1
|
Fu X, Lu H, Gao M, Li P, He Y, He Y, Luo X, Rao X, Liu W. Nitric oxide in the cardio-cerebrovascular system: Source, regulation and application. Nitric Oxide 2024; 152:48-57. [PMID: 39299647 DOI: 10.1016/j.niox.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 06/13/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
Nitric oxide (NO) plays a crucial role as a messenger or effector in the body, yet it presents a dual impact on cardio-cerebrovascular health. Under normal physiological conditions, NO exhibits vasodilatory effects, regulates blood pressure, inhibits platelet aggregation, and offers neuroprotective actions. However, in pathological situations, excessive NO production contributes to or worsens inflammation within the body. Moreover, NO may combine with reactive oxygen species (ROS), generating harmful substances that intensify physical harm. This paper succinctly reviews pertinent literature to clarify the in vivo and in vitro origins of NO, its regulatory function in the cardio-cerebrovascular system, and the advantages and disadvantages associated with NO donor drugs, NO delivery systems, and vascular stent materials for treating cardio-cerebrovascular disease. The findings provide a theoretical foundation for the application of NO in cardio-cerebrovascular diseases.
Collapse
Affiliation(s)
- Xiaoming Fu
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330006, China
| | - Haowei Lu
- Department of Pharmacy, The Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, 330006, China
| | - Meng Gao
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330006, China
| | - Pinghe Li
- Lanzhou Foci Pharmaceutical Co., Ltd, Lanzhou, 730030, China
| | - Yan He
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330006, China
| | - Yu He
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330006, China
| | - Xiaojian Luo
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330006, China.
| | - Xiaoyong Rao
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330006, China.
| | - Wei Liu
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330006, China.
| |
Collapse
|
2
|
Starkl P, Jonsson G, Artner T, Turnes BL, Gail LM, Oliveira T, Jain A, Serhan N, Stejskal K, Lakovits K, Hladik A, An M, Channon KM, Kim H, Köcher T, Weninger W, Stary G, Knapp S, Klang V, Gaudenzio N, Woolf CJ, Tikoo S, Jain R, Penninger JM, Cronin SJF. Mast cell-derived BH4 and serotonin are critical mediators of postoperative pain. Sci Immunol 2024; 9:eadh0545. [PMID: 39178277 DOI: 10.1126/sciimmunol.adh0545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 08/01/2024] [Indexed: 08/25/2024]
Abstract
Postoperative pain affects most patients after major surgery and can transition to chronic pain. The considerable side effects and limited efficacy of current treatments underline the need for new therapeutic options. We observed increased amounts of the metabolites BH4 and serotonin after skin injury. Mast cells were primary postoperative sources of Gch1, the rate-limiting enzyme in BH4 synthesis, itself an obligate cofactor in serotonin production by tryptophan hydroxylase (Tph1). Mice deficient in mast cells or in mast cell-specific Gch1 or Tph1 showed drastically decreased postoperative pain. We found that injury induced the nociceptive neuropeptide substance P, mast cell degranulation, and granule nerve colocalization. Substance P triggered serotonin release in mouse and human mast cells, and substance P receptor blockade substantially ameliorated pain hypersensitivity. Our findings highlight the importance of mast cells at the neuroimmune interface and substance P-driven mast cell BH4 and serotonin production as a therapeutic target for postoperative pain treatment.
Collapse
Affiliation(s)
- Philipp Starkl
- Research Division of Infection Biology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Gustav Jonsson
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Tyler Artner
- Research Division of Infection Biology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
- Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Bruna Lenfers Turnes
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
- F. M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
| | - Laura-Marie Gail
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Tiago Oliveira
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
| | - Aakanksha Jain
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
- F. M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
| | - Nadine Serhan
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), Inserm UMR1291 CNRS UMR5051, University of Toulouse III, Toulouse, France
| | - Karel Stejskal
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
| | - Karin Lakovits
- Research Division of Infection Biology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Anastasiya Hladik
- Research Division of Infection Biology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Meilin An
- Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - Keith M Channon
- Radcliffe Department of Medicine, British Heart Foundation Centre of Research Excellence, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Hail Kim
- Korea Advanced Institute of Science and Technology, Daejoen, Republic of Korea
| | - Thomas Köcher
- Vienna BioCenter Core Facilities (VBCF), 1030 Vienna, Austria
| | - Wolfgang Weninger
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Georg Stary
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Sylvia Knapp
- Research Division of Infection Biology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
- Ignaz Semmelweis Institute, Interuniversity Institute for Infection Research, Medical University of Vienna, Vienna, Austria
| | - Victoria Klang
- Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
| | - Nicolas Gaudenzio
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), Inserm UMR1291 CNRS UMR5051, University of Toulouse III, Toulouse, France
- Genoskin SAS, Toulouse, France
| | - Clifford J Woolf
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
- F. M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
| | - Shweta Tikoo
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Rohit Jain
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Josef M Penninger
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
- Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, Canada
- Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Shane J F Cronin
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
| |
Collapse
|
3
|
Golenkina EA, Viryasova GM, Galkina SI, Kondratenko ND, Gaponova TV, Romanova YM, Lyamzaev KG, Chernyak BV, Sud’ina GF. Redox processes are major regulators of leukotriene synthesis in neutrophils exposed to bacteria Salmonella typhimurium; the way to manipulate neutrophil swarming. Front Immunol 2024; 15:1295150. [PMID: 38384456 PMCID: PMC10880102 DOI: 10.3389/fimmu.2024.1295150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 01/22/2024] [Indexed: 02/23/2024] Open
Abstract
Neutrophils play a primary role in protecting our body from pathogens. When confronted with invading bacteria, neutrophils begin to produce leukotriene B4, a potent chemoattractant that, in cooperation with the primary bacterial chemoattractant fMLP, stimulates the formation of swarms of neutrophils surrounding pathogens. Here we describe a complex redox regulation that either stimulates or inhibits fMLP-induced leukotriene synthesis in an experimental model of neutrophils interacting with Salmonella typhimurium. The scavenging of mitochondrial reactive oxygen species by mitochondria-targeted antioxidants MitoQ and SkQ1, as well as inhibition of their production by mitochondrial inhibitors, inhibit the synthesis of leukotrienes regardless of the cessation of oxidative phosphorylation. On the contrary, antioxidants N-acetylcysteine and sodium hydrosulfide promoting reductive shift in the reversible thiol-disulfide system stimulate the synthesis of leukotrienes. Diamide that oxidizes glutathione at high concentrations inhibits leukotriene synthesis, and the glutathione precursor S-adenosyl-L-methionine prevents this inhibition. Diamide-dependent inhibition is also prevented by diphenyleneiodonium, presumably through inhibition of NADPH oxidase and NADPH accumulation. Thus, during bacterial infection, maintaining the reduced state of glutathione in neutrophils plays a decisive role in the synthesis of leukotriene B4. Suppression of excess leukotriene synthesis is an effective strategy for treating various inflammatory pathologies. Our data suggest that the use of mitochondria-targeted antioxidants may be promising for this purpose, whereas known thiol-based antioxidants, such as N-acetylcysteine, may dangerously stimulate leukotriene synthesis by neutrophils during severe pathogenic infection.
Collapse
Affiliation(s)
- Ekaterina A. Golenkina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Galina M. Viryasova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Svetlana I. Galkina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Natalia D. Kondratenko
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Tatjana V. Gaponova
- National Research Center for Hematology, Russia Federation Ministry of Public Health, Moscow, Russia
| | - Yulia M. Romanova
- Department of Genetics and Molecular Biology, Gamaleya National Research Centre of Epidemiology and Microbiology, Moscow, Russia
| | - Konstantin G. Lyamzaev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
- The “Russian Clinical Research Center for Gerontology” of the Ministry of Healthcare of the Russian Federation, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Boris V. Chernyak
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Galina F. Sud’ina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
4
|
Starkl P, Jonsson G, Artner T, Turnes BL, Serhan N, Oliveira T, Gail LM, Stejskal K, Channon KM, Köcher T, Stary G, Klang V, Gaudenzio N, Knapp S, Woolf CJ, Penninger JM, Cronin SJ. Mast cell-derived BH4 is a critical mediator of postoperative pain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.24.525378. [PMID: 37293068 PMCID: PMC10245978 DOI: 10.1101/2023.01.24.525378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Postoperative pain affects most patients after major surgery and can transition to chronic pain. Here, we discovered that postoperative pain hypersensitivity correlated with markedly increased local levels of the metabolite BH4. Gene transcription and reporter mouse analyses after skin injury identified neutrophils, macrophages and mast cells as primary postoperative sources of GTP cyclohydrolase-1 (Gch1) expression, the rate-limiting enzyme in BH4 production. While specific Gch1 deficiency in neutrophils or macrophages had no effect, mice deficient in mast cells or mast cell-specific Gch1 showed drastically decreased postoperative pain after surgery. Skin injury induced the nociceptive neuropeptide substance P, which directly triggers the release of BH4-dependent serotonin in mouse and human mast cells. Substance P receptor blockade substantially ameliorated postoperative pain. Our findings underline the unique position of mast cells at the neuro-immune interface and highlight substance P-driven mast cell BH4 production as promising therapeutic targets for the treatment of postoperative pain.
Collapse
Affiliation(s)
- Philipp Starkl
- Research Division of Infection Biology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Gustav Jonsson
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Tyler Artner
- Research Division of Infection Biology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
- Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Bruna Lenfers Turnes
- Department of Neurobiology, Harvard Medical School, Boston, United States
- F.M. Kirby Neurobiology Research Center, Boston Children’s Hospital, Boston, United States, Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Nadine Serhan
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), Inserm UMR1291 CNRS UMR5051, University of Toulouse III, Toulouse, France
| | - Tiago Oliveira
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
| | - Laura-Marie Gail
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
- LBI-RUD – Ludwig-Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Karel Stejskal
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
| | - Keith M. Channon
- Radcliffe Department of, British Heart Foundation Centre of Research Excellence, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Thomas Köcher
- Vienna BioCenter Core Facilities (VBCF), 1030 Vienna, Austria
| | - Georg Stary
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
- LBI-RUD – Ludwig-Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Victoria Klang
- Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
| | - Nicolas Gaudenzio
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), Inserm UMR1291 CNRS UMR5051, University of Toulouse III, Toulouse, France
- Genoskin SAS, Toulouse, France
| | - Sylvia Knapp
- Research Division of Infection Biology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Clifford J. Woolf
- Department of Neurobiology, Harvard Medical School, Boston, United States
- F.M. Kirby Neurobiology Research Center, Boston Children’s Hospital, Boston, United States, Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Josef M. Penninger
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
- Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - Shane J.F. Cronin
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
| |
Collapse
|
5
|
Rizvi ZA, Babele P, Madan U, Sadhu S, Tripathy MR, Goswami S, Mani S, Dikshit M, Awasthi A. Pharmacological potential of Withania somnifera (L.) Dunal and Tinospora cordifolia (Willd.) Miers on the experimental models of COVID-19, T cell differentiation, and neutrophil functions. Front Immunol 2023; 14:1138215. [PMID: 36960064 PMCID: PMC10028191 DOI: 10.3389/fimmu.2023.1138215] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 02/20/2023] [Indexed: 03/09/2023] Open
Abstract
Cytokine release syndrome (CRS) due to severe acute respiratory coronavirus-2 (SARS-CoV-2) infection leads to life-threatening pneumonia which has been associated with coronavirus disease (COVID-19) pathologies. Centuries-old Asian traditional medicines such as Withania somnifera (L.) Dunal (WS) and Tinospora cordifolia (Willd.) Miers (TC) possess potent immunomodulatory effects and were used by the AYUSH ministry, in India during the COVID-19 pandemic. In the present study, we investigated WS and TC's anti-viral and immunomodulatory efficacy at the human equivalent doses using suitable in vitro and in vivo models. While both WS and TC showed immuno-modulatory potential, WS showed robust protection against loss in body weight, viral load, and pulmonary pathology in the hamster model of SARS-CoV2. In vitro pretreatment of mice and human neutrophils with WS and TC had no adverse effect on PMA, calcium ionophore, and TRLM-induced ROS generation, phagocytosis, bactericidal activity, and NETs formation. Interestingly, WS significantly suppressed the pro-inflammatory cytokines-induced Th1, Th2, and Th17 differentiation. We also used hACE2 transgenic mice to further investigate the efficacy of WS against acute SARS-CoV2 infection. Prophylactic treatment of WS in the hACE2 mice model showed significant protection against body weight loss, inflammation, and the lung viral load. The results obtained indicate that WS promoted the immunosuppressive environment in the hamster and hACE2 transgenic mice models and limited the worsening of the disease by reducing inflammation, suggesting that WS might be useful against other acute viral infections. The present study thus provides pre-clinical efficacy data to demonstrate a robust protective effect of WS against COVID-19 through its broader immunomodulatory activity.
Collapse
Affiliation(s)
- Zaigham Abbas Rizvi
- Immuno-biology Lab, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, Faridabad, Haryana, India
- Immunology-Core Lab, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, Faridabad, Haryana, India
- *Correspondence: Amit Awasthi, ; Madhu Dikshit, ; ; Zaigham Abbas Rizvi,
| | - Prabhakar Babele
- NCD, Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Upasna Madan
- Immuno-biology Lab, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, Faridabad, Haryana, India
- Immunology-Core Lab, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, Faridabad, Haryana, India
| | - Srikanth Sadhu
- Immuno-biology Lab, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, Faridabad, Haryana, India
- Immunology-Core Lab, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, Faridabad, Haryana, India
| | - Manas Ranjan Tripathy
- Immuno-biology Lab, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, Faridabad, Haryana, India
- Immunology-Core Lab, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, Faridabad, Haryana, India
| | - Sandeep Goswami
- Immuno-biology Lab, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, Faridabad, Haryana, India
- Immunology-Core Lab, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, Faridabad, Haryana, India
| | - Shailendra Mani
- NCD, Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Madhu Dikshit
- NCD, Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, Faridabad, Haryana, India
- Pharmacology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
- *Correspondence: Amit Awasthi, ; Madhu Dikshit, ; ; Zaigham Abbas Rizvi,
| | - Amit Awasthi
- Immuno-biology Lab, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, Faridabad, Haryana, India
- Immunology-Core Lab, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, Faridabad, Haryana, India
- *Correspondence: Amit Awasthi, ; Madhu Dikshit, ; ; Zaigham Abbas Rizvi,
| |
Collapse
|
6
|
Garay JA, Silva JE, Di Genaro MS, Davicino RC. The Multiple Faces of Nitric Oxide in Chronic Granulomatous Disease: A Comprehensive Update. Biomedicines 2022; 10:biomedicines10102570. [PMID: 36289832 PMCID: PMC9599698 DOI: 10.3390/biomedicines10102570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/04/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022] Open
Abstract
Nitric oxide (NO), a signaling molecule, regulates multiple biological functions, including a variety of physiological and pathological processes. In this regard, NO participates in cutaneous inflammations, modulation of mitochondrial functions, vascular diseases, COVID-19, neurologic diseases, and obesity. It also mediates changes in the skeletal muscle function. Chronic granulomatous disease (CGD) is a primary immunodeficiency disorder characterized by the malfunction of phagocytes caused by mutations in some of the genes encoding subunits of the superoxide-generating phagocyte NADPH (NOX). The literature consulted shows that there is a relationship between the production of NO and the NADPH oxidase system, which regulates the persistence of NO in the medium. Nevertheless, the underlying mechanisms of the effects of NO on CGD remain unknown. In this paper, we briefly review the regulatory role of NO in CGD and its potential underlying mechanisms.
Collapse
Affiliation(s)
- Juan Agustín Garay
- División de Inmunología, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, San Luis 5700, Argentina
| | - Juan Eduardo Silva
- División de Inmunología, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, San Luis 5700, Argentina
- Instituto Multidisciplinario de Investigaciones Biológicas (IMIBIO), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Luis 5700, Argentina
| | - María Silvia Di Genaro
- División de Inmunología, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, San Luis 5700, Argentina
- Instituto Multidisciplinario de Investigaciones Biológicas (IMIBIO), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Luis 5700, Argentina
| | - Roberto Carlos Davicino
- División de Inmunología, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, San Luis 5700, Argentina
- Instituto Multidisciplinario de Investigaciones Biológicas (IMIBIO), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Luis 5700, Argentina
- Correspondence:
| |
Collapse
|
7
|
Rizvi ZA, Babele P, Sadhu S, Madan U, Tripathy MR, Goswami S, Mani S, Kumar S, Awasthi A, Dikshit M. Prophylactic treatment of Glycyrrhiza glabra mitigates COVID-19 pathology through inhibition of pro-inflammatory cytokines in the hamster model and NETosis. Front Immunol 2022; 13:945583. [PMID: 36238303 PMCID: PMC9550929 DOI: 10.3389/fimmu.2022.945583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 09/05/2022] [Indexed: 01/08/2023] Open
Abstract
Severe coronavirus disease (COVID-19) is accompanied by acute respiratory distress syndrome and pulmonary pathology, and is presented mostly with an inflammatory cytokine release, a dysregulated immune response, a skewed neutrophil/lymphocyte ratio, and a hypercoagulable state. Though vaccinations have proved effective in reducing the COVID-19-related mortality, the limitation of the use of vaccine against immunocompromised individuals, those with comorbidity, and emerging variants remains a concern. In the current study, we investigate for the first time the efficacy of the Glycyrrhiza glabra (GG) extract, a potent immunomodulator, against SARS-CoV-2 infection in hamsters. Prophylactic treatment with GG showed protection against loss in body weight and a 35%–40% decrease in lung viral load along with reduced lung pathology in the hamster model. Remarkably, GG reduced the mRNA expression of pro-inflammatory cytokines and plasminogen activator inhibitor-1 (PAI-1). In vitro, GG acted as a potent immunomodulator by reducing Th2 and Th17 differentiation and IL-4 and IL-17A cytokine production. In addition, GG also showed robust potential to suppress ROS, mtROS, and NET generation in a concentration-dependent manner in both human polymorphonuclear neutrophils (PMNs) and murine bone marrow-derived neutrophils (BMDNs). Taken together, we provide evidence for the protective efficacy of GG against COVID-19 and its putative mechanistic insight through its immunomodulatory properties. Our study provides the proof of concept for GG efficacy against SARS-CoV-2 using a hamster model and opens the path for further studies aimed at identifying the active ingredients of GG and its efficacy in COVID-19 clinical cases.
Collapse
Affiliation(s)
- Zaigham Abbas Rizvi
- Immuno-Biology Lab, Infection and Immunology Centre, Translational Health Science and Technology Institute, Faridabad, Haryana, India
- Immunology-Core Lab, Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Prabhakar Babele
- Noncommunicable Disease Centre, Translational Health Science and Technology Institute (THSTI), Faridabad, Haryana, India
| | - Srikanth Sadhu
- Immuno-Biology Lab, Infection and Immunology Centre, Translational Health Science and Technology Institute, Faridabad, Haryana, India
- Immunology-Core Lab, Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Upasna Madan
- Immuno-Biology Lab, Infection and Immunology Centre, Translational Health Science and Technology Institute, Faridabad, Haryana, India
- Immunology-Core Lab, Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Manas Ranjan Tripathy
- Immuno-Biology Lab, Infection and Immunology Centre, Translational Health Science and Technology Institute, Faridabad, Haryana, India
- Immunology-Core Lab, Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Sandeep Goswami
- Immuno-Biology Lab, Infection and Immunology Centre, Translational Health Science and Technology Institute, Faridabad, Haryana, India
- Immunology-Core Lab, Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Shailendra Mani
- Noncommunicable Disease Centre, Translational Health Science and Technology Institute (THSTI), Faridabad, Haryana, India
| | - Sachin Kumar
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Amit Awasthi
- Immuno-Biology Lab, Infection and Immunology Centre, Translational Health Science and Technology Institute, Faridabad, Haryana, India
- Immunology-Core Lab, Translational Health Science and Technology Institute, Faridabad, Haryana, India
- *Correspondence: Madhu Dikshit, ; ; Amit Awasthi,
| | - Madhu Dikshit
- Noncommunicable Disease Centre, Translational Health Science and Technology Institute (THSTI), Faridabad, Haryana, India
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
- *Correspondence: Madhu Dikshit, ; ; Amit Awasthi,
| |
Collapse
|
8
|
miR-294 and miR-410 Negatively Regulate Tnfa, Arginine Transporter Cat1/2, and Nos2 mRNAs in Murine Macrophages Infected with Leishmania amazonensis. Noncoding RNA 2022; 8:ncrna8010017. [PMID: 35202090 PMCID: PMC8875753 DOI: 10.3390/ncrna8010017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/26/2021] [Accepted: 10/29/2021] [Indexed: 12/23/2022] Open
Abstract
MicroRNAs are small non-coding RNAs that regulate cellular processes by the post-transcriptional regulation of gene expression, including immune responses. The shift in the miRNA profiling of murine macrophages infected with Leishmania amazonensis can change inflammatory response and metabolism. L-arginine availability and its conversion into nitric oxide by nitric oxide synthase 2 (Nos2) or ornithine (a polyamine precursor) by arginase 1/2 regulate macrophage microbicidal activity. This work aimed to evaluate the function of miR-294, miR-301b, and miR-410 during early C57BL/6 bone marrow-derived macrophage infection with L. amazonensis. We observed an upregulation of miR-294 and miR-410 at 4 h of infection, but the levels of miR-301b were not modified. This profile was not observed in LPS-stimulated macrophages. We also observed decreased levels of those miRNAs target genes during infection, such as Cationic amino acid transporters 1 (Cat1/Slc7a1), Cat2/Slc7a22 and Nos2; genes were upregulated in LPS stimuli. The functional inhibition of miR-294 led to the upregulation of Cat2 and Tnfa and the dysregulation of Nos2, while miR-410 increased Cat1 levels. miR-294 inhibition reduced the number of amastigotes per infected macrophage, showing a reduction in the parasite growth inside the macrophage. These data identified miR-294 and miR-410 biomarkers for a potential regulator in the inflammatory profiles of microphages mediated by L. amazonensis infection. This research provides novel insights into immune dysfunction contributing to infection outcomes and suggests the use of the antagomiRs/inhibitors of miR-294 and miR-410 as new therapeutic strategies to modulate inflammation and to decrease parasitism.
Collapse
|
9
|
Pathak P, Shukla P, Kanshana JS, Jagavelu K, Sangwan NS, Dwivedi AK, Dikshit M. Standardized root extract of Withania somnifera and Withanolide A exert moderate vasorelaxant effect in the rat aortic rings by enhancing nitric oxide generation. JOURNAL OF ETHNOPHARMACOLOGY 2021; 278:114296. [PMID: 34090907 DOI: 10.1016/j.jep.2021.114296] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 04/07/2021] [Accepted: 06/01/2021] [Indexed: 06/12/2023]
Abstract
ETHNO-PHARMACOLOGICAL RELEVANCE Withania somnifera (L.) Dunal, commonly known as Ashwagandha, belongs to the family Solanaceae. In Ayurveda, Ashwagandha has been defined as one of the most important herb and is considered to be the best adaptogen. It is also an excellent rejuvenator, a general health tonic and cure for various disorders such as cerebrovascular, insomnia, asthma, ulcers, etc. Steroidal lactones (Withanolides: Withanolide A, Withaferin A, Withanolide D, Withanone, etc) isolated from this plant, possess promising medicinal properties such as anti-inflammatory, immune-stimulatory etc. Standardized root extract of the plant NMITLI-118R (NM) was prepared at CSIR-CIMAP, and was investigated for various biological activities at CSIR-CDRI. Among the notable medicinal properties, NM exhibited excellent neuroprotective activity in the middle cerebral artery occlusion (MCAO) rat model. AIM OF THE STUDY Endothelial dysfunction is the primary event in the cerebrovascular or cardiovascular disorders, present study was thus undertaken to evaluate vasoprotective potential of NM and its biomarker compound Withanolide A (WA) using rat aortic rings and EA.hy926 endothelial cells. MATERIAL AND METHODS Transverse aortic rings of 10 weeks old Wistar rats were used to evaluate effect of NM and WA on the vasoreactivity. While, mechanism of NM and WA mediated vasorelaxant was investigated in Ea.hy926 cell line by measuring NO generation, nitrite content, Serine 1177 phosphorylation of eNOS, reduced/oxidized biopterin levels and expression of endothelial nitric oxide synthase (eNOS) mRNA and protein. RESULTS Fingerprinting of NM using HPLC identified presence of WA in the extract. NM as well as WA exerted moderate vasorelaxant effect in the endothelium intact rat aortic rings which was lesser than acetylcholine (ACh). NM and WA augmented ACh induced relaxation in the rat aortic rings. NM and WA dependent vasorelaxation was blocked by N-nitro-L-arginine methyl ester (L-NAME) or 1H-[1,2,4] oxadiazolo [4,3,-a]quinoxalin-1-one (ODQ), indicating role of NO/cGMP. Further Ea.hy926 cells treated with NM and WA showed accumulation of nitrite content, enhanced NO levels, eNOS expression and eNOS phosphorylation (Serine 1177). CONCLUSION Altogether NM and WA dependent improvement in the NO availability seems to be mediated by the enhanced eNOS phosphorylation. WA, seems to be one of the active constituent of NM, and presence of other vasoactive substances cannot be ruled out. The data obtained imply that the vasorelaxant property of NM is beneficial for its neuroprotective potential.
Collapse
Affiliation(s)
- Priya Pathak
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India; Academy of Scientific and Innovative Research, New Delhi, 110001, India.
| | - Prachi Shukla
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India.
| | - Jitendra S Kanshana
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India.
| | - Kumaravelu Jagavelu
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India.
| | - Neelam S Sangwan
- CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, India.
| | - Anil K Dwivedi
- Pharmaceutics Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India.
| | - Madhu Dikshit
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India; Tanslational Health Science and Technology, Faridabad, 121001, India.
| |
Collapse
|
10
|
Ning DS, Ma J, Peng YM, Li Y, Chen YT, Li SX, Liu Z, Li YQ, Zhang YX, Jian YP, Ou ZJ, Ou JS. Apolipoprotein A-I mimetic peptide inhibits atherosclerosis by increasing tetrahydrobiopterin via regulation of GTP-cyclohydrolase 1 and reducing uncoupled endothelial nitric oxide synthase activity. Atherosclerosis 2021; 328:83-91. [PMID: 34118596 DOI: 10.1016/j.atherosclerosis.2021.05.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 05/20/2021] [Accepted: 05/27/2021] [Indexed: 02/03/2023]
Abstract
BACKGROUND AND AIMS The apolipoprotein A-I mimetic peptide D-4F, among its anti-atherosclerotic effects, improves vasodilation through mechanisms not fully elucidated yet. METHODS Low-density lipoprotein (LDL) receptor null (LDLr-/-) mice were fed Western diet with or without D-4F. We then measured atherosclerotic lesion formation, endothelial nitric oxide synthase (eNOS) phosphorylation and its association with heat shock protein 90 (HSP90), nitric oxide (NO) and superoxide anion (O2•-) production, and tetrahydrobiopterin (BH4) and GTP-cyclohydrolase 1 (GCH-1) concentration in the aorta. Human umbilical vein endothelial cells (HUVECs) and aortas were treated with oxidized LDL (oxLDL) with or without D-4F; subsequently, BH4 and GCH-1 concentration, NO and O2•- production, eNOS association with HSP90, and endothelium-dependent vasodilation were measured. RESULTS Unexpectedly, eNOS phosphorylation, eNOS-HSP90 association, and O2•- production were increased, whereas BH4 and GCH-1 concentration and NO production were reduced in atherosclerosis. D-4F significantly inhibited atherosclerosis, eNOS phosphorylation, eNOS-HSP90 association, and O2•- generation but increased NO production and BH4 and GCH-1 concentration. OxLDL reduced NO production and BH4 and GCH-1 concentration but enhanced O2•- generation and eNOS association with HSP90, and impaired endothelium-dependent vasodilation. D-4F inhibited the overall effects of oxLDL. CONCLUSIONS Hypercholesterolemia enhanced uncoupled eNOS activity by decreasing GCH-1 concentration, thereby reducing BH4 levels. D-4F reduced uncoupled eNOS activity by increasing BH4 levels through GCH-1 expression and decreasing eNOS phosphorylation and eNOS-HSP90 association. Our findings elucidate a novel mechanism by which hypercholesterolemia induces atherosclerosis and D-4F inhibits it, providing a potential therapeutic approach.
Collapse
Affiliation(s)
- Da-Sheng Ning
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-sen University, PR China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, PR China; NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, PR China; Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, PR China
| | - Jian Ma
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-sen University, PR China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, PR China; NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, PR China; Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, PR China
| | - Yue-Ming Peng
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-sen University, PR China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, PR China; NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, PR China; Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, PR China
| | - Yan Li
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-sen University, PR China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, PR China; NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, PR China; Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, PR China
| | - Ya-Ting Chen
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-sen University, PR China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, PR China; NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, PR China; Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, PR China
| | - Shang-Xuan Li
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-sen University, PR China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, PR China; NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, PR China; Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, PR China
| | - Zui Liu
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-sen University, PR China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, PR China; NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, PR China; Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, PR China
| | - Yu-Quan Li
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-sen University, PR China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, PR China; NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, PR China; Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, PR China
| | - Yi-Xin Zhang
- Division of Hypertension and Vascular Diseases, Heart Center, The First Affiliated Hospital, Sun Yat-sen University, PR China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, PR China; NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, PR China; Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, PR China
| | - Yu-Peng Jian
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-sen University, PR China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, PR China; NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, PR China; Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, PR China
| | - Zhi-Jun Ou
- Division of Hypertension and Vascular Diseases, Heart Center, The First Affiliated Hospital, Sun Yat-sen University, PR China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, PR China; NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, PR China; Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, PR China
| | - Jing-Song Ou
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-sen University, PR China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, PR China; NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, PR China; Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, PR China; Guangdong Provincial Key Laboratory of Brain Function and Disease,Guangzhou, 510080, PR China.
| |
Collapse
|
11
|
Martí I Líndez AA, Reith W. Arginine-dependent immune responses. Cell Mol Life Sci 2021; 78:5303-5324. [PMID: 34037806 PMCID: PMC8257534 DOI: 10.1007/s00018-021-03828-4] [Citation(s) in RCA: 135] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 03/23/2021] [Accepted: 03/29/2021] [Indexed: 02/07/2023]
Abstract
A growing body of evidence indicates that, over the course of evolution of the immune system, arginine has been selected as a node for the regulation of immune responses. An appropriate supply of arginine has long been associated with the improvement of immune responses. In addition to being a building block for protein synthesis, arginine serves as a substrate for distinct metabolic pathways that profoundly affect immune cell biology; especially macrophage, dendritic cell and T cell immunobiology. Arginine availability, synthesis, and catabolism are highly interrelated aspects of immune responses and their fine-tuning can dictate divergent pro-inflammatory or anti-inflammatory immune outcomes. Here, we review the organismal pathways of arginine metabolism in humans and rodents, as essential modulators of the availability of this semi-essential amino acid for immune cells. We subsequently review well-established and novel findings on the functional impact of arginine biosynthetic and catabolic pathways on the main immune cell lineages. Finally, as arginine has emerged as a molecule impacting on a plethora of immune functions, we integrate key notions on how the disruption or perversion of arginine metabolism is implicated in pathologies ranging from infectious diseases to autoimmunity and cancer.
Collapse
Affiliation(s)
| | - Walter Reith
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
12
|
Sadaf S, Nagarkoti S, Awasthi D, Singh AK, Srivastava RN, Kumar S, Barthwal MK, Dikshit M. nNOS induction and NOSIP interaction impact granulopoiesis and neutrophil differentiation by modulating nitric oxide generation. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1868:119018. [PMID: 33771575 DOI: 10.1016/j.bbamcr.2021.119018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 02/26/2021] [Accepted: 03/19/2021] [Indexed: 12/15/2022]
Abstract
Nitric oxide (NO), a versatile free radical and a signalling molecule, plays an important role in the haematopoiesis, inflammation and infection. Impaired proliferation and differentiation of myeloid cells lead to malignancies and Hematopoietic deficiencies. This study was aimed to define the role of nNOS derived NO in neutrophil differentiation (in-vitro) and granulopoiesis (in-vivo) using multipronged approaches. The results obtained from nNOS over-expressing K562 cells revealed induction in C/EBPα derived neutrophil differentiation as evident by an increase in the expression of neutrophil specific cell surface markers, genes, transcription factors and functionality. nNOS mediated response also involved G-CSFR-STAT-3 axis during differentiation. Consistent increase in NO generation was observed during neutrophil differentiation of mice and human CD34+ HSPCs. Furthermore, granulopoiesis was abrogated in the nNOS inhibitor treated mice, depicting a decrease in the numbers of BM mature and progenitor neutrophils. Likewise, in vitro inhibition of nNOS in human CD34+ HSPCs indicated an indispensable role of nNOS in neutrophil differentiation. Expression of nNOS inhibitory protein, NOSIP was significantly and consistently decreased during the final stage of differentiation and was linked with the augmentation in NO release. Moreover, neutrophils from CML patients had more NOSIP and less NO generation as compared to the PMNs from healthy individuals. The present study thus indicates a critical role of nNOS, and its interaction with NOSIP during neutrophil differentiation. The study also highlights the importance of nNOS in the neutrophil progenitor proliferation and differentiation warranting investigations to assess its role in the haematopoiesis-related disorders.
Collapse
Affiliation(s)
- Samreen Sadaf
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Sheela Nagarkoti
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Deepika Awasthi
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | | | | | - Sachin Kumar
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | | | - Madhu Dikshit
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, India; Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad - Gurgaon Expressway, Faridabad, Haryana 121001, India.
| |
Collapse
|
13
|
Saini R, Azam Z, Sapra L, Srivastava RK. Neuronal Nitric Oxide Synthase (nNOS) in Neutrophils: An Insight. Rev Physiol Biochem Pharmacol 2021; 180:49-83. [PMID: 34115206 DOI: 10.1007/112_2021_61] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
NO (nitric oxide) is an important regulator of neutrophil functions and has a key role in diverse pathophysiological conditions. NO production by nitric oxide synthases (NOS) is under tight control at transcriptional, translational, and post-translational levels including interactions with heterologous proteins owing to its potent chemical reactivity and high diffusibility; this limits toxicity to other cellular components and promotes signaling specificity. The protein-protein interactions govern the activity and spatial distribution of NOS isoform to regulatory proteins and to their intended targets. In comparison with the vast literature available for endothelial, macrophages, and neuronal cells, demonstrating neuronal NOS (nNOS) interaction with other proteins through the PDZ domain, neutrophil nNOS, however, remains unexplored. Neutrophil's key role in both physiological and pathological conditions necessitates the need for further studies in delineating the NOS mediated NO modulations in signaling pathways operational in them. nNOS has been linked to depression, schizophrenia, and Parkinson's disease, suggesting the importance of exploring nNOS/NO-mediated neutrophil physiology in relation to such neuronal disorders. The review thus presents the scenario of neutrophil nNOS from the genetics to the functional level, including protein-protein interactions governing its intracellular sequestration in diverse cell types, besides speculating possible regulation in neutrophils and also addressing their clinical implications.
Collapse
Affiliation(s)
- Rashmi Saini
- Department of Zoology, Gargi College, University of Delhi, Delhi, India.
| | - Zaffar Azam
- Department of Zoology, Dr. Harisingh Gour Central University, Sagar, MP, India
- Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Leena Sapra
- Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Rupesh K Srivastava
- Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi, India.
| |
Collapse
|
14
|
Abalenikhina YV, Kosmachevskaya OV, Topunov AF. Peroxynitrite: Toxic Agent and Signaling Molecule (Review). APPL BIOCHEM MICRO+ 2020. [DOI: 10.1134/s0003683820060022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
15
|
Gambardella J, Khondkar W, Morelli MB, Wang X, Santulli G, Trimarco V. Arginine and Endothelial Function. Biomedicines 2020; 8:biomedicines8080277. [PMID: 32781796 PMCID: PMC7460461 DOI: 10.3390/biomedicines8080277] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/04/2020] [Accepted: 08/05/2020] [Indexed: 12/15/2022] Open
Abstract
Arginine (L-arginine), is an amino acid involved in a number of biological processes, including the biosynthesis of proteins, host immune response, urea cycle, and nitric oxide production. In this systematic review, we focus on the functional role of arginine in the regulation of endothelial function and vascular tone. Both clinical and preclinical studies are examined, analyzing the effects of arginine supplementation in hypertension, ischemic heart disease, aging, peripheral artery disease, and diabetes mellitus.
Collapse
Affiliation(s)
- Jessica Gambardella
- Department of Medicine (Division of Cardiology), Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine—Montefiore University Hospital, New York City, NY 10461, USA; (J.G.); (W.K.); (M.B.M.); (X.W.)
- Department of Molecular Pharmacology, Fleischer Institute for Diabetes and Metabolism, Albert Einstein College of Medicine, New York City, NY 10461, USA
- Department of Advanced Biomedical Sciences, “Federico II” University, 80131 Naples, Italy
- International Translational Research and Medical Education (ITME), 80100 Naples, Italy
| | - Wafiq Khondkar
- Department of Medicine (Division of Cardiology), Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine—Montefiore University Hospital, New York City, NY 10461, USA; (J.G.); (W.K.); (M.B.M.); (X.W.)
| | - Marco Bruno Morelli
- Department of Medicine (Division of Cardiology), Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine—Montefiore University Hospital, New York City, NY 10461, USA; (J.G.); (W.K.); (M.B.M.); (X.W.)
- Department of Molecular Pharmacology, Fleischer Institute for Diabetes and Metabolism, Albert Einstein College of Medicine, New York City, NY 10461, USA
| | - Xujun Wang
- Department of Medicine (Division of Cardiology), Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine—Montefiore University Hospital, New York City, NY 10461, USA; (J.G.); (W.K.); (M.B.M.); (X.W.)
| | - Gaetano Santulli
- Department of Medicine (Division of Cardiology), Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine—Montefiore University Hospital, New York City, NY 10461, USA; (J.G.); (W.K.); (M.B.M.); (X.W.)
- Department of Molecular Pharmacology, Fleischer Institute for Diabetes and Metabolism, Albert Einstein College of Medicine, New York City, NY 10461, USA
- Department of Advanced Biomedical Sciences, “Federico II” University, 80131 Naples, Italy
- International Translational Research and Medical Education (ITME), 80100 Naples, Italy
- Correspondence:
| | - Valentina Trimarco
- Department of Neuroscience, “Federico II” University, 80131 Naples, Italy;
| |
Collapse
|
16
|
Al-Nimer M, Ratha R, Mahwi T. Utility of Tetrahydrobiopterin Pathway in the Assessment of Diabetic Foot Ulcer: Significant and Complex Interrelations. J Diabetes Res 2019; 2019:3426878. [PMID: 31828160 PMCID: PMC6881761 DOI: 10.1155/2019/3426878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 09/26/2019] [Accepted: 10/03/2019] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVES Tetrahydrobiopterin (BH4) pathway that included generation of neopterin (Neop), biopterin (Biop), and nitric oxide (NO) is altered in type 2 diabetes (T2D). The aim of this study was to assess the biomarkers of BH4 pathway in noninfected DFUs and to relate these levels to the variables of diabetes as well as to the hematological indices. METHODS We performed a cross-sectional investigating study in a Kurdish people including 30 healthy subjects (group I), 66 T2D patients (group II), and 57 DFUs patients (group III). Hematological indices including red cell distribution width (RDW), mean platelet volume (MPV), and platelet distribution width (PDW) were determined by Coulter hematological analysis. Serum BH4 markers including NO, Neop, and Biop were determined by using an enzyme-linked immunosorbent assay (ELISA) technology. The relationship between BH4 markers with glycemic and hematological indices was assessed by Spearman's correlation and multivariable regression analysis. RESULTS Neop was significantly increased while PDW was significantly decreased in group III compared with group II patients. Nitric oxide was found to be inversely correlated with age (r = -0.382), duration of diabetes (r = -0.264), mean arterial blood pressure (r = -0.532), body mass index (r = -0.321), RDW (r = -0.322), and PDW (r = -0.284) in group III patients. Circulating Neop and Biop significantly correlated with RDW and erythrocyte sedimentation rate. Multivariable regression analysis revealed that serum Neop predicted the DFUs in 92.5% of group III patients. CONCLUSION Tetrahydrobiopterin biomarkers are predictors of DFUs and the significant correlation of neopterin with red distribution width and erythrocyte sedimentation rate indicating the role of neopterin in the vascular and inflammation concerns of noninfected DFUs.
Collapse
Affiliation(s)
- Marwan Al-Nimer
- Department of Pharmacology and Toxicology, Hawler Medical University, Erbil, Iraq
- Department of Clinical Pharmacy, University of Sulaimani, Sulaimani, Iraq
| | - Rawa Ratha
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Sulaimani, Sulaimani, Iraq
| | - Taha Mahwi
- Department of Medicine, College of Medicine, University of Sulaimani, Sulaimani, Iraq
| |
Collapse
|