1
|
Tavakolidakhrabadi N, Ding WY, Saleem MA, Welsh GI, May C. Gene therapy and kidney diseases. Mol Ther Methods Clin Dev 2024; 32:101333. [PMID: 39434922 PMCID: PMC11492605 DOI: 10.1016/j.omtm.2024.101333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Chronic kidney disease (CKD) poses a significant global health challenge, projected to become one of the leading causes of death by 2040. Current treatments primarily manage complications and slow progression, highlighting the urgent need for personalized therapies targeting the disease-causing genes. Our increased understanding of the underlying genomic changes that lead to kidney diseases coupled with recent successful gene therapies targeting specific kidney cells have turned gene therapy and genome editing into a promising therapeutic approach for treating kidney disease. This review paper reflects on different delivery routes and systems that can be exploited to target specific kidney cells and the ways that gene therapy can be used to improve kidney health.
Collapse
Affiliation(s)
- Nadia Tavakolidakhrabadi
- Bristol Renal, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol BS1 3NY, UK
| | - Wen Y. Ding
- Bristol Renal, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol BS1 3NY, UK
| | - Moin A. Saleem
- Bristol Renal, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol BS1 3NY, UK
- Department of Paediatric Nephrology, Bristol Royal Hospital for Children, University Hospitals Bristol and Weston NHS Foundation Trust, Upper Maudlin Street, Bristol BS2 8BJ, UK
| | - Gavin I. Welsh
- Bristol Renal, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol BS1 3NY, UK
| | - Carl May
- Bristol Renal, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol BS1 3NY, UK
| |
Collapse
|
2
|
Shang S, Li X, Wang H, Zhou Y, Pang K, Li P, Liu X, Zhang M, Li W, Li Q, Chen X. Targeted therapy of kidney disease with nanoparticle drug delivery materials. Bioact Mater 2024; 37:206-221. [PMID: 38560369 PMCID: PMC10979125 DOI: 10.1016/j.bioactmat.2024.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/09/2024] [Accepted: 03/10/2024] [Indexed: 04/04/2024] Open
Abstract
With the development of nanomedicine, nanomaterials have been widely used, offering specific drug delivery to target sites, minimal side effects, and significant therapeutic effects. The kidneys have filtration and reabsorption functions, with various potential target cell types and a complex structural environment, making the strategies for kidney function protection and recovery after injury complex. This also lays the foundation for the application of nanomedicine in kidney diseases. Currently, evidence in preclinical and clinical settings supports the feasibility of targeted therapy for kidney diseases using drug delivery based on nanomaterials. The prerequisite for nanomedicine in treating kidney diseases is the use of carriers with good biocompatibility, including nanoparticles, hydrogels, liposomes, micelles, dendrimer polymers, adenoviruses, lysozymes, and elastin-like polypeptides. These carriers have precise renal uptake, longer half-life, and targeted organ distribution, protecting and improving the efficacy of the drugs they carry. Additionally, attention should also be paid to the toxicity and solubility of the carriers. While the carriers mentioned above have been used in preclinical studies for targeted therapy of kidney diseases both in vivo and in vitro, extensive clinical trials are still needed to ensure the short-term and long-term effects of nano drugs in the human body. This review will discuss the advantages and limitations of nanoscale drug carrier materials in treating kidney diseases, provide a more comprehensive catalog of nanocarrier materials, and offer prospects for their drug-loading efficacy and clinical applications.
Collapse
Affiliation(s)
- Shunlai Shang
- Department of Nephrology, China-Japan Friendship Hospital, Beijing, China
| | - Xiangmeng Li
- Department of Nephrology, China-Japan Friendship Hospital, Beijing, China
- Key Laboratory of Bone Metabolism and Physiology in Chronic Kidney Disease of Hebei Province, China
- Peking Union Medical College, Beijing, China
| | - Haoran Wang
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People’s Liberation Army, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Yena Zhou
- School of Medicine, Nankai University, Tianjin, China
| | - Keying Pang
- College of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, Hebei Province, China
| | - Ping Li
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People’s Liberation Army, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Xiaomin Liu
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People’s Liberation Army, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Min Zhang
- Department of Nephrology, Affiliated Beijing Chaoyang Hospital of Capital Medical University, Beijing, China
| | - Wenge Li
- Department of Nephrology, China-Japan Friendship Hospital, Beijing, China
| | - Qinggang Li
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People’s Liberation Army, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Xiangmei Chen
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People’s Liberation Army, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| |
Collapse
|
3
|
Yu Y, Zhang L, Zhang D, Dai Q, Hou M, Chen M, Gao F, Liu XL. The role of ferroptosis in acute kidney injury: mechanisms and potential therapeutic targets. Mol Cell Biochem 2024:10.1007/s11010-024-05056-3. [PMID: 38943027 DOI: 10.1007/s11010-024-05056-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 06/18/2024] [Indexed: 06/30/2024]
Abstract
Acute kidney injury (AKI) is one of the most common and severe clinical renal syndromes with high morbidity and mortality. Ferroptosis is a form of programmed cell death (PCD), is characterized by iron overload, reactive oxygen species accumulation, and lipid peroxidation. As ferroptosis has been increasingly studied in recent years, it is closely associated with the pathophysiological process of AKI and provides a target for the treatment of AKI. This review offers a comprehensive overview of the regulatory mechanisms of ferroptosis, summarizes its role in various AKI models, and explores its interaction with other forms of cell death, it also presents research on ferroptosis in AKI progression to other diseases. Additionally, the review highlights methods for detecting and assessing AKI through the lens of ferroptosis and describes potential inhibitors of ferroptosis for AKI treatment. Finally, the review presents a perspective on the future of clinical AKI treatment, aiming to stimulate further research on ferroptosis in AKI.
Collapse
Affiliation(s)
- Yanxin Yu
- Yan'an Small Molecule Innovative Drug R&D Engineering Research Center, School of Medicine, Yan'an University, Yan'an, China
| | - Lei Zhang
- Yan'an Small Molecule Innovative Drug R&D Engineering Research Center, School of Medicine, Yan'an University, Yan'an, China
| | - Die Zhang
- Yan'an Small Molecule Innovative Drug R&D Engineering Research Center, School of Medicine, Yan'an University, Yan'an, China
| | - Qiangfang Dai
- Yan'an Small Molecule Innovative Drug R&D Engineering Research Center, School of Medicine, Yan'an University, Yan'an, China
| | - Mingzheng Hou
- Yan'an Small Molecule Innovative Drug R&D Engineering Research Center, School of Medicine, Yan'an University, Yan'an, China
| | - Meini Chen
- Yan'an Small Molecule Innovative Drug R&D Engineering Research Center, School of Medicine, Yan'an University, Yan'an, China
| | - Feng Gao
- Yan'an Small Molecule Innovative Drug R&D Engineering Research Center, School of Medicine, Yan'an University, Yan'an, China
| | - Xiao-Long Liu
- Yan'an Small Molecule Innovative Drug R&D Engineering Research Center, School of Medicine, Yan'an University, Yan'an, China.
| |
Collapse
|
4
|
Huang LF, Ye QR, Chen XC, Huang XR, Zhang QF, Wu CY, Liu HF, Yang C. Research Progress of Drug Delivery Systems Targeting the Kidneys. Pharmaceuticals (Basel) 2024; 17:625. [PMID: 38794195 PMCID: PMC11124227 DOI: 10.3390/ph17050625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/03/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Chronic kidney disease (CKD) affects more than 10% of the global population, and its incidence is increasing, partially due to an increase in the prevalence of disease risk factors. Acute kidney injury (AKI) is an independent risk factor for CKD and end-stage renal disease (ESRD). The pathogenic mechanisms of CKD provide several potential targets for its treatment. However, due to off-target effects, conventional drugs for CKD typically require high doses to achieve adequate therapeutic effects, leading to long-term organ toxicity. Therefore, ideal treatments that completely cure the different types of kidney disease are rarely available. Several approaches for the drug targeting of the kidneys have been explored in drug delivery system research. Nanotechnology-based drug delivery systems have multiple merits, including good biocompatibility, suitable degradability, the ability to target lesion sites, and fewer non-specific systemic effects. In this review, the development, potential, and limitations of low-molecular-weight protein-lysozymes, polymer nanomaterials, and lipid-based nanocarriers as drug delivery platforms for treating AKI and CKD are summarized.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Hua-Feng Liu
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China; (L.-F.H.); (Q.-R.Y.); (X.-C.C.); (X.-R.H.); (Q.-F.Z.); (C.-Y.W.)
| | - Chen Yang
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China; (L.-F.H.); (Q.-R.Y.); (X.-C.C.); (X.-R.H.); (Q.-F.Z.); (C.-Y.W.)
| |
Collapse
|
5
|
Cheng HT, Ngoc Ta YN, Hsia T, Chen Y. A quantitative review of nanotechnology-based therapeutics for kidney diseases. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1953. [PMID: 38500369 DOI: 10.1002/wnan.1953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 03/20/2024]
Abstract
Kidney-specific nanocarriers offer a targeted approach to enhance therapeutic efficacy and reduce off-target effects in renal treatments. The nanocarriers can achieve organ or cell specificity via passive targeting and active targeting mechanisms. Passive targeting capitalizes on the unique physiological traits of the kidney, with factors like particle size, charge, shape, and material properties enhancing organ specificity. Active targeting, on the other hand, achieves renal specificity through ligand-receptor interactions, modifying nanocarriers with molecules, peptides, or antibodies for receptor-mediated delivery. Nanotechnology-enabled therapy targets diseased kidney tissue by modulating podocytes and immune cells to reduce inflammation and enhance tissue repair, or by inhibiting myofibroblast differentiation to mitigate renal fibrosis. This review summarizes the current reports of the drug delivery systems that have been tested in vivo, identifies the nanocarriers that may preferentially accumulate in the kidney, and quantitatively compares the efficacy of various cargo-carrier combinations to outline optimal strategies and future research directions. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
- Hui-Teng Cheng
- Department of Internal Medicine, National Taiwan University Hospital Hsin-Chu Branch, Zhu Bei City, Taiwan
| | - Yen-Nhi Ngoc Ta
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, Taiwan
- International Intercollegiate Ph.D. Program, National Tsing Hua University, Hsinchu, Taiwan
| | - Tiffaney Hsia
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Yunching Chen
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, Taiwan
- Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan
| |
Collapse
|
6
|
L-Serine-Modified Poly-L-Lysine as a Biodegradable Kidney-Targeted Drug Carrier for the Efficient Radionuclide Therapy of Renal Cell Carcinoma. Pharmaceutics 2022; 14:pharmaceutics14091946. [PMID: 36145694 PMCID: PMC9503061 DOI: 10.3390/pharmaceutics14091946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 12/02/2022] Open
Abstract
In the present study, L-serine (Ser)-modified poly-L-lysine (PLL) was synthesized to develop a biodegradable, kidney-targeted drug carrier for efficient radionuclide therapy in renal cell carcinoma (RCC). Ser-PLL was labeled with 111In/90Y via diethylenetriaminepentaacetic acid (DTPA) chelation for biodistribution analysis/radionuclide therapy. In mice, approximately 91% of the total dose accumulated in the kidney 3 h after intravenous injection of 111In-labeled Ser-PLL. Single-photon emission computed tomography/computed tomography (SPECT/CT) imaging showed that 111In-labeled Ser-PLL accumulated in the renal cortex following intravenous injection. An intrarenal distribution study showed that fluorescein isothiocyanate (FITC)-labeled Ser-PLL accumulated mainly in the renal proximal tubules. This pattern was associated with RCC pathogenesis. Moreover, 111In-labeled Ser-PLL rapidly degraded and was eluted along with the low-molecular-weight fractions of the renal homogenate in gel filtration chromatography. Continuous Ser-PLL administration over five days had no significant effect on plasma creatinine, blood urea nitrogen (BUN), or renal histology. In a murine RCC model, kidney tumor growth was significantly inhibited by the administration of the beta-emitter 90Y combined with Ser-PLL. The foregoing results indicate that Ser-PLL is promising as a biodegradable drug carrier for kidney-targeted drug delivery and efficient radionuclide therapy in RCC.
Collapse
|
7
|
Ma T, Zhang Z, Chen Y, Su H, Deng X, Liu X, Fan Y. Delivery of Nitric Oxide in the Cardiovascular System: Implications for Clinical Diagnosis and Therapy. Int J Mol Sci 2021; 22:ijms222212166. [PMID: 34830052 PMCID: PMC8625126 DOI: 10.3390/ijms222212166] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/03/2021] [Accepted: 11/08/2021] [Indexed: 12/12/2022] Open
Abstract
Nitric oxide (NO) is a key molecule in cardiovascular homeostasis and its abnormal delivery is highly associated with the occurrence and development of cardiovascular disease (CVD). The assessment and manipulation of NO delivery is crucial to the diagnosis and therapy of CVD, such as endothelial dysfunction, atherosclerotic progression, pulmonary hypertension, and cardiovascular manifestations of coronavirus (COVID-19). However, due to the low concentration and fast reaction characteristics of NO in the cardiovascular system, clinical applications centered on NO delivery are challenging. In this tutorial review, we first summarized the methods to estimate the in vivo NO delivery process, based on computational modeling and flow-mediated dilation, to assess endothelial function and vulnerability of atherosclerotic plaque. Then, emerging bioimaging technologies that have the potential to experimentally measure arterial NO concentration were discussed, including Raman spectroscopy and electrochemical sensors. In addition to diagnostic methods, therapies aimed at controlling NO delivery to regulate CVD were reviewed, including the NO release platform to treat endothelial dysfunction and atherosclerosis and inhaled NO therapy to treat pulmonary hypertension and COVID-19. Two potential methods to improve the effectiveness of existing NO therapy were also discussed, including the combination of NO release platform and computational modeling, and stem cell therapy, which currently remains at the laboratory stage but has clinical potential for the treatment of CVD.
Collapse
|
8
|
Mutchler SM, Hasan M, Kohan DE, Kleyman TR, Tan RJ. Deletion of the Gamma Subunit of ENaC in Endothelial Cells Does Not Protect against Renal Ischemia Reperfusion Injury. Int J Mol Sci 2021; 22:ijms222010914. [PMID: 34681576 PMCID: PMC8535410 DOI: 10.3390/ijms222010914] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/01/2021] [Accepted: 10/04/2021] [Indexed: 11/16/2022] Open
Abstract
Acute kidney injury due to renal ischemia-reperfusion injury (IRI) may lead to chronic or end stage kidney disease. A greater understanding of the cellular mechanisms underlying IRI are required to develop therapeutic options aimed at limiting or reversing damage from IRI. Prior work has shown that deletion of the α subunit of the epithelial Na+ channel (ENaC) in endothelial cells protects from IRI by increasing the availability of nitric oxide. While canonical ENaCs consist of an α, β, and γ subunit, there is evidence of non-canonical ENaC expression in endothelial cells involving the α subunit. We therefore tested whether the deletion of the γ subunit of ENaC also protects mice from IRI to differentiate between these channel configurations. Mice with endothelial-specific deletion of the γ subunit and control littermates were subjected to unilateral renal artery occlusion followed by 48 h of reperfusion. No significant difference was noted in injury between the two groups as assessed by serum creatinine and blood urea nitrogen, levels of specific kidney injury markers, and histological examination. While deletion of the γ subunit did not alter infiltration of immune cells or cytokine message, it was associated with an increase in levels of total and phosphorylated endothelial nitric oxide synthase (eNOS) in the injured kidneys. Our studies demonstrate that even though deletion of the γ subunit of ENaC may allow for greater activation of eNOS, this is not sufficient to prevent IRI, suggesting the protective effects of α subunit deletion may be due, in part, to other mechanisms.
Collapse
Affiliation(s)
- Stephanie M. Mutchler
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA; (S.M.M.); (R.J.T.)
| | - Mahpara Hasan
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA;
| | - Donald E. Kohan
- Department of Medicine, University of Utah, Salt Lake City, UT 84112, USA;
| | - Thomas R. Kleyman
- Departments of Medicine, Cell Biology, and Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Correspondence:
| | - Roderick J. Tan
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA; (S.M.M.); (R.J.T.)
| |
Collapse
|
9
|
Wu M, Lu Z, Wu K, Nam C, Zhang L, Guo J. Recent advances in the development of nitric oxide-releasing biomaterials and their application potentials in chronic wound healing. J Mater Chem B 2021; 9:7063-7075. [PMID: 34109343 DOI: 10.1039/d1tb00847a] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Chronic wounds, such as pressure ulcers, vascular ulcers and diabetic foot ulcers (DFUs), often stay in a state of pathological inflammation and suffer from persistent infection, excess inflammation, and hypoxia, thus they are difficult to be healed. Nitric oxide (NO) plays a critical role in the regulation of various wound healing processes, including inflammatory response, cell proliferation, collagen formation, antimicrobial action and angiogenesis. The important role of NO in wound healing attracts intensive research focus on NO-based wound healing therapy. However, the application of NO gas therapy needs to resolve the intrinsic shortcomings of gas therapy, such as short storage and release times as well as temporal and spatial uncontrollability of the release mode. So far, various types of NO donors, including organic nitrates (RONO2), nitrites (RONO), S-nitrosothiols (RSNOs), nitrosamines, N-diazeniumdiolates (NONOates), and metal-NO complexes, have been developed to solidify gaseous NO and they were further encapsulated in or conjugated onto a variety of biomaterial vectors to develop NO delivery systems. NO synthetic enzyme mimics to catalyze the production and release of NO from l-arginine have also been developed. This paper reviews recent advances of NO donors, biomaterial vectors, thus-formed NO delivery systems, as well as recently emerged NO synthetic enzyme mimics. Furthermore, this review also summarizes the functions of NO releasing biomaterials that would benefit chronic wound healing, including antibacterial properties and the promotion of angiogenesis, as well as the convenient combination of light/thermal induced NO release with light/thermal therapies, and the prospects for future developing trends in this area.
Collapse
Affiliation(s)
- Min Wu
- Department of Histology and Embryology, NMPA Key Laboratory for Safety Evaluation of Cosmetics, School of Basic Medical Sciences, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, China.
| | - Zhihui Lu
- Department of Histology and Embryology, NMPA Key Laboratory for Safety Evaluation of Cosmetics, School of Basic Medical Sciences, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, China.
| | - Keke Wu
- Department of Histology and Embryology, NMPA Key Laboratory for Safety Evaluation of Cosmetics, School of Basic Medical Sciences, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, China.
| | - Changwoo Nam
- Department of Organic Materials and Fiber Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896, Republic of Korea.
| | - Lin Zhang
- Department of Histology and Embryology, NMPA Key Laboratory for Safety Evaluation of Cosmetics, School of Basic Medical Sciences, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, China.
| | - Jinshan Guo
- Department of Histology and Embryology, NMPA Key Laboratory for Safety Evaluation of Cosmetics, School of Basic Medical Sciences, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, China.
| |
Collapse
|
10
|
Naito Y, Uchida K, Toyokuni S. The new era for redox research. Free Radic Res 2021; 54:787-789. [PMID: 32450729 DOI: 10.1080/10715762.2020.1774177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Yuji Naito
- Department of Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Koji Uchida
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Shinya Toyokuni
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
11
|
Huang X, Ma Y, Li Y, Han F, Lin W. Targeted Drug Delivery Systems for Kidney Diseases. Front Bioeng Biotechnol 2021; 9:683247. [PMID: 34124026 PMCID: PMC8193852 DOI: 10.3389/fbioe.2021.683247] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 04/27/2021] [Indexed: 12/12/2022] Open
Abstract
Kidney diseases have gradually become a global health burden. Along with the development of nanotechnology, many hybrids or nanomaterials have been utilized to promote treatment efficiency with negligible side effects. These therapeutic agents have been successfully applied in many fields. In particular, some efforts have also been made to ameliorate the treatment of kidney diseases through targeted delivery nanomaterials. Though most of the delivery systems have not yet been transmitted into clinical use or even still at an early stage, they have shown great potential in carrying immunosuppressants like tacrolimus and triptolide, antioxidants, or siRNAs. Excitingly, some of them have achieved significant treatment effectiveness and reduced systemic side effect in kidney disease animal models. Here, we have reviewed the recent advances and presented nanotherapeutic devices designed for kidney targeted delivery.
Collapse
Affiliation(s)
- Xiaohan Huang
- Key Laboratory of Kidney Disease Prevention and Control Technology, Kidney Disease Center, Zhejiang University School of Medicine, The First Affiliated Hospital, Institute of Nephrology, Zhejiang University, Hangzhou, China
| | - Yanhong Ma
- Key Laboratory of Kidney Disease Prevention and Control Technology, Kidney Disease Center, Zhejiang University School of Medicine, The First Affiliated Hospital, Institute of Nephrology, Zhejiang University, Hangzhou, China
| | - Yangyang Li
- Key Laboratory of Women's Reproductive Health Research of Zhejiang Province, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Fei Han
- Key Laboratory of Kidney Disease Prevention and Control Technology, Kidney Disease Center, Zhejiang University School of Medicine, The First Affiliated Hospital, Institute of Nephrology, Zhejiang University, Hangzhou, China
| | - Weiqiang Lin
- Department of Nephrology, The Fourth Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Jinhua, China
| |
Collapse
|
12
|
Caminade AM, Hameau A, Turrin CO, Laurent R, Majoral JP. Dendritic metal complexes for bioimaging. Recent advances. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213739] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|