1
|
Zamanian MY, Golmohammadi M, Yumashev A, Hjazi A, Toama MA, AbdRabou MA, Gehlot A, Alwaily ER, Shirsalimi N, Yadav PK, Moriasi G. Effects of metformin on cancers in experimental and clinical studies: Focusing on autophagy and AMPK/mTOR signaling pathways. Cell Biochem Funct 2024; 42:e4071. [PMID: 38863255 DOI: 10.1002/cbf.4071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/25/2024] [Accepted: 06/02/2024] [Indexed: 06/13/2024]
Abstract
Metformin (MET) is a preferred drug for the treatment of type 2 diabetes mellitus. Recent studies show that apart from its blood glucose-lowering effects, it also inhibits the development of various tumours, by inducing autophagy. Various studies have confirmed the inhibitory effects of MET on cancer cell lines' propagation, migration, and invasion. The objective of the study was to comprehensively review the potential of MET as an anticancer agent, particularly focusing on its ability to induce autophagy and inhibit the development and progression of various tumors. The study aimed to explore the inhibitory effects of MET on cancer cell proliferation, migration, and invasion, and its impact on key signaling pathways such as adenosine monophosphate-activated protein kinase (AMPK), mammalian target of rapamycin (mTOR), and PI3K. This review noted that MET exerts its anticancer effects by regulating key signalling pathways such as phosphoinositide 3-kinase (PI3K), LC3-I and LC3-II, Beclin-1, p53, and the autophagy-related gene (ATG), inhibiting the mTOR protein, downregulating the expression of p62/SQSTM1, and blockage of the cell cycle at the G0/G1. Moreover, MET can stimulate autophagy through pathways associated with the 5' AMPK, thereby inhibiting he development and progression of various human cancers, including hepatocellular carcinoma, prostate cancer, pancreatic cancer, osteosarcoma, myeloma, and non-small cell lung cancer. In summary, this detailed review provides a framework for further investigations that may appraise the autophagy-induced anticancer potential of MET and its repurposing for cancer treatment.
Collapse
Affiliation(s)
- Mohammad Yasin Zamanian
- Department of Physiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Maryam Golmohammadi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alexey Yumashev
- Department of Prosthetic Dentistry, Sechenov First Moscow State Medical University, Moscow, Russian Federation
| | - Ahmed Hjazi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Mariam Alaa Toama
- College of Pharmacy, National University of Science and Technology, Dhi Qar, Iraq
| | | | - Anita Gehlot
- Department of Electronics & Communication Engineering, Uttaranchal Institute of Technology, Uttaranchal University, Dehradun, India
| | - Enas R Alwaily
- Microbiology Research Group, College of Pharmacy, Al-Ayen University, Thi-Qar, Iraq
| | - Niyousha Shirsalimi
- Department of Physiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Pankaj Kumar Yadav
- Bioorganic and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, India
| | - Gervason Moriasi
- Department of Medical Biochemistry, School of Medicine, College of Health Sciences, Mount Kenya University, Thika, Kenya
| |
Collapse
|
2
|
Bressan C, Snapyan M, Snapyan M, Klaus J, di Matteo F, Robertson SP, Treutlein B, Parent M, Cappello S, Saghatelyan A. Metformin rescues migratory deficits of cells derived from patients with periventricular heterotopia. EMBO Mol Med 2023; 15:e16908. [PMID: 37609821 PMCID: PMC10565636 DOI: 10.15252/emmm.202216908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 08/01/2023] [Accepted: 08/10/2023] [Indexed: 08/24/2023] Open
Abstract
Periventricular neuronal heterotopia (PH) is one of the most common forms of cortical malformation in the human cortex. We show that human neuronal progenitor cells (hNPCs) derived from PH patients with a DCHS1 or FAT4 mutation as well as isogenic lines had altered migratory dynamics when grafted in the mouse brain. The affected migration was linked to altered autophagy as observed in vivo with an electron microscopic analysis of grafted hNPCs, a Western blot analysis of cortical organoids, and time-lapse imaging of hNPCs in the presence of bafilomycin A1. We further show that deficits in autophagy resulted in the accumulation of paxillin, a focal adhesion protein involved in cell migration. Strikingly, a single-cell RNA-seq analysis of hNPCs revealed similar expression levels of autophagy-related genes. Bolstering AMPK-dependent autophagy by metformin, an FDA-approved drug, promoted migration of PH patients-derived hNPCs. Our data indicate that transcription-independent homeostatic modifications in autophagy contributed to the defective migratory behavior of hNPCs in vivo and suggest that modulating autophagy in hNPCs might rescue neuronal migration deficits in some forms of PH.
Collapse
Affiliation(s)
- Cedric Bressan
- CERVO Brain Research CenterQuebec CityQCCanada
- Université LavalQuebec CityQCCanada
| | - Marta Snapyan
- CERVO Brain Research CenterQuebec CityQCCanada
- Université LavalQuebec CityQCCanada
| | - Marina Snapyan
- CERVO Brain Research CenterQuebec CityQCCanada
- Université LavalQuebec CityQCCanada
- University of OttawaOttawaONCanada
| | | | - Francesco di Matteo
- Max Planck Institute of PsychiatryMunichGermany
- Biomedical Center (BMC)Ludwig Maximilian University of MunichMunichGermany
| | | | - Barbara Treutlein
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
| | - Martin Parent
- CERVO Brain Research CenterQuebec CityQCCanada
- Université LavalQuebec CityQCCanada
| | - Silvia Cappello
- Max Planck Institute of PsychiatryMunichGermany
- Biomedical Center (BMC)Ludwig Maximilian University of MunichMunichGermany
| | - Armen Saghatelyan
- CERVO Brain Research CenterQuebec CityQCCanada
- Université LavalQuebec CityQCCanada
- University of OttawaOttawaONCanada
| |
Collapse
|
3
|
Chu Z, Tan Y, Xu C, Zhangsun D, Zhu X. Potential Mechanisms of Metformin-Induced Apoptosis in HeLa Cells. Biomolecules 2023; 13:950. [PMID: 37371530 DOI: 10.3390/biom13060950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/25/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
Metformin is a traditional antidiabetic drug that also shows potential antitumor effects in cervical cancer. However, some of its apoptosis-related mechanisms are still unclear. In this study, flow cytometry, western blotting, and RNA sequencing (RNA-seq) were used to evaluate the molecular mechanisms of metformin in HeLa cells. The results showed that metformin inhibited cell viability and promoted apoptosis, the protein expression level of Caspase-3 (CASP3) was increased and that of BCL-2 was decreased in HeLa cells treated with metformin. The RNA-seq results indicated a total of 239 differentially expressed genes between the metformin and control check (CK) groups, with 136 genes upregulated and 103 genes downregulated, and 14 of them were found to be associated with apoptosis signaling pathways. The DDIT3 and HRK genes were robustly upregulated in HeLa cells by the endoplasmic reticulum (ER) stress and the mitochondrial pathway of apoptosis. Metformin also affects the expression of PPP2R5C, PPP2R5A, and RRAGA, which participate in biological processes such as PI3K-AKT, mTOR, and AMPK signaling pathways. Metformin mediates the expression of related genes to induce apoptosis.
Collapse
Affiliation(s)
- Zhaoli Chu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Yao Tan
- Medical School, Guangxi University, Nanning 530004, China
| | - Chenxing Xu
- Medical School, Guangxi University, Nanning 530004, China
| | - Dongting Zhangsun
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Xiaopeng Zhu
- Medical School, Guangxi University, Nanning 530004, China
| |
Collapse
|
4
|
Bekezhankyzy Z, Nurzhan S, Berdigaliyev N, Sergazy S, Maulenkul T, Aljofan M. The antiproliferative potential and mechanism of action of metformin in MCF-7 cells. Future Sci OA 2023; 9:FSO859. [PMID: 37180606 PMCID: PMC10167719 DOI: 10.2144/fsoa-2022-0080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 03/03/2023] [Indexed: 05/16/2023] Open
Abstract
Aim The current study aimed to investigate the potential antiproliferative activity of metformin, the effective concentration range, and the mechanism of action. Materials & methods Human breast cancer cells, MCF-7 were treated with a serial dilution of metformin (10-150 μM) for 24 and 48 h. Potential antiproliferative activity of metformin and its ability in inducing cellular apoptosis and autophagy were also investigated. Results Metformin inhibited MCF-7 proliferation in a concentration and time dependent manner, with 80 μM as the most effective concentration. Compared with nontreated cells, metformin induced significant levels of autophagy and apoptosis, which were confirmed by the reduction of mTOR and BCL-2 protein expression. Conclusion The study confirms the antiproliferative activity of metformin, which may likely occur through AMPK signaling pathway.
Collapse
Affiliation(s)
- Zhibek Bekezhankyzy
- Department of Biomedical Sciences, School of Medicine, Nazarbayaev University, Astana, 010000, Kazakhstan
| | - Sholpan Nurzhan
- Department of Biomedical Sciences, School of Medicine, Nazarbayaev University, Astana, 010000, Kazakhstan
| | - Nurken Berdigaliyev
- Department of Biomedical Sciences, School of Medicine, Nazarbayaev University, Astana, 010000, Kazakhstan
| | - Shynggys Sergazy
- National Laboratory Astana, Nazarbayev University, Astana, 010000, Kazakhstan
| | - Tilektes Maulenkul
- Khoja Akhmet Yassawi International Kazakh-Turkish University, Turkistan, 161211, Turkistan, Kazakhstan
| | - Mohamad Aljofan
- Department of Biomedical Sciences, School of Medicine, Nazarbayaev University, Astana, 010000, Kazakhstan
- National Laboratory Astana, Nazarbayev University, Astana, 010000, Kazakhstan
| |
Collapse
|
5
|
Wu XY, Xu WW, Huan XK, Wu GN, Li G, Zhou YH, Najafi M. Mechanisms of cancer cell killing by metformin: a review on different cell death pathways. Mol Cell Biochem 2023; 478:197-214. [PMID: 35771397 DOI: 10.1007/s11010-022-04502-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 06/08/2022] [Indexed: 01/17/2023]
Abstract
Cancer resistance to anti-tumour agents has been one of the serious challenges in different types of cancer treatment. Usually, an increase in the cell death markers can predict a higher rate of survival among patients diagnosed with cancer. By increasing the regulation of survival genes, cancer cells can display a higher resistance to therapy through the suppression of anti-tumour immunity and inhibition of cell death signalling pathways. Administration of certain adjuvants may be useful in order to increase the therapeutic efficiency of anti-cancer therapy through the stimulation of different cell death pathways. Several studies have demonstrated that metformin, an antidiabetic drug with anti-cancer properties, amplifies cell death mechanisms, especially apoptosis in a broad-spectrum of cancer cells. Stimulation of the immune system by metformin has been shown to play a key role in the induction of cell death. It seems that the induction or suppression of different cell death mechanisms has a pivotal role in either sensitization or resistance of cancer cells to therapy. This review explains the cellular and molecular mechanisms of cell death following anticancer therapy. Then, we discuss the modulatory roles of metformin on different cancer cell death pathways including apoptosis, mitotic catastrophe, senescence, autophagy, ferroptosis and pyroptosis.
Collapse
Affiliation(s)
- Xiao-Yu Wu
- Department of Surgical Oncology, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu, China
| | - Wen-Wen Xu
- Department of Gynaecology, The Affiliated Hospital of Nanjing University of Chinese Medi-Cine, Nanjing, 210029, Jiangsu, China
| | - Xiang-Kun Huan
- Department of Surgical Oncology, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu, China
| | - Guan-Nan Wu
- Department of Surgical Oncology, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu, China
| | - Gang Li
- Department of General Surgery, Jiangsu Cancer Hospital, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China.
| | - Yu-Hong Zhou
- Digestive Endoscopy Center, The Affiliated Hospital of Nanjing University of Chinese Medi-Cine, Nanjing, 210029, Jiangsu, China.
| | - Masoud Najafi
- Medical Technology Research Center, Institute of Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
6
|
Cathepsin K: A Versatile Potential Biomarker and Therapeutic Target for Various Cancers. Curr Oncol 2022; 29:5963-5987. [PMID: 36005209 PMCID: PMC9406569 DOI: 10.3390/curroncol29080471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/15/2022] [Accepted: 08/21/2022] [Indexed: 12/11/2022] Open
Abstract
Cancer, a common malignant disease, is one of the predominant causes of diseases that lead to death. Additionally, cancer is often detected in advanced stages and cannot be radically cured. Consequently, there is an urgent need for reliable and easily detectable markers to identify and monitor cancer onset and progression as early as possible. Our aim was to systematically review the relevant roles of cathepsin K (CTSK) in various possible cancers in existing studies. CTSK, a well-known key enzyme in the bone resorption process and most studied for its roles in the effective degradation of the bone extracellular matrix, is expressed in various organs. Nowadays, CTSK has been involved in various cancers such as prostate cancer, breast cancer, bone cancer, renal carcinoma, lung cancer and other cancers. In addition, CTSK can promote tumor cells proliferation, invasion and migration, and its mechanism may be related to RANK/RANKL, TGF-β, mTOR and the Wnt/β-catenin signaling pathway. Clinically, some progress has been made with the use of cathepsin K inhibitors in the treatment of certain cancers. This paper reviewed our current understanding of the possible roles of CTSK in various cancers and discussed its potential as a biomarker and/or novel molecular target for various cancers.
Collapse
|
7
|
NUPR1 promotes the proliferation and migration of breast cancer cells by activating TFE3 transcription to induce autophagy. Exp Cell Res 2022; 418:113234. [PMID: 35660538 DOI: 10.1016/j.yexcr.2022.113234] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 05/25/2022] [Accepted: 05/28/2022] [Indexed: 12/24/2022]
Abstract
Recurrence and metastasis affect the survival rate of breast cancer patients. The fundamental reason lies in the lack of understanding of the mechanism of breast cancer metastasis. In this study, the proliferation, migration and invasion abilities of breast cancer cells were evaluated. The mechanism of NUPR1/TFE3 signaling pathway on autophagy-related proteins and migration-invasion-related proteins was examined in cell model in vitro. The effects of NUPR1 on malignancy formation and metastasis were investigated in vivo. We found that NUPR1 was upregulated in breast cancer cells and tissues. NUPR1 knockdown inhibited the proliferation, migration and invasion of ZR-75-30 cells and inhibited malignancy formation and metastasis in vivo. Mechanically, NUPR1 promoted autophagy by activating of TFE3 transcription, thereby regulating breast cancer metastasis. This paper indicates that NUPR1 activates autophagy through the TFE3 signaling pathway to promote breast cancer metastasis, and provides a biological basis for the intervention of blocking distant metastasis.
Collapse
|
8
|
Moldasheva A, Surov V, Aljofan M. Editorial: New lights Through Old Windows: Metformin and Derivatives as Anti-Cancer Treatments. Front Pharmacol 2022; 13:889642. [PMID: 35559266 PMCID: PMC9086272 DOI: 10.3389/fphar.2022.889642] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 04/07/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Aiman Moldasheva
- Department of Biomedical Sciences, School of Medicine, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Vladimir Surov
- Department of Biomedical Sciences, School of Medicine, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Mohamad Aljofan
- Department of Biomedical Sciences, School of Medicine, Nazarbayev University, Nur-Sultan, Kazakhstan
| |
Collapse
|
9
|
Fan T, Wang X, Zhang S, Deng P, Jiang Y, Liang Y, Jie S, Wang Q, Li C, Tian G, Zhang Z, Ren Z, Li B, Chen Y, He Z, Luo Y, Chen M, Wu H, Yu Z, Pi H, Zhou Z, Zhang Z. NUPR1 promotes the proliferation and metastasis of oral squamous cell carcinoma cells by activating TFE3-dependent autophagy. Signal Transduct Target Ther 2022; 7:130. [PMID: 35462576 PMCID: PMC9035452 DOI: 10.1038/s41392-022-00939-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 02/11/2022] [Accepted: 02/22/2022] [Indexed: 12/15/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) is the most common type of oral malignancy, and metastasis accounts for the poor prognosis of OSCC. Autophagy is considered to facilitate OSCC development by mitigating various cellular stresses; nevertheless, the mechanisms of autophagy in OSCC cell proliferation and metastasis remain unknown. In our study, high-sensitivity label-free quantitative proteomics analysis revealed nuclear protein 1 (NUPR1) as the most significantly upregulated protein in formalin-fixed paraffin-embedded tumour samples derived from OSCC patients with or without lymphatic metastasis. Moreover, NUPR1 is aberrantly expressed in the OSCC tissues and predicts low overall survival rates for OSCC patients. Notably, based on tandem mass tag-based quantitative proteomic analysis between stable NUPR1 knockdown OSCC cells and scrambled control OSCC cells, we confirmed that NUPR1 maintained autophagic flux and lysosomal functions by directly increasing transcription factor E3 (TFE3) activity, which promoted OSCC cell proliferation and metastasis in vitro and in vivo. Collectively, our data revealed that the NUPR1–TFE3 axis is a critical regulator of the autophagic machinery in OSCC progression, and this study may provide a potential therapeutic target for the treatment of OSCC.
Collapse
|
10
|
TFE3 Regulates the Function of the Autophagy-Lysosome Pathway to Drive the Invasion and Metastasis of Papillary Thyroid Carcinoma. ACTA ACUST UNITED AC 2021; 2021:3081491. [PMID: 34660181 PMCID: PMC8516586 DOI: 10.1155/2021/3081491] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 09/13/2021] [Indexed: 01/06/2023]
Abstract
Background Accumulating evidence shows that autophagy plays a vital role in tumor occurrence, development, and metastasis and even determines tumor prognosis. However, little is known about its role in papillary thyroid carcinoma (PTC) or the potentially oncogenic role of TFE3 in regulating the autophagy-lysosome system. Methods Immunohistochemistry and quantitative real-time PCR (qRT-PCR) were used to examine the expression of TFE3, P62/SQSTM1, and LC3 in PTC and paracancerous tissues. TFE3, P62/SQSTM1, LC3, cathepsin L (CTSL), and cathepsin B (CTSB) were evaluated using Western blot analysis. After inducing TFE3 overexpression by plasmid or TFE3 downregulation by small interfering RNA (siRNA) transfection, MTT, wound healing, and cell migration and invasion assays were used to verify the effects on invasion, migration, and the levels of autophagy-lysosome system-related proteins such as P62/SQSTM1, LC3, CTSL, and CTSB. Results TFE3 was overexpressed in PTC tissues compared with paracancerous tissues. Analysis of the clinicopathological characteristics of PTC patients showed that high TFE3 expression was significantly correlated with lymph node metastasis. TFE3 overexpression in the PTC cell lines KTC-1 and BCPAP promoted proliferation, invasion, and migration, while TFE3 knockdown had the opposite effects. Furthermore, we identified a positive relationship among the expression levels of TFE3, P62/SQSTM1, LC3, CTSL, and CTSB. We found that silencing TFE3 inhibited the expression of P62/SQSTM1, LC3, CTSL, and CTSB in PTC cells. However, TFE3 overexpression had the opposite effects. Conclusions The present study provided evidence for the underlying mechanisms by which TFE3 induces autophagy-lysosome system activity in PTC.
Collapse
|
11
|
Jia S, Ge S, Fan X, Leong KW, Ruan J. Promoting reactive oxygen species generation: a key strategy in nanosensitizer-mediated radiotherapy. Nanomedicine (Lond) 2021; 16:759-778. [PMID: 33856241 DOI: 10.2217/nnm-2020-0448] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The radiotherapy enhancement effect of numerous nanosensitizers is based on the excessive production of reactive oxygen species (ROS), and only a few systematic reviews have focused on the key strategy in nanosensitizer-mediated radiotherapy. To clarify the mechanism underlying this effect, it is necessary to understand the role of ROS in radiosensitization before clinical application. Thus, the source of ROS and their principle of tumor inhibition are first introduced. Then, nanomaterial-mediated ROS generation in radiotherapy is reviewed. The double-edged sword effect of ROS and the potential dangers they may pose to cancer patients are subsequently addressed. Finally, future perspectives regarding ROS-regulated nanosensitizer applications and development are discussed.
Collapse
Affiliation(s)
- Shichong Jia
- Department of Ophthalmology, Ninth People's Hospital of Shanghai, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.,Shanghai Key Laboratory of Orbital Diseases & Ocular Oncology, Shanghai, 200011, China
| | - Shengfang Ge
- Department of Ophthalmology, Ninth People's Hospital of Shanghai, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.,Shanghai Key Laboratory of Orbital Diseases & Ocular Oncology, Shanghai, 200011, China
| | - Xianqun Fan
- Department of Ophthalmology, Ninth People's Hospital of Shanghai, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.,Shanghai Key Laboratory of Orbital Diseases & Ocular Oncology, Shanghai, 200011, China
| | - Kam W Leong
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Jing Ruan
- Department of Ophthalmology, Ninth People's Hospital of Shanghai, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.,Shanghai Key Laboratory of Orbital Diseases & Ocular Oncology, Shanghai, 200011, China.,Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| |
Collapse
|
12
|
Lu G, Wu Z, Shang J, Xie Z, Chen C, Zhang C. The effects of metformin on autophagy. Biomed Pharmacother 2021; 137:111286. [PMID: 33524789 DOI: 10.1016/j.biopha.2021.111286] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 01/11/2021] [Accepted: 01/13/2021] [Indexed: 12/11/2022] Open
Abstract
Metformin is the first-line option for treating newly diagnosed diabetic patients and also involved in other pharmacological actions, including antitumor effect, anti-aging effect, polycystic ovarian syndrome prevention, cardiovascular action, and neuroprotective effect, etc. However, the mechanisms of metformin actions were not fully illuminated. Recently, increasing researches showed that autophagy is a vital medium of metformin playing pharmacological actions. Nevertheless, results on the effects of metformin on autophagy were inconsistent. Apart from few clinical evidences, more data focused on kinds of no-clinical models. First, many studies showed that metformin could induce autophagy via a number of signaling pathways, including AMPK-related signaling pathways (e.g. AMPK/mTOR, AMPK/CEBPD, MiTF/TFE, AMPK/ULK1, and AMPK/miR-221), Redd1/mTOR, STAT, SIRT, Na+/H+ exchangers, MAPK/ERK, PK2/PKR/AKT/ GSK3β, and TRIB3. Secondly, some signaling pathways were involved in the process of metformin inhibiting autophagy, such as AMPK-related signaling pathways (AMPK/NF-κB and other undetermined AMPK-related signaling pathways), Hedgehog, miR-570-3p, miR-142-3p, and MiR-3127-5p. Thirdly, two types of signaling pathways including PI3K/AKT/mTOR and endoplasmic reticulum (ER) stress could bidirectionally impact the effectiveness of metformin on autophagy. Finally, multiple signal pathways were reviewed collectively in terms of affecting the effectiveness of metformin on autophagy. The pharmacological effects of metformin combining its actions on autophagy were also discussed. It would help better apply metformin to treat diseases in term of mediating autophagy.
Collapse
Affiliation(s)
- Guangli Lu
- School of Business, Henan University, Henan, Kaifeng, China
| | - Zhen Wu
- Institute of Nursing and Health, College of Nursing and Health, Henan University, Henan, Kaifeng, China
| | - Jia Shang
- School of Kaifeng Culture and Tourism, Henan, Kaifeng, China
| | - Zhenxing Xie
- School of Basic Medicine, Henan University, Henan, Kaifeng, Jinming Avenue, 475004, China.
| | - Chaoran Chen
- Institute of Nursing and Health, College of Nursing and Health, Henan University, Henan, Kaifeng, China.
| | - Chuning Zhang
- Institute of Nursing and Health, College of Nursing and Health, Henan University, Henan, Kaifeng, China
| |
Collapse
|
13
|
Shnaider PV, Ivanova OM, Malyants IK, Anufrieva KS, Semenov IA, Pavlyukov MS, Lagarkova MA, Govorun VM, Shender VO. New Insights into Therapy-Induced Progression of Cancer. Int J Mol Sci 2020; 21:E7872. [PMID: 33114182 PMCID: PMC7660620 DOI: 10.3390/ijms21217872] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/19/2020] [Accepted: 10/21/2020] [Indexed: 02/07/2023] Open
Abstract
The malignant tumor is a complex heterogeneous set of cells functioning in a no less heterogeneous microenvironment. Like any dynamic system, cancerous tumors evolve and undergo changes in response to external influences, including therapy. Initially, most tumors are susceptible to treatment. However, remaining cancer cells may rapidly reestablish the tumor after a temporary remission. These new populations of malignant cells usually have increased resistance not only to the first-line agent, but also to the second- and third-line drugs, leading to a significant decrease in patient survival. Multiple studies describe the mechanism of acquired therapy resistance. In past decades, it became clear that, in addition to the simple selection of pre-existing resistant clones, therapy induces a highly complicated and tightly regulated molecular response that allows tumors to adapt to current and even subsequent therapeutic interventions. This review summarizes mechanisms of acquired resistance, such as secondary genetic alterations, impaired function of drug transporters, and autophagy. Moreover, we describe less obvious molecular aspects of therapy resistance in cancers, including epithelial-to-mesenchymal transition, cell cycle alterations, and the role of intercellular communication. Understanding these molecular mechanisms will be beneficial in finding novel therapeutic approaches for cancer therapy.
Collapse
Affiliation(s)
- Polina V. Shnaider
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow 119435, Russia; (P.V.S.); (O.M.I.); (K.S.A.); (M.A.L.)
- Laboratory of Cell Biology, Federal Research and Clinical Center of Physical-Chemical Medicine of the Federal Medical and Biological Agency, Moscow 119435, Russia; (I.K.M.); (I.A.S.)
- Faculty of Biology, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Olga M. Ivanova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow 119435, Russia; (P.V.S.); (O.M.I.); (K.S.A.); (M.A.L.)
- Laboratory of Cell Biology, Federal Research and Clinical Center of Physical-Chemical Medicine of the Federal Medical and Biological Agency, Moscow 119435, Russia; (I.K.M.); (I.A.S.)
| | - Irina K. Malyants
- Laboratory of Cell Biology, Federal Research and Clinical Center of Physical-Chemical Medicine of the Federal Medical and Biological Agency, Moscow 119435, Russia; (I.K.M.); (I.A.S.)
- Faculty of Chemical-Pharmaceutical Technologies and Biomedical Drugs, Mendeleev University of Chemical Technology of Russia, Moscow 125047, Russia
| | - Ksenia S. Anufrieva
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow 119435, Russia; (P.V.S.); (O.M.I.); (K.S.A.); (M.A.L.)
- Laboratory of Cell Biology, Federal Research and Clinical Center of Physical-Chemical Medicine of the Federal Medical and Biological Agency, Moscow 119435, Russia; (I.K.M.); (I.A.S.)
- Moscow Institute of Physics and Technology (State University), Dolgoprudny 141701, Russia
| | - Ilya A. Semenov
- Laboratory of Cell Biology, Federal Research and Clinical Center of Physical-Chemical Medicine of the Federal Medical and Biological Agency, Moscow 119435, Russia; (I.K.M.); (I.A.S.)
| | - Marat S. Pavlyukov
- Laboratory of Membrane Bioenergetics, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia;
| | - Maria A. Lagarkova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow 119435, Russia; (P.V.S.); (O.M.I.); (K.S.A.); (M.A.L.)
- Laboratory of Cell Biology, Federal Research and Clinical Center of Physical-Chemical Medicine of the Federal Medical and Biological Agency, Moscow 119435, Russia; (I.K.M.); (I.A.S.)
| | - Vadim M. Govorun
- Laboratory of Simple Systems, Federal Research and Clinical Center of Physical-Chemical Medicine of the Federal Medical and Biological Agency, Moscow 119435, Russia;
| | - Victoria O. Shender
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow 119435, Russia; (P.V.S.); (O.M.I.); (K.S.A.); (M.A.L.)
- Laboratory of Cell Biology, Federal Research and Clinical Center of Physical-Chemical Medicine of the Federal Medical and Biological Agency, Moscow 119435, Russia; (I.K.M.); (I.A.S.)
- Laboratory of Molecular Oncology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia
| |
Collapse
|
14
|
Lan W, Chen Z, Chen Y, Tan M, Chen Y, Chen J, Chi X, Chen Y. Glycochenodeoxycholic acid impairs transcription factor E3 -dependent autophagy-lysosome machinery by disrupting reactive oxygen species homeostasis in L02 cells. Toxicol Lett 2020; 331:11-21. [PMID: 32439580 DOI: 10.1016/j.toxlet.2020.05.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 05/12/2020] [Accepted: 05/12/2020] [Indexed: 12/18/2022]
Abstract
Cholestasis represents pathophysiologic syndromes defined as impaired bile flow from the liver. As an outcome, bile acids accumulate and promote hepatocyte injury, followed by liver cirrhosis and liver failure. Glycochenodeoxycholic acid (GCDCA) is relatively toxic and highly concentrated in bile and serum after cholestasis. However, the mechanism underlying GCDCA-induced hepatotoxicity remains unclear. In this study, we found that GCDCA inhibits autophagosome formation and impairs lysosomal function by inhibiting lysosomal proteolysis and increasing lysosomal pH, contributing to defects in autophagic clearance and subsequently leading to the death of L02 human hepatocyte cells. Notably, through tandem mass tag (TMT)-based quantitative proteomic analysis and database searches, 313 differentially expressed proteins were identified, of which 71 were increased and 242 were decreased in the GCDCA group compared with those in the control group. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed that GCDCA suppressed the signaling pathway of transcription factor E3 (TFE3), which was the most closely associated with autophagic flux impairment. In contrast, GCDCA-inhibited lysosomal function and autophagic flux were efficiently attenuated by TFE3 overexpression. Specifically, the decreased expression of TFE3 was closely related to the disruption of reactive oxygen species (ROS) homeostasis, which could be prevented by inhibiting intracellular ROS with N-acetyl cysteine (NAC). In summary, our study is the first to demonstrate that manipulation of ROS/TFE3 signaling may be a therapeutic approach for antagonizing GCDCA-induced hepatotoxicity.
Collapse
Affiliation(s)
- Weifeng Lan
- Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, 350025, China
| | - Zhijian Chen
- Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, 350025, China
| | - Yongtai Chen
- Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, 350025, China
| | - Miduo Tan
- Surgery Department of Galactophore, The Affiliated Zhuzhou Hospital Xiangya Medical College CSU, Zhuzhou, 412007, China
| | - Yuan Chen
- Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, 350025, China
| | - Jianwei Chen
- Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, 350025, China; Department of Hepatobiliary Surgery, 900 Hospital of the Joint Logistics Team, PLA, Fuzhou, Fujian, 350025, China
| | - Xiaobin Chi
- Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, 350025, China; Department of Hepatobiliary Surgery, 900 Hospital of the Joint Logistics Team, PLA, Fuzhou, Fujian, 350025, China.
| | - Yongbiao Chen
- Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, 350025, China; Department of Hepatobiliary Surgery, 900 Hospital of the Joint Logistics Team, PLA, Fuzhou, Fujian, 350025, China.
| |
Collapse
|
15
|
Luo Y, Yang Y, Shen Y, Li L, Huang J, Tang L, Zhang L. Luzindole attenuates LPS/d-galactosamine-induced acute hepatitis in mice. Innate Immun 2019; 26:319-327. [PMID: 31779498 PMCID: PMC7251793 DOI: 10.1177/1753425919890912] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Melatonin is a well-documented hormone that plays central roles in the regulation
of sleep–wake cycles. There is cumulative evidence to suggest that melatonin is
also a pleiotropic regulator of inflammation, and luzindole has been widely used
as a melatonin receptor antagonist. This study investigated the potential
effects of luzindole on LPS/d-galactosamine (d-GalN)-induced
acute hepatitis. The results indicated that treatment with luzindole alleviated
histological damage in the liver, reduced the level of transaminases in plasma
and improved the survival of LPS/d-GalN-exposed mice. Treatment with
luzindole also suppressed the production of the pro-inflammatory cytokines TNF-α
and IL-6 in LPS/d-GalN-exposed mice. In addition, treatment with
luzindole inhibited the activation of caspase-3, -8 and -9, and suppressed the
cleavage of caspase-3 and poly(ADP-ribose) polymerase. Therefore, treatment with
luzindole attenuates LPS/d-GalN-induced acute liver injury, suggesting
that luzindole might have potential value for the intervention of
inflammation-based hepatic disorders.
Collapse
Affiliation(s)
- Yisheng Luo
- Department of Pathophysiology, Chongqing Medical University, PR China
| | - Yongqiang Yang
- Department of Pathophysiology, Chongqing Medical University, PR China
| | - Yi Shen
- Department of Pathophysiology, Chongqing Medical University, PR China
| | - Longjiang Li
- Department of Pathophysiology, Chongqing Medical University, PR China
| | - Jiayi Huang
- Department of Pathophysiology, Chongqing Medical University, PR China
| | - Li Tang
- Department of Pathophysiology, Chongqing Medical University, PR China
| | - Li Zhang
- Department of Pathophysiology, Chongqing Medical University, PR China.,Laboratory of Stem cell and Tissue Engineering, Chongqing Medical University, PR China
| |
Collapse
|
16
|
Abstract
Background The anticancer activity of metformin has been confirmed against several cancer types in vitro and in vivo. However, the underlying mechanisms of metformin in the treatment of cancer are not fully understood. This systematic review aims to discuss the possible anticancer mechanism of action of metformin. Method A search through different databases was conducted, including Medline and EMBASE. Results A total of 96 articles were identified of which 56 were removed for duplication and 24 were excluded after reviewing the title and abstract. A total of 12 research articles were included that describe different antiproliferative mechanisms that may contribute to the antineoplastic effects of metformin. Conclusion This analysis discussed the potential anticancer activity of metformin and highlighted the importance of AMPK as a potential target for anticancer therapy.
Collapse
Affiliation(s)
- Mohamad Aljofan
- Department of Biomedical Sciences, School of Medicine, Nazarbayev University, Nur-Sultan 010000, Kazakhstan
| | - Dieter Riethmacher
- Department of Biomedical Sciences, School of Medicine, Nazarbayev University, Nur-Sultan 010000, Kazakhstan
| |
Collapse
|
17
|
Involvement of Actin in Autophagy and Autophagy-Dependent Multidrug Resistance in Cancer. Cancers (Basel) 2019; 11:cancers11081209. [PMID: 31434275 PMCID: PMC6721626 DOI: 10.3390/cancers11081209] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/16/2019] [Accepted: 08/17/2019] [Indexed: 01/09/2023] Open
Abstract
Currently, autophagy in the context of cancer progression arouses a lot of controversy. It is connected with the possibility of switching the nature of this process from cytotoxic to cytoprotective and vice versa depending on the treatment. At the same time, autophagy of cytoprotective character may be one of the factors determining multidrug resistance, as intensification of the process is observed in patients with poorer prognosis. The exact mechanism of this relationship is not yet fully understood; however, it is suggested that one of the elements of the puzzle may be a cytoskeleton. In the latest literature reports, more and more attention is paid to the involvement of actin in the autophagy. The role of this protein is linked to the formation of autophagosomes, which are necessary element of the process. However, based on the proven effectiveness of manipulation of the actin pool, it seems to be an attractive alternative in breaking autophagy-dependent multidrug resistance in cancer.
Collapse
|
18
|
Lu CC, Chiang JH, Tsai FJ, Hsu YM, Juan YN, Yang JS, Chiu HY. Metformin triggers the intrinsic apoptotic response in human AGS gastric adenocarcinoma cells by activating AMPK and suppressing mTOR/AKT signaling. Int J Oncol 2019; 54:1271-1281. [PMID: 30720062 PMCID: PMC6411354 DOI: 10.3892/ijo.2019.4704] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 01/14/2019] [Indexed: 12/12/2022] Open
Abstract
Metformin is commonly used to treat patients with type 2 diabetes and is associated with a decreased risk of cancer. Previous studies have demonstrated that metformin can act alone or in synergy with certain anticancer agents to achieve anti-neoplastic effects on various types of tumors via adenosine monophosphate-activated protein kinase (AMPK) signaling. However, the role of metformin in AMPK-mediated apoptosis of human gastric cancer cells is poorly understood. In the current study, metformin exhibited a potent anti-proliferative effect and induced apoptotic characteristics in human AGS gastric adenocarcinoma cells, as demonstrated by MTT assay, morphological observation method, terminal deoxynucleotidyl transferase dUTP nick end labeling and caspase-3/7 assay kits. Western blot analysis demonstrated that treatment with metformin increased the phosphorylation of AMPK, and decreased the phosphorylation of AKT, mTOR and p70S6k. Compound C (an AMPK inhibitor) suppressed AMPK phosphorylation and significantly abrogated the effects of metformin on AGS cell viability. Metformin also reduced the phosphorylation of mitogen-activated protein kinases (ERK, JNK and p38). Additionally, metformin significantly increased the cellular ROS level and included loss of mitochondrial membrane potential (ΔΨm). Metformin altered apoptosis-associated signaling to downregulate the BAD phosphorylation and Bcl-2, pro-caspase-9, pro-caspase-3 and pro-caspase-7 expression, and to upregulate BAD, cytochrome c, and Apaf-1 proteins levels in AGS cells. Furthermore, z-VAD-fmk (a pan-caspase inhibitor) was used to assess mitochondria-mediated caspase-dependent apoptosis in metformin-treated AGS cells. The findings demonstrated that metformin induced AMPK-mediated apoptosis, making it appealing for development as a novel anticancer drug for the treating gastric cancer.
Collapse
Affiliation(s)
- Chi-Cheng Lu
- Department of Sport Performance, National Taiwan University of Sport, Taichung 40404, Taiwan, R.O.C
| | - Jo-Hua Chiang
- Department of Nursing, Chung Jen Catholic Junior College, Chiayi 62241, Taiwan, R.O.C
| | - Fuu-Jen Tsai
- Human Genetics Center, Department of Medical Research, China Medical University Hospital, Taichung 40447, Taiwan, R.O.C
| | - Yuan-Man Hsu
- Department of Biological Science and Technology, China Medical University, Taichung 40402, Taiwan, R.O.C
| | - Yu-Ning Juan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40447, Taiwan, R.O.C
| | - Jai-Sing Yang
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40447, Taiwan, R.O.C
| | - Hong-Yi Chiu
- Department of Pharmacy, Buddhist Tzu Chi General Hospital, Hualien 97002, Taiwan, R.O.C
| |
Collapse
|