1
|
Ricci F, Lindner S, Summonte S, Holm R, Sun D, Washburn N, Michalowski CB, Di Pretoro G, Bernkop-Schnürch A. Mixed dry reverse micelles: potential carriers for oral protein delivery via SEDDS. Drug Deliv Transl Res 2025:10.1007/s13346-025-01810-2. [PMID: 39966252 DOI: 10.1007/s13346-025-01810-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/29/2025] [Indexed: 02/20/2025]
Abstract
The aim of this study was to evaluate the potential of mixed dry reverse micelles (dRMs) to increase the lipophilicity of therapeutic proteins and allow their incorporation into self-emulsifying drug delivery systems (SEDDS). Horseradish peroxidase (HRP) was incorporated in mixed dRMs, forming HRP-dRMs, using soybean phosphatidylcholine (SPC) and sodium docusate (SD) as surfactants. HRP-dRMs were characterized with respect to their distribution coefficient and stability in simulated physiological fluids. Moreover, HRP-dRMs were loaded in SEDDS, which were characterized for their payload, stability, distribution coefficients between the lipophilic phase of SEDDS and release medium and their ability to protect the incorporated protein towards enzymatic degradation in aqueous media containing trypsin and chymotrypsin. The synergistic effect of two surfactants to form dRMs led to a payload of 3% (w/v) for the model protein in a lipophilic phase without the use of organic cosolvents. Moreover, the HRP-dRMs incorporation increased the LogD n-octanol/water value of HRP from - 3.36 to 3.10. This increment in lipophilicity provided a higher retention of the protein within the oily droplets, and correled with enzymatic degradation studies, where > 95% of the incorporated protein remained intact. This study provided first evidence for unprecedented amount of a model protein of high molecular weight loaded in SEDDS through dRMs incorporation as a possible tool for their oral delivery, with a 15-fold increment compared to the previously achieved results.
Collapse
Affiliation(s)
- Fabrizio Ricci
- Thiomatrix Forschungs-und Beratungs GmbH, Trientlgasse 65, Innsbruck, 6020, Austria
| | - Sera Lindner
- Thiomatrix Forschungs-und Beratungs GmbH, Trientlgasse 65, Innsbruck, 6020, Austria
| | - Simona Summonte
- Thiomatrix Forschungs-und Beratungs GmbH, Trientlgasse 65, Innsbruck, 6020, Austria
| | - René Holm
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, Odense, 5230, Denmark
| | - Dajun Sun
- Pharmaceutical Product Development & Supply, Johnson & Johnson Innovative Medicine, Turnhoutseweg 30, Beerse, B-2340, Belgium
| | - Nathaniel Washburn
- Immunology Discovery Johnson & Johnson Innovative Medicine, 301 Binney St, Cambridge, MA, 02141, USA
| | - Cecilia Bohns Michalowski
- Pharmaceutical Product Development & Supply, Johnson & Johnson Innovative Medicine, Turnhoutseweg 30, Beerse, B-2340, Belgium
| | - Giustino Di Pretoro
- Drug Product Development & Delivery, Johnson & Johnson Innovative Medicine, 347 Phoenixville Pike, Malvern, PA, 19355, USA
| | | |
Collapse
|
2
|
Cojocaru E, Petriș OR, Cojocaru C. Nanoparticle-Based Drug Delivery Systems in Inhaled Therapy: Improving Respiratory Medicine. Pharmaceuticals (Basel) 2024; 17:1059. [PMID: 39204164 PMCID: PMC11357421 DOI: 10.3390/ph17081059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/03/2024] [Accepted: 08/09/2024] [Indexed: 09/03/2024] Open
Abstract
Inhaled nanoparticle (NP) therapy poses intricate challenges in clinical and pharmacodynamic realms. Recent strides have revolutionized NP technology by enabling the incorporation of diverse molecules, thus circumventing systemic clearance mechanisms and enhancing drug effectiveness while mitigating systemic side effects. Despite the established success of systemic NP delivery in oncology and other disciplines, the exploration of inhaled NP therapies remains relatively nascent. NPs loaded with bronchodilators or anti-inflammatory agents exhibit promising potential for precise distribution throughout the bronchial tree, offering targeted treatment for respiratory diseases. This article conducts a comprehensive review of NP applications in respiratory medicine, highlighting their merits, ranging from heightened stability to exacting lung-specific delivery. It also explores cutting-edge technologies optimizing NP-loaded aerosol systems, complemented by insights gleaned from clinical trials. Furthermore, the review examines the current challenges and future prospects in NP-based therapies. By synthesizing current data and perspectives, the article underscores the transformative promise of NP-mediated drug delivery in addressing chronic conditions such as chronic obstructive pulmonary disease, a pressing global health concern ranked third in mortality rates. This overview illuminates the evolving landscape of NP inhalation therapies, presenting optimistic avenues for advancing respiratory medicine and improving patient outcomes.
Collapse
Affiliation(s)
- Elena Cojocaru
- Morpho-Functional Sciences II Department, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Ovidiu Rusalim Petriș
- Medical II Department, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Cristian Cojocaru
- Medical III Department, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| |
Collapse
|
3
|
Wang B, Wang L, Yang Q, Zhang Y, Qinglai T, Yang X, Xiao Z, Lei L, Li S. Pulmonary inhalation for disease treatment: Basic research and clinical translations. Mater Today Bio 2024; 25:100966. [PMID: 38318475 PMCID: PMC10840005 DOI: 10.1016/j.mtbio.2024.100966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/16/2024] [Accepted: 01/19/2024] [Indexed: 02/07/2024] Open
Abstract
Pulmonary drug delivery has the advantages of being rapid, efficient, and well-targeted, with few systemic side effects. In addition, it is non-invasive and has good patient compliance, making it a highly promising drug delivery mode. However, there have been limited studies on drug delivery via pulmonary inhalation compared with oral and intravenous modes. This paper summarizes the basic research and clinical translation of pulmonary inhalation drug delivery for the treatment of diseases and provides insights into the latest advances in pulmonary drug delivery. The paper discusses the processing methods for pulmonary drug delivery, drug carriers (with a focus on various types of nanoparticles), delivery devices, and applications in pulmonary diseases and treatment of systemic diseases (e.g., COVID-19, inhaled vaccines, diagnosis of the diseases, and diabetes mellitus) with an updated summary of recent research advances. Furthermore, this paper describes the applications and recent progress in pulmonary drug delivery for lung diseases and expands the use of pulmonary drugs for other systemic diseases.
Collapse
Affiliation(s)
- Bin Wang
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Lin Wang
- Department of Otorhinolaryngology Head and Neck Surgery, Binzhou People's Hospital, Binzhou, 256610, Shandong, China
| | - Qian Yang
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Yuming Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Tang Qinglai
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Xinming Yang
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Zian Xiao
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Lanjie Lei
- Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, 310015, Zhejiang, China
| | - Shisheng Li
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya Hospital, Central South University, Changsha, 410011, China
| |
Collapse
|
4
|
Changez M, Anwar MF, Alrahbi H. Olive Oil-Based Reverse Microemulsion for Stability and Topical Delivery of Methotrexate: In Vitro. ACS OMEGA 2024; 9:7012-7021. [PMID: 38371785 PMCID: PMC10870400 DOI: 10.1021/acsomega.3c08875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/18/2023] [Accepted: 01/17/2024] [Indexed: 02/20/2024]
Abstract
Hydrolysis of pharmaceutically active molecules can be in control under a confined environment of water-in-oil microemulsion. Stability of model drug methotrexate (MTX) in a sodium bis(2-ethylhexyl) sulfosuccinate (AOT) and olive oil microemulsion system has been evaluated. The physicochemical properties of AOT-MTX-water-olive oil reverse microemulsion (MTX-RM) were examined by UV-vis, Fourier transform infrared, and X-ray diffraction techniques, and the hydrodynamic size was determined by dynamic light scattering techniques and morphologies were characterized by a transmission electron microscope and atomic force microscope. In vitro permeation of MTX-RM through treated skin and its mechanism are evaluated by a UV-visible spectrophotometer, confocal laser scanning microscope, differential scanning calorimeter, and attenuated total reflecting infrared spectroscopy (ATR). The interaction of MTX with the AOT headgroup in confined environment RM enhanced the stability of MTX without affecting the molecular integrity at room temperature. Chemical stability of MTX in MTX-RM (W0 = 5) is significantly higher (∼97%) at room temperature for the study period of 1 year than in MTX-RM (W0 = 15) (∼72%). Interaction of MTX with the AOT headgroup is also visualized by a high-resolution transmission electron microscope and is in correlation with FT-IR data of MTX-RM. The skin fluxes of MTX are 15.1, 19.75, and 22.75 times higher at water content (W0) of 5, 10, and 15, respectively, in MTX-RM in comparison to aqueous solution of MTX. The enhanced amounts of the MTX were detected using CLSM in hair follicles, sweat glands, and epidermis layer of the skin. Merging of T2, T3, and T4 thermal peaks in one broad peak in treated skin endothermograph shows that carrier MTX-RM affects the lipid as well protein structure of the treated skin. ATR data of treated skin showed an increase in the intensity of the carbonyl peak at 1750 cm-1 (lipid), shifting of the amide II peaks, and separation of peaks in the range of 1060 to 1000 cm-1 (vibration mode of -CH2OH, C-O stretching, and C-OH bending peak of the carbohydrate) in comparison to control skin, which indicates that MTX-RM interacts with glycolipid and glycoprotein through carbohydrate hydroxy groups.
Collapse
Affiliation(s)
- Mohammad Changez
- College
of Health Science, University of Buraimi, Al Buraimi 512, Oman
| | - Mohammad Faiyaz Anwar
- Department
of Microbiology, All Indian Institute of
Medical Sciences AIIMS, New Delhi 110608, India
| | - Hilal Alrahbi
- College
of Health Science, University of Buraimi, Al Buraimi 512, Oman
| |
Collapse
|
5
|
Luo P, Wang W, Wu C, Pan X, Huang Z. Confinement–Segregation Theory to Explain the Formation Mechanism of Peptide-Containing Particles in Metered Dose Inhalers. THE 4TH INTERNATIONAL ELECTRONIC CONFERENCE ON APPLIED SCIENCES 2023:143. [DOI: 10.3390/asec2023-16355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Affiliation(s)
- Peili Luo
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Wenhao Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Chuanbin Wu
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Xin Pan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Zhengwei Huang
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| |
Collapse
|
6
|
Chang Z, Wang W, Huang Z, Huang Y, Wu C, Pan X. Lecithin Reverse Micelle System is Promising in Constructing Carrier Particles for Protein Drugs Encapsulated Pressurized Metered‐Dose Inhalers. ADVANCED THERAPEUTICS 2023; 6. [DOI: 10.1002/adtp.202300046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Indexed: 06/25/2024]
Abstract
AbstractProtein drugs contained within pressurized metered dose inhalers (pMDIs) show immense potential for fundamental research and industrial applications, owing to their high bioavailability, convenient administration, and cost‐effectiveness. To deliver protein drugs efficiently, researchers have reached a consensus on the use of carrier particles. However, the main obstacle impeding the commercial availability of pMDI carrier particles is their low stability. This instability is primarily attributed to particle aggregation caused by the Ostwald ripening phenomenon and chemical degradation by water sensitivity of protein drugs. This study proposes the utilization of lecithin, a carrier material possessing an amphiphilic structure, to overcome this bottleneck. By constructing lecithin‐based reverse micelle systems with protein drugs encapsulated within the high‐polarity microdomain, this work anticipates an improvement in the stability of carrier particles within pMDIs. Specifically, the formation of crystalline phases in the reverse micelle systems can control carrier particle size through crystalline self‐limiting effect, preventing particle aggregation. Additionally, the low‐polarity microdomain of the carrier serves as a hydrophobic barrier, shielding protein drugs from water and preventing chemical degradation. Consequently, this work believes that the lecithin‐based reverse micelle system holds significant potential in providing new theoretical insights and experimental support for the advancement of pMDIs containing protein drugs.
Collapse
Affiliation(s)
- Ziyao Chang
- School of Pharmaceutical Sciences Sun Yat‐Sen University Guangzhou Guangdong 510006 P. R. China
| | - Wenhao Wang
- School of Pharmaceutical Sciences Sun Yat‐Sen University Guangzhou Guangdong 510006 P. R. China
| | - Zhengwei Huang
- College of Pharmacy Jinan University Guangzhou Guangdong 511443 P. R. China
| | - Ying Huang
- College of Pharmacy Jinan University Guangzhou Guangdong 511443 P. R. China
| | - Chuanbin Wu
- College of Pharmacy Jinan University Guangzhou Guangdong 511443 P. R. China
| | - Xin Pan
- School of Pharmaceutical Sciences Sun Yat‐Sen University Guangzhou Guangdong 510006 P. R. China
| |
Collapse
|
7
|
Kumar R, Mehta P, Shankar KR, Rajora MAK, Mishra YK, Mostafavi E, Kaushik A. Nanotechnology-Assisted Metered-Dose Inhalers (MDIs) for High-Performance Pulmonary Drug Delivery Applications. Pharm Res 2022; 39:2831-2855. [PMID: 35552983 PMCID: PMC9097569 DOI: 10.1007/s11095-022-03286-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/03/2022] [Indexed: 11/24/2022]
Abstract
PURPOSE Respiratory disorders pose a major threat to the morbidity and mortality to public health. Here we reviewed the nanotechnology based pulmonary drug delivery using metered dose inhalers. METHODS Major respiratory diseases such as chronic obstructive pulmonary diseases (COPD), asthma, acute lower respiratory tract infections, tuberculosis (TB) and lung cancer. At present, common treatments for respiratory disorders include surgery, radiation, immunotherapy, and chemotherapy or a combination. The major challenge is development of systemic delivery of the chemotherapeutic agents to the respiratory system. Conventional delivery of chemotherapy has various limitation and adverse side effected. Hence, targeted, and systemic delivery need to be developed. Towards this direction nanotechnology, based controlled, targeted, and systemic drug delivery systems are potential candidate to enhance therapeutic efficacy with minimum side effect. Among different route of administration, pulmonary delivery has unique benefits such as circumvents first pass hepatic metabolism and reduces dose and side effects. RESULTS Respiratory disorders pose a major threat to the morbidity and mortality to public health globally. Pulmonary delivery can be achieved through various drug delivery devices such as nebulizers, dry powder inhalers, and metered dose inhalers. Among them, metered dose inhalers are the most interesting and first choice of clinician over others. This review focused on nanotechnology based pulmonary drug delivery using metered dose inhalers. This report focused on delivery of various types of therapeutics using nanocarriers such as polymeric nanoparticles and micelles, dendrimers, lipid nanocarriers such as liposomes, solid lipid nanostructures and nanostructured lipid carriers, and other using metered dose inhalers discussed comprehensively. This report provides insight about the effect of parameters of MDI such as co-solvent, propellants, actuators shape, nozzle diameters, and jet lengths, and respiratory flow rate, and particle size of co-suspension of drug on aerodynamics and lung deposition of formulation. This review also provided the insight about various metered dose inhalers market scenario and digital metered dose inhalers. CONCLUSION This report concluded the clinical potential of metered dose inhalers, summary of current progress and future perspectives towards the smart digital metered dose inhalers development.
Collapse
Affiliation(s)
- Raj Kumar
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, 68105, USA.
| | - Piyush Mehta
- Pharmaceutical Technology Center, Department of Aerosol, Zydus Life Sciences Ltd., Ahmedabad, Gujarat, India
| | | | - Manju A K Rajora
- College of Nursing, All India Institute of Medical Sciences, New Delhi, 100029, India
| | - Yogendra Kumar Mishra
- Mads Clausen Institute, NanoSYD, University of Southern Denmark, Alsion 2, 6400, Sønderborg, Denmark.,Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Ebrahim Mostafavi
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA.,NanoBioTech Laboratory, Health Systems Engineering, Department of Natural Sciences, Florida Polytechnic University, Lakeland, FL, USA
| | - Ajeet Kaushik
- NanoBioTech Laboratory, Health Systems Engineering, Department of Natural Sciences, Florida Polytechnic University, Lakeland, FL, USA.
| |
Collapse
|
8
|
Huang Z, Shu L, Huang Y, Wu C, Pan X. Low Drug Loading Hampers the Clinical Translation of Peptide Drugs-Containing Metered-Dose Inhalers. Pharmaceuticals (Basel) 2022; 15:389. [PMID: 35455386 PMCID: PMC9031202 DOI: 10.3390/ph15040389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/16/2022] [Accepted: 03/18/2022] [Indexed: 12/10/2022] Open
Abstract
Peptide-based drugs have attracted extensive attention from the medical and pharmaceutical industry because of their relatively high safety and efficacy. However, most of the peptide drugs approved are administrated by injection, which can easily cause poor patient compliance. In this circumstance, pulmonary administration as an alternative to injection administration can not only avoid the above issue but also accelerate the absorption rate of peptide drugs and improve bioavailability. Among the pulmonary delivery systems available on the market, metered-dose inhalers (MDIs) have emerged as appealing candidates for pulmonary delivery systems with clinical translational value, owing to their many merits, including portable, easy-to-operate, and cost-effective properties. Nevertheless, the industrialization of peptide drugs-containing MDIs encounters a bottleneck of low drug loading, owing to the incompatibility between the propellant and the peptide drugs, which cannot be effectively overcome by the current carrier particle encapsulation strategy. Herein, we put forward the following strategies: (1) To screen amphiphilic materials with high surface activity and strong interaction with peptide drugs; (2) To construct a chemical connection between peptide drugs and amphiphilic substances; (3) To optimize the cosolvent for dispersing peptide drugs. We suppose these strategies have the potential to defeat the bottleneck problem and provide a new idea for the industrialization of peptide drugs-containing MDIs.
Collapse
Affiliation(s)
- Zhengwei Huang
- College of Pharmacy, Jinan University, Guangzhou 510632, China; (Z.H.); (L.S.); (C.W.)
| | - Lei Shu
- College of Pharmacy, Jinan University, Guangzhou 510632, China; (Z.H.); (L.S.); (C.W.)
| | - Ying Huang
- College of Pharmacy, Jinan University, Guangzhou 510632, China; (Z.H.); (L.S.); (C.W.)
| | - Chuanbin Wu
- College of Pharmacy, Jinan University, Guangzhou 510632, China; (Z.H.); (L.S.); (C.W.)
| | - Xin Pan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
9
|
Wang X, Wan W, Lu J, Quan G, Pan X, Liu P. Effects of L-leucine on the properties of spray-dried swellable microparticles with wrinkled surfaces for inhalation therapy of pulmonary fibrosis. Int J Pharm 2021; 610:121223. [PMID: 34710541 DOI: 10.1016/j.ijpharm.2021.121223] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/08/2021] [Accepted: 10/19/2021] [Indexed: 12/29/2022]
Abstract
Swellable microparticles (SMs) provide a potential strategy for achieving sustained inhalation therapy. However, spray dried SMs are highly hygroscopic, exhibiting poor flowability and dispersibility properties. This study aimed at determining whether L-leucine (LL) can improve aerosolization performance of SMs with wrinkled surface and its potential mechanisms. Cryptotanshinone was co-spray dried with chitosan and LL (0-40%, mass fraction in carrier materials), after which the production yield, particle size, density, encapsulation efficiency, morphology, cohesion, crystallinity, surface LL distribution, hygroscopicity, water content and in vitro aerosolization performance of the developed formulations were characterized. In addition, we determined whether LL, as a hydrophobic amino acid, would impair swellability and macrophage phagocytosis of SMs. The possible impact of LL on in vitro drug release, cytotoxicity and anti-fibrosis effects on MRC-5 cells was also investigated. As the LL content increased, LL began to crystallize. At 7.5% LL, water content and hygroscopicity of the SMs were at their lowest. Moreover, at 7.5% LL, surface enrichment increased rapidly after which it achieved a comparatively complete coverage at 20-40% LL. However, LL ≥ 20% caused the formation of over-wrinkled, even dimpled or hollow particles, which significantly deteriorated powder properties. Optimum aerosolization performance was obtained at 10% LL, irrespective of its crystallization behavior, accompanied by the lowest cohesion, optimal flowability and production yield, and without impaired swellability, macrophage uptake and anti-fibrosis efficacy. The optimal formulation did not exhibit optimum surface LL coverage, implying that improvement of aerosolization performance of wrinkled SMs by LL not simply depended on its surface enrichment, but its significant influence on morphology and on related powder properties as well.
Collapse
Affiliation(s)
- Xiuhua Wang
- School of Pharmaceutical Sciences, National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Sun Yat-sen University, Guangzhou 510006, China
| | - Wei Wan
- School of Pharmaceutical Sciences, National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Sun Yat-sen University, Guangzhou 510006, China
| | - Jing Lu
- School of Pharmaceutical Sciences, National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Sun Yat-sen University, Guangzhou 510006, China
| | - Guilan Quan
- College of Pharmacy, Jinan University, Guangzhou 511443, China
| | - Xin Pan
- School of Pharmaceutical Sciences, National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Sun Yat-sen University, Guangzhou 510006, China
| | - Peiqing Liu
- School of Pharmaceutical Sciences, National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
10
|
Pramanik S, Mohanto S, Manne R, Rajendran RR, Deepak A, Edapully SJ, Patil T, Katari O. Nanoparticle-Based Drug Delivery System: The Magic Bullet for the Treatment of Chronic Pulmonary Diseases. Mol Pharm 2021; 18:3671-3718. [PMID: 34491754 DOI: 10.1021/acs.molpharmaceut.1c00491] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Chronic pulmonary diseases encompass different persistent and lethal diseases, including chronic obstructive pulmonary disease (COPD), idiopathic pulmonary fibrosis (IPF), cystic fibrosis (CF), asthma, and lung cancers that affect millions of people globally. Traditional pharmacotherapeutic treatment approaches (i.e., bronchodilators, corticosteroids, chemotherapeutics, peptide-based agents, etc.) are not satisfactory to cure or impede diseases. With the advent of nanotechnology, drug delivery to an intended site is still difficult, but the nanoparticle's physicochemical properties can accomplish targeted therapeutic delivery. Based on their surface, size, density, and physical-chemical properties, nanoparticles have demonstrated enhanced pharmacokinetics of actives, achieving the spotlight in the drug delivery research field. In this review, the authors have highlighted different nanoparticle-based therapeutic delivery approaches to treat chronic pulmonary diseases along with the preparation techniques. The authors have remarked the nanosuspension delivery via nebulization and dry powder carrier is further effective in the lung delivery system since the particles released from these systems are innumerable to composite nanoparticles. The authors have also outlined the inhaled particle's toxicity, patented nanoparticle-based pulmonary formulations, and commercial pulmonary drug delivery devices (PDD) in other sections. Recently advanced formulations employing nanoparticles as therapeutic carriers for the efficient treatment of chronic pulmonary diseases are also canvassed.
Collapse
Affiliation(s)
- Sheersha Pramanik
- Department of Pharmacy, Institute of Pharmacy Jalpaiguri, Netaji Subhas Chandra Bose Road, Hospital Para, Jalpaiguri, West Bengal 735101, India.,Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036, India
| | - Sourav Mohanto
- Department of Pharmaceutics, Himalayan Pharmacy Institute, Majhitar, East Sikkim 737176, India.,Department of Pharmaceutics, Yenepoya Pharmacy College and Research Centre, Yenepoya, Mangalore, Karnataka 575018, India
| | - Ravi Manne
- Quality Control and Assurance Department, Chemtex Environmental Lab, 3082 25th Street, Port Arthur, Texas 77642, United States
| | - Rahul R Rajendran
- Department of Mechanical Engineering and Mechanics, Lehigh University, 19 Memorial Drive West, Bethlehem, Pennsylvania 18015, United States
| | - A Deepak
- Saveetha Institute of Medical and Technical Sciences, Saveetha School of Engineering, Chennai, Tamil Nadu 600128, India
| | - Sijo Joy Edapully
- School of Biotechnology, National Institute of Technology Calicut, NIT campus, Kozhikode, Kerala 673601, India.,Corporate Head Office, HLL Lifecare Limited, Poojappura, Thiruvananthapuram, Kerala 695012, India
| | - Triveni Patil
- Department of Pharmaceutics, Bharati Vidyapeeth Deemed University, Poona College of Pharmacy, Erandwane, Pune, Maharashtra 411038, India
| | - Oly Katari
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Sila Katamur (Halugurisuk), Changsari, Kamrup, Guwahati, Assam 781101, India
| |
Collapse
|
11
|
Omidi M, Mansouri V, Mohammadi Amirabad L, Tayebi L. Impact of Lipid/Magnesium Hydroxide Hybrid Nanoparticles on the Stability of Vascular Endothelial Growth Factor-Loaded PLGA Microspheres. ACS APPLIED MATERIALS & INTERFACES 2021; 13:24370-24384. [PMID: 34006111 PMCID: PMC9328745 DOI: 10.1021/acsami.0c22140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The purpose of the present study is to characterize poly(d,l-lactide-co-glycolide) (PLGA) composite microcarriers for vascular endothelial growth factor (VEGF) delivery. To reduce the initial burst release and protect the bioactivity, VEGF is encapsulated in soybean l-α-phosphatidylethanolamine (PE) and l-α-phosphatidylcholine (PC) anhydrous reverse micelle (VEGF-RM) nanoparticles. Also, mesoporous nano-hexagonal Mg(OH)2 nanostructure (MNS)-loaded PE/PC anhydrous reverse micelle (MNS-RM) nanoparticles are synthesized to suppress the induced inflammation of PLGA acidic byproducts and regulate the release profile. The flow-focusing microfluidic geometry platforms are used to fabricate different combinations of PLGA composite microspheres (PLGA-CMPs) with MNSs, MNS-RM, VEGF-RM, and native VEGF. The essential parameters of each formulation, such as release profiles, encapsulation efficacy, bioactivity, inflammatory response, and cytotoxicity, are investigated by in vitro and in vivo studies. The results indicate that generated acidic byproducts during the hydrolytic degradation process of PLGA can be buffered, and pH values inside and outside microspheres can remain steady during degradation by MNSs. Furthermore, the significant improvement in the stability of the encapsulated VEGF is confirmed by the bioactivity assay. In vitro release study shows that the VEGF initial burst release is well minimized in the present microcarriers. The present monodisperse PLGA-CMPs can be widely used in various tissue engineering and therapeutic applications.
Collapse
Affiliation(s)
- Meisam Omidi
- Marquette University School of Dentistry, Milwaukee, Wisconsin 53201-1881, United States
- Protein Research Center, Shahid Beheshti University G.C., Tehran 19839-69411, Iran
| | - Vahid Mansouri
- Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical sciences, Tehran 19857-17443, Iran
- Department of Basic Science, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran 19857-17443, Iran
| | | | - Lobat Tayebi
- Marquette University School of Dentistry, Milwaukee, Wisconsin 53201-1881, United States
| |
Collapse
|
12
|
Omidi M, Almeida L, Tayebi L. Microfluidic-assisted fabrication of reverse micelle/PLGA hybrid microspheres for sustained vascular endothelial growth factor delivery. Biotechnol Appl Biochem 2020; 68:616-625. [PMID: 32533571 DOI: 10.1002/bab.1971] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 06/06/2020] [Indexed: 12/17/2022]
Abstract
In this study, poly (d, l-lactide-co-glycolide) (PLGA) composite microspheres containing anhydrous reverse micelle (R.M.) dipalmitoylphosphatidylcholine (DPPC) nanoparticles loaded vascular endothelial growth factor (VEGF) were produced using microfluidic platforms. The VEGF-loaded R.M. nanoparticles (VRM) were achieved by initial self-assembly and subsequent lipid inversion of the DPPC vesicles. The fabricated VRMs were encapsulated into the PLGA matrix by flow-focusing geometry microfluidic platforms. The encapsulation efficiency, in vitro release profile, and the bioactivity of the produced composite microspheres were investigated. The release study showed that VEGF was slowly released from the PLGA composite microspheres over 28 days with a reduced initial burst (18 ± 4.17% in the first 24 H). The VEGF stability during encapsulation and release period was also investigated, and the results indicated that encapsulated VEGF was well preserved. Also, the bioactivity assay of the PLGA composite microspheres on human umbilical vein endothelial cells was confirmed that the encapsulated VEGF was utterly active. The present monodisperse and controllable VEGF-loaded microspheres with reproducible manner could be widely used in tissue engineering and therapeutic applications.
Collapse
Affiliation(s)
- Meisam Omidi
- Marquette University School of Dentistry, Milwaukee, WI, USA
| | - Luis Almeida
- Marquette University School of Dentistry, Milwaukee, WI, USA
| | - Lobat Tayebi
- Marquette University School of Dentistry, Milwaukee, WI, USA
| |
Collapse
|
13
|
Huang Z, Wu M, Ma C, Bai X, Zhang X, Zhao Z, Huang Y, Pan X, Wu C. Spectroscopic Quantification of Surfactants in Solid Lipid Nanoparticles. J Pharm Innov 2020; 15:155-162. [DOI: 10.1007/s12247-019-09379-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
14
|
Yang Y, Huang Z, Li J, Mo Z, Huang Y, Ma C, Wang W, Pan X, Wu C. PLGA Porous Microspheres Dry Powders for Codelivery of Afatinib-Loaded Solid Lipid Nanoparticles and Paclitaxel: Novel Therapy for EGFR Tyrosine Kinase Inhibitors Resistant Nonsmall Cell Lung Cancer. Adv Healthc Mater 2019; 8:e1900965. [PMID: 31664795 DOI: 10.1002/adhm.201900965] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 09/21/2019] [Indexed: 12/21/2022]
Abstract
Combination therapy of epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (EGFR TKIs) with other chemotherapeutic agents is a feasible strategy to overcome resistance that often occurs after 9-13 months of EGFR TKIs administration in nonsmall cell lung cancer (NSCLC). In this study, a pulmonary microspheres system that codelivers afatinib and paclitaxel (PTX) is developed for treatment of EGFR TKIs resistant NSCLC. In this system, afatinib is loaded in stearic acid-based solid lipid nanoparticles, then these nanoparticles and PTX are loaded in poly-lactide-co-glycolide-based porous microspheres. These inhaled microspheres systems are characterized including geometric particle size, drug encapsulation efficiency, morphology by scanning electron microscopy, specific surface area, in vitro drug release, and aerodynamic particle size. Cell experiments indicate that afatinib and PTX have a synergistic effect and the codelivery system shows a superior treatment effect in drug-resistant NSCLC cells. The biocompatibility, pharmacokinetic, and tissue distribution experiments in Sprague-Dawley rats show that afatinib and PTX in the system can maintain 96 h of high lung concentration but low concentration in other tissues, with acceptable safety. These results demonstrate that this system may be a prospective delivery strategy for drug combination treatment in cancers developing resistance, especially drug-resistant lung cancer.
Collapse
Affiliation(s)
- Yao Yang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Zhengwei Huang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Jinyuan Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Ziran Mo
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Ying Huang
- School of Pharmacy, Jinan University, Guangzhou, 510632, P. R. China
| | - Cheng Ma
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Wenhao Wang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Xin Pan
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Chuanbin Wu
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
- School of Pharmacy, Jinan University, Guangzhou, 510632, P. R. China
| |
Collapse
|
15
|
Sun X, Bandara N. Applications of reverse micelles technique in food science: A comprehensive review. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.07.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
16
|
Ding K, Li R, Ma Y, Li N, Zhang T, Cheng-Mei X, Jiang HT, Gong YK. Folate Ligand Orientation Optimized during Cell Membrane Mimetic Micelle Formation for Enhanced Tumor Cell Targeting. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:1257-1265. [PMID: 29936846 DOI: 10.1021/acs.langmuir.8b00744] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Nanocarriers with strong tumor cell targeting ability have been expected to overcome limitations of cancer chemotherapy. Herein, cell membrane mimetic micelles were prepared from a random copolymer (PMNCF) containing cell membrane phosphorylcholine zwitterion, cholesterol, and tumor cell targeting folic acid (FA) at the side chain ends. Surface orientation of the FA ligand was optimized during PMNCF micelle preparation by controlling solvent solubility for FA. The out-oriented ligands on the micelles were immobilized by the strongly associated hydration layer around the closely packed phosphorylcholine zwitterions. The doxorubicin (DOX) loaded PMNCF micelles were demonstrated to reduce normal cell toxicity to less than 20%. More significantly, HeLa and MCF-7 tumor cell killing efficacy of the optimized formulation was enhanced to 160% compared with that of free DOX. The excellent performances of the drug loaded PMNCF micelles on both tumor cell killing and normal cell toxicity reducing efficacies reveal great potential for developing advanced drug delivery system.
Collapse
|
17
|
Huang Z, Huang Y, Ma C, Ma X, Zhang X, Lin L, Zhao Z, Pan X, Wu C. Endotracheal Aerosolization Device for Laboratory Investigation of Pulmonary Delivery of Nanoparticle Suspensions: In Vitro and in Vivo Validation. Mol Pharm 2018; 15:5521-5533. [PMID: 30252486 DOI: 10.1021/acs.molpharmaceut.8b00668] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The objective of this study was to perform the in vitro and in vivo validation of an endotracheal aerosolization (ETA) device (HRH MAG-4, HM). Solid lipid nanoparticle suspension (SLNS) formulations with particle sizes of approximately 120, 240, 360, and 480 nm were selected as model nanoparticle suspensions for the validation. The emission rate (ER) of the in vitro aerosolization and the influence of aerosolization on the physicochemical properties were investigated. A high ER of up to 90% was obtained, and no significant alterations in physicochemical properties were observed after the aerosolization. The pulmonary deposition of model drug budesonide in Sprague-Dawley rats was determined to be approximately 80%, which was satisfactory for pulmonary delivery. Additionally, a fluorescent probe with aggregation-caused quenching property was encapsulated in SLNS formulations for in vivo bioimaging, after excluding the effect of aerosolization on its fluorescence spectrum. It was verified that SLNS formulations were deposited in the lung region. The results demonstrated the feasibility and reliability of the HM device for ETA in laboratory investigation.
Collapse
Affiliation(s)
- Zhengwei Huang
- School of Pharmaceutical Sciences , Sun Yat-Sen University , Guangzhou , 510006 Guangdong , P. R. China
| | - Ying Huang
- School of Pharmaceutical Sciences , Sun Yat-Sen University , Guangzhou , 510006 Guangdong , P. R. China
| | - Cheng Ma
- School of Pharmaceutical Sciences , Sun Yat-Sen University , Guangzhou , 510006 Guangdong , P. R. China
| | - Xiangyu Ma
- College of Pharmacy , The University of Texas at Austin , Austin , Texas 78712 , United States
| | - Xuejuan Zhang
- School of Pharmaceutical Sciences , Sun Yat-Sen University , Guangzhou , 510006 Guangdong , P. R. China
- Institute for Biomedical and Pharmaceutical Sciences , Guangdong University of Technology , Guangzhou 510006 , P.R. China
| | - Ling Lin
- School of Pharmaceutical Sciences , Sun Yat-Sen University , Guangzhou , 510006 Guangdong , P. R. China
| | - Ziyu Zhao
- School of Pharmaceutical Sciences , Sun Yat-Sen University , Guangzhou , 510006 Guangdong , P. R. China
| | - Xin Pan
- School of Pharmaceutical Sciences , Sun Yat-Sen University , Guangzhou , 510006 Guangdong , P. R. China
| | - Chuanbin Wu
- School of Pharmaceutical Sciences , Sun Yat-Sen University , Guangzhou , 510006 Guangdong , P. R. China
| |
Collapse
|
18
|
Cui Y, Zhang X, Wang W, Huang Z, Zhao Z, Wang G, Cai S, Jing H, Huang Y, Pan X, Wu C. Moisture-Resistant Co-Spray-Dried Netilmicin with l-Leucine as Dry Powder Inhalation for the Treatment of Respiratory Infections. Pharmaceutics 2018; 10:252. [PMID: 30513738 PMCID: PMC6321429 DOI: 10.3390/pharmaceutics10040252] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 10/16/2018] [Accepted: 10/29/2018] [Indexed: 12/27/2022] Open
Abstract
Netilmicin (NTM) is one of the first-line drugs for lower respiratory tract infections (LRTI) therapy, but its nephrotoxicity and ototoxicity caused by intravenous injection restrict its clinical application. Dry powder inhalation (DPI) is a popular local drug delivery system that is introduced as a solution. Due to the nature of NTM hygroscopicity that hinders its direct use through DPI, in this study, L-leucine (LL) was added into NTM dry powder to reduce its moisture absorption rate and improve its aerosolization performance. NTM DPIs were prepared using spray-drying with different LL proportions. The particle size, density, morphology, crystallinity, water content, hygroscopicity, antibacterial activity, in vitro aerosolization performance, and stability of each formulation were characterized. NTM DPIs were suitable for inhalation and amorphous with a corrugated surface. The analysis indicated that the water content and hygroscopicity were decreased with the addition of LL, whilst the antibacterial activity of NTM was maintained. The optimal formulation ND₂ (NTM:LL = 30:1) showed high fine particle fraction values (85.14 ± 8.97%), which was 2.78-fold those of ND₀ (100% NTM). It was stable after storage at 40 ± 2 °C, 75 ± 5% relative humidity (RH). The additional LL in NTM DPI successfully reduced the hygroscopicity and improved the aerosolization performance. NTM DPIs were proved to be a feasible and desirable approach for the treatment of LRTI.
Collapse
Affiliation(s)
- Yingtong Cui
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China.
| | - Xuejuan Zhang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China.
- Institute for Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China.
| | - Wen Wang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China.
| | - Zhengwei Huang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China.
| | - Ziyu Zhao
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China.
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China.
| | - Guanlin Wang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China.
| | - Shihao Cai
- School of Pharmaceutical Sciences, Wuhan University, Wuhan 430072, China.
| | - Hui Jing
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China.
| | - Ying Huang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China.
| | - Xin Pan
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China.
| | - Chuanbin Wu
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China.
| |
Collapse
|
19
|
Li X, Huang Y, Huang Z, Ma X, Dong N, Chen W, Pan X, Wu C. Enhancing Stability of Exenatide-Containing Pressurized Metered-Dose Inhaler Via Reverse Microemulsion System. AAPS PharmSciTech 2018; 19:2499-2508. [PMID: 29948981 DOI: 10.1208/s12249-018-1026-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 04/13/2018] [Indexed: 12/17/2022] Open
Abstract
The dispersibility and stability issues of peptide drugs during preparation and storage hinder the widespread adoption of pressurized metered-dose inhaler (pMDI). This study aimed to develop a reverse microemulsion (RM) of exenatide (EXE) pMDI through a liquid-based bottom-up method, thus to overcome the stability issue of peptide drugs encountered in traditional top-down methods, such as milling down and high-pressure homogenization. In this study, Pluronic® L64 (L64) was chosen as a surfactant to prepare the EXE-RM pMDI formulations with the assistance of ethanol. The results showed RM possessed a particle size of 123.80 ± 2.91 nm with 0.121 ± 0.024 PdI and a satisfied fine-particle fraction of 41.30 ± 3.73% measured by a next-generation impactor. In addition, the dispersion stability of RM pMDI was maintained after storage at 4 °C for 50 days. The secondary structure of EXE was maintained during the preparation process. Moreover, the results indicated that L64 was compatible with cells and could improve the penetration of EXE through cell monolayers. Through the liquid-based bottom-up method, EXE-RM pMDI was successfully prepared and exhibited favorable stability and aerodynamic performance. This study offers a preparation strategy to enhance the stability of peptides in pMDIs.
Collapse
Affiliation(s)
- Xing Li
- School of Pharmaceutical Sciences, Guangzhou Higher Education Mega Center, Sun Yat-sen University, No. 132, Waihuan East Road, 510006, Guangzhou, People's Republic of China
| | - Ying Huang
- School of Pharmaceutical Sciences, Guangzhou Higher Education Mega Center, Sun Yat-sen University, No. 132, Waihuan East Road, 510006, Guangzhou, People's Republic of China
| | - Zhengwei Huang
- School of Pharmaceutical Sciences, Guangzhou Higher Education Mega Center, Sun Yat-sen University, No. 132, Waihuan East Road, 510006, Guangzhou, People's Republic of China
| | - Xiangyu Ma
- College of Pharmacy, University of Texas at Austin, 2409 West University Avenue, PHR 1.108, Austin, Texas, 78712, USA
| | - Ni Dong
- School of Pharmaceutical Sciences, Guangzhou Higher Education Mega Center, Sun Yat-sen University, No. 132, Waihuan East Road, 510006, Guangzhou, People's Republic of China
| | - Wanxin Chen
- School of Pharmaceutical Sciences, Guangzhou Higher Education Mega Center, Sun Yat-sen University, No. 132, Waihuan East Road, 510006, Guangzhou, People's Republic of China
| | - Xin Pan
- School of Pharmaceutical Sciences, Guangzhou Higher Education Mega Center, Sun Yat-sen University, No. 132, Waihuan East Road, 510006, Guangzhou, People's Republic of China.
| | - Chuanbin Wu
- School of Pharmaceutical Sciences, Guangzhou Higher Education Mega Center, Sun Yat-sen University, No. 132, Waihuan East Road, 510006, Guangzhou, People's Republic of China
| |
Collapse
|
20
|
Chen L, Mei L, Feng D, Huang D, Tong X, Pan X, Zhu C, Wu C. Anhydrous reverse micelle lecithin nanoparticles/PLGA composite microspheres for long-term protein delivery with reduced initial burst. Colloids Surf B Biointerfaces 2017; 163:146-154. [PMID: 29291500 DOI: 10.1016/j.colsurfb.2017.12.040] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 11/29/2017] [Accepted: 12/20/2017] [Indexed: 11/25/2022]
Abstract
To address the issue of initial burst release from poly (lactic-co-glycolic) acid (PLGA) microspheres prepared by water-in-oil-in-water (W/O/W) double emulsion technique, PLGA composite microspheres containing anhydrous reverse micelle (ARM) lecithin nanoparticles were developed by a modified solid-in-oil-in-water (S/O/W) technique. Bovine serum albumin (BSA) loaded ARM lecithin nanoparticles, which were obtained by initial self-assembly and subsequent lipid inversion of the lecithin vesicles, were then encapsulated into PLGA matrix by the S/O/W technique to form composite microspheres. In vitro release study indicated that BSA was slowly released from the PLGA composite microspheres over 60 days with a reduced initial burst (11.42 ± 2.17% within 24 h). The potential mechanism of reduced initial burst and protein protection using this drug delivery system was analyzed through observing the degradation process of carriers and fitting drug release data with various kinetic models. The secondary structure of encapsulated BSA was well maintained through the steric barrier effect of ARM lecithin nanoparticles, which avoided exposure of proteins to the organic solvent during the preparation procedure. In addition, the PLGA composite microspheres exhibited superior biocompatibility without notable cytotoxicity. These results suggested that ARM lecithin nanoparticles/PLGA composite microspheres could be a promising platform for long-term protein delivery with a reduced initial burst.
Collapse
Affiliation(s)
- Longkai Chen
- Institute for Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China; School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Liling Mei
- Institute for Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China; School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Disang Feng
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Di Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xin Tong
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xin Pan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Chune Zhu
- Institute for Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China.
| | - Chuanbin Wu
- Institute for Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China; School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|