1
|
Safarov R, Fedotova O, Uvarova A, Gordienko M, Menshutina N. Review of Intranasal Active Pharmaceutical Ingredient Delivery Systems. Pharmaceuticals (Basel) 2024; 17:1180. [PMID: 39338342 PMCID: PMC11435088 DOI: 10.3390/ph17091180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/30/2024] [Accepted: 09/05/2024] [Indexed: 09/30/2024] Open
Abstract
In recent decades, there has been an increased interest in the development of intranasal delivery systems for active pharmaceutical ingredients (APIs) not only for treating local nasal diseases but also for treating systemic diseases, central nervous system (CNS) disorders, and vaccine delivery. The nasal cavity possesses a unique set of anatomical characteristics for delivering active pharmaceutical ingredients, but there are several limitations that recent research in the field of the intranasal administration of APIs aims to overcome. For the effective delivery of nasal preparations, active pharmaceutical ingredients are incorporated into various micro- and nanosystems. Some of the most commonly encountered API delivery systems in the scientific literature include liposomal systems, polymer particles with mucoadhesive properties, in situ gels, nano- and microemulsions, and solid lipid particles. This article provides a review of research on the development of nasal preparations for treating local nasal cavity diseases (in particular, for antibiotic delivery), systemic diseases (analgesics, drugs for cardiovascular diseases, antiviral and antiemetic drugs), CNS disorders (Alzheimer's disease, Parkinson's disease, epilepsy, schizophrenia, depression), and vaccine delivery. The literature data show that active research is underway to reformulate drugs of various pharmacotherapeutic groups into a nasal form.
Collapse
Affiliation(s)
| | - Olga Fedotova
- Department of Chemical and Pharmaceutical Engineering, Mendeleev University of Chemical Technology of Russia, Miusskaya pl. 9, 125047 Moscow, Russia (A.U.)
| | | | | | | |
Collapse
|
2
|
Sheida A, Farshadi M, Mirzaei A, Najjar Khalilabad S, Zarepour F, Taghavi SP, Hosseini Khabr MS, Ravaei F, Rafiei S, Mosadeghi K, Yazdani MS, Fakhraie A, Ghattan A, Zamani Fard MM, Shahyan M, Rafiei M, Rahimian N, Talaei Zavareh SA, Mirzaei H. Potential of Natural Products in the Treatment of Glioma: Focus on Molecular Mechanisms. Cell Biochem Biophys 2024:10.1007/s12013-024-01447-x. [PMID: 39150676 DOI: 10.1007/s12013-024-01447-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2024] [Indexed: 08/17/2024]
Abstract
Despite the waning of traditional treatments for glioma due to possible long-term issues, the healing possibilities of substances derived from nature have been reignited in the scientific community. These natural substances, commonly found in fruits and vegetables, are considered potential alternatives to pharmaceuticals, as they have been shown in prior research to impact pathways surrounding cancer progression, metastases, invasion, and resistance. This review will explore the supposed molecular mechanisms of different natural components, such as berberine, curcumin, coffee, resveratrol, epigallocatechin-3-gallate, quercetin, tanshinone, silymarin, coumarin, and lycopene, concerning glioma treatment. While the benefits of a balanced diet containing these compounds are widely recognized, there is considerable scope for investigating the efficacy of these natural products in treating glioma.
Collapse
Affiliation(s)
- Amirhossein Sheida
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | | | - Amirhossein Mirzaei
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shakiba Najjar Khalilabad
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Zarepour
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Seyed Pouya Taghavi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Maryam Sadat Hosseini Khabr
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Fatemeh Ravaei
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Sara Rafiei
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences (IUMS), Tehran, Iran
- Department of Internal Medicine, School of Medicine, Firoozgar Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Kimia Mosadeghi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Sepehr Yazdani
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Ali Fakhraie
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Alireza Ghattan
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Masoud Zamani Fard
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Maryam Shahyan
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Moein Rafiei
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Neda Rahimian
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences (IUMS), Tehran, Iran.
- Department of Internal Medicine, School of Medicine, Firoozgar Hospital, Iran University of Medical Sciences, Tehran, Iran.
| | | | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
3
|
Mendanha D, Casanova MR, Gimondi S, Ferreira H, Neves NM. Microfluidic-Derived Docosahexaenoic Acid Liposomes for Targeting Glioblastoma and Its Inflammatory Microenvironment. ACS APPLIED MATERIALS & INTERFACES 2024; 16:40543-40554. [PMID: 39042828 PMCID: PMC11310905 DOI: 10.1021/acsami.4c01368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/11/2024] [Accepted: 07/12/2024] [Indexed: 07/25/2024]
Abstract
Glioblastoma (GBM) is the most common malignant primary brain tumor, characterized by limited treatment options and a poor prognosis. Its aggressiveness is attributed not only to the uncontrolled proliferation and invasion of tumor cells but also to the complex interplay between these cells and the surrounding microenvironment. Within the tumor microenvironment, an intricate network of immune cells, stromal cells, and various signaling molecules creates a pro-inflammatory milieu that supports tumor growth and progression. Docosahexaenoic acid (DHA), an essential ω3 polyunsaturated fatty acid for brain function, is associated with anti-inflammatory and anticarcinogenic properties. Therefore, in this work, DHA liposomes were synthesized using a microfluidic platform to target and reduce the inflammatory environment of GBM. The liposomes were rapidly taken up by macrophages in a time-dependent manner without causing cytotoxicity. Moreover, DHA liposomes successfully downregulated the expression of inflammatory-associated genes (IL-6; IL-1β; TNFα; NF-κB, and STAT-1) and the secretion of key cytokines (IL-6 and TNFα) in stimulated macrophages and GBM cells. Conversely, no significant differences were observed in the expression of IL-10, an anti-inflammatory gene expressed in alternatively activated macrophages. Additionally, DHA liposomes were found to be more efficient in regulating the inflammatory profile of these cells compared with a free formulation of DHA. The nanomedicine platform established in this work opens new opportunities for developing liposomes incorporating DHA to target GBM and its inflammatory milieu.
Collapse
Affiliation(s)
- Daniel Mendanha
- 3B’s
Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables
and Biomimetics, University of Minho, Headquarters of the European Institute
of Excellence on Tissue Engineering and Regenerative Medicine, AvePark,
Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3B’s-PT
Government Associate Laboratory, 4805-017 Barco, Braga/Guimarães, Portugal
| | - Marta R. Casanova
- 3B’s
Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables
and Biomimetics, University of Minho, Headquarters of the European Institute
of Excellence on Tissue Engineering and Regenerative Medicine, AvePark,
Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3B’s-PT
Government Associate Laboratory, 4805-017 Barco, Braga/Guimarães, Portugal
| | - Sara Gimondi
- 3B’s
Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables
and Biomimetics, University of Minho, Headquarters of the European Institute
of Excellence on Tissue Engineering and Regenerative Medicine, AvePark,
Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3B’s-PT
Government Associate Laboratory, 4805-017 Barco, Braga/Guimarães, Portugal
| | - Helena Ferreira
- 3B’s
Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables
and Biomimetics, University of Minho, Headquarters of the European Institute
of Excellence on Tissue Engineering and Regenerative Medicine, AvePark,
Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3B’s-PT
Government Associate Laboratory, 4805-017 Barco, Braga/Guimarães, Portugal
| | - Nuno M. Neves
- 3B’s
Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables
and Biomimetics, University of Minho, Headquarters of the European Institute
of Excellence on Tissue Engineering and Regenerative Medicine, AvePark,
Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3B’s-PT
Government Associate Laboratory, 4805-017 Barco, Braga/Guimarães, Portugal
| |
Collapse
|
4
|
Bonaccorso A, Ortis A, Musumeci T, Carbone C, Hussain M, Di Salvatore V, Battiato S, Pappalardo F, Pignatello R. Nose-to-Brain Drug Delivery and Physico-Chemical Properties of Nanosystems: Analysis and Correlation Studies of Data from Scientific Literature. Int J Nanomedicine 2024; 19:5619-5636. [PMID: 38882536 PMCID: PMC11179666 DOI: 10.2147/ijn.s452316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 03/12/2024] [Indexed: 06/18/2024] Open
Abstract
Background In the last few decades, nose-to-brain delivery has been investigated as an alternative route to deliver molecules to the Central Nervous System (CNS), bypassing the Blood-Brain Barrier. The use of nanotechnological carriers to promote drug transfer via this route has been widely explored. The exact mechanisms of transport remain unclear because different pathways (systemic or axonal) may be involved. Despite the large number of studies in this field, various aspects still need to be addressed. For example, what physicochemical properties should a suitable carrier possess in order to achieve this goal? To determine the correlation between carrier features (eg, particle size and surface charge) and drug targeting efficiency percentage (DTE%) and direct transport percentage (DTP%), correlation studies were performed using machine learning. Methods Detailed analysis of the literature from 2010 to 2021 was performed on Pubmed in order to build "NANOSE" database. Regression analyses have been applied to exploit machine-learning technology. Results A total of 64 research articles were considered for building the NANOSE database (102 formulations). Particle-based formulations were characterized by an average size between 150-200 nm and presented a negative zeta potential (ZP) from -10 to -25 mV. The most general-purpose model for the regression of DTP/DTE values is represented by Decision Tree regression, followed by K-Nearest Neighbors Regressor (KNeighbor regression). Conclusion A literature review revealed that nose-to-brain delivery has been widely investigated in neurodegenerative diseases. Correlation studies between the physicochemical properties of nanosystems (mean size and ZP) and DTE/DTP parameters suggest that ZP may be more significant than particle size for DTP/DTE predictability.
Collapse
Affiliation(s)
- Angela Bonaccorso
- Department of Drug and Health Sciences, University of Catania, Catania, Italy
- NANOMED–Research Centre for Nanomedicine and Pharmaceutical Nanotechnology, University of Catania, Catania, 95125, Italy
| | - Alessandro Ortis
- Department of Mathematics and Computer Science, University of Catania, Catania, Italy
| | - Teresa Musumeci
- Department of Drug and Health Sciences, University of Catania, Catania, Italy
- NANOMED–Research Centre for Nanomedicine and Pharmaceutical Nanotechnology, University of Catania, Catania, 95125, Italy
| | - Claudia Carbone
- Department of Drug and Health Sciences, University of Catania, Catania, Italy
- NANOMED–Research Centre for Nanomedicine and Pharmaceutical Nanotechnology, University of Catania, Catania, 95125, Italy
| | - Mazhar Hussain
- Department of Mathematics and Computer Science, University of Catania, Catania, Italy
| | | | - Sebastiano Battiato
- Department of Mathematics and Computer Science, University of Catania, Catania, Italy
| | - Francesco Pappalardo
- Department of Drug and Health Sciences, University of Catania, Catania, Italy
- NANOMED–Research Centre for Nanomedicine and Pharmaceutical Nanotechnology, University of Catania, Catania, 95125, Italy
| | - Rosario Pignatello
- Department of Drug and Health Sciences, University of Catania, Catania, Italy
- NANOMED–Research Centre for Nanomedicine and Pharmaceutical Nanotechnology, University of Catania, Catania, 95125, Italy
| |
Collapse
|
5
|
Huang L, Huang XH, Yang X, Hu JQ, Zhu YZ, Yan PY, Xie Y. Novel nano-drug delivery system for natural products and their application. Pharmacol Res 2024; 201:107100. [PMID: 38341055 DOI: 10.1016/j.phrs.2024.107100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/28/2024] [Accepted: 02/05/2024] [Indexed: 02/12/2024]
Abstract
The development of natural products for potential new drugs faces obstacles such as unknown mechanisms, poor solubility, and limited bioavailability, which limit the broadened applicability of natural products. Therefore, there is a need for advanced pharmaceutical formulations of active compounds or natural products. In recent years, novel nano-drug delivery systems (NDDS) for natural products, including nanosuspensions, nanoliposomes, micelle, microemulsions/self-microemulsions, nanocapsules, and solid lipid nanoparticles, have been developed to improve solubility, bioavailability, and tissue distribution as well as for prolonged retention and enhanced permeation. Here, we updated the NDDS delivery systems used for natural products with the potential enhancement in therapeutic efficiency observed with nano-delivery systems.
Collapse
Affiliation(s)
- Li Huang
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, China
| | - Xue-Hua Huang
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, China
| | - Xi Yang
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, China
| | - Jia-Qin Hu
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, China
| | - Yi-Zhun Zhu
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, China
| | - Pei-Yu Yan
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, China.
| | - Ying Xie
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.
| |
Collapse
|
6
|
Saghari Y, Movahedi M, Tebianian M, Entezari M. The Neuroprotective Effects of Curcumin Nanoparticles on The Cerebral Ischemia-Reperfusion Injury in The Rats-The Roles of The Protein Kinase RNA-Like ER Kinase/Extracellular Signal-Regulated Kinase and Transcription Factor EB proteins. CELL JOURNAL 2024; 26:62-69. [PMID: 38351730 PMCID: PMC10864777 DOI: 10.22074/cellj.2023.1995696.1257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 10/31/2023] [Accepted: 11/11/2023] [Indexed: 02/18/2024]
Abstract
OBJECTIVE Reduction of cerebral ischemia-reperfusion injury (IRI)/re-oxygenation injury, is defined as the paradoxical exacerbation of the cellular dysfunction and death, following restoration of the blood flow to previously ischemic tissues. The re-establishment of blood flow is essential to salvage the ischemic tissues. As a result, the treatment of IRI with novel therapies, which have fewer side effects, are of great importance. Therefore, this study aimed to investigate the effects of curcumin nanoparticle (CN) pre-treatment on the cerebral I/R rat model. MATERIALS AND METHODS In this experimental study, CN was administered to rats orally five days before the bilateral common carotid artery occlusion (BCCAO) and continued for three days. The intensity of oxidative stress, the activities of antioxidant enzymes, glutathione (GSH) content, the activity of mitochondrial enzymes, including succinate dehydrogenase (SDH), malate dehydrogenase (MDH) and lactate dehydrogenase (LDH), curcumin bioavailability, pERK/ERK expression ratio and TFEB protein were studied. Data analysis was performed using Graphpad Prism V.8 software, one-way analysis of variance (ANOVA) with the statistical package for the social sciences (SPSS V.26 software). RESULTS Cerebral IRI-damage significantly increased the oxidative stress (P=0.0008) and decreased the activity of the antioxidant enzymes including catalase (CAT) (P<0.001), super oxide dismutase (SOD) (P<0.001), reduced GSH (P<0.001), mitochondrial enzymes, pERK/ERK expression ratio (P=0.002) and TEFB protein (P=0.005) in rats' brains. In addition, the pre-treatment of the rats with CN resulted in a decrease in the reactive oxygen species (ROS), and an increase in the activities of antioxidants and mitochondrial enzymes. This in turn up-regulated the pERK/ERK expression ratio and TEFB expression. CONCLUSION CN has neuroprotective effects on the cerebral IRI condition due to its antioxidant properties and is able to overexpress the pERK and TFEB proteins; thus, it can be considered as a suitable treatment option during and after the incidence of stroke.
Collapse
Affiliation(s)
- Yalda Saghari
- Department of Biochemistry, Faculty of Biological Sciences, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Monireh Movahedi
- Department of Biochemistry, Faculty of Biological Sciences, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Majid Tebianian
- Department of Biotechnology, Razi Vaccine and Serum Research Institute, Karaj, Tehran, Iran
| | - Maliheh Entezari
- Department of Genetics, Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
7
|
He YQ, Zhou CC, Jiang SG, Lan WQ, Zhang F, Tao X, Chen WS. Natural products for the treatment of chemotherapy-related cognitive impairment and prospects of nose-to-brain drug delivery. Front Pharmacol 2024; 15:1292807. [PMID: 38348396 PMCID: PMC10859466 DOI: 10.3389/fphar.2024.1292807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 01/15/2024] [Indexed: 02/15/2024] Open
Abstract
Chemotherapy-related cognitive deficits (CRCI) as one of the common adverse drug reactions during chemotherapy that manifest as memory, attention, and executive function impairments. However, there are still no effective pharmacological therapies for the treatment of CRCI. Natural compounds have always inspired drug development and numerous natural products have shown potential therapeutic effects on CRCI. Nevertheless, improving the brain targeting of natural compounds in the treatment of CRCI is still a problem to be overcome at present and in the future. Accumulated evidence shows that nose-to-brain drug delivery may be an excellent carrier for natural compounds. Therefore, we reviewed natural products with potential anti-CRCI, focusing on the signaling pathway of these drugs' anti-CRCI effects, as well as the possibility and prospect of treating CRCI with natural compounds based on nose-to-brain drug delivery in the future. In conclusion, this review provides new insights to further explore natural products in the treatment of CRCI.
Collapse
Affiliation(s)
- Yu-Qiong He
- Institute of Chinese Materia Madica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Can-Can Zhou
- Department of Pharmacy, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Sheng-Gui Jiang
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Wen-Qian Lan
- Institute of Chinese Materia Madica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Feng Zhang
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Xia Tao
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Wan-Sheng Chen
- Institute of Chinese Materia Madica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai, China
| |
Collapse
|
8
|
Kumar N, Khurana B, Arora D. Nose-to-brain drug delivery for the treatment of glioblastoma multiforme: nanotechnological interventions. Pharm Dev Technol 2023; 28:1032-1047. [PMID: 37975846 DOI: 10.1080/10837450.2023.2285506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 11/14/2023] [Indexed: 11/19/2023]
Abstract
Glioblastoma multiforme (GBM) is the most aggressive malignant brain tumor with a short survival rate. Extensive research is underway for the last two decades to find an effective treatment for GBM but the tortuous pathophysiology, development of chemoresistance, and presence of BBB are the major challenges, prompting scientists to look for alternative targets and delivery strategies. Therefore, the nose to brain delivery emerged as an unorthodox and non-invasive route, which delivers the drug directly to the brain via the olfactory and trigeminal pathways and also bypasses the BBB and hepatic metabolism of the drug. However, mucociliary clearance, low administration volume, and less permeability of nasal mucosa are the obstacles retrenching the brain drug concentration. Thus, nanocarrier delivery through this route may conquer these limitations because of their unique surface characteristics and smaller size. In this review, we have emphasized the advantages and limitations of nanocarrier technologies such as polymeric, lipidic, inorganic, and miscellaneous nanoparticles used for nose-to-brain drug delivery against GBM in the past 10 years. Furthermore, recent advances, patents, and clinical trials are highlighted. However, most of these studies are in the early stages, so translating their outcomes into a marketed formulation would be a milestone in the better progression and survival of glioma patients.
Collapse
Affiliation(s)
- Nitish Kumar
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab, India
| | - Bharat Khurana
- Department of Pharmaceutics, Adarsh Vijendra Institute of Pharmaceutical Sciences, Shobhit University, Gangoh, Uttar Pradesh, India
| | - Daisy Arora
- Department of Pharmacy, Panipat Institute of Engineering and Technology, Panipat, Haryana, India
| |
Collapse
|
9
|
Godse S, Zhou L, Sakshi S, Singla B, Singh UP, Kumar S. Nanocarrier-mediated curcumin delivery: An adjuvant strategy for CNS disease treatment. Exp Biol Med (Maywood) 2023; 248:2151-2166. [PMID: 38058006 PMCID: PMC10800127 DOI: 10.1177/15353702231211863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023] Open
Abstract
Neurological disorders are a major global challenge, which counts for a substantial slice of disease burden around the globe. In these, the challenging landscape of central nervous system (CNS) diseases, including Alzheimer's disease, Parkinson's disease, multiple sclerosis, and neuro-AIDS, demands innovative and novel therapeutic approaches. Curcumin, a versatile natural compound with antioxidant and anti-inflammatory properties, shows great potential as a CNS adjuvant therapy. However, its limited bioavailability and suboptimal permeability to the blood-brain barrier (BBB) hamper the therapeutic efficacy of curcumin. This review explores how nanocarrier facilitates curcumin delivery, which has shown therapeutic efficacy for various non-CNS diseases, for example, cancers, and can also revolutionize the treatment outcomes in patients with CNS diseases. Toward this, intranasal administration of curcumin as a non-invasive CNS drug delivery route can also aid its therapeutic outcomes as an adjuvant therapy for CNS diseases. Intranasal delivery of nanocarriers with curcumin improves the bioavailability of curcumin and its BBB permeability, which is instrumental in promoting its therapeutic potential. Furthermore, curcumin's inhibitory effect on efflux transporters will help to enhance the BBB and cellular permeability of various CNS drugs. The therapeutic potential of curcumin as an adjuvant has the potential to yield synergistic effects with CNS drugs and will help to reduce CNS drug doses and improve their safety profile. Taken together, this approach holds a promise for reshaping CNS disease management by maximizing curcumin's and other drugs' therapeutic benefits.
Collapse
Affiliation(s)
- Sandip Godse
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Lina Zhou
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Swarna Sakshi
- Alabama College of Osteopathic Medicine, Dothan, AL 36303, USA
| | - Bhupesh Singla
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Udai P Singh
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Santosh Kumar
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|
10
|
Attar ES, Chaudhari VH, Deokar CG, Dyawanapelly S, Devarajan PV. Nano Drug Delivery Strategies for an Oral Bioenhanced Quercetin Formulation. Eur J Drug Metab Pharmacokinet 2023; 48:495-514. [PMID: 37523008 DOI: 10.1007/s13318-023-00843-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2023] [Indexed: 08/01/2023]
Abstract
Quercetin, a naturally occurring flavonoid, has been credited with a wide spectrum of therapeutic properties. However, the oral use of quercetin is limited due to its poor water solubility, low bioavailability, rapid metabolism, and rapid plasma clearance. Quercetin has been studied extensively when used with various nanodelivery systems for enhancing quercetin bioavailability. To enhance its oral bioavailability and efficacy, various quercetin-loaded nanosystems such as nanosuspensions, polymer nanoparticles, metal nanoparticles, emulsions, liposomes or phytosomes, micelles, solid lipid nanoparticles, and other lipid-based nanoparticles have been investigated in in-vitro cells, in-vivo animal models, and humans. Among the aforementioned nanosystems, quercetin phytosomes are attracting more interest and are available on the market. The present review covers insights into the possibilities of harnessing quercetin for several therapeutic applications and a special focus on anticancer applications and the clinical benefits of nanoquercetin formulations.
Collapse
Affiliation(s)
- Esha S Attar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, N.P. Marg, Matunga, Mumbai, Maharashtra, 400019, India
| | - Vanashree H Chaudhari
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, N.P. Marg, Matunga, Mumbai, Maharashtra, 400019, India
| | - Chaitanya G Deokar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, N.P. Marg, Matunga, Mumbai, Maharashtra, 400019, India
| | - Sathish Dyawanapelly
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, N.P. Marg, Matunga, Mumbai, Maharashtra, 400019, India
| | - Padma V Devarajan
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, N.P. Marg, Matunga, Mumbai, Maharashtra, 400019, India.
| |
Collapse
|
11
|
Vanbilloen WJF, Rechberger JS, Anderson JB, Nonnenbroich LF, Zhang L, Daniels DJ. Nanoparticle Strategies to Improve the Delivery of Anticancer Drugs across the Blood-Brain Barrier to Treat Brain Tumors. Pharmaceutics 2023; 15:1804. [PMID: 37513992 PMCID: PMC10383584 DOI: 10.3390/pharmaceutics15071804] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/14/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023] Open
Abstract
Primary brain and central nervous system (CNS) tumors are a diverse group of neoplasms that occur within the brain and spinal cord. Although significant advances in our understanding of the intricate biological underpinnings of CNS neoplasm tumorigenesis and progression have been made, the translation of these discoveries into effective therapies has been stymied by the unique challenges presented by these tumors' exquisitely sensitive location and the body's own defense mechanisms (e.g., the brain-CSF barrier and blood-brain barrier), which normally protect the CNS from toxic insult. These barriers effectively prevent the delivery of therapeutics to the site of disease. To overcome these obstacles, new methods for therapeutic delivery are being developed, with one such approach being the utilization of nanoparticles. Here, we will cover the current state of the field with a particular focus on the challenges posed by the BBB, the different nanoparticle classes which are under development for targeted CNS tumor therapeutics delivery, and strategies which have been developed to bypass the BBB and enable effective therapeutics delivery to the site of disease.
Collapse
Affiliation(s)
- Wouter J. F. Vanbilloen
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA (J.S.R.)
- Department of Neurology, Elisabeth-Tweesteden Hospital, 5022 GC Tilburg, The Netherlands
| | - Julian S. Rechberger
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA (J.S.R.)
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Jacob B. Anderson
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA (J.S.R.)
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
- Medical Scientist Training Program, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Leo F. Nonnenbroich
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA (J.S.R.)
- Hopp Children’s Cancer Center Heidelberg (KiTZ), 69120 Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), 69120 Heidelberg, Germany
| | - Liang Zhang
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA (J.S.R.)
| | - David J. Daniels
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA (J.S.R.)
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
12
|
Du L, Chen L, Liu F, Wang W, Huang H. Nose-to-brain drug delivery for the treatment of CNS disease: New development and strategies. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 171:255-297. [PMID: 37783558 DOI: 10.1016/bs.irn.2023.05.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Delivering drugs to the brain has always been a challenging task due to the restrictive properties of the blood-brain barrier (BBB). Intranasal delivery is therefore emerging as an efficient method of administration, making it easy to self-administration and thus provides a non-invasive and painless alternative to oral and parenteral administration for delivering therapeutics to the central nervous system (CNS). Recently, drug formulations have been developed to further enhance this nose-to-brain transport, primarily using nanoparticles (NPs). Therefore, the purposes of this review are to highlight and describe the anatomical basis of nasal-brain pathway and provide an overview of drug formulations and current drugs for intranasal administration in CNS disease.
Collapse
Affiliation(s)
- Li Du
- Biotherapeutic Research Center, Beijing Tsinghua Changgung Hospital, Beijing, P.R. China
| | - Lin Chen
- Department of Neurosurgery, Dongzhimen Hospital of Beijing University of Traditional Chinese Medicine, Beijing, P.R. China
| | - Fangfang Liu
- Department of Neurology, Jilin City Central Hospital, Jilin, China
| | - Wenya Wang
- Biotherapeutic Research Center, Beijing Tsinghua Changgung Hospital, Beijing, P.R. China,.
| | - Hongyun Huang
- Institute of Neurorestoratology, Third Medical Center of General Hospital of PLA, Beijing, P.R. China; Beijing Hongtianji Neuroscience Academy, Beijing, P.R. China.
| |
Collapse
|
13
|
Gadhave D, Khot S, Tupe S, Shinde M, Tagalpallewar A, Gorain B, Kokare C. Nose-to-brain delivery of octreotide acetate in situ gel for pituitary adenoma: Pharmacological and in vitro cytotoxicity studies. Int J Pharm 2022; 629:122372. [DOI: 10.1016/j.ijpharm.2022.122372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 11/07/2022]
|
14
|
Tang X, Xiong K, Wassie T, Wu X. Curcumin and Intestinal Oxidative Stress of Pigs With Intrauterine Growth Retardation: A Review. Front Nutr 2022; 9:847673. [PMID: 35571913 PMCID: PMC9101057 DOI: 10.3389/fnut.2022.847673] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 03/15/2022] [Indexed: 12/12/2022] Open
Abstract
Intrauterine growth restriction (IUGR) refers to the slow growth and development of a mammalian embryo/fetus or fetal organs during pregnancy, which is popular in swine production and causes considerable economic losses. Nutritional strategies have been reported to improve the health status and growth performance of IUGR piglets, among which dietary curcumin supplementation is an efficient alternative. Curcumin is a natural lipophilic polyphenol derived from the rhizome of Curcuma longa with many biological activities. It has been demonstrated that curcumin promotes intestinal development and alleviates intestinal oxidative damage. However, due to its low bioavailability caused by poor solubility, chemical instability, and rapid degradation, the application of curcumin in animal production is rare. In this manuscript, the structural-activity relationship to enhance the bioavailability, and the nutritional effects of curcumin on intestinal health from the aspect of protecting piglets from IUGR associated intestinal oxidative damage were summarized to provide new insight into the application of curcumin in animal production.
Collapse
Affiliation(s)
- Xiaopeng Tang
- State Engineering Technology Institute for Karst Desertfication Control, School of Karst Science, Guizhou Normal University, Guiyang, China
| | - Kangning Xiong
- State Engineering Technology Institute for Karst Desertfication Control, School of Karst Science, Guizhou Normal University, Guiyang, China
| | - Teketay Wassie
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Xin Wu
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- Laboratory of Nutrient Resources and Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| |
Collapse
|
15
|
Zussy C, John R, Urgin T, Otaegui L, Vigor C, Acar N, Canet G, Vitalis M, Morin F, Planel E, Oger C, Durand T, Rajshree SL, Givalois L, Devarajan PV, Desrumaux C. Intranasal Administration of Nanovectorized Docosahexaenoic Acid (DHA) Improves Cognitive Function in Two Complementary Mouse Models of Alzheimer’s Disease. Antioxidants (Basel) 2022; 11:antiox11050838. [PMID: 35624701 PMCID: PMC9137520 DOI: 10.3390/antiox11050838] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/13/2022] [Accepted: 04/20/2022] [Indexed: 02/04/2023] Open
Abstract
Polyunsaturated fatty acids (PUFAs) are a class of fatty acids that are closely associated with the development and function of the brain. The most abundant PUFA is docosahexaenoic acid (DHA, 22:6 n-3). In humans, low plasmatic concentrations of DHA have been associated with impaired cognitive function, low hippocampal volumes, and increased amyloid deposition in the brain. Several studies have reported reduced brain DHA concentrations in Alzheimer’s disease (AD) patients’ brains. Although a number of epidemiological studies suggest that dietary DHA consumption may protect the elderly from developing cognitive impairment or dementia including AD, several review articles report an inconclusive association between omega-3 PUFAs intake and cognitive decline. The source of these inconsistencies might be because DHA is highly oxidizable and its accessibility to the brain is limited by the blood–brain barrier. Thus, there is a pressing need for new strategies to improve DHA brain supply. In the present study, we show for the first time that the intranasal administration of nanovectorized DHA reduces Tau phosphorylation and restores cognitive functions in two complementary murine models of AD. These results pave the way for the development of a new approach to target the brain with DHA for the prevention or treatment of this devastating disease.
Collapse
Affiliation(s)
- Charleine Zussy
- MMDN, University Montpellier, EPHE, INSERM, 34095 Montpellier, France; (C.Z.); (T.U.); (L.O.); (G.C.); (M.V.); (L.G.)
| | - Rijo John
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Deemed University, Mumbai 400019, India; (R.J.); (S.L.R.); (P.V.D.)
| | - Théo Urgin
- MMDN, University Montpellier, EPHE, INSERM, 34095 Montpellier, France; (C.Z.); (T.U.); (L.O.); (G.C.); (M.V.); (L.G.)
| | - Léa Otaegui
- MMDN, University Montpellier, EPHE, INSERM, 34095 Montpellier, France; (C.Z.); (T.U.); (L.O.); (G.C.); (M.V.); (L.G.)
| | - Claire Vigor
- IBMM, Pôle Chimie Balard Recherche, Université de Montpellier, CNRS, ENSCM, 34095 Montpellier, France; (C.V.); (C.O.); (T.D.)
| | - Niyazi Acar
- Centre des Sciences du Goût et de l’Alimentation, AgroSup Dijon, CNRS, INRAE, Université de Bourgogne Franche-Comté, 21000 Dijon, France;
| | - Geoffrey Canet
- MMDN, University Montpellier, EPHE, INSERM, 34095 Montpellier, France; (C.Z.); (T.U.); (L.O.); (G.C.); (M.V.); (L.G.)
| | - Mathieu Vitalis
- MMDN, University Montpellier, EPHE, INSERM, 34095 Montpellier, France; (C.Z.); (T.U.); (L.O.); (G.C.); (M.V.); (L.G.)
| | - Françoise Morin
- Department of Psychiatry and Neurosciences, Faculty of Medicine, Laval University, CR-CHUQ, Québec City, QC G1V 0A6, Canada; (F.M.); (E.P.)
| | - Emmanuel Planel
- Department of Psychiatry and Neurosciences, Faculty of Medicine, Laval University, CR-CHUQ, Québec City, QC G1V 0A6, Canada; (F.M.); (E.P.)
| | - Camille Oger
- IBMM, Pôle Chimie Balard Recherche, Université de Montpellier, CNRS, ENSCM, 34095 Montpellier, France; (C.V.); (C.O.); (T.D.)
| | - Thierry Durand
- IBMM, Pôle Chimie Balard Recherche, Université de Montpellier, CNRS, ENSCM, 34095 Montpellier, France; (C.V.); (C.O.); (T.D.)
| | - Shinde L. Rajshree
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Deemed University, Mumbai 400019, India; (R.J.); (S.L.R.); (P.V.D.)
| | - Laurent Givalois
- MMDN, University Montpellier, EPHE, INSERM, 34095 Montpellier, France; (C.Z.); (T.U.); (L.O.); (G.C.); (M.V.); (L.G.)
- Department of Psychiatry and Neurosciences, Faculty of Medicine, Laval University, CR-CHUQ, Québec City, QC G1V 0A6, Canada; (F.M.); (E.P.)
| | - Padma V. Devarajan
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Deemed University, Mumbai 400019, India; (R.J.); (S.L.R.); (P.V.D.)
| | - Catherine Desrumaux
- MMDN, University Montpellier, EPHE, INSERM, 34095 Montpellier, France; (C.Z.); (T.U.); (L.O.); (G.C.); (M.V.); (L.G.)
- LIPSTIC LabEx, 21000 Dijon, France
- Correspondence: ; Tel.: +33-467-14-36-89; Fax: +33-467-14-33-86
| |
Collapse
|
16
|
Pires PC, Rodrigues M, Alves G, Santos AO. Strategies to Improve Drug Strength in Nasal Preparations for Brain Delivery of Low Aqueous Solubility Drugs. Pharmaceutics 2022; 14:588. [PMID: 35335964 PMCID: PMC8955176 DOI: 10.3390/pharmaceutics14030588] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/03/2022] [Accepted: 03/05/2022] [Indexed: 01/21/2023] Open
Abstract
Intranasal administration is a promising route for brain drug delivery. However, it can be difficult to formulate drugs that have low water solubility into high strength intranasal solutions. Hence, the purpose of this work was to review the strategies that have been used to increase drug strength in intranasal liquid formulations. Three main groups of strategies are: the use of solubilizers (change in pH, complexation and the use cosolvents/surfactants); incorporation of the drugs into a carrier nanosystem; modifications of the molecules themselves (use of salts or hydrophilic prodrugs). The use of high amounts of cosolvents and/or surfactants and pH decrease below 4 usually lead to local adverse effects, such as nasal and upper respiratory tract irritation. Cyclodextrins and (many) different carrier nanosystems, on the other hand, could be safer for intranasal administration at reasonably high concentrations, depending on selected excipients and their dose. While added attributes such as enhanced permeation, sustained delivery, or increased direct brain transport could be achieved, a great effort of optimization will be required. On the other hand, hydrophilic prodrugs, whether co-administered with a converting enzyme or not, can be used at very high concentrations, and have resulted in a fast prodrug to parent drug conversion and led to high brain drug levels. Nevertheless, the choice of which strategy to use will always depend on the characteristics of the drug and must be a case-by-case approach.
Collapse
Affiliation(s)
- Patrícia C. Pires
- Faculty of Pharmacy (FFUC-UC), University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal; (M.R.); (G.A.)
| | - Márcio Rodrigues
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal; (M.R.); (G.A.)
- Faculty of Health Sciences (FCS-UBI), University of Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal
- Center for Potential and Innovation of Natural Resources, Research Unit for Inland Development (CPIRN-UDI-IPG), Polytechnic Institute of Guarda, 6300-559 Guarda, Portugal
| | - Gilberto Alves
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal; (M.R.); (G.A.)
- Faculty of Health Sciences (FCS-UBI), University of Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Adriana O. Santos
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal; (M.R.); (G.A.)
- Faculty of Health Sciences (FCS-UBI), University of Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal
| |
Collapse
|
17
|
Zoi V, Galani V, Tsekeris P, Kyritsis AP, Alexiou GA. Radiosensitization and Radioprotection by Curcumin in Glioblastoma and Other Cancers. Biomedicines 2022; 10:312. [PMID: 35203521 PMCID: PMC8869399 DOI: 10.3390/biomedicines10020312] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 12/25/2022] Open
Abstract
Radiation therapy plays an important role in almost every cancer treatment. However, radiation toxicity to normal tissues, mainly due to the generation of reactive free radicals, has limited the efficacy of radiotherapy in clinical practice. Curcumin has been reported to possess significant antitumor properties. Although curcumin can sensitize cancer cells to irradiation, healthy cells are much less sensitive to this effect, and thus, curcumin is thought to be a potent, yet safe anti-cancer agent. In this review, a summary of the role of curcumin as both a radiosensitizer and radioprotector has been presented, based on the most recent data from the experimental and clinical evaluation of curcumin in different cancer cell lines, animal models, and human patients.
Collapse
Affiliation(s)
- Vasiliki Zoi
- Neurosurgical Institute, University of Ioannina, 45500 Ioannina, Greece; (V.Z.); (A.P.K.)
| | - Vasiliki Galani
- Department of Anatomy Histology-Embryology, School of Medicine, University of Ioannina, 45110 Ioannina, Greece;
| | - Pericles Tsekeris
- Department of Radiation Oncology, University of Ioannina, 45110 Ioannina, Greece;
| | - Athanasios P. Kyritsis
- Neurosurgical Institute, University of Ioannina, 45500 Ioannina, Greece; (V.Z.); (A.P.K.)
| | - George A. Alexiou
- Neurosurgical Institute, University of Ioannina, 45500 Ioannina, Greece; (V.Z.); (A.P.K.)
| |
Collapse
|
18
|
Pharmaceutical nanoformulation strategies to spatiotemporally manipulate oxidative stress for improving cancer therapies — exemplified by polyunsaturated fatty acids and other ROS-modulating agents. Drug Deliv Transl Res 2022; 12:2303-2334. [DOI: 10.1007/s13346-021-01104-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2021] [Indexed: 12/18/2022]
|
19
|
Peter K, Kar SK, Gothalwal R, Gandhi P. Curcumin in Combination with Other Adjunct Therapies for Brain Tumor Treatment: Existing Knowledge and Blueprint for Future Research. INTERNATIONAL JOURNAL OF MOLECULAR AND CELLULAR MEDICINE 2022; 10:163-181. [PMID: 35178355 PMCID: PMC8800460 DOI: 10.22088/ijmcm.bums.10.3.163] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 01/03/2022] [Indexed: 12/12/2022]
Abstract
Malignant brain tumors proliferate aggressively and have a debilitating outcome. Surgery followed by chemo-radiotherapy has been the standard procedure of care since 2005 but issues of therapeutic toxicity and relapse still remain unaddressed. Repurposing of drugs to develop novel combinations that can augment existing treatment regimens for brain tumors is the need of the hour. Herein, we discuss studies documenting the use of curcumin as an adjuvant to conventional and alternative therapies for brain tumors. Comprehensive analysis of data suggests that curcumin together with available therapies can generate a synergistic action achieved through multiple molecular targeting, which results in simultaneous inhibition of tumor growth, and reduced treatment-induced toxicity as well as resistance. The review also highlights approaches to increase bioavailability and bioaccumulation of drugs when co-delivered with curcumin using nano-cargos. Despite substantial preclinical work on radio-chemo sensitizing effects of curcumin, to date, there is only a single clinical report on brain tumors. Based on available lab evidence, it is proposed that antibody-conjugated nano-curcumin in combination with sub-toxic doses of conventional or repurposed therapeutics should be designed and tested in clinical studies. This will increase tumor targeting, the bioavailability of the drug combination, reduce therapy resistance, and tumor recurrence through modulation of aberrant signaling cascades; thus improving clinical outcomes in brain malignancies.
Collapse
Affiliation(s)
- Kavita Peter
- Department of Biotechnology, Barkatullah University, Bhopal, M.P, India
| | | | - Ragini Gothalwal
- Department of Biotechnology, Barkatullah University, Bhopal, M.P, India
| | - Puneet Gandhi
- Department of Research, Bhopal Memorial Hospital and Research Centre, Bhopal, M.P, India
| |
Collapse
|
20
|
Jeon SW, Jin HS, Park YJ. Formation of Self-Assembled Liquid Crystalline Nanoparticles and Absorption Enhancement of Ω-3s by Phospholipids and Oleic Acids. Pharmaceutics 2021; 14:68. [PMID: 35056964 PMCID: PMC8781607 DOI: 10.3390/pharmaceutics14010068] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 12/16/2021] [Accepted: 12/20/2021] [Indexed: 12/31/2022] Open
Abstract
This study aimed to optimize and evaluate self-assembled liquid crystalline nanoparticles (SALCs) prepared from phospholipids and oleic acid for enhancing the absorption of Ω-3s. We explored the structure and optimal formulation of SALCs, which are composed of Ω-3 ethyl ester (Ω-3 EE), phospholipids, and oleic acid, using a ternary diagram and evaluated the improvement in Ω-3 dissolution, permeation, and oral bioavailability. The in vitro dissolution and pharmacokinetics of Ω-3 SALCs were compared with those of Omacor soft capsules (as the reference). The shape of the liquid crystal was determined according to the composition of phospholipids, oleic acids, and Ω-3s and was found to be in cubic, lamellar, and hexagonal forms. The dissolution rates of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) obtained from Ω-3 SALCs were 1.7 to 2.3-fold higher than those of the Omacor soft capsules. Furthermore, a pharmacokinetic study in male beagle dogs revealed that Ω-3 SALCs increased the oral bioavailability of Ω-3 EE by 2.5-fold for EPA and 3.1-fold for DHA compared with the reference. We found an optimal formulation that spontaneously forms liquid crystal-based nanoparticles, improving the bioavailability of EPA and DHA, not found in the existing literature. Our findings offer insight into the impact of nanoparticle phase on the oral delivery of oil-soluble drugs and provide a novel Ω-3 EE formulation that improves the bioavailability of EPA and DHA.
Collapse
Affiliation(s)
- Sang-Won Jeon
- College of Pharmacy, Ajou University, Worldcup-ro 206, Yeongtong-gu, Suwon-si 16499, Korea;
- Research Center, IMDpharm Inc., 17 Daehak 4-ro, Yeongtong-gu, Suwon-si 16226, Korea;
| | - Han-Sol Jin
- Research Center, IMDpharm Inc., 17 Daehak 4-ro, Yeongtong-gu, Suwon-si 16226, Korea;
| | - Young-Joon Park
- College of Pharmacy, Ajou University, Worldcup-ro 206, Yeongtong-gu, Suwon-si 16499, Korea;
- Research Center, IMDpharm Inc., 17 Daehak 4-ro, Yeongtong-gu, Suwon-si 16226, Korea;
| |
Collapse
|
21
|
Sandbhor P, Goda J, Mohanty B, Chaudhari P, Dutt S, Banerjee R. Non-invasive transferrin targeted nanovesicles sensitize resistant glioblastoma multiforme tumors and improve survival in orthotopic mouse models. NANOSCALE 2021; 14:108-126. [PMID: 34897360 DOI: 10.1039/d1nr05460k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The blood-brain barrier (BBB) and tumor heterogeneity have resulted in abysmally poor clinical outcomes in glioblastoma (GBM) with the standard therapeutic regimen. Despite several anti-glioma drug delivery strategies, the lack of adequate chemotherapeutic bioavailability in gliomas has led to a suboptimal therapeutic gain in terms of improvement in survival and increased systemic toxicities. This has paved the way for designing highly specific and non-invasive drug delivery approaches for treating GBM. The intranasal (IN) route is one such delivery strategy that has the potential to reach the brain parenchyma by circumventing the BBB. We recently showed that in situ hydrogel embedded with miltefosine (HePc, proapoptotic anti-tumor agent) and temozolomide (TMZ, DNA methylating agent) loaded targeted nanovesicles prevented tumor relapses in orthotopic GBM mouse models. In this study, we specifically investigated the potential of a non-invasive IN route of TMZ delivered from lipid nanovesicles (LNs) decorated with surface transferrin (Tf) and co-encapsulated with HePc to reach the brain by circumventing the BBB in glioma bearing mice. The targeted nanovesicles (228.3 ± 10 nm, -41.7 ± 4 mV) exhibited mucoadhesiveness with 2% w/v mucin suggesting their potential to increase brain drug bioavailability after IN administration. The optimized TLNs had controlled, tunable and significantly different release kinetics in simulated cerebrospinal fluid and simulated nasal fluid demonstrating efficient release of the payload upon reaching the brain. Drug synergy (combination index, 0.7) showed a 6.4-fold enhanced cytotoxicity against resistant U87MG cells compared to free drugs. In vivo gamma scintigraphy of 99mTc labeled LNs showed 500- and 280-fold increased brain concentration post 18 h of treatment. The efficacy of the TLNs increased by 1.8-fold in terms of survival of tumor-bearing mice compared to free drugs. These findings suggested that targeted drug synergy has the potential to intranasally deliver a high therapeutic dose of the chemotherapy agent (TMZ) and could serve as a platform for future clinical application.
Collapse
Affiliation(s)
- Puja Sandbhor
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Bombay, Powai, Mumbai, India.
| | - Jayant Goda
- Department of Radiation Oncology ACTREC, Tata Memorial Center, Kharghar Navi-Mumbai, India.
| | - Bhabani Mohanty
- Department of Comparative Oncology and Small Animal Imaging Facility, ACTREC, Tata Memorial Center, Kharghar Navi-Mumbai, India
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Bombay, Powai, Mumbai, India.
| | - Pradip Chaudhari
- Department of Radiation Oncology ACTREC, Tata Memorial Center, Kharghar Navi-Mumbai, India.
- Department of Comparative Oncology and Small Animal Imaging Facility, ACTREC, Tata Memorial Center, Kharghar Navi-Mumbai, India
| | - Shilpee Dutt
- Department Shilpee Lab/DNA Repair and Cellular Oncology Lab, ACTREC, Tata Memorial Center, Kharghar Navi-Mumbai, India
| | - Rinti Banerjee
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Bombay, Powai, Mumbai, India.
| |
Collapse
|
22
|
Tripathi S, Gupta U, Ujjwal RR, Yadav AK. Nano-lipidic formulation and therapeutic strategies for Alzheimer's disease via intranasal route. J Microencapsul 2021; 38:572-593. [PMID: 34591731 DOI: 10.1080/02652048.2021.1986585] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
AIM The inability of drug molecules to cross the 'Blood-Brain Barrier' restrict the effective treatment of Alzheimer's disease. Lipid nanocarriers have proven to be a novel paradigm in brain targeting of bioactive by facilitating suitable therapeutic concentrations to be attained in the brain. METHODS The relevant information regarding the title of this review article was collected from the peer-reviewed published articles. Also, the physicochemical properties, and their in vitro and in vivo evaluations were presented in this review article. RESULTS Administration of lipid-based nano-carriers have abilities to target the brain, improve the pharmacokinetic and pharmacodynamics properties of drugs, and mitigate the side effects of encapsulated therapeutic active agents. CONCLUSION Unlike oral and other routes, the Intranasal route promises high bioavailability, low first-pass effect, better pharmacokinetic properties, bypass of the systemic circulation, fewer incidences of unwanted side effects, and direct delivery of anti-AD drugs to the brain via circumventing 'Blood-Brain Barrier'.
Collapse
Affiliation(s)
- Shourya Tripathi
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research- Raebareli, Lucknow, India
| | - Ujala Gupta
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research- Raebareli, Lucknow, India
| | - Rewati Raman Ujjwal
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research- Raebareli, Lucknow, India
| | - Awesh K Yadav
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research- Raebareli, Lucknow, India
| |
Collapse
|
23
|
Progress in nasal drug delivery systems. Int J Pharm 2021; 607:120994. [PMID: 34390810 DOI: 10.1016/j.ijpharm.2021.120994] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/05/2021] [Accepted: 08/08/2021] [Indexed: 01/02/2023]
Abstract
Most of the available drugs are usually administered orally (e.g. in tablets or capsules) or by parenteral injection in the case of substances being destroyed in the gastric environment or not being absorbed. However, this bears disadvantages as many people have trouble swallowing tablets and parenteral injection requires trained personnel and/or a reasonably sterile environment to minimize the possibility of contamination. Thus, as an easy to use alternative nasal drug delivery was developed. Drug delivery systems are used to achieve a reproducible high drug concentration. These systems overcome various disadvantages leading to stabilization of the drug, advanced drug transport, improvement of the physicochemical properties of the drug like water solubility, and increase of drug uptake and bioavailability. In addition, properties such as bad taste or smell of the drug are masked. Nasal drug delivery systems are suitable for use both locally and systemically. In the last five years, the development and progression of nasal drug delivery systems has gained importance due to their numerous advantages. This work gives an overview of the basics, such as structure and function of the nose, as well as a short introduction to local and systemic application of drugs. Furthermore, selected drug delivery systems are explained with examples of active ingredients, as well as additional possibilities to increase nasal drug uptake and factors influencing the absorption.
Collapse
|
24
|
Emad NA, Ahmed B, Alhalmi A, Alzobaidi N, Al-Kubati SS. Recent progress in nanocarriers for direct nose to brain drug delivery. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102642] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
25
|
Lombardo R, Musumeci T, Carbone C, Pignatello R. Nanotechnologies for intranasal drug delivery: an update of literature. Pharm Dev Technol 2021; 26:824-845. [PMID: 34218736 DOI: 10.1080/10837450.2021.1950186] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Scientific research has focused its attention on finding an alternative route to systemic oral and parenteral administration, to overcome their usual drawbacks, such as hepatic first-pass which decreases drug bioavailability after oral administration, off-target effects, low patient compliance and low speed of onset of the pharmacological action in first-aid cases. Innovative drug delivery systems (DDS), mainly based on polymer and lipid biocompatible materials, have given a great prompt in this direction in the last years. The intranasal (IN) route of administration is a valid non-invasive alternative. It is highly suitable for self-administration, the drug quickly reaches the bloodstream, largely avoiding the first pass effect, and can also reach directly the brain bypassing BBB. Association of IN route with DDS can thus become a winning strategy for the controlled delivery of drugs, especially when a very quick effect is desired or needed. This review aims at analyzing the scientific literature regarding IN-DDS and their different ways of administration (systemic, topical, pulmonary, nose-to-brain). In particular, attention was devoted to polymer- and lipid-based micro- and nanocarriers, being the topic of most published articles in the last decade, but the whole plethora of colloidal DDS investigated in recent years for IN administration was presented.
Collapse
Affiliation(s)
- Rosamaria Lombardo
- Department of Drug Sciences, University of Catania, Catania, Italy.,Neurosciences, University of Catania, Catania, Italy
| | - Teresa Musumeci
- Department of Drug Sciences, University of Catania, Catania, Italy.,NANO-i - Research Center for Ocular Nanotechnology, University of Catania, Catania, Italy
| | - Claudia Carbone
- Department of Drug Sciences, University of Catania, Catania, Italy.,NANO-i - Research Center for Ocular Nanotechnology, University of Catania, Catania, Italy
| | - Rosario Pignatello
- Department of Drug Sciences, University of Catania, Catania, Italy.,NANO-i - Research Center for Ocular Nanotechnology, University of Catania, Catania, Italy
| |
Collapse
|
26
|
Brain-targeted drug delivery assisted by physical techniques and its potential applications in traditional Chinese medicine. JOURNAL OF TRADITIONAL CHINESE MEDICAL SCIENCES 2021. [DOI: 10.1016/j.jtcms.2021.07.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
27
|
Curcumin-Loaded Nanoparticles Impair the Pro-Tumor Activity of Acid-Stressed MSC in an In Vitro Model of Osteosarcoma. Int J Mol Sci 2021; 22:ijms22115760. [PMID: 34071200 PMCID: PMC8198446 DOI: 10.3390/ijms22115760] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 05/20/2021] [Accepted: 05/24/2021] [Indexed: 12/14/2022] Open
Abstract
In the tumor microenvironment, mesenchymal stromal cells (MSCs) are key modulators of cancer cell behavior in response to several stimuli. Intratumoral acidosis is a metabolic trait of fast-growing tumors that can induce a pro-tumorigenic phenotype in MSCs through the activation of the NF-κB-mediated inflammatory pathway, driving tumor clonogenicity, invasion, and chemoresistance. Recent studies have indicated that curcumin, a natural ingredient extracted from Curcuma longa, acts as an NF-κB inhibitor with anti-inflammatory properties. In this work, highly proliferating osteosarcoma cells were used to study the ability of curcumin to reduce the supportive effect of MSCs when stimulated by acidosis. Due to the poor solubility of curcumin in biological fluids, we used spherical polymeric nanoparticles as carriers (SPN-curc) to optimize its uptake by MSCs. We showed that SPN-curc inhibited the release of inflammatory cytokines (IL6 and IL8) by acidity-stimulated MSCs at a higher extent than by free curcumin. SPN-curc treatment was also successful in blocking tumor stemness, migration, and invasion that were driven by the secretome of acid-stressed MSCs. Overall, these data encourage the use of lipid–polymeric nanoparticles encapsulating NF-κB inhibitors such as curcumin to treat cancers whose progression is stimulated by an activated mesenchymal stroma.
Collapse
|
28
|
Shah B. Microemulsion as a promising carrier for nose to brain delivery: journey since last decade. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2021. [DOI: 10.1007/s40005-021-00528-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
29
|
GE11 Peptide Conjugated Liposomes for EGFR-Targeted and Chemophotothermal Combined Anticancer Therapy. Bioinorg Chem Appl 2021; 2021:5534870. [PMID: 33868396 PMCID: PMC8035035 DOI: 10.1155/2021/5534870] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/13/2021] [Accepted: 03/23/2021] [Indexed: 01/01/2023] Open
Abstract
How to actively target tumor sites manipulating the controllable release of the encapsulated anticancer drugs and photosensitizers for synergistic anticancer therapy remains a big challenge. In this study, a cancer cell-targeted, near-infrared (NIR) light-triggered and anticancer drug loaded liposome system (LPs) was developed for synergistic cancer therapy. Photosensitizer indocyanine green (ICG) and chemotherapy drug Curcumin (CUR) were coencapsulated into the liposomes, followed by the surface conjugation of GE11 peptide for epidermal growth factor receptor (EGFR) targeting on the cancer cell surface. Strictly controlled by NIR light, GE11 peptide modified and CUR/ICG-loaded LPs (GE11-CUR/ICG-LPs) could introduce hyperthermia in EGFR overexpressed A549 cancer cells for photothermal therapy, which could also trigger the increased release of CUR for enhanced cancer cell inhibition. GE11-CUR/ICG-LPs synergized photochemotherapy could induce reactive oxygen species (ROS) generation and cytoskeleton disruption to activate stronger apoptotic signaling events than the photothermal therapy or chemotherapy alone by regulating Bax/Bcl-2 and PI3K/AKT pathways. This EGFR-targeted drug-delivery nanosystem with NIR sensitivity may potentially serve in more effective anticancer therapeutics with reduced off-target effects.
Collapse
|
30
|
Sun S, Du X, Fu M, Khan AR, Ji J, Liu W, Zhai G. Galactosamine-modified PEG-PLA/TPGS micelles for the oral delivery of curcumin. Int J Pharm 2021; 595:120227. [PMID: 33484915 DOI: 10.1016/j.ijpharm.2021.120227] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 12/19/2020] [Accepted: 01/04/2021] [Indexed: 12/18/2022]
Abstract
In this study, galactosamine-modified poly(ethylene glycol)-poly(lactide) (Gal-PEG-PLA) polymers were synthesized and Gal-PEG-PLA/D-α-tocopherol polyethylene glycol 1000 succinate (TPGS) micelles named as GPP micelles were designed to promote the oral absorption of a hydrophobic drug, curcumin (CUR). CUR-loaded Gal-PEG-PLA/TPGS micelles (CUR@GPP micelles) were fabricated using the thin-film dispersion method. CUR@GPP micelles had a size of about 100 nm, a near-neutral zeta potential, drug loading (DL) of 14.6%, and sustained release properties. GPP micelles with high Gal density (GPP3 micelles) were superior in facilitating uptake in epithelial cells and improving intestinal permeation. In situ intestinal absorption studies suggested that the jejunum and ileum were the best absorption segments in the intestinal tract. Additionally, biodistribution results revealed that GPP3 micelles could be remarkably taken up by the jejunum and ileum. Pharmacokinetics revealed that the maximum plasma concentration (Cmax) and the area under the plasma concentration-time curve from 0 to 24 h (AUC0-24) for CUR@GPP3 micelles were both significantly increased, and that the relative bioavailability of CUR@GPP3 micelles to CUR-loaded mPEG-PLA/TPGS micelles (CUR@PP micelles) was 258.8%. Furthermore, CUR-loaded micelles could reduce damage to the liver and intestinal tissues. This study highlights the importance of Gal content in the design of targeting nanocarrier Gal-modified micelles, which have broad prospects for oral delivery of hydrophobic drugs. Therefore, they could serve as a promising candidate for targeted delivery to the liver.
Collapse
Affiliation(s)
- Siyu Sun
- Department of Pharmaceutics, College of Pharmacy, Shandong University, Jinan 250012, China
| | - Xiyou Du
- Department of Pharmaceutics, College of Pharmacy, Shandong University, Jinan 250012, China
| | - Manfei Fu
- Department of Pharmaceutics, College of Pharmacy, Shandong University, Jinan 250012, China
| | - Abdur Rauf Khan
- Department of Pharmaceutics, College of Pharmacy, Shandong University, Jinan 250012, China
| | - Jianbo Ji
- Department of Pharmaceutics, College of Pharmacy, Shandong University, Jinan 250012, China
| | - Weidong Liu
- Department of Pharmacy, Linyi People's Hospital Affiliated to Shandong University, Linyi 276003, China.
| | - Guangxi Zhai
- Department of Pharmaceutics, College of Pharmacy, Shandong University, Jinan 250012, China.
| |
Collapse
|
31
|
Di Filippo LD, Duarte JL, Luiz MT, de Araújo JTC, Chorilli M. Drug Delivery Nanosystems in Glioblastoma Multiforme Treatment: Current State of the Art. Curr Neuropharmacol 2021; 19:787-812. [PMID: 32867643 PMCID: PMC8686306 DOI: 10.2174/1570159x18666200831160627] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 08/08/2020] [Accepted: 08/20/2020] [Indexed: 11/22/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most common primary malignant Central Nervous System cancer, responsible for about 4% of all deaths associated with neoplasia, characterized as one of the fatal human cancers. Tumor resection does not possess curative character, thereby radio and/or chemotherapy are often necessary for the treatment of GBM. However, drugs used in GBM chemotherapy present some limitations, such as side effects associated with non-specific drug biodistribution as well as limited bioavailability, which limits their clinical use. To attenuate the systemic toxicity and overcome the poor bioavailability, a very attractive approach is drug encapsulation in drug delivery nanosystems. The main focus of this review is to explore the actual cancer global problem, enunciate barriers to overcome in the pharmacological treatment of GBM, as well as the most updated drug delivery nanosystems for GBM treatment and how they influence biopharmaceutical properties of anti-GBM drugs. The discussion will approach lipid-based and polymeric nanosystems, as well as inorganic nanoparticles, regarding their technical aspects as well as biological effects in GBM treatment. Furthermore, the current state of the art, challenges to overcome and future perspectives in GBM treatment will be discussed.
Collapse
Affiliation(s)
| | | | - Marcela Tavares Luiz
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Brazil
| | | | - Marlus Chorilli
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Brazil
| |
Collapse
|
32
|
Panzarini E, Mariano S, Tacconi S, Carata E, Tata AM, Dini L. Novel Therapeutic Delivery of Nanocurcumin in Central Nervous System Related Disorders. NANOMATERIALS 2020; 11:nano11010002. [PMID: 33374979 PMCID: PMC7822042 DOI: 10.3390/nano11010002] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 02/06/2023]
Abstract
Nutraceuticals represent complementary or alternative beneficial products to the expensive and high-tech therapeutic tools in modern medicine. Nowadays, their medical or health benefits in preventing or treating different types of diseases is widely accepted, due to fewer side effects than synthetic drugs, improved bioavailability and long half-life. Among herbal and natural compounds, curcumin is a very attractive herbal supplement considering its multipurpose properties. The potential effects of curcumin on glia cells and its therapeutic and protective properties in central nervous system (CNS)-related disorders is relevant. However, curcumin is unstable and easily degraded or metabolized into other forms posing limits to its clinical development. This is particularly important in brain pathologies determined blood brain barrier (BBB) obstacle. To enhance the stability and bioavailability of curcumin, many studies focused on the design and development of curcumin nanodelivery systems (nanoparticles, micelles, dendrimers, and diverse nanocarriers). These nanoconstructs can increase curcumin stability, solubility, in vivo uptake, bioactivity and safety. Recently, several studies have reported on a curcumin exosome-based delivery system, showing great therapeutical potential. The present work aims to review the current available data in improving bioactivity of curcumin in treatment or prevention of neurological disorders.
Collapse
Affiliation(s)
- Elisa Panzarini
- Departament of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, 73100 Lecce, Italy; (E.P.); (S.M.); (S.T.); (E.C.)
| | - Stefania Mariano
- Departament of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, 73100 Lecce, Italy; (E.P.); (S.M.); (S.T.); (E.C.)
| | - Stefano Tacconi
- Departament of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, 73100 Lecce, Italy; (E.P.); (S.M.); (S.T.); (E.C.)
| | - Elisabetta Carata
- Departament of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, 73100 Lecce, Italy; (E.P.); (S.M.); (S.T.); (E.C.)
| | - Ada Maria Tata
- Departament of Biology and Biotechnology “C. Darwin”, Sapienza University of Rome, 00185 Rome, Italy;
| | - Luciana Dini
- Departament of Biology and Biotechnology “C. Darwin”, Sapienza University of Rome, 00185 Rome, Italy;
- CNR Nanotec, Campus Ecotekne, University of Salento, 73100 Lecce, Italy
- Correspondence:
| |
Collapse
|
33
|
More SK, Pawar AP. Preparation, optimization and preliminary pharmacokinetic study of curcumin encapsulated turmeric oil microemulsion in zebra fish. Eur J Pharm Sci 2020; 155:105539. [PMID: 32898637 DOI: 10.1016/j.ejps.2020.105539] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 08/05/2020] [Accepted: 09/03/2020] [Indexed: 01/17/2023]
Abstract
The present investigation aimed to develop curcumin loaded turmeric oil microemulsion for brain targeting. An effort has been made to investigate the role of functional components in developing brain targeted formulation which could enhance the bioavailability and uptake of drug in the brain upon oral administration. Preliminary studies like solubility study, emulsification study and construction of the pseudo ternary phase diagram were performed for screening components. The formulation was optimized by using extreme vertices mixture design. The optimized formulation was characterized for appearance, stability to centrifugation, dilution potential, globule size, zeta potential and drug content. Furthermore, ex-vivo permeation in chicken gut sac non everted technique and pharmacokinetic study in adult zebra fishes were carried out. The optimized formulation was found to clear, yellow-colored with the absence of phase separation and precipitation denoted the stability of formulation to centrifugation and dilution. The mean globule size, polydispersity index, zeta potential and drug content was observed as 29.13± 0.12 nm, 0.23 ± 0.01,-12.33 ± 1.37 mV and 99.10±3.91 %, respectively. Ex vivo permeation study revealed 2.41 fold enhancement in the steady-state flux when compared to curcumin solution. Furthermore, optimized formulation showed shorter Tmax (5 min) and higher AUC(0-∞) (7.93 μg/brain*min) compared to the curcumin solution which showed similar Tmax and AUC(0-∞) of 2.78 μg/brain*min after oral administration to zebra fishes revealing 3.97 fold enhancement. The results revealed enhanced ex vivo oral absorption and enhanced in vivo brain pharmacokinetics of curcumin via functional microemulsion in the zebra fish model.
Collapse
Affiliation(s)
- Suraj Kewal More
- Department of Pharmaceutics, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be University), Paud Road, Erandwane, Pune 411038, India.
| | - Atmaram Pandurang Pawar
- Department of Pharmaceutics, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be University), Paud Road, Erandwane, Pune 411038, India.
| |
Collapse
|
34
|
Bachhav SS, Dighe V, Mali N, Gogtay NJ, Thatte UM, Devarajan PV. Nose-to-Brain Delivery of Diazepam from an Intranasal Aqua-Triggered In-Situ (ATIS) Gelling Microemulsion: Monitoring Brain Uptake by Microdialysis. Eur J Drug Metab Pharmacokinet 2020; 45:785-799. [PMID: 32813265 DOI: 10.1007/s13318-020-00641-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND AND OBJECTIVES An innovative intranasal aqua-triggered in-situ (ATIS) gel is a polymer-free in-situ gelling microemulsion which gels instantaneously on contact with minute quantities of water to form a mucoadhesive gel. The objective of the study was to develop ATIS diazepam (ATIS-diazepam) as an alternative to the injection for epileptic emergencies and evaluate its brain uptake and nose-to-brain targeting efficiency in rats. METHODS ATIS-diazepam (1 mg/100 µL) was prepared and characterized for in vitro formulation characteristics. An LC-MS/MS method was developed and validated for the bioanalysis of diazepam. In vivo studies for pharmacokinetics, brain uptake and nasal irritation of intranasal ATIS-diazepam were conducted in rats. Brain uptake was investigated with brain microdialysis, a highly sensitive technique enabling quantification of free drug, which correlates to efficacy. RESULTS ATIS-diazepam exhibited globule size < 200 nm, low viscosity, negative zeta potential and good stability. A significant increase in mucoadhesion was exhibited by ATIS-diazepam following the addition of a small quantity of water. ATIS-diazepam showed burst release in pH 6.4 with 50% diazepam release in ~ 10 min, which was sustained over 1 h. The absolute bioavailability was ~ 50% with both intranasal free-diazepam and ATIS-diazepam. Intranasal administration of ATIS-diazepam revealed immediate absorption with rapid and high brain extracellular fluid concentration compared to intravenous free-diazepam solution. The estimated direct transport potential and drug targeting efficiency of intranasal ATIS-diazepam was significantly higher (2-fold) than intranasal free-diazepam solution, which was attributed to the mucoadhesive and microemulsion properties of ATIS-diazepam. The nasal irritation study revealed the safety of ATIS-diazepam compared to free-diazepam solution. CONCLUSION Intranasal ATIS-diazepam showed promise of higher direct nose-to-brain targeting, better safety and hence has an immense implication in the treatment of epileptic emergencies.
Collapse
Affiliation(s)
- Sagar S Bachhav
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, N.P. Marg, Matunga (E), Mumbai, Maharashtra, 400019, India
| | - Vikas Dighe
- National Center for Preclinical Reproductive and Genetic Toxicology, National Institute for Research in Reproductive Health (NIRRH), ICMR, J. M. Street, Parel, Mumbai, 400012, India
| | - Nitin Mali
- Department of Clinical Pharmacology, Seth GS Medical College and KEM Hospital, Mumbai, Maharashtra, India
| | - Nithya J Gogtay
- Department of Clinical Pharmacology, Seth GS Medical College and KEM Hospital, Mumbai, Maharashtra, India
| | - Urmila M Thatte
- Department of Clinical Pharmacology, Seth GS Medical College and KEM Hospital, Mumbai, Maharashtra, India
| | - Padma V Devarajan
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, N.P. Marg, Matunga (E), Mumbai, Maharashtra, 400019, India.
| |
Collapse
|
35
|
Zainuddin N, Ahmad I, Zulfakar MH, Kargarzadeh H, Ramli S. Cetyltrimethylammonium bromide-nanocrystalline cellulose (CTAB-NCC) based microemulsions for enhancement of topical delivery of curcumin. Carbohydr Polym 2020; 254:117401. [PMID: 33357890 DOI: 10.1016/j.carbpol.2020.117401] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 12/24/2022]
Abstract
Low bioavailability and poor water solubility have limited the utilization of curcumin in conventional dosing methods. As an alternative, microemulsions as drug carrier can improve curcumin delivery. A cetyltrimethylammonium bromide-nanocrystalline cellulose (CTAB-NCC)-based microemulsion was developed and its potential use as a topical delivery method for curcumin was investigated. The effect of microemulsion's particle size and its microstructure as well as the presence of the CTAB-NCC nanoparticle on the topical delivery of curcumin was studied. In vitro permeation studies showed higher penetration rate of curcumin from the oil-in-water type-microemulsions. The skin permeation profile of curcumin followed Higuchi release kinetics. Furthermore, use of the (CTAB-NCC)-based microemulsion enhanced curcumin accumulation in the skin and these system showed non cytotoxicity effect on L929 cell line. These results showed the potential of (CTAB-NCC)-based microemulsions as controlled-release topical systems for the delivery of curcumin and potentially other lipophilic drugs.
Collapse
Affiliation(s)
- Norhidayu Zainuddin
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - Ishak Ahmad
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia; Polymer Research Center, Faculty of Science and Technology, Universiti Kebangsaan Malaysia 43600 Bangi, Selangor, Malaysia
| | - Mohd Hanif Zulfakar
- Centre for Drug Delivery Technology, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia
| | - Hanieh Kargarzadeh
- Center of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Łódz, Poland
| | - Suria Ramli
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia; Polymer Research Center, Faculty of Science and Technology, Universiti Kebangsaan Malaysia 43600 Bangi, Selangor, Malaysia.
| |
Collapse
|
36
|
Gadhave D, Rasal N, Sonawane R, Sekar M, Kokare C. Nose-to-brain delivery of teriflunomide-loaded lipid-based carbopol-gellan gum nanogel for glioma: Pharmacological and in vitro cytotoxicity studies. Int J Biol Macromol 2020; 167:906-920. [PMID: 33186648 DOI: 10.1016/j.ijbiomac.2020.11.047] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/26/2020] [Accepted: 11/07/2020] [Indexed: 12/14/2022]
Abstract
The research work was intended to formulate teriflunomide (TFM) loaded nano lipid-based (TNLC) carbopol-gellan gum in situ gel (TNLCGHG) and to investigate its therapeutic efficacy against glioma, a brain and spine tumor. Nanoformulation was developed using gellan gum and carbopol 974P as gelling and mucoadhesive agents, respectively, Glyceryl di-behenate and Glyceryl mono-linoleate blend as lipids, and Gelucire 44/14: water blend as surfactant system. Globule size, PDI, zeta potential, encapsulation efficiency, mucoadhesive strength, and nasal permeation were found to be 117.80 nm, 0.56, -21.86 mV, 81.16%, 4.80 g, and 904 μg/cm2, respectively. Anticancer efficacy of TFM-loaded nano lipid-based carbopol-gellan gum in situ gel (TNLCGHG) was determined in human U-87MG glioma cell line. IC50 was found 7.0 μg/mL for TNLCGHG, 4.8 μg/mL for pure TFM, and 78.5 μg/mL for TNLC, which approve the superiority of surfactant along with gellan gum as permeation enhancer. Brain Cmax for technetium (99mTC) labeled intranasal (i.n.) 99mTC-TNLCGHG was found 2-folds higher than 99mTC-TNLC (i.n.) and 99mTC-TNLC intravenous (i.v.) because the TNLCGHG formulation contains surfactant with natural gelling polymers, which promisingly improved drug permeability. Finally, this research revealed encouraging outcomes and successfully developed intranasal TNLCGHG nanoformulation as a novel tool for safe delivery of TFM in glioma patients.
Collapse
Affiliation(s)
- Dnyandev Gadhave
- Department of Pharmaceutics, Sinhgad Technical Education Society's, Sinhgad Institute of Pharmacy (affiliated to Savitribai Phule Pune University), Narhe, Pune 411 041, India.
| | - Nishant Rasal
- Department of Chemistry, Baburaoji Gholap College (affiliated to Savitribai Phule Pune University), Sangvi, Pune 411027, Maharashtra, India
| | - Rahul Sonawane
- Department of Pharmaceutics, Sinhgad Technical Education Society's, Sinhgad Institute of Pharmacy (affiliated to Savitribai Phule Pune University), Narhe, Pune 411 041, India
| | - Mahendran Sekar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Health Sciences, Universiti Kuala Lumpur Royal College of Medicine Perak, Ipoh-30450, Perak, Malaysia
| | - Chandrakant Kokare
- Department of Pharmaceutics, Sinhgad Technical Education Society's, Sinhgad Institute of Pharmacy (affiliated to Savitribai Phule Pune University), Narhe, Pune 411 041, India
| |
Collapse
|
37
|
Zhai K, Brockmüller A, Kubatka P, Shakibaei M, Büsselberg D. Curcumin's Beneficial Effects on Neuroblastoma: Mechanisms, Challenges, and Potential Solutions. Biomolecules 2020; 10:biom10111469. [PMID: 33105719 PMCID: PMC7690450 DOI: 10.3390/biom10111469] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/17/2020] [Accepted: 10/19/2020] [Indexed: 02/07/2023] Open
Abstract
Curcumin, a natural polyphenolic compound derived from the South Asian turmeric plant (Curcuma longa), has well-characterized antioxidant, anti-inflammatory, anti-protein-aggregate, and anticancer properties. Neuroblastoma (NB) is a cancer of the nervous system that arises primarily in pediatric patients. In order to reduce the multiple disadvantages and side effects of conventional oncologic modalities and to potentially overcome cancer drug resistance, natural substances such as curcumin are examined as complementary and supportive therapies against NB. In NB cell lines, curcumin by itself promotes apoptosis and cell cycle arrest through the suppression of serine–threonine kinase Akt and nuclear factor kappa of activated B-cells (NF-κB) signaling, induction of mitochondrial dysfunction, and upregulation of p53 and caspase signaling. While curcumin demonstrates anti-NB efficacy in vitro, cross-validation between NB cell types is currently lacking for many of its specific mechanistic activities. Furthermore, curcumin’s low bioavailability by oral administration, poor absorption, and relative insolubility in water pose challenges to its clinical introduction. Numerous curcumin formulations, including nanoparticles, nanocarriers, and microemulsions, have been developed, with these having some success in the treatment of NB. In the future, standardization and further basic and preclinical trials will be required to ensure the safety of curcumin formulations. While the administration of curcumin is clinically safe even at high doses, clinical trials are necessary to substantiate the practical efficacy of curcumin in the prevention and treatment of NB.
Collapse
Affiliation(s)
- Kevin Zhai
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar;
| | - Aranka Brockmüller
- Musculoskeletal Research Group and Tumor Biology, Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilian-University Munich, 80336 Munich, Germany; (A.B.); (M.S.)
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia;
| | - Mehdi Shakibaei
- Musculoskeletal Research Group and Tumor Biology, Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilian-University Munich, 80336 Munich, Germany; (A.B.); (M.S.)
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar;
- Correspondence: ; Tel.: +974-4492-8334
| |
Collapse
|
38
|
Mena-Hernández J, Jung-Cook H, Llaguno-Munive M, García-López P, Ganem-Rondero A, López-Ramírez S, Barragán-Aroche F, Rivera-Huerta M, Mayet-Cruz L. Preparation and Evaluation of Mebendazole Microemulsion for Intranasal Delivery: an Alternative Approach for Glioblastoma Treatment. AAPS PharmSciTech 2020; 21:264. [PMID: 32980937 DOI: 10.1208/s12249-020-01805-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 08/27/2020] [Indexed: 12/15/2022] Open
Abstract
Although mebendazole (MBZ) has demonstrated antitumor activity in glioblastoma models, the drug has low aqueous solubility and therefore is poorly absorbed. Considering that other strategies are needed to improve its bioavailability, the current study was aimed to develop and evaluate novel microemulsions of MBZ (MBZ-NaH ME) for intranasal administration. MBZ raw materials were characterized by FTIR, DSC, and XDP. Subsequently, the raw material that contained mainly polymorph C was selected to prepare microemulsions. Two different oleic acid (OA) systems were selected. Formulation A was composed of OA and docosahexaenoic acid (3:1% w/w), while formulation B was composed of OA and Labrafil M2125 (1:1% w/w). Sodium hyaluronate (NaH) at 0.1% was selected as a mucoadhesive agent. MBZ MEs showed a particle size of 209 nm and 145 nm, respectively, and the pH was suitable for nasal formulations (4.5-6.5). Formulation B, which showed the best solubility and rheological behavior, was selected for intranasal evaluation. The nasal toxicity study revealed no damage in the epithelium. Furthermore, formulation B improved significantly the median survival time in the orthotopic C6 rat model compared to the control group. Moreover, NIRF signal intensity revealed a decrease in tumor growth in the treated group with MBZ-MaH ME, which was confirmed by histologic examinations. Results suggest that the intranasal administration of mebendazole-loaded microemulsion might be appropriated for glioblastoma treatment. Graphical abstract.
Collapse
|
39
|
Neuroprotection by curcumin: A review on brain delivery strategies. Int J Pharm 2020; 585:119476. [DOI: 10.1016/j.ijpharm.2020.119476] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 05/05/2020] [Accepted: 05/24/2020] [Indexed: 12/26/2022]
|
40
|
Khunt D, Polaka S, Shrivas M, Misra M. Biodistribution and amyloid beta induced cell line toxicity study of intranasal Rivastigmine microemulsion enriched with Fish Oil and Butter oil. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101661] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
41
|
Bonaccorso A, Gigliobianco MR, Pellitteri R, Santonocito D, Carbone C, Di Martino P, Puglisi G, Musumeci T. Optimization of Curcumin Nanocrystals as Promising Strategy for Nose-to-Brain Delivery Application. Pharmaceutics 2020; 12:E476. [PMID: 32456163 PMCID: PMC7284456 DOI: 10.3390/pharmaceutics12050476] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/18/2020] [Accepted: 05/21/2020] [Indexed: 12/15/2022] Open
Abstract
Intranasal (IN) drug delivery is recognized to be an innovative strategy to deliver drugs to the Central Nervous System. One of the main limitations of IN dosing is the low volume of drug that can be administered. Accordingly, two requirements are necessary: the drug should be active at a low dosage, and the drug solubility in water must be high enough to accommodate the required dose. Drug nanocrystals may overcome these limitations; thus, curcumin was selected as a model drug to prepare nanocrystals for potential IN administration. With this aim, we designed curcumin nanocrystals (NCs) by using Box Behnken design. A total of 51 formulations were prepared by the sonoprecipitation method. Once we assessed the influence of the independent variables on nanocrystals' mean diameter, the formulation was optimized based on the desirability function. The optimized formulation was characterized from a physico-chemical point of view to evaluate the mean size, zeta potential, polidispersity index, pH, osmolarity, morphology, thermotropic behavior and the degree of crystallinity. Finally, the cellular uptake of curcumin and curcumin NCs was evaluated on Olfactory Ensheathing Cells (OECs). Our results showed that the OECs efficiently took up the NCs compared to the free curcumin, showing that NCs can ameliorate drug permeability.
Collapse
Affiliation(s)
- Angela Bonaccorso
- Department of Drug Sciences, University of Catania; V.le Andrea Doria, 6, 95125 Catania, Italy; (D.S.); (C.C.); (G.P.); (T.M.)
| | - Maria Rosa Gigliobianco
- School of Pharmacy, University of Camerino, Via. S. Agostino 1, 62032 Camerino (MC), Italy; (M.R.G.); (P.D.M.)
| | - Rosalia Pellitteri
- Institute for Biomedical Research and Innovation, National Research Council, Via Paolo Gaifami 18, 95126 Catania, Italy;
| | - Debora Santonocito
- Department of Drug Sciences, University of Catania; V.le Andrea Doria, 6, 95125 Catania, Italy; (D.S.); (C.C.); (G.P.); (T.M.)
| | - Claudia Carbone
- Department of Drug Sciences, University of Catania; V.le Andrea Doria, 6, 95125 Catania, Italy; (D.S.); (C.C.); (G.P.); (T.M.)
| | - Piera Di Martino
- School of Pharmacy, University of Camerino, Via. S. Agostino 1, 62032 Camerino (MC), Italy; (M.R.G.); (P.D.M.)
| | - Giovanni Puglisi
- Department of Drug Sciences, University of Catania; V.le Andrea Doria, 6, 95125 Catania, Italy; (D.S.); (C.C.); (G.P.); (T.M.)
| | - Teresa Musumeci
- Department of Drug Sciences, University of Catania; V.le Andrea Doria, 6, 95125 Catania, Italy; (D.S.); (C.C.); (G.P.); (T.M.)
| |
Collapse
|
42
|
Shahcheraghi SH, Zangui M, Lotfi M, Ghayour-Mobarhan M, Ghorbani A, Jaliani HZ, Sadeghnia HR, Sahebkar A. Therapeutic Potential of Curcumin in the Treatment of Glioblastoma Multiforme. Curr Pharm Des 2020; 25:333-342. [PMID: 30864499 DOI: 10.2174/1381612825666190313123704] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 03/08/2019] [Indexed: 12/12/2022]
Abstract
Glioblastoma multiforme (GBM) is the most common primary malignant brain tumor. Despite standard multimodality treatment, the highly aggressive nature of GBM makes it one of the deadliest human malignancies. The anti-cancer effects of dietary phytochemicals like curcumin provide new insights to cancer treatment. Evaluation of curcumin's efficacy against different malignancies including glioblastoma has been a motivational research topic and widely studied during the recent decade. In this review, we discuss the recent observations on the potential therapeutic effects of curcumin against glioblastoma. Curcumin can target multiple signaling pathways involved in developing aggressive and drug-resistant features of glioblastoma, including pathways associated with glioma stem cell activity. Notably, combination therapy with curcumin and chemotherapeutics like temozolomide, the GBM standard therapy, as well as radiotherapy has shown synergistic response, highlighting curcumin's chemo- and radio-sensitizing effect. There are also multiple reports for curcumin nanoformulations and targeted forms showing enhanced therapeutic efficacy and passage through blood-brain barrier, as compared with natural curcumin. Furthermore, in vivo studies have revealed significant anti-tumor effects, decreased tumor size and increased survival with no notable evidence of systemic toxicity in treated animals. Finally, a pharmacokinetic study in patients with GBM has shown a detectable intratumoral concentration, thereby suggesting a potential for curcumin to exert its therapeutic effects in the brain. Despite all the evidence in support of curcumin's potential therapeutic efficacy in GBM, clinical reports are still scarce. More studies are needed to determine the effects of combination therapies with curcumin and importantly to investigate the potential for alleviating chemotherapy- and radiotherapy-induced adverse effects.
Collapse
Affiliation(s)
- Seyed Hossein Shahcheraghi
- Department of Modern Sciences & Technologies, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Infectious Diseases Research Center, Shahid Sadoughi Hospital, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mahtab Zangui
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Marzieh Lotfi
- Department of Medical Genetics, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Majid Ghayour-Mobarhan
- Metabolic Syndrome Research Center, Mashhad University of Medicine Sciences, Mashhad, Iran
| | - Ahmad Ghorbani
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Zarei Jaliani
- Protein Engineering Laboratory, Department of Medical Genetics, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Hamid Reza Sadeghnia
- Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
43
|
Khunt D, Shrivas M, Polaka S, Gondaliya P, Misra M. Role of Omega-3 Fatty Acids and Butter Oil in Targeting Delivery of Donepezil Hydrochloride Microemulsion to Brain via the Intranasal Route: a Comparative Study. AAPS PharmSciTech 2020; 21:45. [PMID: 31900652 DOI: 10.1208/s12249-019-1585-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Accepted: 11/20/2019] [Indexed: 01/15/2023] Open
Abstract
In order to investigate the possible role of butter oil (BO) and omega-3 fatty acids-rich fish oil (O3FO) in the delivery of donepezil hydrochloride microemulsion (DH-ME) to the brain via intranasal route, the present study was conducted. DH:BO and DH:O3FO binary mixtures (9:1 to 1:9) were prepared by simple physical mixing and subjected to in vitro diffusion study. Ratios of DH:BO and DH:O3FO, which showed the highest diffusion, were selected for further development of microemulsion (ME). Globule sizes of DH-BO-ME and DH-O3FO-ME were found to be 87.66 ± 5.23 nm and 88.59 ± 8.23 nm, respectively. Nasal histopathological study and in vitro cytotoxicity study revealed the safety of the formulation. Higher percentage of nasal diffusion was found with DH-BO-ME (71.22 ± 1.21%) and DH-O3FO-ME (62.16 ± 1.23%) in comparison to DH-ME (59.69 ± 1.74%) and DH solution (55.01 ± 1.19%), which was further supported by in vitro cell permeability study. After intranasal administration, %bioavailability of drug in the rat brain (Sprague-Dawley rats)(on the basis of DH-ME IV) was higher with DH-BO-ME (313.59 ± 12.98%) and DH-O3FO-ME (361.73 ± 15.15%) in comparison to DH-ME (168.62 ± 6.60%) and DH solution (8.960 ± 0.23%). The results of ex vivo diffusion study and in vivo pharmacokinetic study suggested that BO and O3FO helped in enhancing the nasal permeability and the brain uptake of drug when administered intranasally.
Collapse
|
44
|
Omega-3 fatty acids as adjunctive therapeutics: prospective of nanoparticles in its formulation development. Ther Deliv 2020; 11:851-868. [DOI: 10.4155/tde-2019-0072] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Omega-3 polyunsaturated fatty acids (ω-3-PUFAs) are dietary components that have been extensively recognized for their therapeutic value and have shown diverse therapeutic effects including anti-inflammatory, antiarrhythmic, antithrombotic, immunomodulatory and antineoplastic activities. Most of the ω-3-PUFAs are obtained through diet or supplements because the body does not synthesize them. The high instability of ω-3-PUFAs to oxidative deterioration, lower bioavailability at the target tissues and reduced bioactivity of ω-3-PUFAs is an impediment for achieving their therapeutic potential. The present review provides an overview of potential therapeutic activities of ω-3-PUFAs and different novel technical approaches based on nanotechnology, which have been emphasized to overcome instability problems as well as enhance the bioactivity of ω-3-PUFAs. Future prospects related to this area of research are also provided.
Collapse
|
45
|
Guo Y, Mao X, Zhang J, Sun P, Wang H, Zhang Y, Ma Y, Xu S, Lv R, Liu X. Oral delivery of lycopene-loaded microemulsion for brain-targeting: preparation, characterization, pharmacokinetic evaluation and tissue distribution. Drug Deliv 2019; 26:1191-1205. [PMID: 31738085 PMCID: PMC6882477 DOI: 10.1080/10717544.2019.1689312] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 10/30/2019] [Accepted: 11/01/2019] [Indexed: 12/11/2022] Open
Abstract
Lycopene is considered as a promising neuroprotector with multiple bioactivities, while its therapeutic use in neurological disorders is restricted due to low solubility, instability and limited bioavailability. Our work aimed to develop lycopene-loaded microemulsion (LME) and investigate its potentials in improving bioavailability and brain-targeting efficiency following oral administration. The blank microemulsion (ME) excipients were selected based on orthogonal design and pseudo-ternary phase diagrams, and LME was prepared using the water titration method and characterized in terms of stability, droplet size distribution, zeta potential, shape and lycopene content. The optimized LME encompassed lycopene, (R)-(+)-limonene, Tween 80, Transcutol HP and water and lycopene content was 463.03 ± 8.96 µg/mL. This novel formulation displayed transparent appearance and satisfactory physical and chemical stabilities. It was spherical and uniform in morphology with an average droplet size of 12.61 ± 0.46 nm and a polydispersity index (PDI) of 0.086 ± 0.028. The pharmacokinetics and tissue distributions of optimized LME were evaluated in rats and mice, respectively. The pharmacokinetic study revealed a dramatic 2.10-fold enhancement of relative bioavailability with LME against the control lycopene dissolved in olive oil (LOO) dosage form in rats. Moreover, LME showed a preferential targeting distribution of lycopene toward brain in mice, with the value of drug targeting index (DTI) up to 3.45. In conclusion, the optimized LME system demonstrated excellent physicochemical properties, enhanced oral bioavailability and superior brain-targeting capability. These findings provide a basis for the applications of ME-based strategy in brain-targeted delivery via oral route, especially for poorly water-soluble drugs.
Collapse
Affiliation(s)
- Yunliang Guo
- Department of Geriatrics, Shandong Provincial
Hospital Affiliated to Shandong University, Jinan, PR
China
- Department of Geriatric Neurology, Shandong
Provincial Hospital Affiliated to Shandong University, Jinan, PR
China
- Anti-Aging Monitoring Laboratory, Shandong
Provincial Hospital Affiliated to Shandong University, Jinan, PR
China
| | - Xuyan Mao
- Bio-nano & Medical Engineering Institute,
Jining Medical University, Jining, PR China
| | - Jing Zhang
- Department of Cell and Neurobiology, School of
Basic Medical Sciences, Shandong University, Jinan, PR
China
| | - Peng Sun
- Institute of Materia Medica, Shandong Academy
of Medical Sciences, Jinan, PR China
| | - Haiyang Wang
- Institute of Materia Medica, Shandong Academy
of Medical Sciences, Jinan, PR China
| | - Yue Zhang
- Department of Geriatrics, Shandong Provincial
Hospital Affiliated to Shandong University, Jinan, PR
China
- Department of Geriatric Neurology, Shandong
Provincial Hospital Affiliated to Shandong University, Jinan, PR
China
- Anti-Aging Monitoring Laboratory, Shandong
Provincial Hospital Affiliated to Shandong University, Jinan, PR
China
| | - Yingjuan Ma
- Department of Geriatrics, Shandong Provincial
Hospital Affiliated to Shandong University, Jinan, PR
China
- Department of Geriatric Neurology, Shandong
Provincial Hospital Affiliated to Shandong University, Jinan, PR
China
- Anti-Aging Monitoring Laboratory, Shandong
Provincial Hospital Affiliated to Shandong University, Jinan, PR
China
| | - Song Xu
- Department of Geriatrics, Shandong Provincial
Hospital Affiliated to Shandong University, Jinan, PR
China
- Department of Geriatric Neurology, Shandong
Provincial Hospital Affiliated to Shandong University, Jinan, PR
China
- Anti-Aging Monitoring Laboratory, Shandong
Provincial Hospital Affiliated to Shandong University, Jinan, PR
China
| | - Renjun Lv
- Shandong Provincial Hospital, Shandong First
Medical University & Shandong Academy of Medical Sciences, Jinan,
PR China
| | - Xueping Liu
- Department of Geriatrics, Shandong Provincial
Hospital Affiliated to Shandong University, Jinan, PR
China
- Department of Geriatric Neurology, Shandong
Provincial Hospital Affiliated to Shandong University, Jinan, PR
China
- Anti-Aging Monitoring Laboratory, Shandong
Provincial Hospital Affiliated to Shandong University, Jinan, PR
China
- Department of Anti-Aging, Shandong Provincial
Hospital Affiliated to Shandong University, Jinan, PR
China
| |
Collapse
|
46
|
Nasal Drug Delivery of Anticancer Drugs for the Treatment of Glioblastoma: Preclinical and Clinical Trials. Molecules 2019; 24:molecules24234312. [PMID: 31779126 PMCID: PMC6930669 DOI: 10.3390/molecules24234312] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/22/2019] [Accepted: 11/24/2019] [Indexed: 12/18/2022] Open
Abstract
Glioblastoma (GBM) is the most lethal form of brain tumor, being characterized by the rapid growth and invasion of the surrounding tissue. The current standard treatment for glioblastoma is surgery, followed by radiotherapy and concurrent chemotherapy, typically with temozolomide. Although extensive research has been carried out over the past years to develop a more effective therapeutic strategy for the treatment of GBM, efforts have not provided major improvements in terms of the overall survival of patients. Consequently, new therapeutic approaches are urgently needed. Overcoming the blood–brain barrier (BBB) is a major challenge in the development of therapies for central nervous system (CNS) disorders. In this context, the intranasal route of drug administration has been proposed as a non-invasive alternative route for directly targeting the CNS. This route of drug administration bypasses the BBB and reduces the systemic side effects. Recently, several formulations have been developed for further enhancing nose-to-brain transport, mainly with the use of nano-sized and nanostructured drug delivery systems. The focus of this review is to provide an overview of the strategies that have been developed for delivering anticancer compounds for the treatment of GBM while using nasal administration. In particular, the specific properties of nanomedicines proposed for nose-to-brain delivery will be critically evaluated. The preclinical and clinical data considered supporting the idea that nasal delivery of anticancer drugs may represent a breakthrough advancement in the fight against GBM.
Collapse
|
47
|
Lu L, Chen H, Hao D, Zhang X, Wang F. The functions and applications of A7R in anti-angiogenic therapy, imaging and drug delivery systems. Asian J Pharm Sci 2019; 14:595-608. [PMID: 32104486 PMCID: PMC7032227 DOI: 10.1016/j.ajps.2019.04.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 03/31/2019] [Accepted: 04/24/2019] [Indexed: 12/26/2022] Open
Abstract
Vascular endothelial growth factor receptor 2 (VEGFR-2) and neuropilin-1 (NRP-1) are two prominent antiangiogenic targets. They are highly expressed on vascular endothelial cells and some tumor cells. Therefore, targeting VEGFR-2 and NRP-1 may be a potential antiangiogenic and antitumor strategy. A7R, a peptide with sequence of Ala-Thr-Trp-Leu-Pro-Pro-Arg that was found by phage display of peptide libraries, can preferentially target VEGFR-2 and NRP-1 and destroy the binding between vascular endothelial growth factor 165 (VEGF165) and VEGFR-2 or NRP-1. This peptide is a new potent inhibitor of tumor angiogenesis and a targeting ligand for cancer therapy. This review describes the discovery, function and mechanism of the action of A7R, and further introduces the applications of A7R in antitumor angiogenic treatments, tumor angiogenesis imaging and targeted drug delivery systems. In this review, strategies to deliver different drugs by A7R-modified liposomes and nanoparticles are highlighted. A7R, a new dual targeting ligand of VEGFR-2 and NRP-1, is expected to have efficient therapeutic or targeting roles in tumor drug delivery.
Collapse
Affiliation(s)
- Lu Lu
- Key Laboratory of Chemical Biology (Ministry of Education), Institute of Biochemical and Biotechnological Drug, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Hongyuan Chen
- Department of General Surgery, Shandong University Affiliated Shandong Provincial Hospital, Jinan 250021, China
| | - Dake Hao
- Department of Surgery, UC Davis Health Medical Center, Sacramento 95817, USA
| | - Xinke Zhang
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Fengshan Wang
- Key Laboratory of Chemical Biology (Ministry of Education), Institute of Biochemical and Biotechnological Drug, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| |
Collapse
|
48
|
Chen XP, Li Y, Zhang Y, Li GW. Formulation, Characterization And Evaluation Of Curcumin- Loaded PLGA- TPGS Nanoparticles For Liver Cancer Treatment. Drug Des Devel Ther 2019; 13:3569-3578. [PMID: 31802845 PMCID: PMC6801559 DOI: 10.2147/dddt.s211748] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 09/27/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Liver cancer is a major health problem facing mankind. Currently, the focus of research is to improve the treatment of liver cancer using a variety of treatment options such as providing chemotherapy drugs through nanocarriers. PURPOSE The aim of this study was to prepare a curcumin-loaded (PLGA/TPGS) NPs delivery system by the emulsification-solvent evaporation method in order to achieve synergistic antitumor activity against liver cancer. METHODS Curcumin-loaded (PLGA/TPGS) NPs were prepared by the emulsification and solvent evaporation method. The physical and chemical characteristics of NPs such as size, morphology, and release profiles were discussed. In vitro and in vivo studies were carried out to evaluate its anti-tumor activity in target cells. RESULTS Curcumin-loaded (PLGA/TPGS) NPs could be successfully internalized by HepG2 cells and play a synergistic role in inhibiting the growth of hepatocellular carcinoma cells. They exhibited high target organ accumulation, superior antitumor efficiency, and lower toxicity in vivo. CONCLUSION The present study indicates that the curcumin-loaded (PLGA/TPGS) NPs provide a promising platform for the treatment of liver cancer.
Collapse
Affiliation(s)
- Xiao-ping Chen
- Department of Oncology, Beibei District Hospital of Traditional Chinese Medicine, Chongqing, People’s Republic of China
| | - Yi Li
- Department of Oncology, Beibei District Hospital of Traditional Chinese Medicine, Chongqing, People’s Republic of China
| | - Yu Zhang
- Department of Oncology, Beibei District Hospital of Traditional Chinese Medicine, Chongqing, People’s Republic of China
| | - Gao-wei Li
- Department of Oncology, Beibei District Hospital of Traditional Chinese Medicine, Chongqing, People’s Republic of China
| |
Collapse
|
49
|
Kokare C, Koli D, Gadhave D, Mote C, Khandekar G. Efavirenz-loaded intranasal microemulsion for crossing blood-CNS interfaces in neuronal-AIDS: pharmacokinetic and in vivo safety evaluation. Pharm Dev Technol 2019; 25:28-39. [PMID: 31441694 DOI: 10.1080/10837450.2019.1659818] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Purpose: Development of delivery tool for the existing antiretroviral drugs against the neuronal-AIDS in itself is a big challenge because of blood-brain-barrier (BBB). Aim of present research is to formulate efavirenz (EFV) based mucoadhesive microemulsion (EMME) and investigates its efficiency through intranasal delivery.Methods: The EFV microemulsion (EME) was formulated by aqueous titration method. The formulation was screened for globule size, zeta potential and encapsulation efficiency. Bio-distribution of EFV was performed by gamma scintigraphy. Safety of optimized formulation was demonstrated using biochemical, hematological and histopathological data.Results: Experimental data demonstrate that optimized formulation showed significant size (19.04 nm), zeta potential (-32.2 mV) and entrapment efficiency (98.39%). The results of Cmax value suggested that intranasal (i.n.) 99mTc-EMME is able to improve the brain uptake of EFV around 2 folds more than i.n. 99mTC-EME and intravenous (i.v.) 99mTC-EME administrations. The drug targeting index (DTI= 10), drug targeting efficiency (DTE = 1000%) and direct transport percentage (DTP = 89%) were found highly significant for EMME (i.n.) than EME (i.n.). In vivo safety evaluation studies on experimental animals for biochemical, hematological and histopathological parameters remain unchanged.Conclusions: Hence, the intranasal delivery of EMME can be safe and effective tool in the treatment of neuronal-AIDS.
Collapse
Affiliation(s)
- Chandrakant Kokare
- Department of Pharmaceutics, STES's, Sinhgad Institute of Pharmacy (Affiliated to Savitribai Phule Pune University), Narhe, India
| | - Dhanashri Koli
- Department of Pharmaceutics, STES's, Sinhgad Institute of Pharmacy (Affiliated to Savitribai Phule Pune University), Narhe, India
| | - Dnyandev Gadhave
- Department of Pharmaceutics, STES's, Sinhgad Institute of Pharmacy (Affiliated to Savitribai Phule Pune University), Narhe, India
| | - Chandrashekhar Mote
- Department of Veterinary Pathology, KNP College of Veterinary Science, Satara, India
| | - Gajendra Khandekar
- Department of Veterinary Surgery, Bombay Veterinary College, Parel, India
| |
Collapse
|
50
|
Tan X, Zou L, Qin J, Xia D, Zhou Y, Jin G, Jiang Z, Li H. SQSTM1/p62 is involved in docosahexaenoic acid-induced cellular autophagy in glioblastoma cell lines. In Vitro Cell Dev Biol Anim 2019; 55:703-712. [PMID: 31429038 DOI: 10.1007/s11626-019-00387-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Accepted: 07/18/2019] [Indexed: 01/07/2023]
Abstract
Docosahexaenoic acid (DHA) is the most abundant n-3 polyunsaturated fatty acid in the human brain and works as an anticancer agent to induce cell cycle arrest and apoptosis in glioblastoma multiforme (GBM) cell lines. However, little is known about the connection between DHA and autophagy in GBM cells. We found that high-dose DHA caused cellular autophagy in cultured U251 and U118 GBM cell lines, but there was no effect with a low dose. Moreover, after treatment with a high dose of DHA at 12, 24, and 48 h, the protein expression of SQSTM1/p62 decreased in DHA-treated U251 cells at 12 and 24 h, but increased at 48 h, while in DHA-treated U118 cells, the protein expression increased at all time points. Interestingly, the level of SQSTM1/p62 mRNA was elevated in both DHA-treated U251 and U118 cells at all time points, indicating that DHA activated SQSTM1/p62 transcription in both cell lines. Furthermore, downregulation of SQSTM1/p62 by siRNA attenuated DHA-induced cellular autophagy in both cell lines. This report confirms that high-dose DHA induces cellular autophagy in GBM cells, and demonstrates that SQSTM1/p62 acts as a regulator and participates in DHA-induced autophagy.
Collapse
Affiliation(s)
- Xuefeng Tan
- Department of Human Anatomy, Institute of Neurobiology, Medical School of Nantong University, No. 19 Qixiu Road, No. 3 Building of Qixiu Campus, Nantong, 226001, Jiangsu, China
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Medical School of Nantong University, No. 19 Qixiu Road, No. 3 Building of Qixiu Campus, Nantong, 226001, Jiangsu, China
| | - Linqing Zou
- Department of Human Anatomy, Institute of Neurobiology, Medical School of Nantong University, No. 19 Qixiu Road, No. 3 Building of Qixiu Campus, Nantong, 226001, Jiangsu, China
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Medical School of Nantong University, No. 19 Qixiu Road, No. 3 Building of Qixiu Campus, Nantong, 226001, Jiangsu, China
| | - Jianbing Qin
- Department of Human Anatomy, Institute of Neurobiology, Medical School of Nantong University, No. 19 Qixiu Road, No. 3 Building of Qixiu Campus, Nantong, 226001, Jiangsu, China
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Medical School of Nantong University, No. 19 Qixiu Road, No. 3 Building of Qixiu Campus, Nantong, 226001, Jiangsu, China
| | - Donglin Xia
- Public Health School of Nantong University, Nantong, 226001, China
| | - Youlang Zhou
- Hand Surgery Research Center, Department of Hand Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Guohua Jin
- Department of Human Anatomy, Institute of Neurobiology, Medical School of Nantong University, No. 19 Qixiu Road, No. 3 Building of Qixiu Campus, Nantong, 226001, Jiangsu, China
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Medical School of Nantong University, No. 19 Qixiu Road, No. 3 Building of Qixiu Campus, Nantong, 226001, Jiangsu, China
| | - Zhuang Jiang
- Clinical Medicine, Medical School of Nantong University, Nantong, 226001, China
| | - Haoming Li
- Department of Human Anatomy, Institute of Neurobiology, Medical School of Nantong University, No. 19 Qixiu Road, No. 3 Building of Qixiu Campus, Nantong, 226001, Jiangsu, China.
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Medical School of Nantong University, No. 19 Qixiu Road, No. 3 Building of Qixiu Campus, Nantong, 226001, Jiangsu, China.
| |
Collapse
|