1
|
Wang K, Qu H, Hu R, Lassègue B, Eaton DC, Song C, Mu J, Griendling KK, Hernandes MS. Polymerase delta-interacting protein 2 mediates brain vascular permeability by regulating ROS-mediated ZO-1 phosphorylation and localization at the interendothelial border. Cell Commun Signal 2025; 23:9. [PMID: 39773189 PMCID: PMC11705911 DOI: 10.1186/s12964-024-01982-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 12/04/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Polymerase delta-interacting protein 2 (Poldip2) is a novel regulator of vascular permeability that has been shown to be involved in aggravating blood-brain barrier (BBB) disruption following stroke; however, the underlying mechanisms are unknown. While endothelial tight junctions (TJ) are critical mediators of BBB permeability, the effect of Poldip2 on TJ function has not been elucidated yet. Here, we aim to define the mechanism by which Poldip2 mediates BBB disruption, specifically focusing on phosphorylation and stabilization of the TJ integral protein ZO-1. METHODS AND RESULTS Cerebral ischemia was induced in endothelial-specific Poldip2 knockout mice and controls. Cerebral vascular permeability was assessed by Evans blue dye extravasation. Endothelial-specific Poldip2 deletion abolished Evans blue dye extravasation after ischemia induction. In vitro permeability assays demonstrated that Poldip2 knockdown suppressed TNF-α-induced endothelial cell (EC) permeability. Immunofluorescence staining showed that Poldip2 depletion prevented TNF-α-induced ZO-1 disruption at interendothelial junctions. Conversely, Poldip2 overexpression increased endothelial permeability, loss of ZO-1 localization at cell-cell junctions and enhanced reactive oxygen species (ROS) production. Treatment with the antioxidant N-acetyl cysteine (NAC) reduced Poldip2-induced ZO-1 disruption at inter interendothelial junctions. Immunoprecipitation studies demonstrated Poldip2 overexpression induced tyrosine phosphorylation of ZO-1, which was prevented by treatment with NAC or MitoTEMPO, a mitochondrial ROS scavenger. CONCLUSIONS These data reveal a novel mitochondrial ROS-driven mechanism by which Poldip2 induces ZO-1 tyrosine phosphorylation and promotes EC permeability following cerebral ischemia.
Collapse
Affiliation(s)
- Keke Wang
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, 1750 Haygood Dr NE, HSRB-II, Atlanta, GA, 30322, USA
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Hongyan Qu
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, 1750 Haygood Dr NE, HSRB-II, Atlanta, GA, 30322, USA
| | - Ruinan Hu
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, 1750 Haygood Dr NE, HSRB-II, Atlanta, GA, 30322, USA
| | - Bernard Lassègue
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, 1750 Haygood Dr NE, HSRB-II, Atlanta, GA, 30322, USA
| | - Douglas C Eaton
- Department of Medicine, Division of Nephrology, Emory University School of Medicine, 100 Woodruff Circle, Atlanta, GA, 30322, USA
| | - Chang Song
- Department of Medicine, Division of Nephrology, Emory University School of Medicine, 100 Woodruff Circle, Atlanta, GA, 30322, USA
| | - Jianjun Mu
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Kathy K Griendling
- Department of Medicine, Division of Nephrology, Emory University School of Medicine, 100 Woodruff Circle, Atlanta, GA, 30322, USA
| | - Marina S Hernandes
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, 1750 Haygood Dr NE, HSRB-II, Atlanta, GA, 30322, USA.
| |
Collapse
|
2
|
Spanolios EM, Lewis RE, Caldwell RN, Jilani SZ, Haynes CL. Progress and limitations in reactive oxygen species quantitation. Chem Commun (Camb) 2024; 60:12487-12501. [PMID: 39373601 DOI: 10.1039/d4cc03578j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Reactive oxygen species (ROS) are a set of oxygen- and nitrogen-containing radicals. They are produced from a wide range of sources. In biological contexts, cellular stress leads to an overproduction of ROS, which can lead to genetic damage and disease development. In industry, ROS are often productively used for water purification or for analyzing the possible toxicity of an industrial process. Because of their ubiquity, detection of ROS has been an analytical goal across a range of fields. To understand complicated systems and origins of ROS production, it is necessary to move from qualitative detection to quantitation. Analytical techniques that combine quantitation, high spatial and temporal resolution, and good specificity represent detection methods that can fill critical gaps in ROS research. Herein, we discuss the continued progress and limitations of fluorescence, electrochemical, and electron paramagnetic resonance detection of ROS over the last ten years, giving suggestions for the future of the field.
Collapse
|
3
|
Taheri P, Dave DD, Dash RK, Sharma GP, Clough AV, Jacobs ER, Audi SH. Mitochondrial function in lungs of rats with different susceptibilities to hyperoxia-induced acute lung injury. J Appl Physiol (1985) 2024; 137:233-253. [PMID: 38867668 PMCID: PMC11424179 DOI: 10.1152/japplphysiol.00243.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 06/14/2024] Open
Abstract
Adult rats exposed to hyperoxia (>95% O2) die from respiratory failure in 60-72 h. However, rats preconditioned with >95% O2 for 48 h followed by 24 h in room air acquire tolerance of hyperoxia (H-T), whereas rats preconditioned with 60% O2 for 7 days become more susceptible (H-S). Our objective was to evaluate lung tissue mitochondrial bioenergetics in H-T and H-S rats. Bioenergetics was assessed in mitochondria isolated from lung tissue of H-T, H-S, and control rats. Expressions of complexes involved in oxidative phosphorylation (OxPhos) were measured in lung tissue homogenate. Pulmonary endothelial filtration coefficient (Kf) and tissue mitochondrial membrane potential (Δψm) were evaluated in isolated perfused lungs (IPLs). Results show that ADP-induced state 3 OxPhos capacity (Vmax) decreased in H-S mitochondria but increased in H-T. Δψm repolarization time following ADP-stimulated depolarization increased in H-S mitochondria. Complex I expression decreased in H-T (38%) and H-S (43%) lung homogenate, whereas complex V expression increased (70%) in H-T lung homogenate. Δψm is unchanged in H-S and H-T lungs, but complex II has a larger contribution to Δψm in H-S than H-T lungs. Kf increased in H-S, but not in H-T lungs. For H-T, increased complex V expression and Vmax counter the effect of the decrease in complex I expression on Δψm. A larger complex II contribution to Δψm along with decreased Vmax and increased Kf could make H-S rats more hyperoxia susceptible. Results are clinically relevant since ventilation with ≥60% O2 is often required for extended periods in patients with acute respiratory distress syndrome (ARDS).NEW & NOTEWORTHY We assessed lung tissue mitochondrial bioenergetics in rats with tolerance (H-T) or susceptibility (H-S) to hyperoxia-induced ARDS. Results from studies in isolated mitochondria, tissue homogenate, and isolated perfused lungs show that mitochondrial bioenergetics are differentially altered in H-T and H-S lungs suggesting a potential role for mitochondrial bioenergetics in hyperoxia-induced ARDS. Results are clinically relevant since hyperoxia exposure is a primary therapy for patients with ARDS, and differential sensitivity to hyperoxia surely occurs in humans.
Collapse
Affiliation(s)
- Pardis Taheri
- Department of Biomedical Engineering, Medical College of Wisconsin, Marquette University, Milwaukee, Wisconsin, United States
| | - Devanshi D Dave
- Department of Biomedical Engineering, Medical College of Wisconsin, Marquette University, Milwaukee, Wisconsin, United States
| | - Ranjan K Dash
- Department of Biomedical Engineering, Medical College of Wisconsin, Marquette University, Milwaukee, Wisconsin, United States
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Guru P Sharma
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Anne V Clough
- Department of Biomedical Engineering, Medical College of Wisconsin, Marquette University, Milwaukee, Wisconsin, United States
- Research Service, Clement J. Zablocki V.A. Medical Center, Milwaukee, Wisconsin, United States
- Department of Mathematical and Statistical Sciences, Marquette University, Milwaukee, Wisconsin, United States
| | - Elizabeth R Jacobs
- Research Service, Clement J. Zablocki V.A. Medical Center, Milwaukee, Wisconsin, United States
- Division of Pulmonary and Critical Care Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Said H Audi
- Department of Biomedical Engineering, Medical College of Wisconsin, Marquette University, Milwaukee, Wisconsin, United States
- Research Service, Clement J. Zablocki V.A. Medical Center, Milwaukee, Wisconsin, United States
- Division of Pulmonary and Critical Care Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| |
Collapse
|
4
|
Efosa JO, Omage K, Azeke MA. Drying temperature affects the hypolipidemic, antioxidant, and antihypertensive potential of Hibiscus sabdariffa calyx in rats induced with L-NAME. Toxicol Rep 2023; 11:177-188. [PMID: 37719201 PMCID: PMC10504460 DOI: 10.1016/j.toxrep.2023.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/25/2023] [Accepted: 09/05/2023] [Indexed: 09/19/2023] Open
Abstract
The effects of different drying temperatures on the hypolipidemic, antioxidant, and antihypertensive potential of Hibiscus sabdariffa calyx was evaluated. The calyx were dried under different temperature conditions (- 58 °C, 30 °C, 40 °C, and 50 °C), and extracted with a solvent mixture of ethanol and water (1:4 % w/v). To induce hypertension, the rats were administered with 40 mg/kg body weight dose of N-nitro L-arginine methyl-ester (L-NAME), via the intra-gastric route. H. sabdariffa extract was administered orally, at varying doses (250, 500, and 1000 mg/kg) to the rats. Afterwards, the hypolipidemic, antioxidant, and antihypertensive potentials of the extracts were evaluated using standard validated methods. Induction with L-NAME significantly (p < 0.05) increased the total cholesterol, triglyceride, and LDL levels, significantly decreased the HDL levels; significantly (p < 0.05) increased the levels of LPO/MDA, H2O2, and decreased GPx, and SOD activities; significantly (p < 0.05) increased the pressures (diastolic and systolic); significantly (p < 0.05) increased ACE and arginase activities, glucose level, and significantly decreased nitric oxide activity. Treatment with H. sabdariffa extract significantly (p < 0.05) reversed these trends in the hypertensive experimental rats. The hypolipidemic, antioxidant, and antihypertensive properties of the extract from the calyx of H. sabdariffa, which varies with the drying temperatures of the calyx, portends its potential as a curative agent in the treatment of hypertensive conditions, and other cardiovascular diseases.
Collapse
Affiliation(s)
- John Osarenren Efosa
- Department of Physical Laboratory Technology, School of Applied Sciences and Technology, Auchi Polytechnic, Edo State, Nigeria
| | - Kingsley Omage
- Department of Biochemistry, College of Basic Medical Sciences, Igbinedion University Okada, Edo State, Nigeria
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, OR, USA
| | - Marshall Arebojie Azeke
- Department of Biochemistry, Faculty of Life Sciences, Ambrose Alli University, Edo State, Nigeria
| |
Collapse
|
5
|
Sadri S, Tomar N, Yang C, Audi SH, Cowley AW, Dash RK. Effects of ROS pathway inhibitors and NADH and FADH 2 linked substrates on mitochondrial bioenergetics and ROS emission in the heart and kidney cortex and outer medulla. Arch Biochem Biophys 2023; 744:109690. [PMID: 37429534 PMCID: PMC10528392 DOI: 10.1016/j.abb.2023.109690] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 07/06/2023] [Indexed: 07/12/2023]
Abstract
Mitochondria are major sources of reactive oxygen species (ROS), which play important roles in both physiological and pathological processes. However, the specific contributions of different ROS production and scavenging components in the mitochondria of metabolically active tissues such as heart and kidney cortex and outer medulla (OM) are not well understood. Therefore, the goal of this study was to determine contributions of different ROS production and scavenging components and provide detailed comparisons of mitochondrial respiration, bioenergetics, ROS emission between the heart and kidney cortex and OM using tissues obtained from the same Sprague-Dawley rat under identical conditions and perturbations. Specifically, data were obtained using both NADH-linked substrate pyruvate + malate and FADH2-linked substrate succinate followed by additions of inhibitors of different components of the electron transport chain (ETC) and oxidative phosphorylation (OxPhos) and other ROS production and scavenging systems. Currently, there is limited data available for the mitochondria of kidney cortex and OM, the two major energy-consuming tissues in the body only next to the heart, and scarce quantitative information on the interplay between mitochondrial ROS production and scavenging systems in the three tissues. The findings from this study demonstrate significant differences in mitochondrial respiratory and bioenergetic functions and ROS emission among the three tissues. The results quantify the rates of ROS production from different complexes of the ETC, identify the complexes responsible for variations in mitochondrial membrane depolarization and regulations of ROS production, and quantify the contributions of ROS scavenging enzymes towards overall mitochondrial ROS emission. These findings advance our fundamental knowledge of tissue-specific and substrate-dependent mitochondrial respiratory and bioenergetic functions and ROS emission. This is important given the critical role that excess ROS production, oxidative stress, and mitochondrial dysfunction in the heart and kidney cortex and OM play in the pathogenesis of cardiovascular and renal diseases, including salt-sensitive hypertension.
Collapse
Affiliation(s)
- Shima Sadri
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Namrata Tomar
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Chun Yang
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Said H Audi
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI, 53226, USA; Department of Biomedical Engineering, Marquette University, Milwaukee, WI, 53223, USA
| | - Allen W Cowley
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA; Cardiovascular Research Center, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Ranjan K Dash
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI, 53226, USA; Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA; Cardiovascular Research Center, Medical College of Wisconsin, Milwaukee, WI, 53226, USA; Department of Biomedical Engineering, Marquette University, Milwaukee, WI, 53223, USA.
| |
Collapse
|
6
|
Alva R, Mirza M, Baiton A, Lazuran L, Samokysh L, Bobinski A, Cowan C, Jaimon A, Obioru D, Al Makhoul T, Stuart JA. Oxygen toxicity: cellular mechanisms in normobaric hyperoxia. Cell Biol Toxicol 2022; 39:111-143. [PMID: 36112262 PMCID: PMC9483325 DOI: 10.1007/s10565-022-09773-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 09/07/2022] [Indexed: 12/15/2022]
Abstract
In clinical settings, oxygen therapy is administered to preterm neonates and to adults with acute and chronic conditions such as COVID-19, pulmonary fibrosis, sepsis, cardiac arrest, carbon monoxide poisoning, and acute heart failure. In non-clinical settings, divers and astronauts may also receive supplemental oxygen. In addition, under current standard cell culture practices, cells are maintained in atmospheric oxygen, which is several times higher than what most cells experience in vivo. In all the above scenarios, the elevated oxygen levels (hyperoxia) can lead to increased production of reactive oxygen species from mitochondria, NADPH oxidases, and other sources. This can cause cell dysfunction or death. Acute hyperoxia injury impairs various cellular functions, manifesting ultimately as physiological deficits. Chronic hyperoxia, particularly in the neonate, can disrupt development, leading to permanent deficiencies. In this review, we discuss the cellular activities and pathways affected by hyperoxia, as well as strategies that have been developed to ameliorate injury.
Collapse
Affiliation(s)
- Ricardo Alva
- Department of Biological Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada
| | - Maha Mirza
- Department of Biological Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada
| | - Adam Baiton
- Department of Biological Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada
| | - Lucas Lazuran
- Department of Biological Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada
| | - Lyuda Samokysh
- Department of Biological Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada
| | - Ava Bobinski
- Department of Biological Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada
| | - Cale Cowan
- Department of Biological Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada
| | - Alvin Jaimon
- Department of Biological Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada
| | - Dede Obioru
- Department of Biological Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada
| | - Tala Al Makhoul
- Department of Biological Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada
| | - Jeffrey A Stuart
- Department of Biological Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada.
| |
Collapse
|
7
|
Audi SH, Ganesh S, Taheri P, Zhang X, Dash RK, Clough AV, Jacobs ER. Depolarized mitochondrial membrane potential and protection with duroquinone in isolated perfused lungs from rats exposed to hyperoxia. J Appl Physiol (1985) 2022; 132:346-356. [PMID: 34941441 PMCID: PMC8816614 DOI: 10.1152/japplphysiol.00565.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Dissipation of mitochondrial membrane potential (Δψm) is a hallmark of mitochondrial dysfunction. Our objective was to use a previously developed experimental-computational approach to estimate tissue Δψm in intact lungs of rats exposed to hyperoxia and to evaluate the ability of duroquinone (DQ) to reverse any hyperoxia-induced depolarization of lung Δψm. Rats were exposed to hyperoxia (>95% O2) or normoxia (room air) for 48 h, after which lungs were excised and connected to a ventilation-perfusion system. The experimental protocol consisted of measuring the concentration of the fluorescent dye rhodamine 6 G (R6G) during three single-pass phases: loading, washing, and uncoupling, in which the lungs were perfused with and without R6G and with the mitochondrial uncoupler FCCP, respectively. For normoxic lungs, the protocol was repeated with 1) rotenone (complex I inhibitor), 2) rotenone and either DQ or its vehicle (DMSO), and 3) rotenone, glutathione (GSH), and either DQ or DMSO added to the perfusate. Hyperoxic lungs were studied with and without DQ and GSH added to the perfusate. Computational modeling was used to estimate lung Δψm from R6G data. Rat exposure to hyperoxia resulted in partial depolarization (-33 mV) of lung Δψm and complex I inhibition depolarized lung Δψm by -83 mV. Results also demonstrate the efficacy of DQ to fully reverse both rotenone- and hyperoxia-induced lung Δψm depolarization. This study demonstrates hyperoxia-induced Δψm depolarization in intact lungs and the utility of this approach for assessing the impact of potential therapies such as exogenous quinones that target mitochondria in intact lungs.NEW & NOTEWORTHY This study is the first to measure hyperoxia-induced Δψm depolarization in isolated perfused lungs. Hyperoxia resulted in a partial depolarization of Δψm, which was fully reversed with duroquinone, demonstrating the utility of this approach for assessing the impact of potential therapies that target mitochondria such as exogenous quinones.
Collapse
Affiliation(s)
- Said H. Audi
- 1Department of Biomedical Engineering, Marquette University-Medical College of Wisconsin, Milwaukee, Wisconsin,2Clement J. Zablocki V.A. Medical Center, Milwaukee, Wisconsin,3Division of Pulmonary and Critical Care Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Swetha Ganesh
- 1Department of Biomedical Engineering, Marquette University-Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Pardis Taheri
- 1Department of Biomedical Engineering, Marquette University-Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Xiao Zhang
- 1Department of Biomedical Engineering, Marquette University-Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Ranjan K. Dash
- 1Department of Biomedical Engineering, Marquette University-Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Anne V. Clough
- 2Clement J. Zablocki V.A. Medical Center, Milwaukee, Wisconsin,3Division of Pulmonary and Critical Care Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin,4Department of Mathematical and Statistical Sciences, Marquette University, Milwaukee, Wisconsin
| | - Elizabeth R. Jacobs
- 2Clement J. Zablocki V.A. Medical Center, Milwaukee, Wisconsin,3Division of Pulmonary and Critical Care Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
8
|
Tomar N, Zhang X, Kandel SM, Sadri S, Yang C, Liang M, Audi SH, Cowley AW, Dash RK. Substrate-dependent differential regulation of mitochondrial bioenergetics in the heart and kidney cortex and outer medulla. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2022; 1863:148518. [PMID: 34864090 PMCID: PMC8957717 DOI: 10.1016/j.bbabio.2021.148518] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 10/29/2021] [Accepted: 11/20/2021] [Indexed: 05/05/2023]
Abstract
The kinetics and efficiency of mitochondrial oxidative phosphorylation (OxPhos) can depend on the choice of respiratory substrates. Furthermore, potential differences in this substrate dependency among different tissues are not well-understood. Here, we determined the effects of different substrates on the kinetics and efficiency of OxPhos in isolated mitochondria from the heart and kidney cortex and outer medulla (OM) of Sprague-Dawley rats. The substrates were pyruvate+malate, glutamate+malate, palmitoyl-carnitine+malate, alpha-ketoglutarate+malate, and succinate±rotenone at saturating concentrations. The kinetics of OxPhos were interrogated by measuring mitochondrial bioenergetics under different ADP perturbations. Results show that the kinetics and efficiency of OxPhos are highly dependent on the substrates used, and this dependency is distinctly different between heart and kidney. Heart mitochondria showed higher respiratory rates and OxPhos efficiencies for all substrates in comparison to kidney mitochondria. Cortex mitochondria respiratory rates were higher than OM mitochondria, but OM mitochondria OxPhos efficiencies were higher than cortex mitochondria. State 3 respiration was low in heart mitochondria with succinate but increased significantly in the presence of rotenone, unlike kidney mitochondria. Similar differences were observed in mitochondrial membrane potential. Differences in H2O2 emission in the presence of succinate±rotenone were observed in heart mitochondria and to a lesser extent in OM mitochondria, but not in cortex mitochondria. Bioenergetics and H2O2 emission data with succinate±rotenone indicate that oxaloacetate accumulation and reverse electron transfer may play a more prominent regulatory role in heart mitochondria than kidney mitochondria. These studies provide novel quantitative data demonstrating that the choice of respiratory substrates affects mitochondrial responses in a tissue-specific manner.
Collapse
Affiliation(s)
- Namrata Tomar
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee WI-53226, United States of America
| | - Xiao Zhang
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee WI-53226, United States of America
| | - Sunil M Kandel
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee WI-53226, United States of America
| | - Shima Sadri
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee WI-53226, United States of America
| | - Chun Yang
- Department of Physiology, Medical College of Wisconsin, Milwaukee WI-53226, United States of America
| | - Mingyu Liang
- Department of Physiology, Medical College of Wisconsin, Milwaukee WI-53226, United States of America; Center of Systems Molecular Medicine, Medical College of Wisconsin, Milwaukee WI-53226, United States of America
| | - Said H Audi
- Department of Biomedical Engineering, Marquette University, Milwaukee WI-53223, United States of America
| | - Allen W Cowley
- Department of Physiology, Medical College of Wisconsin, Milwaukee WI-53226, United States of America; Center of Systems Molecular Medicine, Medical College of Wisconsin, Milwaukee WI-53226, United States of America.
| | - Ranjan K Dash
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee WI-53226, United States of America; Department of Physiology, Medical College of Wisconsin, Milwaukee WI-53226, United States of America; Center of Systems Molecular Medicine, Medical College of Wisconsin, Milwaukee WI-53226, United States of America.
| |
Collapse
|
9
|
Beyer AM, Norwood Toro LE, Hughes WE, Young M, Clough AV, Gao F, Medhora M, Audi SH, Jacobs ER. Autophagy, TERT, and mitochondrial dysfunction in hyperoxia. Am J Physiol Heart Circ Physiol 2021; 321:H985-H1003. [PMID: 34559580 PMCID: PMC8616608 DOI: 10.1152/ajpheart.00166.2021] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 08/31/2021] [Accepted: 09/16/2021] [Indexed: 02/06/2023]
Abstract
Ventilation with gases containing enhanced fractions of oxygen is the cornerstone of therapy for patients with hypoxia and acute respiratory distress syndrome. Yet, hyperoxia treatment increases free reactive oxygen species (ROS)-induced lung injury, which is reported to disrupt autophagy/mitophagy. Altered extranuclear activity of the catalytic subunit of telomerase, telomerase reverse transcriptase (TERT), plays a protective role in ROS injury and autophagy in the systemic and coronary endothelium. We investigated interactions between autophagy/mitophagy and TERT that contribute to mitochondrial dysfunction and pulmonary injury in cultured rat lung microvascular endothelial cells (RLMVECs) exposed in vitro, and rat lungs exposed in vivo to hyperoxia for 48 h. Hyperoxia-induced mitochondrial damage in rat lungs [TOMM20, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT)], which was paralleled by increased markers of inflammation [myeloperoxidase (MPO), IL-1β, TLR9], impaired autophagy signaling (Beclin-1, LC3B-II/1, and p62), and decreased the expression of TERT. Mitochondrial-specific autophagy (mitophagy) was not altered, as hyperoxia increased expression of Pink1 but not Parkin. Hyperoxia-induced mitochondrial damage (TOMM20) was more pronounced in rats that lack the catalytic subunit of TERT and resulted in a reduction in cellular proliferation rather than cell death in RLMVECs. Activation of TERT or autophagy individually offset mitochondrial damage (MTT). Combined activation/inhibition failed to alleviate hyperoxic-induced mitochondrial damage in vitro, whereas activation of autophagy in vivo decreased mitochondrial damage (MTT) in both wild type (WT) and rats lacking TERT. Functionally, activation of either TERT or autophagy preserved transendothelial membrane resistance. Altogether, these observations show that activation of autophagy/mitophagy and/or TERT mitigate loss of mitochondrial function and barrier integrity in hyperoxia.NEW & NOTEWORTHY In cultured pulmonary artery endothelial cells and in lungs exposed in vivo to hyperoxia, autophagy is activated, but clearance of autophagosomes is impaired in a manner that suggests cross talk between TERT and autophagy. Stimulation of autophagy prevents hyperoxia-induced decreases in mitochondrial metabolism and sustains monolayer resistance. Hyperoxia increases mitochondrial outer membrane (TOMM20) protein, decreases mitochondrial function, and reduces cellular proliferation without increasing cell death.
Collapse
Affiliation(s)
- Andreas M Beyer
- Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Laura E Norwood Toro
- Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - William E Hughes
- Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Micaela Young
- Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Anne V Clough
- Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
- Research Service, Zablocki Veterans Affairs Medical Center, Milwaukee Wisconsin
- Department of Mathematics, Statistics and Computer Science, Marquette University, Milwaukee, Wisconsin
| | - Feng Gao
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Meetha Medhora
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin
- Research Service, Zablocki Veterans Affairs Medical Center, Milwaukee Wisconsin
| | - Said H Audi
- Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
- Research Service, Zablocki Veterans Affairs Medical Center, Milwaukee Wisconsin
- Department of Biomedical Engineering, Marquette University, Milwaukee, Wisconsin
| | - Elizabeth R Jacobs
- Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin
- Research Service, Zablocki Veterans Affairs Medical Center, Milwaukee Wisconsin
| |
Collapse
|
10
|
Cisplatin-induced hydroxyl radicals mediate pro-survival autophagy in human lung cancer H460 cells. Biol Res 2021; 54:22. [PMID: 34321115 PMCID: PMC8317380 DOI: 10.1186/s40659-021-00346-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 07/19/2021] [Indexed: 12/24/2022] Open
Abstract
Background Accumulated evidence demonstrates cisplatin, a recommended chemotherapy, modulating pro-survival autophagic response that contributes to treatment failure in lung cancer patients. However, distinct mechanisms involved in cisplatin-induced autophagy in human lung cancer cells are still unclear. Results Herein, role of autophagy in cisplatin resistance was indicated by a decreased cell viability and increased apoptosis in lung cancer H460 cells pre-incubated with wortmannin, an autophagy inhibitor, prior to treatment with 50 µM cisplatin for 24 h. The elevated level of hydroxyl radicals detected via flow-cytometry corresponded to autophagic response, as evidenced by the formation of autophagosomes and autolysosomes in cisplatin-treated cells. Interestingly, apoptosis resistance, autophagosome formation, and the alteration of the autophagic markers, LC3-II/LC3-I and p62, as well as autophagy-regulating proteins Atg7 and Atg3, induced by cisplatin was abrogated by pretreatment of H460 cells with deferoxamine, a specific hydroxyl radical scavenger. The modulations in autophagic response were also indicated in the cells treated with hydroxyl radicals generated via Fenton reaction, and likewise inhibited by pretreatment with deferoxamine. Conclusions In summary, the possible role of hydroxyl radicals as a key mediator in the autophagic response to cisplatin treatment, which was firstly revealed in this study would benefit for the further development of novel therapies for lung cancer.
Collapse
|
11
|
Wu L, Huang WQ, Yu CC, Li YF. Moderate Hydrogen Peroxide Postconditioning Ameliorates Ischemia/Reperfusion Injury in Cardiomyocytes via STAT3-Induced Calcium, ROS, and ATP Homeostasis. Pharmacology 2020; 106:275-285. [PMID: 33302272 DOI: 10.1159/000511961] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 09/30/2020] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Moderate hydrogen peroxide postconditioning (H2O2PoC) activates signal transducer and activator of transcription 3 (STAT3) to alleviate mitochondrial calcium overload during cardiac ischemia/reperfusion (I/R). However, the initial time window of STAT3-induced calcium hemostasis, the production of reactive oxygen species (ROS) and adenosine triphosphate (ATP) in H2O2PoC, and its regulated mechanism remain unknown. This study aimed to investigate H2O2PoC-induced homeostasis of calcium, ROS and ATP, and the role of STAT3 in the regulation. METHODS Isolated rat cardiomyocytes were exposed to H2O2PoC and Janus kinase 2 (JAK2)/STAT3 inhibitor AG490 during I/R. Ca2+ transients, cell contraction, intracellular calcium concentration, ROS production, ATP contents, phosphorylation of STAT3, gene and protein expression of manganese superoxide dismutase (MnSOD), metallothionein 1 (MT1) and metallothionein 2 (MT2), as well as activities of mitochondrial complex I and complex II were detected. RESULTS Moderate H2O2PoC improved post-ischemic Ca2+ transients and cell contraction recovery as well as alleviated cytosolic and mitochondrial calcium overload, which were abrogated by AG490 in rat cardiomyocytes. Moderate H2O2PoC increased ROS production and rate of ROS production at early reperfusion in rat I/R cardiomyocytes, and this phenomenon was also abrogated by AG490. Notably, the expression of phosphorylated nuclear STAT3; gene and protein expression of MnSOD, MT1, and MT2; and activities of mitochondrial complex I and complex II were upregulated by moderate H2O2PoC but downregulated by AG490. CONCLUSION These findings indicated that the cardioprotection of moderate H2O2PoC against cardiac I/R could be associated with activated STAT3 at early reperfusion to maintain calcium, ROS, and ATP homeostasis in rat cardiomyocytes.
Collapse
Affiliation(s)
- Lan Wu
- Department of Cardiology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China,
- School of Basic Medical Sciences and Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine & Health Sciences, Shanghai, China,
| | - Wen-Qing Huang
- Department of Endodontics and The Key Laboratory of Oral Biomedicine, Jiangxi Province, Affiliated Stomatological Hospital of Nanchang University, Nanchang, China
| | - Cheng-Chao Yu
- School of Clinical Medicine, Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Yan-Fei Li
- Department of Cardiology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| |
Collapse
|
12
|
Sadri S, Tomar N, Yang C, Audi SH, Cowley AW, Dash RK. Mechanistic computational modeling of the kinetics and regulation of NADPH oxidase 2 assembly and activation facilitating superoxide production. Free Radic Res 2020; 54:695-721. [PMID: 33059489 DOI: 10.1080/10715762.2020.1836368] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Reactive oxygen species (ROS) play a crucial role in many physiological processes. However, ROS overproduction leads to oxidative stress, which plays a critical role in cell injury/death and the pathogenesis of many diseases. Members of NADPH oxidase (NOX) family, most of which are comprised of membrane and cytosolic components, are known to be the major nonmitochondrial sources of ROS in many cells. NOX2 is a widely-expressed and well-studied NOX family member, which is activated upon assembly of its membrane subunits gp91 phox and p22 phox with its cytosolic subunits p40 phox , p47 phox , p67 phox , and Rac, facilitating ROS production. NOX2 activation is also enhanced by GTP and inhibited by GDP. However, there remains a lack of a mechanistic, quantitative, and integrated understanding of the kinetics and regulation of the assembly of these subunits and their relative contributions toward NOX2 activation and ROS production. Toward this end, we have developed a mechanistic computational model, which incorporates a generalized random rapid equilibrium binding mechanism for NOX2 assembly and activation as well as regulations by GTP (activation), GDP (inhibition), and individual subunits enhancing the binding of other subunits (mutual binding enhancement). The resulting model replicates diverse published kinetic data, including subunit concentration-dependent NOX2 activation and ROS production, under different assay conditions, with appropriate estimates of the unknown model parameters. The model provides a mechanistic, quantitative, and integrated framework for investigating the critical roles of NOX2 subunits in NOX2 assembly and activation facilitating ROS production in a variety of physiological and pathophysiological conditions. However, there is also a need for better quantitative kinetic data based on current understanding of NOX2 assembly and activation in order to test and further develop this model.
Collapse
Affiliation(s)
- Shima Sadri
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WIS, USA
| | - Namrata Tomar
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WIS, USA
| | - Chun Yang
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WIS, USA
| | - Said H Audi
- Department of Biomedical Engineering, Marquette University, Milwaukee, WIS, USA
| | - Allen W Cowley
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WIS, USA
| | - Ranjan K Dash
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WIS, USA.,Department of Physiology, Medical College of Wisconsin, Milwaukee, WIS, USA
| |
Collapse
|
13
|
Stamenkovska M, Thaçi Q, Hadzi‐Petrushev N, Angelovski M, Bogdanov J, Reçica S, Kryeziu I, Gagov H, Mitrokhin V, Kamkin A, Schubert R, Mladenov M, Sopi RB. Curcumin analogs (B2BrBC and C66) supplementation attenuates airway hyperreactivity and promote airway relaxation in neonatal rats exposed to hyperoxia. Physiol Rep 2020; 8:e14555. [PMID: 32812392 PMCID: PMC7435033 DOI: 10.14814/phy2.14555] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/31/2020] [Accepted: 08/03/2020] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND This study was undertaken to test the hypothesis that the newly synthesized curcuminoids B2BrBC and C66 supplementation will overcome hyperoxia-induced tracheal hyperreactivity and impairment of relaxation of tracheal smooth muscle (TSM). MATERIALS AND METHODS Rat pups (P5) were exposed to hyperoxia (>95% O2 ) or normoxia for 7 days. At P12, tracheal cylinders were used to study in vitro contractile responses induced by methacholine (10-8 -10-4 M) or relaxation induced by electrical field stimulation (5-60 V) in the presence/absence of B2BrBC or C66, or to study the direct relaxant effects elicited by both analogs. RESULTS Hyperoxia significantly increased contraction and decreased relaxation of TSM compared to normoxia controls. Presence of B2BrBC or C66 normalized both contractile and relaxant responses altered by hyperoxia. Both, curcuminoids directly induced dose-dependent relaxation of preconstricted TSM. Supplementation of hyperoxic animals with B2BrBC or C66, significantly increased catalase activity. Lung TNF-α was significantly increased in hyperoxia-exposed animals. Both curcumin analogs attenuated increases in TNF-α in hyperoxic animals. CONCLUSION We show that B2BrBC and C66 provide protection against adverse contractility and relaxant effect of hyperoxia on TSM, and whole lung inflammation. Both analogs induced direct relaxation of TSM. Through restoration of catalase activity in hyperoxia, we speculate that analogs are protective against hyperoxia-induced tracheal hyperreactivity by augmenting H2 O2 catabolism. Neonatal hyperoxia induces increased tracheal contractility, attenuates tracheal relaxation, diminishes lung antioxidant capacity, and increases lung inflammation, while monocarbonyl CUR analogs were protective of these adverse effects of hyperoxia. Analogs may be promising new therapies for neonatal hyperoxic airway and lung disease.
Collapse
Affiliation(s)
- Mimoza Stamenkovska
- Faculty of Natural Sciences and MathematicsInstitute of Biology“Sts, Cyril and Methodius” UniversitySkopjeMacedonia
| | - Qendrim Thaçi
- Department of Premedical Courses‐BiologyFaculty of MedicineUniversity of PrishtinaSt. Martyrs’ Boulevard n.n.PrishtinaKosovoSerbia
| | - Nikola Hadzi‐Petrushev
- Faculty of Natural Sciences and MathematicsInstitute of Biology“Sts, Cyril and Methodius” UniversitySkopjeMacedonia
| | - Marija Angelovski
- Faculty of Natural Sciences and MathematicsInstitute of Biology“Sts, Cyril and Methodius” UniversitySkopjeMacedonia
| | - Jane Bogdanov
- Faculty of Natural Sciences and MathematicsInstitute of Chemistry“Ss. Cyril and Methodius” UniversitySkopjeMacedonia
| | - Shkëlzen Reçica
- Department of Premedical Courses‐BiologyFaculty of MedicineUniversity of PrishtinaSt. Martyrs’ Boulevard n.n.PrishtinaKosovoSerbia
| | - Islam Kryeziu
- Department of Premedical Courses‐BiologyFaculty of MedicineUniversity of PrishtinaSt. Martyrs’ Boulevard n.n.PrishtinaKosovoSerbia
| | - Hristo Gagov
- Faculty of BiologySofia University St. Kliment OhridskiSofiaBulgaria
| | - Vadim Mitrokhin
- Department of Fundamental and Applied PhysiologyRussian National Research Medical UniversityMoscowRussia
| | - Andre Kamkin
- Department of Fundamental and Applied PhysiologyRussian National Research Medical UniversityMoscowRussia
| | - Rudolf Schubert
- PhysiologyInstitute of Theoretical MedicineMedical FacultyUniversity of AugsburgAugsburgGermany
| | - Mitko Mladenov
- Faculty of Natural Sciences and MathematicsInstitute of Biology“Sts, Cyril and Methodius” UniversitySkopjeMacedonia
| | - Ramadan B. Sopi
- Department of Premedical Courses‐BiologyFaculty of MedicineUniversity of PrishtinaSt. Martyrs’ Boulevard n.n.PrishtinaKosovoSerbia
| |
Collapse
|
14
|
Audi SH, Cammarata A, Clough AV, Dash RK, Jacobs ER. Quantification of mitochondrial membrane potential in the isolated rat lung using rhodamine 6G. J Appl Physiol (1985) 2020; 128:892-906. [PMID: 32134711 DOI: 10.1152/japplphysiol.00789.2019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Mitochondrial membrane potential (Δψm) plays a key role in vital mitochondrial functions, and its dissipation is a hallmark of mitochondrial dysfunction. The objective of this study was to develop an experimental and computational approach for estimating Δψm in intact rat lungs using the lipophilic fluorescent cationic dye rhodamine 6G (R6G). Rat lungs were excised and connected to a ventilation-perfusion system. The experimental protocol consisted of three single-pass phases, loading, washing, and uncoupling, in which the lungs were perfused with R6G-containing perfusate, fresh R6G-free perfusate, or R6G-free perfusate containing the mitochondrial uncoupler FCCP, respectively. This protocol was carried out with lung perfusate containing verapamil vehicle or verapamil, an inhibitor of the multidrug efflux pump P-glycoprotein (Pgp). Results show that the addition of FCCP resulted in an increase in R6G venous effluent concentration and that this increase was larger in the presence of verapamil than in its absence. A physiologically based pharmacokinetic (PBPK) model for the pulmonary disposition of R6G was developed and used for quantitative interpretation of the kinetic data, including estimating Δψm. The estimated value of Δψm [-144 ± 24 (SD) mV] was not significantly altered by inhibiting Pgp with verapamil and is comparable with that estimated previously in cultured pulmonary endothelial cells. These results demonstrate the utility of the proposed approach for quantifying Δψm in intact functioning lungs. This approach has potential to provide quantitative assessment of the effect of injurious conditions on lung mitochondrial function and to evaluate the impact of therapies that target mitochondria.NEW & NOTEWORTHY A novel experimental and computational approach for estimating mitochondrial membrane potential (Δψm) in intact functioning lungs is presented. The isolated rat lung inlet-outlet concentrations of the fluorescent cationic dye rhodamine 6G were measured and analyzed by using a computational model of its pulmonary disposition to determine Δψm. The approach has the potential to provide quantitative assessment of the effect of injurious conditions and their therapies on lung mitochondrial function.
Collapse
Affiliation(s)
- Said H Audi
- Department of Biomedical Engineering, Marquette University-Medical College of Wisconsin, Milwaukee, Wisconsin.,Clement J. Zablocki Department of Veterans Affairs Medical Center, Milwaukee, Wisconsin.,Division of Pulmonary and Critical Care Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Anthony Cammarata
- Department of Biomedical Engineering, Marquette University-Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Anne V Clough
- Clement J. Zablocki Department of Veterans Affairs Medical Center, Milwaukee, Wisconsin.,Division of Pulmonary and Critical Care Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin.,Department of Mathematical and Statistical Sciences, Marquette University, Milwaukee, Wisconsin
| | - Ranjan K Dash
- Department of Biomedical Engineering, Marquette University-Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Elizabeth R Jacobs
- Clement J. Zablocki Department of Veterans Affairs Medical Center, Milwaukee, Wisconsin.,Division of Pulmonary and Critical Care Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|