 2009; 284:19843-55. [PMID: 19372221 DOI: 10.1074/jbc.m109.003301] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Data, both for and against the presence of a mitochondrial nitric-oxide synthase (NOS) isoform, is in the refereed literature. However, irrefutable evidence has not been forthcoming. In light of this controversy, we designed studies to investigate the existence of the putative mitochondrial NOS. Using repeated differential centrifugation followed by Percoll gradient fractionation, ultrapure, never frozen rat liver mitochondria and submitochondrial particles were obtained. Following trypsin digestion and desalting, the mitochondrial samples were analyzed by nano-HPLC-coupled linear ion trap-mass spectrometry. Linear ion trap-mass spectrometry analyses of rat liver mitochondria as well as submitochondrial particles were negative for any peptide from any NOS isoform. However, recombinant neuronal NOS-derived peptides from spiked mitochondrial samples were easily detected, down to 50 fmol on column. The protein calmodulin (CaM), absolutely required for NOS activity, was absent, whereas peptides from CaM-spiked samples were detected. Also, l-[(14)C]arginine to l-[(14)C]citrulline conversion assays were negative for NOS activity. Finally, Western blot analyses of rat liver mitochondria, using NOS (neuronal or endothelial) and CaM antibodies, were negative for any NOS isoform or CaM. In conclusion, and in light of our present limits of detection, data from carefully conducted, properly controlled experiments for NOS detection, utilizing three independent yet complementary methodologies, independently as well as collectively, refute the claim that a NOS isoform exists within rat liver mitochondria.
Collapse
|
19
|
Dedkova EN, Blatter LA. Characteristics and function of cardiac mitochondrial nitric oxide synthase. J Physiol 2009; 587:851-72. [PMID: 19103678 PMCID: PMC2669975 DOI: 10.1113/jphysiol.2008.165423] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2008] [Accepted: 12/15/2008] [Indexed: 12/22/2022] Open
Abstract
We used laser scanning confocal microscopy in combination with the nitric oxide (NO)-sensitive fluorescent dye DAF-2 and the reactive oxygen species (ROS)-sensitive dyes CM-H(2)DCF and MitoSOX Red to characterize NO and ROS production by mitochondrial NO synthase (mtNOS) in permeabilized cat ventricular myocytes. Stimulation of mitochondrial Ca(2+) uptake by exposure to different cytoplasmic Ca(2+) concentrations ([Ca(2+)](i) = 1, 2 and 5 microm) resulted in a dose-dependent increase of NO production by mitochondria when L-arginine, a substrate for mtNOS, was present. Collapsing the mitochondrial membrane potential with the protonophore FCCP or blocking the mitochondrial Ca(2+) uniporter with Ru360 as well as blocking the respiratory chain with rotenone or antimycin A in combination with oligomycin inhibited mitochondrial NO production. In the absence of L-arginine, mitochondrial NO production during stimulation of Ca(2+) uptake was significantly decreased, but accompanied by increase in mitochondrial ROS production. Inhibition of mitochondrial arginase to limit L-arginine availability resulted in 50% inhibition of Ca(2+)-induced ROS production. Both mitochondrial NO and ROS production were blocked by the nNOS inhibitor (4S)-N-(4-amino-5[aminoethyl]aminopentyl)-N'-nitroguanidine and the calmodulin antagonist W-7, while the eNOS inhibitor L-N(5)-(1-iminoethyl)ornithine (L-NIO) or iNOS inhibitor N-(3-aminomethyl)benzylacetamidine, 2HCl (1400W) had no effect. The superoxide dismutase mimetic and peroxynitrite scavenger MnTBAP abolished Ca(2+)-induced ROS generation and increased NO production threefold, suggesting that in the absence of MnTBAP either formation of superoxide radicals suppressed NO production or part of the formed NO was transformed quickly to peroxynitrite. In the absence of L-arginine, mitochondrial Ca(2+) uptake induced opening of the mitochondrial permeability transition pore (PTP), which was blocked by the PTP inhibitor cyclosporin A and MnTBAP, and reversed by L-arginine supplementation. In the presence of the mtNOS cofactor (6R)-5,6,7,8,-tetrahydrobiopterin (BH(4); 100 microm) mitochondrial ROS generation and PTP opening decreased while mitochondrial NO generation slightly increased. These data demonstrate that mitochondrial Ca(2+) uptake activates mtNOS and leads to NO-mediated protection against opening of the mitochondrial PTP, provided sufficient availability of l-arginine and BH(4). In conclusion, our data show the importance of L-arginine and BH(4) for cardioprotection via regulation of mitochondrial oxidative stress and modulation of PTP opening by mtNOS.
Collapse
Affiliation(s)
- Elena N Dedkova
- Department of Molecular Biophysics and Physiology, Rush University Medical Center, Chicago, IL 60612, USA
| | | |
Collapse
|
20
|
Poderoso JJ. The formation of peroxynitrite in the applied physiology of mitochondrial nitric oxide. Arch Biochem Biophys 2009; 484:214-20. [PMID: 19159609 DOI: 10.1016/j.abb.2008.12.020] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2008] [Revised: 12/23/2008] [Accepted: 12/30/2008] [Indexed: 01/01/2023]
Abstract
Mitochondria require nitric oxide ((.)NO) to exert a delicate control of metabolic rate as well as to regulate life functions, cell cycle activation and arrest, and apoptosis. All activities depend on the matrical (.)NO steady state concentration as provided by mitochondrial (mtNOS) and cytosolic sources (eNOS) and reduced by forming superoxide anion and H2O2 and a low peroxynirite (ONOO(-)) yield. We review herein the biochemical pathways involved in the control of (.)NO mitochondrial level and its biological and physiological significance in hormone effects and aging. At high ()NO, the cost of this physiological regulation is that ONOO(-) excess will lead to nitrosation/nitration and oxidization of mitochondrial and cell proteins and lipids. The disruption of (.)NO modulation of mitochondrial respiration supports then, a platform for prevalent neurodegenerative and metabolic diseases.
Collapse
Affiliation(s)
- Juan J Poderoso
- Director of the Laboratory of Oxygen Metabolism, University Hospital, CONICET and University of Buenos Aires, Córdoba 2351, 1120 Buenos Aires, Argentina.
| |
Collapse
|
21
|
Lacza Z, Pankotai E, Busija DW. Mitochondrial nitric oxide synthase: current concepts and controversies. FRONT BIOSCI-LANDMRK 2009; 14:4436-43. [PMID: 19273361 PMCID: PMC4570492 DOI: 10.2741/3539] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
New discoveries in the last decade significantly altered our view on mitochondria. They are no longer viewed as energy-making slaves but rather individual cells-within-the-cell. In particular, it has been suggested that many important cellular mechanisms involving specific enzymes and ion channels, such as nitric oxide synthase (NOS), ATP-dependent K+ (KATP) channels, and poly-(APD-ribose) polymerase (PARP), have a distinct, mitochondrial variant. Unfortunately, exploring these parallel systems in mitochondria have technical limitations and inappropriate methods often led to inconsistent results. For example, the intriguing possibility that mitochondria are significant sources of nitric oxide (NO) via a unique mitochondrial NOS variant has attracted intense interest among research groups because of the potential for NO to affect functioning of the electron transport chain. Nonetheless, conclusive evidence concerning the existence of mitochondrial NO synthesis is yet to be presented. This review summarizes the experimental evidence gathered over the last decade in this field and highlights new areas of research that reveal surprising dimensions of NO production and metabolism by mitochondria.
Collapse
Affiliation(s)
- Zsombor Lacza
- Department of Human Physiology and Clinical Experimental Research, Semmelweis University, 1082 Budapest, Hungary
| | - Eszter Pankotai
- Department of Human Physiology and Clinical Experimental Research, Semmelweis University, 1082 Budapest, Hungary
| | - David W. Busija
- Department of Physiology and Pharmacology, Wake Forest University Health Sciences, Medical Center Boulevard, Winston-Salem, NC 27157, U.S.A
| |
Collapse
|
22
|
Nohl H, Staniek K, Kozlov AV. The existence and significance of a mitochondrial nitrite reductase. Redox Rep 2006; 10:281-6. [PMID: 16438799 DOI: 10.1179/135100005x83707] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
The physiological functions of nitric oxide (NO) are well established. The finding that the endothelium-derived relaxing factor (EDRF) is NO was totally unexpected. It was shown that NO is a reaction product of an enzymatically catalyzed, overall, 5-electron oxidation of guanidinium nitrogen from L-arginine followed by the release of the free radical species NO. NO is synthesized by a single protein complex supported by cofactors, coenzymes (such as tetrahydrobiopterin) and cytochrome P450. The latter can uncouple from substrate oxidation producing O2*- radicals. The research groups of Richter [Ghafourifar P, Richter C. Nitric oxide synthase activity in mitochondria. FEBS Lett 1997; 418: 291-296.] and Boveris [Giulivi C, Poderoso JJ, Boveris A. Production of nitric oxide by mitochondria. J Biol Chem 1998; 273: 11038-11043.] identified a mitochondrial NO synthase (NOS). There are, however, increasing reports demonstrating that mitochondrial NO is derived from cytosolic NOS belonging to the Ca2+-dependent enzymes. NO was thought to control cytochrome oxidase. This assumption is controversial due to the life-time of NO in biological systems (millisecond range). We found a nitrite reductase in mitochondria which is of major interest. Any increase of nitrite in the tissue which is the first oxidation product of NO, for instance following NO donors, will stimulate NO-recycling via mitochondrial nitrite reductase. In this paper, we describe the identity and the function of mitochondrial nitrite reductase and the consequences of NO-recycling in the metabolic compartment of mitochondria.
Collapse
Affiliation(s)
- Hans Nohl
- Research Institute for Biochemical Pharmacology and Toxicology, University of Veterinary Medicine of Vienna, Vienna, Austria.
| | | | | |
Collapse
|
23
|
Lacza Z, Kozlov AV, Pankotai E, Csordás A, Wolf G, Redl H, Kollai M, Szabó C, Busija DW, Horn TFW. Mitochondria produce reactive nitrogen species via an arginine-independent pathway. Free Radic Res 2006; 40:369-78. [PMID: 16517501 DOI: 10.1080/10715760500539139] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
We measured the contribution of mitochondrial nitric oxide synthase (mtNOS) and respiratory chain enzymes to reactive nitrogen species (RNS) production. Diaminofluorescein (DAF) was applied for the assessment of RNS production in isolated mouse brain, heart and liver mitochondria and also in a cultured neuroblastoma cell line by confocal microscopy and flow cytometry. Mitochondria produced RNS, which was inhibited by catalysts of peroxynitrite decomposition but not by nitric oxide (NO) synthase inhibitors. Disrupting the organelles or withdrawing respiratory substrates markedly reduced RNS production. Inhibition of complex I abolished the DAF signal, which was restored by complex II substrates. Inhibition of the respiratory complexes downstream from the ubiquinone/ubiquinol cycle or dissipating the proton gradient had no effect on DAF fluorescence. We conclude that mitochondria from brain, heart and liver are capable of significant RNS production via the respiratory chain rather than through an arginine-dependent mtNOS.
Collapse
Affiliation(s)
- Zsombor Lacza
- Department of Physiology/Pharmacology, Wake Forest University Health Sciences, Winston-Salem, NC 27157, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Lacza Z, Pankotai E, Csordás A, Gero D, Kiss L, Horváth EM, Kollai M, Busija DW, Szabó C. Mitochondrial NO and reactive nitrogen species production: Does mtNOS exist? Nitric Oxide 2006; 14:162-8. [PMID: 16051505 DOI: 10.1016/j.niox.2005.05.011] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2005] [Revised: 05/26/2005] [Accepted: 05/29/2005] [Indexed: 11/19/2022]
Abstract
It is more than 10 years now that mitochondria are suspected to be sources of nitric oxide (NO). This hypothesis is intriguing since NO has multiple targets within the organelle and it is even suggested that mitochondria are the primary targets of NO in the cell. Most remarkably, nanomolar concentrations of NO can inhibit mitochondrial respiration, so even a small amount of NO in the mitochondrial matrix may regulate ATP synthesis. Therefore, the idea that mitochondria themselves are capable of NO production is an important concept in several physiological and pathological mechanisms. However, this field of research generates surprisingly few original papers and the published studies contain conflicting results. The reliability of the results is frequently questioned since they are seldom reproduced by independent investigators. Until 2003, all papers published in this field showed affirmative results but since then several studies directly challenged the existence of a mitochondrial nitric oxide synthase. The present review aims to summarize the most recent developments in mitochondrial NO production, highlights a few unsolved questions, and proposes new directions for future work in this research area.
Collapse
Affiliation(s)
- Zsombor Lacza
- Institute of Human Physiology and Clinical Experimental Research, Semmelweis University, Ullöi út 78/a, 1082 Budapest, Hungary.
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Rui T, Kvietys PR. NFkappaB and AP-1 differentially contribute to the induction of Mn-SOD and eNOS during the development of oxidant tolerance. FASEB J 2005; 19:1908-10. [PMID: 16157693 DOI: 10.1096/fj.05-4028fje] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Exposure of cardiac myocytes to anoxia/reoxygenation (A/R) increases myocyte oxidant stress and converts the myocytes to a proinflammatory phenotype. These oxidant-induced effects are prevented by pretreatment of the myocytes with an oxidant stress (A/R or H2O2) 24 h earlier (oxidant tolerance). Although NF-kappaB and AP-1 (nuclear signaling) and Mn-SOD and eNOS (effector enzymes) have been implicated in the development oxidant tolerance, the precise relationship between the nuclear transcription factors and the effector enzymes in the development of oxidant tolerance has not been defined. Herein, we show that an initial A/R challenge results in nuclear accumulation of both NF-kappaB and AP-1 (EMSA). In addition, blockade of nuclear translocation of NF-kappaB (SN50) or AP-1 (decoy oligonucleotide) prevents the development of oxidant tolerance, i.e., the second A/R challenge produces the same quantitative effects as the initial A/R challenge. In this model, nuclear translocation of both NF-kappaB and AP-1 is required for induction of Mn-SOD, while nuclear translocation of AP-1, but not NF-kappaB, is a prerequisite for induction of eNOS. Collectively, our findings indicate that NF-kappaB and AP-1 work in concert to ensure the induction eNOS and Mn-SOD, which in turn are important for the development of oxidant tolerance.
Collapse
Affiliation(s)
- Tao Rui
- Vascular Cell Biology Laboratory, Centre for Critical Illness Research, Lawson Health Research Institute and Department of Medical Biophysics, University of Western Ontario, London, Ontario, Canada
| | | |
Collapse
|
26
|
Gonzales GF, Chung FA, Miranda S, Valdez LB, Zaobornyj T, Bustamante J, Boveris A. Heart mitochondrial nitric oxide synthase is upregulated in male rats exposed to high altitude (4,340 m). Am J Physiol Heart Circ Physiol 2005; 288:H2568-73. [PMID: 15695556 DOI: 10.1152/ajpheart.00812.2004] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Male rats exposed for 21 days to high altitude (4,340 m) responded with arrest of weight gain and increased hematocrit and testosterone levels. High altitude significantly (58%) increased heart mitochondrial nitric oxide (NO) synthase (mtNOS) activity, whereas heart cytosolic endothelial NOS (eNOS) and liver mtNOS were not affected. Western blot analysis found heart mitochondria reacting only with anti-inducible NOS (iNOS) antibodies, whereas the postmitochondrial fraction reacted with anti-iNOS and anti-eNOS antibodies. In vitro-measured NOS activities allowed the estimation of cardiomyocyte capacity for NO production, a value that increased from 57% (sea level) to 79 nmol NO.min(-1).g heart(-1) (4,340 m). The contribution of mtNOS to total cell NO production increased from 62% (sea level) to 71% (4340 m). Heart mtNOS activity showed a linear relationship with hematocrit and a biphasic quadratic association with estradiol and testosterone. Multivariate analysis showed that exposure to high altitude linearly associates with hematocrit and heart mtNOS activity, and that testosterone-to-estradiol ratio and heart weight were not linearly associated with mtNOS activity. We conclude that high altitude triggers a physiological adaptive response that upregulates heart mtNOS activity and is associated in an opposed manner with the serum levels of testosterone and estradiol.
Collapse
Affiliation(s)
- Gustavo F Gonzales
- Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, C1113AAD, Buenos Aires, Argentina
| | | | | | | | | | | | | |
Collapse
|