1
|
Malarz K, Mularski J, Pacholczyk M, Musiol R. The Landscape of the Anti-Kinase Activity of the IDH1 Inhibitors. Cancers (Basel) 2020; 12:cancers12030536. [PMID: 32110969 PMCID: PMC7139656 DOI: 10.3390/cancers12030536] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 02/20/2020] [Accepted: 02/22/2020] [Indexed: 12/18/2022] Open
Abstract
Isocitrate dehydrogenases constitute a class of enzymes that are crucial for cellular metabolism. The overexpression or mutation of isocitrate dehydrogenases are often found in leukemias, glioblastomas, lung cancers, and ductal pancreatic cancer among others. Mutation R132H, which changes the functionality of an enzyme to produce mutagenic 2-hydroxyglutarate instead of a normal product, is particularly important in this field. A series of inhibitors were described for these enzymes of which ivosidenib was the first to be approved for treating leukemia and bile duct cancers in 2018. Here, we investigated the polypharmacological landscape of the activity for known sulfamoyl derivatives that are inhibitors, which are selective towards IDH1 R132H. These compounds appeared to be effective inhibitors of several non-receptor kinases at a similar level as imatinib and axitinib. The antiproliferative activity of these compounds against a panel of cancer cells was tested and is explained based on the relative expression levels of the investigated proteins. The multitargeted activity of these compounds makes them valuable agents against a wide range of cancers, regardless of the status of IDH1.
Collapse
Affiliation(s)
- Katarzyna Malarz
- August Chełkowski Institute of Physics and Silesian Center for Education and Interdisciplinary Research, University of Silesia in Katowice, 75 Pułku Piechoty 1, 41-500 Chorzów, Poland
- Correspondence: (K.M.); (R.M.)
| | - Jacek Mularski
- Institute of Chemistry, University of Silesia in Katowice, 75 Pułku Piechoty 1A, 41-500 Chorzów, Poland;
| | - Marcin Pacholczyk
- Department of Systems Biology and Engineering, Silesian University of Technology, Akademicka 16, 44-100 Gliwice, Poland;
| | - Robert Musiol
- Institute of Chemistry, University of Silesia in Katowice, 75 Pułku Piechoty 1A, 41-500 Chorzów, Poland;
- Correspondence: (K.M.); (R.M.)
| |
Collapse
|
2
|
Zhou W, Wahl DR. Metabolic Abnormalities in Glioblastoma and Metabolic Strategies to Overcome Treatment Resistance. Cancers (Basel) 2019; 11:cancers11091231. [PMID: 31450721 PMCID: PMC6770393 DOI: 10.3390/cancers11091231] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 08/07/2019] [Accepted: 08/16/2019] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma (GBM) is the most common and aggressive primary brain tumor and is nearly universally fatal. Targeted therapy and immunotherapy have had limited success in GBM, leaving surgery, alkylating chemotherapy and ionizing radiation as the standards of care. Like most cancers, GBMs rewire metabolism to fuel survival, proliferation, and invasion. Emerging evidence suggests that this metabolic reprogramming also mediates resistance to the standard-of-care therapies used to treat GBM. In this review, we discuss the noteworthy metabolic features of GBM, the key pathways that reshape tumor metabolism, and how inhibiting abnormal metabolism may be able to overcome the inherent resistance of GBM to radiation and chemotherapy.
Collapse
Affiliation(s)
- Weihua Zhou
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Daniel R Wahl
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
3
|
Laba P, Wang J, Zhang J. Low level of isocitrate dehydrogenase 1 predicts unfavorable postoperative outcomes in patients with clear cell renal cell carcinoma. BMC Cancer 2018; 18:852. [PMID: 30153799 PMCID: PMC6114787 DOI: 10.1186/s12885-018-4747-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 08/14/2018] [Indexed: 12/16/2022] Open
Abstract
Background The purpose of this study was to investigate the role of isocitrate dehydrogenase 1 (IDH1) expression on prognosis of patients with clear cell renal cell carcinoma (ccRCC) following nephrectomy. Methods We retrospectively enrolled 358 ccRCC patients undergoing nephrectomy in Renji Hospital. Clinicopathologic features, overall survival (OS) and recurrence-free survival (RFS) of ccRCC patents were all collected. IDH1 expression level was assessed by immunohistochemistry and its association with clinicopathologic features and outcomes were also evaluated. Kaplan-Meier method with the log-rank test was applied to compare survival curves. Multivariate cox regression models were applied to analyze the prognostic value of each factor on OS and RFS of ccRCC patients. Moreover, two nomograms with factors selected by multivariate analysis were constructed to evaluate the prognosis of ccRCC patients, and the calibration plots were built to assess the predictive accuracy of nomograms. Results Our data indicated that IDH1 expression level was down-regulated in ccRCC tissues, and it negatively correlated with tumor Fuhrman grade (p = 0.025). Low IDH1 expression was associated with worse OS and RFS for cccRCC patients (OS, p = 0.004; RFS, p = 0.03). In addition, IDH1 could significantly stratify patients’ OS and RFS in intermediate/high risk patients (UISS score ≥ 4) (p = 0.049 and p = 0.004, respectively). Furthermore, incorporating IDH1 with other prognostic factors could predict ccRCC patients’ OS and RFS (OS, c-index = 0.779; RFS, c-index = 0.798) and perform better than TNM and SSIGN system. Conclusions Low IDH1 expression level might be an adverse prognostic biomarker for clinical outcomes of ccRCC patients, and two nomograms with IDH1 are potential effective prognostic models for ccRCC.
Collapse
Affiliation(s)
- Pingcuo Laba
- Department of Urology, Shigatse People's Hospital, Shigatse, 85700, China
| | - Jianfeng Wang
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, No.160, Pujian Road, Shanghai, 200127, China
| | - Jin Zhang
- Department of Urology, Shigatse People's Hospital, Shigatse, 85700, China. .,Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, No.160, Pujian Road, Shanghai, 200127, China.
| |
Collapse
|
4
|
Colwell N, Larion M, Giles AJ, Seldomridge AN, Sizdahkhani S, Gilbert MR, Park DM. Hypoxia in the glioblastoma microenvironment: shaping the phenotype of cancer stem-like cells. Neuro Oncol 2017; 19:887-896. [PMID: 28339582 PMCID: PMC5570138 DOI: 10.1093/neuonc/now258] [Citation(s) in RCA: 176] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Glioblastoma is the most common and aggressive malignant primary brain tumor. Cellular heterogeneity is a characteristic feature of the disease and contributes to the difficulty in formulating effective therapies. Glioma stem-like cells (GSCs) have been identified as a subpopulation of tumor cells that are thought to be largely responsible for resistance to treatment. Intratumoral hypoxia contributes to maintenance of the GSCs by supporting the critical stem cell traits of multipotency, self-renewal, and tumorigenicity. This review highlights the interaction of GSCs with the hypoxic tumor microenvironment, exploring the mechanisms underlying the contribution of GSCs to tumor vessel dynamics, immune modulation, and metabolic alteration.
Collapse
Affiliation(s)
- Nicole Colwell
- Neuro-Oncology Branch, National Cancer Institute and National Institute of Neurological Disorders and Stroke, Bethesda, Maryland ; Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, Bethesda, Maryland
| | - Mioara Larion
- Neuro-Oncology Branch, National Cancer Institute and National Institute of Neurological Disorders and Stroke, Bethesda, Maryland ; Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, Bethesda, Maryland
| | - Amber J Giles
- Neuro-Oncology Branch, National Cancer Institute and National Institute of Neurological Disorders and Stroke, Bethesda, Maryland ; Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, Bethesda, Maryland
| | - Ashlee N Seldomridge
- Neuro-Oncology Branch, National Cancer Institute and National Institute of Neurological Disorders and Stroke, Bethesda, Maryland ; Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, Bethesda, Maryland
| | - Saman Sizdahkhani
- Neuro-Oncology Branch, National Cancer Institute and National Institute of Neurological Disorders and Stroke, Bethesda, Maryland ; Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, Bethesda, Maryland
| | - Mark R Gilbert
- Neuro-Oncology Branch, National Cancer Institute and National Institute of Neurological Disorders and Stroke, Bethesda, Maryland ; Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, Bethesda, Maryland
| | - Deric M Park
- Neuro-Oncology Branch, National Cancer Institute and National Institute of Neurological Disorders and Stroke, Bethesda, Maryland ; Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, Bethesda, Maryland
| |
Collapse
|
5
|
Song P, Wei H, Cao Z, Wang P, Zhu G. Single arginine mutation in two yeast isocitrate dehydrogenases: biochemical characterization and functional implication. PLoS One 2014; 9:e115025. [PMID: 25502799 PMCID: PMC4263744 DOI: 10.1371/journal.pone.0115025] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2014] [Accepted: 11/17/2014] [Indexed: 11/18/2022] Open
Abstract
Isocitrate dehydrogenase (IDH), a housekeeping gene, has drawn the attention of cancer experts. Mutation of the catalytic Arg132 residue of human IDH1 (HcIDH) eliminates the enzyme's wild-type isocitrate oxidation activity, but confer the mutant an ability of reducing α-ketoglutarate (α-KG) to 2-hydroxyglutarate (2-HG). To examine whether an analogous mutation in IDHs of other eukaryotes could cause similar effects, two yeast mitochondrial IDHs, Saccharomyces cerevisiae NADP+-IDH1 (ScIDH1) and Yarrowia lipolytica NADP+-IDH (YlIDH), were studied. The analogous Arg residues (Arg148 of ScIDH1 and Arg141 of YlIDH) were mutated to His. The Km values of ScIDH1 R148H and YlIDH R141H for isocitrate were determined to be 2.4-fold and 2.2-fold higher, respectively, than those of the corresponding wild-type enzymes. The catalytic efficiencies (kcat/Km) of ScIDH1 R148H and YlIDH R141H for isocitrate oxidation were drastically reduced by 227-fold and 460-fold, respectively, of those of the wild-type enzymes. As expected, both ScIDH1 R148H and YlIDH R141H acquired the neomorphic activity of catalyzing α-KG to 2-HG, and the generation of 2-HG was confirmed using gas chromatography/time of flight-mass spectrometry (GC/TOF-MS). Kinetic analysis showed that ScIDH1 R148H and YlIDH R141H displayed 5.2-fold and 3.3-fold higher affinities, respectively, for α-KG than the HcIDH R132H mutant. The catalytic efficiencies of ScIDH1 R148H and YlIDH R141H for α-KG were 5.5-fold and 4.5-fold, respectively, of that of the HcIDH R132H mutant. Since the HcIDH Arg132 mutation is associated with the tumorigenesis, this study provides fundamental information for further research on the physiological role of this IDH mutation in vivo using yeast.
Collapse
Affiliation(s)
- Ping Song
- Institute of Molecular Biology and Biotechnology, Anhui Normal University, No. 1 Beijing East Road, Wuhu, 241000, Anhui, China
| | - Huanhuan Wei
- Institute of Molecular Biology and Biotechnology, Anhui Normal University, No. 1 Beijing East Road, Wuhu, 241000, Anhui, China
| | - Zhengyu Cao
- Institute of Molecular Biology and Biotechnology, Anhui Normal University, No. 1 Beijing East Road, Wuhu, 241000, Anhui, China
| | - Peng Wang
- Institute of Molecular Biology and Biotechnology, Anhui Normal University, No. 1 Beijing East Road, Wuhu, 241000, Anhui, China
- * E-mail: (PW); (GPZ)
| | - Guoping Zhu
- Institute of Molecular Biology and Biotechnology, Anhui Normal University, No. 1 Beijing East Road, Wuhu, 241000, Anhui, China
- * E-mail: (PW); (GPZ)
| |
Collapse
|
6
|
Krell D, Mulholland P, Frampton AE, Krell J, Stebbing J, Bardella C. IDH mutations in tumorigenesis and their potential role as novel therapeutic targets. Future Oncol 2014; 9:1923-35. [PMID: 24295421 DOI: 10.2217/fon.13.143] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Isocitrate dehydrogenases (IDHs) catalyze the oxidative decarboxylation of isocitrate to α-ketoglutarate (α-KG). Somatic mutations in genes encoding IDH1 and IDH2 were first identified in glioma and subsequently in acute myeloid leukemia and other solid tumors. These heterozygous point mutations occur at the arginine residue of the enzyme's active site and cause both loss of normal enzyme function and gain of function, causing reduction of α-KG to D-2-hydroxyglutarate, which accumulates. D-2-hydroxyglutarate may act as an oncometabolite through the inhibition of various α-KG-dependent enzymes, stimulating angiogenesis, histone modifications and aberrant DNA methylation. Possibly, IDH mutations may also cause oncogenic effects through dysregulation of the tricarboxylic acid cycle, or by increasing susceptibility to oxidative stress. Clinically, IDH mutations may be useful diagnostic, prognostic and predictive biomarkers, and it is anticipated that a better understanding of the pathogenesis of IDH mutations will enable IDH-directed therapies to be developed in the future.
Collapse
Affiliation(s)
- Daniel Krell
- Molecular & Population Genetics Laboratory, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | | | | | | | | | | |
Collapse
|
7
|
Molenaar RJ, Radivoyevitch T, Maciejewski JP, van Noorden CJF, Bleeker FE. The driver and passenger effects of isocitrate dehydrogenase 1 and 2 mutations in oncogenesis and survival prolongation. Biochim Biophys Acta Rev Cancer 2014; 1846:326-41. [PMID: 24880135 DOI: 10.1016/j.bbcan.2014.05.004] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 04/30/2014] [Accepted: 05/22/2014] [Indexed: 01/06/2023]
Abstract
Mutations in isocitrate dehydrogenase 1 and 2 (IDH1 and IDH2) are key events in the development of glioma, acute myeloid leukemia (AML), chondrosarcoma, intrahepatic cholangiocarcinoma (ICC), and angioimmunoblastic T-cell lymphoma. They also cause D-2-hydroxyglutaric aciduria and Ollier and Maffucci syndromes. IDH1/2 mutations are associated with prolonged survival in glioma and in ICC, but not in AML. The reason for this is unknown. In their wild-type forms, IDH1 and IDH2 convert isocitrate and NADP(+) to α-ketoglutarate (αKG) and NADPH. Missense mutations in the active sites of these enzymes induce a neo-enzymatic reaction wherein NADPH reduces αKG to D-2-hydroxyglutarate (D-2HG). The resulting D-2HG accumulation leads to hypoxia-inducible factor 1α degradation, and changes in epigenetics and extracellular matrix homeostasis. Such mutations also imply less NADPH production capacity. Each of these effects could play a role in cancer formation. Here, we provide an overview of the literature and discuss which downstream molecular effects are likely to be the drivers of the oncogenic and survival-prolonging properties of IDH1/2 mutations. We discuss interactions between mutant IDH1/2 inhibitors and conventional therapies. Understanding of the biochemical consequences of IDH1/2 mutations in oncogenesis and survival prolongation will yield valuable information for rational therapy design: it will tell us which oncogenic processes should be blocked and which "survivalogenic" effects should be retained.
Collapse
Affiliation(s)
- Remco J Molenaar
- Department of Cell Biology & Histology, Academic Medical Center, University of Amsterdam, The Netherlands.
| | - Tomas Radivoyevitch
- Department of Epidemiology and Biostatistics, Case Western Reserve University, Cleveland, OH, USA
| | - Jaroslaw P Maciejewski
- Department of Translational Hematology and Oncology Research, Taussig Cancer Center, Cleveland Clinic, Cleveland, OH, USA
| | - Cornelis J F van Noorden
- Department of Cell Biology & Histology, Academic Medical Center, University of Amsterdam, The Netherlands
| | - Fonnet E Bleeker
- Department of Clinical Genetics, Academic Medical Center, University of Amsterdam, The Netherlands
| |
Collapse
|
8
|
Guay C, Joly É, Pepin É, Barbeau A, Hentsch L, Pineda M, Madiraju SRM, Brunengraber H, Prentki M. A role for cytosolic isocitrate dehydrogenase as a negative regulator of glucose signaling for insulin secretion in pancreatic ß-cells. PLoS One 2013; 8:e77097. [PMID: 24130841 PMCID: PMC3795013 DOI: 10.1371/journal.pone.0077097] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 08/30/2013] [Indexed: 01/24/2023] Open
Abstract
Cytosolic NADPH may act as one of the signals that couple glucose metabolism to insulin secretion in the pancreatic ß-cell. NADPH levels in the cytoplasm are largely controlled by the cytosolic isoforms of malic enzyme and isocitrate dehydrogenase (IDHc). Some studies have provided evidence for a role of malic enzyme in glucose-induced insulin secretion (GIIS) via pyruvate cycling, but the role of IDHc in ß-cell signaling is unsettled. IDHc is an established component of the isocitrate/α-ketoglutarate shuttle that transfers reducing equivalents (NADPH) from the mitochondrion to the cytosol. This shuttle is energy consuming since it is coupled to nicotinamide nucleotide transhydrogenase that uses the mitochondrial proton gradient to produce mitochondrial NADPH and NAD(+) from NADP(+) and NADH. To determine whether flux through IDHc is positively or negatively linked to GIIS, we performed RNAi knockdown experiments in ß-cells. Reduced IDHc expression in INS 832/13 cells and isolated rat islet ß-cells resulted in enhanced GIIS. This effect was mediated at least in part via the KATP-independent amplification arm of GIIS. IDHc knockdown in INS 832/13 cells did not alter glucose oxidation but it reduced fatty acid oxidation and increased lipogenesis from glucose. Metabolome profiling in INS 832/13 cells showed that IDHc knockdown increased isocitrate and NADP(+) levels. It also increased the cellular contents of several metabolites linked to GIIS, in particular some Krebs cycle intermediates, acetyl-CoA, glutamate, cAMP and ATP. The results identify IDHc as a component of the emerging pathways that negatively regulate GIIS.
Collapse
Affiliation(s)
- Claudiane Guay
- Molecular Nutrition Unit and the Montreal Diabetes Research Center at the Centre de Recherche du Centre Hospitalier de l'Université de Montréal, CR-CHUM, Montreal, Quebec, Canada
| | - Érik Joly
- Molecular Nutrition Unit and the Montreal Diabetes Research Center at the Centre de Recherche du Centre Hospitalier de l'Université de Montréal, CR-CHUM, Montreal, Quebec, Canada
| | - Émilie Pepin
- Molecular Nutrition Unit and the Montreal Diabetes Research Center at the Centre de Recherche du Centre Hospitalier de l'Université de Montréal, CR-CHUM, Montreal, Quebec, Canada
| | - Annie Barbeau
- Molecular Nutrition Unit and the Montreal Diabetes Research Center at the Centre de Recherche du Centre Hospitalier de l'Université de Montréal, CR-CHUM, Montreal, Quebec, Canada
| | - Lisa Hentsch
- Molecular Nutrition Unit and the Montreal Diabetes Research Center at the Centre de Recherche du Centre Hospitalier de l'Université de Montréal, CR-CHUM, Montreal, Quebec, Canada
| | - Marco Pineda
- Molecular Nutrition Unit and the Montreal Diabetes Research Center at the Centre de Recherche du Centre Hospitalier de l'Université de Montréal, CR-CHUM, Montreal, Quebec, Canada
| | - S. R. Murthy Madiraju
- Molecular Nutrition Unit and the Montreal Diabetes Research Center at the Centre de Recherche du Centre Hospitalier de l'Université de Montréal, CR-CHUM, Montreal, Quebec, Canada
| | - Henri Brunengraber
- Department of Nutrition, School of Medicine, Case Western Reserve University, Cleveland, Ohio, United State of America
| | - Marc Prentki
- Molecular Nutrition Unit and the Montreal Diabetes Research Center at the Centre de Recherche du Centre Hospitalier de l'Université de Montréal, CR-CHUM, Montreal, Quebec, Canada
- Departments of Nutrition and Biochemistry, University of Montreal, Montreal, Quebec, Canada
- * E-mail:
| |
Collapse
|
9
|
Horbinski C. What do we know about IDH1/2 mutations so far, and how do we use it? Acta Neuropathol 2013; 125:621-36. [PMID: 23512379 DOI: 10.1007/s00401-013-1106-9] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Accepted: 03/09/2013] [Indexed: 12/16/2022]
Abstract
Whole genome analyses have facilitated the discovery of clinically relevant genetic alterations in a variety of diseases, most notably cancer. A prominent example of this was the discovery of mutations in isocitrate dehydrogenases 1 and 2 (IDH1/2) in a sizeable proportion of gliomas and some other neoplasms. Herein the normal functions of these enzymes, how the mutations alter their catalytic properties, the effects of their D-2-hydroxyglutarate metabolite, technical considerations in diagnostic neuropathology, implications about prognosis and therapeutic considerations, and practical applications and controversies regarding IDH1/2 mutation testing are discussed.
Collapse
Affiliation(s)
- Craig Horbinski
- Department of Pathology, University of Kentucky, 307 Combs Cancer Research Facility, 800 Rose Street, Lexington, KY 40536, USA.
| |
Collapse
|
10
|
Zheleznova NN, Yang C, Ryan RP, Halligan BD, Liang M, Greene AS, Cowley AW. Mitochondrial proteomic analysis reveals deficiencies in oxygen utilization in medullary thick ascending limb of Henle in the Dahl salt-sensitive rat. Physiol Genomics 2012; 44:829-42. [PMID: 22805345 DOI: 10.1152/physiolgenomics.00060.2012] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The renal medullary thick ascending limb (mTAL) of the Dahl salt-sensitive (SS) rat is the site of enhanced NaCl reabsorption and excess superoxide production. In the present studies we isolated mitochondria from mTAL of SS and salt-resistant control strain SS.13(BN) rats on 0.4 and 8% salt diet for 7 days and performed a proteomic analysis. Purity of mTAL and mitochondria isolations exceeded 93.6 and 55%, respectively. Using LC/MS spectral analysis techniques we identified 96 mitochondrial proteins in four biological mTAL mitochondria samples, run in duplicate, as defined by proteins with a false discovery rate <5% and scan count ≥2. Seven of these 96 proteins, including IDH2, ACADM, SCOT, Hsp60, ATPA, EFTu, and VDAC2 were differentially expressed between the two rat strains. Oxygen consumption and high-resolution respirometry analyses showed that mTAL cells and the mitochondria in the outer medulla of SS rats fed high-salt diet exhibited lower rates of oxygen utilization compared with those from SS.13(BN) rats. These studies advance the conventional proteomic paradigm of focusing exclusively upon whole tissue homogenates to a focus upon a single cell type and specific subcellular organelle. The results reveal the importance of a largely unexplored role for deficiencies of mTAL mitochondrial metabolism and oxygen utilization in salt-induced hypertension and renal medullary oxidative stress.
Collapse
Affiliation(s)
- Nadezhda N Zheleznova
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | | | | | | | | | | | | |
Collapse
|
11
|
Fu Y, Zheng S, Zheng Y, Huang R, An N, Liang A, Hu C. Glioma derived isocitrate dehydrogenase-2 mutations induced up-regulation of HIF-1α and β-catenin signaling: possible impact on glioma cell metastasis and chemo-resistance. Int J Biochem Cell Biol 2012; 44:770-5. [PMID: 22309944 DOI: 10.1016/j.biocel.2012.01.017] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Revised: 01/11/2012] [Accepted: 01/24/2012] [Indexed: 11/17/2022]
Abstract
The identification of heterozygous mutations (with an incidence up to 85%) in either the R132 residue of isocitrate dehydrogenase-1 (IDH1) or the R172 residue of IDH2 in human low-grade diffuse gliomas was remarkable because no oncogenic pathway had been previously documented correlated with these enzymes. In spite of a recent surge in elucidating the tumorigenic activity of IDH mutations in glioblastoma, the underlying biological mechanisms remain poorly understood. We showed here that C6 glioma cells transiently over-expressing IDH2(R172G) induced nuclear accumulation of β-catenin, up-regulation of HIF-1α signaling and corresponding proteins expression that were closely related with tumor invasion and chemo-resistance. These results demonstrated a functional model in which IDH mutations were closely interrelated with glioma progression and could hold some therapeutic implications for future human glioma treatment.
Collapse
Affiliation(s)
- Yuejun Fu
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, PR China.
| | | | | | | | | | | | | |
Collapse
|
12
|
Yang ES, Park JW. Knockdown of cytosolic NADP(+) -dependent isocitrate dehydrogenase enhances MPP(+) -induced oxidative injury in PC12 cells. BMB Rep 2011; 44:312-6. [PMID: 21615985 DOI: 10.5483/bmbrep.2011.44.5.312] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and its toxic metabolite 1-methyl-4-phenylpyridium ion (MPP(+)) have been shown to induce Parkinson's disease-like symptoms as well as neurotoxicity in humans and animal species. Recently, we reported that maintenance of redox balance and cellular defense against oxidative damage are primary functions of the novel antioxidant enzyme cytosolic NADP(+) -dependent isocitrate dehydrogenase (IDPc). In this study, we examined the role of IDPc in cellular defense against MPP(+) -induced oxidative injury using PC12 cells transfected with IDPc small interfering RNA (siRNA). Our results demonstrate that MPP(+) -mediated disruption of cellular redox status, oxidative damage to cells, and apoptotic cell death were significantly enhanced by knockdown of IDPc.
Collapse
Affiliation(s)
- Eun Sun Yang
- School of Life Sciences and Biotechnology, College of Natural Sciences, Kyungpook National University, Daegu, Korea
| | | |
Collapse
|
13
|
Krell D, Assoku M, Galloway M, Mulholland P, Tomlinson I, Bardella C. Screen for IDH1, IDH2, IDH3, D2HGDH and L2HGDH mutations in glioblastoma. PLoS One 2011; 6:e19868. [PMID: 21625441 PMCID: PMC3100313 DOI: 10.1371/journal.pone.0019868] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Accepted: 04/13/2011] [Indexed: 11/22/2022] Open
Abstract
Isocitrate dehydrogenases (IDHs) catalyse oxidative decarboxylation of isocitrate to α-ketoglutarate (α-KG). IDH1 functions in the cytosol and peroxisomes, whereas IDH2 and IDH3 are both localized in the mitochondria. Heterozygous somatic mutations in IDH1 occur at codon 132 in 70% of grade II–III gliomas and secondary glioblastomas (GBMs), and in 5% of primary GBMs. Mutations in IDH2 at codon 172 are present in grade II–III gliomas at a low frequency. IDH1 and IDH2 mutations cause both loss of normal enzyme function and gain-of-function, causing reduction of α-KG to D-2-hydroxyglutarate (D-2HG) which accumulates. Excess hydroxyglutarate (2HG) can also be caused by germline mutations in D- and L-2-hydroxyglutarate dehydrogenases (D2HGDH and L2HGDH). If loss of IDH function is critical for tumourigenesis, we might expect some tumours to acquire somatic IDH3 mutations. Alternatively, if 2HG accumulation is critical, some tumours might acquire somatic D2HGDH or L2HGDH mutations. We therefore screened 47 glioblastoma samples looking for changes in these genes. Although IDH1 R132H was identified in 12% of samples, no mutations were identified in any of the other genes. This suggests that mutations in IDH3, D2HGDH and L2HGDH do not occur at an appreciable frequency in GBM. One explanation is simply that mono-allelic IDH1 and IDH2 mutations occur more frequently by chance than the bi-allelic mutations expected at IDH3, D2HGDH and L2HGDH. Alternatively, both loss of IDH function and 2HG accumulation might be required for tumourigenesis, and only IDH1 and IDH2 mutations have these dual effects.
Collapse
Affiliation(s)
- Daniel Krell
- Molecular and Population Genetics Laboratory, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- Department of Medical Oncology, University College London Hospitals, London, United Kingdom
| | - Mawuelikem Assoku
- Molecular and Population Genetics Laboratory, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- Department of Medical Oncology, University College London Hospitals, London, United Kingdom
| | - Malcolm Galloway
- Department of Cellular Pathology, The Royal Free Hospital, London, United Kingdom
| | - Paul Mulholland
- Department of Medical Oncology, University College London Hospitals, London, United Kingdom
| | - Ian Tomlinson
- Molecular and Population Genetics Laboratory, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Chiara Bardella
- Molecular and Population Genetics Laboratory, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- * E-mail:
| |
Collapse
|
14
|
Reitman ZJ, Yan H. Isocitrate dehydrogenase 1 and 2 mutations in cancer: alterations at a crossroads of cellular metabolism. J Natl Cancer Inst 2010; 102:932-41. [PMID: 20513808 DOI: 10.1093/jnci/djq187] [Citation(s) in RCA: 391] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Dysregulation of metabolism is a common phenomenon in cancer cells. The NADP(+)-dependent isocitrate dehydrogenases 1 and 2 (IDH1 and IDH2) function at a crossroads of cellular metabolism in lipid synthesis, cellular defense against oxidative stress, oxidative respiration, and oxygen-sensing signal transduction. We review the normal functions of the encoded enzymes, frequent mutations of IDH1 and IDH2 recently found in human cancers, and possible roles for the mutated enzymes in human disease. IDH1 and IDH2 mutations occur frequently in some types of World Health Organization grades 2-4 gliomas and in acute myeloid leukemias with normal karyotype. IDH1 and IDH2 mutations are remarkably specific to codons that encode conserved functionally important arginines in the active site of each enzyme. To date, all IDH1 mutations have been identified at the Arg132 codon. Mutations in IDH2 have been identified at the Arg140 codon, as well as at Arg172, which is aligned with IDH1 Arg132. IDH1 and IDH2 mutations are usually heterozygous in cancer, and they appear to confer a neomorphic enzyme activity for the enzymes to catalyze the production of D-2-hydroxyglutarate. Study of alterations in these metabolic enzymes may provide insights into the metabolism of cancer cells and uncover novel avenues for development of anticancer therapeutics.
Collapse
Affiliation(s)
- Zachary J Reitman
- Department of Pathology, The Pediatric Brain Tumor Foundation Institute, Duke University Medical Center, Durham, NC 27710, USA.
| | | |
Collapse
|
15
|
Bleeker FE, Atai NA, Lamba S, Jonker A, Rijkeboer D, Bosch KS, Tigchelaar W, Troost D, Vandertop WP, Bardelli A, Van Noorden CJF. The prognostic IDH1( R132 ) mutation is associated with reduced NADP+-dependent IDH activity in glioblastoma. Acta Neuropathol 2010; 119:487-94. [PMID: 20127344 PMCID: PMC2841753 DOI: 10.1007/s00401-010-0645-6] [Citation(s) in RCA: 237] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Revised: 01/18/2010] [Accepted: 01/19/2010] [Indexed: 11/10/2022]
Abstract
Somatic mutations in the isocitrate dehydrogenase 1 gene (IDH1) occur at high frequency in gliomas and seem to be a prognostic factor for survival in glioblastoma patients. In our set of 98 glioblastoma patients, IDH1 ( R132 ) mutations were associated with improved survival of 1 year on average, after correcting for age and other variables with Cox proportional hazards models. Patients with IDH1 mutations were on average 17 years younger than patients without mutation. Mutated IDH1 has a gain of function to produce 2-hydroxyglutarate by NADPH-dependent reduction of alpha-ketoglutarate, but it is unknown whether NADPH production in gliomas is affected by IDH1 mutations. We assessed the effect of IDH1 (R132 ) mutations on IDH-mediated NADPH production in glioblastomas in situ. Metabolic mapping and image analysis was applied to 51 glioblastoma samples of which 16 carried an IDH1 (R132 ) mutation. NADP+-dependent IDH activity was determined in comparison with activity of NAD+-dependent IDH and all other NADPH-producing dehydrogenases, glucose-6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase, malate dehydrogenase, and hexose-6-phosphate dehydrogenase. The occurrence of IDH1 mutations correlated with approx. twofold diminished NADP+-dependent IDH activity, whereas activity of NAD+-dependent IDH and the other NADP+-dependent dehydrogenases was not affected in situ in glioblastoma. The total NADPH production capacity in glioblastoma was provided for 65% by IDH activity and the occurrence of IDH1 (R132 ) mutation reduced this capacity by 38%. It is concluded that NADPH production is hampered in glioblastoma with IDH1 (R132 ) mutation. Moreover, mutated IDH1 consumes rather than produces NADPH, thus likely lowering NADPH levels even further. The low NADPH levels may sensitize glioblastoma to irradiation and chemotherapy, thus explaining the prolonged survival of patients with mutated glioblastoma.
Collapse
Affiliation(s)
- Fonnet E. Bleeker
- Neurosurgical Center Amsterdam, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Laboratory of Molecular Genetics, Institute for Cancer Research and Treatment, University of Torino Medical School, Candiolo (TO), Italy
| | - Nadia A. Atai
- Department of Cell Biology and Histology, Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | - Simona Lamba
- Laboratory of Molecular Genetics, Institute for Cancer Research and Treatment, University of Torino Medical School, Candiolo (TO), Italy
| | - Ard Jonker
- Department of Cell Biology and Histology, Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | - Denise Rijkeboer
- Department of Cell Biology and Histology, Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | - Klazien S. Bosch
- Department of Cell Biology and Histology, Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | - Wikky Tigchelaar
- Department of Cell Biology and Histology, Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | - Dirk Troost
- Department of Neuropathology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - W. Peter Vandertop
- Neurosurgical Center Amsterdam, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Alberto Bardelli
- Laboratory of Molecular Genetics, Institute for Cancer Research and Treatment, University of Torino Medical School, Candiolo (TO), Italy
- FIRC Institute of Molecular Oncology, Milan, Italy
| | - Cornelis J. F. Van Noorden
- Department of Cell Biology and Histology, Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|