1
|
Song H, Li H, Shen X, Liu K, Feng H, Cui J, Wei W, Sun X, Fan Q, Bao W, Zhou H, Qian L, Nie H, Cheng X, Du Z. A pH-responsive cetuximab-conjugated DMAKO-20 nano-delivery system for overcoming K-ras mutations and drug resistance in colorectal carcinoma. Acta Biomater 2024; 177:456-471. [PMID: 38331131 DOI: 10.1016/j.actbio.2024.01.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/17/2024] [Accepted: 01/31/2024] [Indexed: 02/10/2024]
Abstract
Cetuximab (Cet) and oxaliplatin (OXA) are used as first-line drugs for patients with colorectal carcinoma (CRC). In fact, the heterogeneity of CRC, mainly caused by K-ras mutations and drug resistance, undermines the effectiveness of drugs. Recently, a hydrophobic prodrug, (1E,4E)-6-((S)-1-(isopentyloxy)-4-methylpent-3-en-1-yl)-5,8-dimethoxynaphthalene-1,4‑dione dioxime (DMAKO-20), has been shown to undergo tumor-specific CYP1B1-catalyzed bioactivation. This process results in the production of nitric oxide and active naphthoquinone mono-oximes, which exhibit specific antitumor activity against drug-resistant CRC. In this study, a Cet-conjugated bioresponsive DMAKO-20/PCL-PEOz-targeted nanocodelivery system (DMAKO@PCL-PEOz-Cet) was constructed to address the issue of DMAKO-20 dissolution and achieve multitargeted delivery of the cargoes to different subtypes of CRC cells to overcome K-ras mutations and drug resistance in CRC. The experimental results demonstrated that DMAKO@PCL-PEOz-Cet efficiently delivered DMAKO-20 to both K-ras mutant and wild-type CRC cells by targeting the epidermal growth factor receptor (EGFR). It exhibited a higher anticancer effect than OXA in K-ras mutant cells and drug-resistant cells. Additionally, it was observed that DMAKO@PCL-PEOz-Cet reduced the expression of glutathione peroxidase 4 (GPX4) in CRC cells and significantly inhibited the growth of heterogeneous HCT-116 subcutaneous tumors and patient-derived tumor xenografts (PDX) model tumors. This work provides a new strategy for the development of safe and effective approaches for treating CRC. STATEMENT OF SIGNIFICANCE: (1) Significance: This work reports a new approach for the treatment of colorectal carcinoma (CRC) using the bioresponsible Cet-conjugated PCL-PEOz/DMAKO-20 nanodelivery system (DMAKO@PCL-PEOz-Cet) prepared with Cet and PCL-PEOz for the targeted transfer of DMAKO-20, which is an anticancer multitarget drug that can even prevent drug resistance, to wild-type and K-ras mutant CRC cells. DMAKO@PCL-PEOz-Cet, in the form of nanocrystal micelles, maintained stability in peripheral blood and efficiently transported DMAKO-20 to various subtypes of colorectal carcinoma cells, overcoming the challenges posed by K-ras mutations and drug resistance. The system's secure and effective delivery capabilities have also been confirmed in organoid and PDX models. (2) This is the first report demonstrating that this approach simultaneously overcomes the K-ras mutation and drug resistance of CRC.
Collapse
Affiliation(s)
- Huiling Song
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Haosheng Li
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, China; Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, China
| | - Xiaonan Shen
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, China
| | - Kuai Liu
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Haoran Feng
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, China; Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, China
| | - Jiahua Cui
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Wei Wei
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Xiaolu Sun
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Qiong Fan
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, 910 Hengshan Road, Shanghai 200030, China
| | - Wei Bao
- Department of Obstetrics and Gynecology, Shanghai General Hospital affiliated with Shanghai Jiao Tong University, 100 Haining Road, Shanghai 200080, China
| | - Haiyan Zhou
- Genetics and Genomic Medicine Department, Great Ormond Street Institute of Child Health, NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, 30 Guilford Street, London WC1N 1EH, United Kingdom
| | - Liheng Qian
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Huizhen Nie
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Xi Cheng
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, China; Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, China.
| | - Zixiu Du
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| |
Collapse
|
2
|
Nadaf S, Savekar P, Bhagwat D, Gurav S. Polyurethane-Based Drug Delivery Applications: Current Progress and Future Prospectives. ACS SYMPOSIUM SERIES 2023:191-214. [DOI: 10.1021/bk-2023-1454.ch009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Affiliation(s)
- Sameer Nadaf
- Sant Gajanan Maharaj College of Pharmacy, Mahagaon, Site: Chinchewadi 416503, Maharashtra, India
| | - Pranav Savekar
- Shivraj College of Pharmacy, Gadhinglaj 416502, Maharashtra, India
| | | | - Shailendra Gurav
- Department of Pharmacognosy, Goa College of Pharmacy, Goa University, Panaji, Goa 403001, India
| |
Collapse
|
3
|
Polyoxazoline: A review article from polymerization to smart behaviors and biomedical applications. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111484] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
4
|
Liu W, Li S, Wang B, Peng P, Gao C. Physiologically Responsive Polyurethanes for Tissue Repair and Regeneration. ADVANCED NANOBIOMED RESEARCH 2022. [DOI: 10.1002/anbr.202200061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Wenxing Liu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization Department of Polymer Science and Engineering Zhejiang University Hangzhou 310027 China
| | - Shifen Li
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization Department of Polymer Science and Engineering Zhejiang University Hangzhou 310027 China
| | - Beiduo Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization Department of Polymer Science and Engineering Zhejiang University Hangzhou 310027 China
| | - Pai Peng
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization Department of Polymer Science and Engineering Zhejiang University Hangzhou 310027 China
| | - Changyou Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization Department of Polymer Science and Engineering Zhejiang University Hangzhou 310027 China
| |
Collapse
|
5
|
Tan RYH, Lee CS, Pichika MR, Cheng SF, Lam KY. PH Responsive Polyurethane for the Advancement of Biomedical and Drug Delivery. Polymers (Basel) 2022; 14:polym14091672. [PMID: 35566843 PMCID: PMC9102459 DOI: 10.3390/polym14091672] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/11/2022] [Accepted: 04/17/2022] [Indexed: 02/01/2023] Open
Abstract
Due to the specific physiological pH throughout the human body, pH-responsive polymers have been considered for aiding drug delivery systems. Depending on the surrounding pH conditions, the polymers can undergo swelling or contraction behaviors, and a degradation mechanism can release incorporated substances. Additionally, polyurethane, a highly versatile polymer, has been reported for its biocompatibility properties, in which it demonstrates good biological response and sustainability in biomedical applications. In this review, we focus on summarizing the applications of pH-responsive polyurethane in the biomedical and drug delivery fields in recent years. In recent studies, there have been great developments in pH-responsive polyurethanes used as controlled drug delivery systems for oral administration, intravaginal administration, and targeted drug delivery systems for chemotherapy treatment. Other applications such as surface biomaterials, sensors, and optical imaging probes are also discussed in this review.
Collapse
Affiliation(s)
- Rachel Yie Hang Tan
- School of Postgraduate, International Medical University, Kuala Lumpur 57000, Malaysia; (R.Y.H.T.); (K.Y.L.)
| | - Choy Sin Lee
- Department of Pharmaceutical Chemistry, School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia;
- Correspondence:
| | - Mallikarjuna Rao Pichika
- Department of Pharmaceutical Chemistry, School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia;
- Centre for Bioactive Molecules and Drug Delivery, Institute for Research, Development and Innovation, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Sit Foon Cheng
- Unit of Research on Lipids (URL), Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia;
| | - Ki Yan Lam
- School of Postgraduate, International Medical University, Kuala Lumpur 57000, Malaysia; (R.Y.H.T.); (K.Y.L.)
| |
Collapse
|
6
|
Sabuj MZR, Dargaville TR, Nissen L, Islam N. Inhaled ciprofloxacin-loaded poly(2-ethyl-2-oxazoline) nanoparticles from dry powder inhaler formulation for the potential treatment of lower respiratory tract infections. PLoS One 2021; 16:e0261720. [PMID: 34941946 PMCID: PMC8699692 DOI: 10.1371/journal.pone.0261720] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 12/07/2021] [Indexed: 12/04/2022] Open
Abstract
Lower respiratory tract infections (LRTIs) are one of the fatal diseases of the lungs that have severe impacts on public health and the global economy. The currently available antibiotics administered orally for the treatment of LRTIs need high doses with frequent administration and cause dose-related adverse effects. To overcome this problem, we investigated the development of ciprofloxacin (CIP) loaded poly(2-ethyl-2-oxazoline) (PEtOx) nanoparticles (NPs) for potential pulmonary delivery from dry powder inhaler (DPI) formulations against LRTIs. NPs were prepared using a straightforward co-assembly reaction carried out by the intermolecular hydrogen bonding among PEtOx, tannic acid (TA), and CIP. The prepared NPs were characterized by scanning electron microscopy (SEM), dynamic light scattering (DLS), Fourier transform infrared spectroscopy (FTIR), powder X-ray diffraction analysis (PXRD), differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA). The CIP was determined by validated HPLC and UV spectrophotometry methods. The CIP loading into the PEtOx was between 21-67% and increased loading was observed with the increasing concentration of CIP. The NP sizes of PEtOx with or without drug loading were between 196-350 nm and increased with increasing drug loading. The in vitro CIP release showed the maximum cumulative release of about 78% in 168 h with a burst release of 50% in the first 12 h. The kinetics of CIP release from NPs followed non-Fickian or anomalous transport thus suggesting the drug release was regulated by both diffusion and polymer degradation. The in vitro aerosolization study carried out using a Twin Stage Impinger (TSI) at 60 L/min air flow showed the fine particle fraction (FPF) between 34.4% and 40.8%. The FPF was increased with increased drug loading. The outcome of this study revealed the potential of the polymer PEtOx as a carrier for developing CIP-loaded PEtOx NPs as DPI formulation for pulmonary delivery against LRTIs.
Collapse
Affiliation(s)
- Mohammad Zaidur Rahman Sabuj
- Faculty of Health, Pharmacy Discipline, School of Clinical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Tim R. Dargaville
- Faculty of Science, School of Chemistry and Physics, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Lisa Nissen
- Faculty of Health, Pharmacy Discipline, School of Clinical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Nazrul Islam
- Faculty of Health, Pharmacy Discipline, School of Clinical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
- Centre for Immunology and Infection Control (CIIC), Queensland University of Technology, Brisbane, Queensland, Australia
| |
Collapse
|
7
|
Olate‐Moya F, Palza H. Effect of graphene oxide on the
pH‐responsive
drug release from supramolecular hydrogels. J Appl Polym Sci 2021. [DOI: 10.1002/app.51420] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Felipe Olate‐Moya
- Departamento de Ingeniería Química, Biotecnología y Materiales, Facultad de Ciencias Físicas y Matemáticas Universidad de Chile Santiago Chile
| | - Humberto Palza
- Departamento de Ingeniería Química, Biotecnología y Materiales, Facultad de Ciencias Físicas y Matemáticas Universidad de Chile Santiago Chile
| |
Collapse
|
8
|
Bronzeri LB, Gauche C, Gudimard L, Courtial EJ, Marquette C, Felisberti MI. Amphiphilic and segmented polyurethanes based on poly(ε-caprolactone)diol and poly(2-ethyl-2-oxazoline)diol: Synthesis, properties, and a preliminary performance study of the 3D printing. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110449] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
9
|
Wendels S, Avérous L. Biobased polyurethanes for biomedical applications. Bioact Mater 2021; 6:1083-1106. [PMID: 33102948 PMCID: PMC7569269 DOI: 10.1016/j.bioactmat.2020.10.002] [Citation(s) in RCA: 131] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/01/2020] [Accepted: 10/01/2020] [Indexed: 12/15/2022] Open
Abstract
Polyurethanes (PUs) are a major family of polymers displaying a wide spectrum of physico-chemical, mechanical and structural properties for a large range of fields. They have shown suitable for biomedical applications and are used in this domain since decades. The current variety of biomass available has extended the diversity of starting materials for the elaboration of new biobased macromolecular architectures, allowing the development of biobased PUs with advanced properties such as controlled biotic and abiotic degradation. In this frame, new tunable biomedical devices have been successfully designed. PU structures with precise tissue biomimicking can be obtained and are adequate for adhesion, proliferation and differentiation of many cell's types. Moreover, new smart shape-memory PUs with adjustable shape-recovery properties have demonstrated promising results for biomedical applications such as wound healing. The fossil-based starting materials substitution for biomedical implants is slowly improving, nonetheless better renewable contents need to be achieved for most PUs to obtain biobased certifications. After a presentation of some PU generalities and an understanding of a biomaterial structure-biocompatibility relationship, recent developments of biobased PUs for non-implantable devices as well as short- and long-term implants are described in detail in this review and compared to more conventional PU structures.
Collapse
Affiliation(s)
- Sophie Wendels
- BioTeam/ICPEES-ECPM, UMR CNRS 7515, Université de Strasbourg, 25 Rue Becquerel, 67087, Strasbourg Cedex 2, France
| | - Luc Avérous
- BioTeam/ICPEES-ECPM, UMR CNRS 7515, Université de Strasbourg, 25 Rue Becquerel, 67087, Strasbourg Cedex 2, France
| |
Collapse
|
10
|
Dual stimuli-responsive nanoplatform based on core-shell structured graphene oxide/mesoporous silica@alginate. Int J Biol Macromol 2021; 175:209-216. [PMID: 33549662 DOI: 10.1016/j.ijbiomac.2021.02.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/26/2021] [Accepted: 02/02/2021] [Indexed: 11/22/2022]
Abstract
A dual stimuli-responsive nanoplatform was rationally designed for controlled drug delivery. The nanosheets of graphene oxide (GO) were first modified with aminated mesoporous silica (NH2-mSiO2), and then methotrexate (MTX) was loaded into the mesopores of mSiO2. Alginate (Alg) acted as the "gatekeeper" was then anchored to the MTX-loaded GO/NH2-mSiO2 by amidation reaction, achieving the encapsulation of MTX in the core-shell structured GO/mSiO2@Alg. Due to the high pH sensitivity of amide bond and the excellent photothermal conversion ability of GO, the constructed nanoplatform could be used for pH and near-infrared (NIR) controlled delivery of MTX. The results of cell viability test demonstrate the high inhibitory rate of the dual stimuli-responsive nanoplatform toward hepatoma (HepG2) cells.
Collapse
|
11
|
Khot S, Rawal SU, Patel MM. Dissolvable-soluble or biodegradable polymers. DRUG DELIVERY DEVICES AND THERAPEUTIC SYSTEMS 2021:367-394. [DOI: 10.1016/b978-0-12-819838-4.00024-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
12
|
Stimuli-Responsive Micelles with Detachable Poly(2-ethyl-2-oxazoline) Shell Based on Amphiphilic Polyurethane for Improved Intracellular Delivery of Doxorubicin. Polymers (Basel) 2020; 12:polym12112642. [PMID: 33182767 PMCID: PMC7696422 DOI: 10.3390/polym12112642] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/08/2020] [Accepted: 11/09/2020] [Indexed: 12/12/2022] Open
Abstract
Polyurethanes (PUs) have various biomedical applications including controlled drug delivery. However, the incompletely release of drug at tumor sites limits the efficiency of these drug loaded polyurethane micelles. Here we report a novel polymer poly(2-ethyl-2-oxazoline)-SS-polyurethane-SS-poly(2-ethyl-2-oxazoline) triblock polyurethane (PEtOz-PU(PTMCSS)-PEtOz). The hydrophilic pH-responsive poly(2-ethyl-2-oxazoline) was used as an end-block to introduce pH responsiveness, and the hydrophobic PU middle-block was easily synthesized by the reaction of poly (trimethylene carbonate) diol containing disulfide bonds (PTMC-SS-PTMC diol) and bis (2-isocyanatoethyl) disulfide (CDI). PEtOz-PU(PTMCSS)-PEtOz could self-assemble to form micelles (176 nm). The drug release profile of PEtOz-PU(PTMCSS)-PEtOz micelles loaded with Doxorubicin (DOX) was studied in the presence of acetate buffer (10 mM, pH 5.0) and 10 mM dithiothreitol (DTT). The results showed that under this environment, DOX-loaded polyurethane micelles could release DOX faster and more thoroughly, about 97% of the DOX was released from the DOX-loaded PEtOz-PU(PTMCSS)-PEtOz micelle. In addition, fluorescent microscopy and cell viability assays validated that the DOX-loaded polyurethane micelle strongly inhibits the growth of C6 cells, suggesting their potential as a new nanomedicine against cancer.
Collapse
|
13
|
Biodegradable polyurethane PMeOx-PU(SS)-PMeOx micelles with redox and pH-sensitivity for efficient delivery of doxorubicin. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.110054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
14
|
Qin T, Xu X, Zhang Z, Li J, You X, Guo H, Sun H, Liu M, Dai Z, Zhu H. Paclitaxel/sunitinib-loaded micelles promote an antitumor response in vitro through synergistic immunogenic cell death for triple-negative breast cancer. NANOTECHNOLOGY 2020; 31:365101. [PMID: 32434167 DOI: 10.1088/1361-6528/ab94dc] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Chemotherapy-induced immunogenic cell death (ICD) may offer a strategy to improve the effect of the therapeutic treatment of triple-negative breast cancer (TNBC) by eliciting broad antitumor immunity. However, chemotherapy shows a limited therapeutic effect because of multi-drug resistance and the immunosuppressive tumor microenvironment (TME) of TNBC. The unique pharmacological actions of sunitinib (SUN) indicate its possible synergies with paclitaxel (PTX) to enhance chemo-immunotherapy for TNBC. Here, we prepared a co-delivery platform composed of poly(styrene-co-maleic anhydride) (SMA) via a self-assembly process for a combination of PTX and SUN, which was able to induce a higher synergistic ICD. The nanomicellar delivery of PTX and SUN loaded at an optimal ratio of 1:5 (PTX:SUN) presented the characteristics of an appropriate particle size, long-term stability, and time sequence release which synergistically promoted the apoptosis of MDA-MB-231 tumor cells. Moreover, we demonstrated that the combination of PTX and SUN could significantly induce a synergistic effect because it promoted an ICD response, improved tumor immunogenicity, and regulated immunosuppressive factors in the TME. Overall, PTX and SUN with synergistic effects entrapped in a self-assembly nano-delivery system could offer the potential for clinical applicationof a combination chemo-immunotherapy strategy to improve the effect of the therapeutic treatment of TNBC.
Collapse
Affiliation(s)
- Tang Qin
- School of Food and Biological Engineering. National '111' Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, Hubei Province 430068, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Jana S, Uchman M. Poly(2-oxazoline)-based stimulus-responsive (Co)polymers: An overview of their design, solution properties, surface-chemistries and applications. Prog Polym Sci 2020. [DOI: 10.1016/j.progpolymsci.2020.101252] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
16
|
Yang F, Xu J, Fu M, Ji J, Chi L, Zhai G. Development of stimuli-responsive intelligent polymer micelles for the delivery of doxorubicin. J Drug Target 2020; 28:993-1011. [PMID: 32378974 DOI: 10.1080/1061186x.2020.1766474] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Doxorubicin is still used as a first-line drug in current therapeutics for numerous types of malignant tumours (including lymphoma, transplantable leukaemia and solid tumour). Nevertheless, to overcome the serious side effects like cardiotoxicity and myelosuppression caused by effective doses of doxorubicin remains as a world-class puzzle. In recent years, the usage of biocompatible polymeric nanomaterials to form an intelligently sensitive carrier for the targeted release in tumour microenvironment has attracted wide attention. These different intelligent polymeric micelles (PMs) could change the pharmacokinetics process of drugs or respond in the special microenvironment of tumour site to maximise the efficacy and reduce the toxicity of doxorubicin in other tissues and organs. Several intelligent PMs have already been in the clinical research stage and planned for market. Therefore, related research remains active, and the latest nanotechnology approaches for doxorubicin delivery are always in the spotlight. Centring on the model drugs doxorubicin, this review summarised the mechanisms of PMs, classified the polymers used in the application of doxorubicin delivery and discussed some interesting and imaginative smart PMs in recent years.
Collapse
Affiliation(s)
- Fan Yang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, PR China
| | - Jiangkang Xu
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, PR China
| | - Manfei Fu
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, PR China
| | - Jianbo Ji
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, PR China
| | - Liqun Chi
- Department of Pharmacy, Haidian Maternal and Child Health Hospital of Beijing, Beijing, PR China
| | - Guangxi Zhai
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, PR China
| |
Collapse
|
17
|
Dual-Responsive Cross-Linked Micelles from Amphiphilic Four-Arm Star Copolymers with Different Block Ratios for Triggering DOX Release. Macromol Res 2020. [DOI: 10.1007/s13233-020-9094-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
18
|
Hao DL, Xie R, De GJ, Yi H, Zang C, Yang MY, Liu L, Ma H, Cai WY, Zhao QH, Sui F, Chen YJ. pH-Responsive Artesunate Polymer Prodrugs with Enhanced Ablation Effect on Rodent Xenograft Colon Cancer. Int J Nanomedicine 2020; 15:1771-1786. [PMID: 32214810 PMCID: PMC7083641 DOI: 10.2147/ijn.s242032] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 03/02/2020] [Indexed: 12/24/2022] Open
Abstract
Purpose In this study, pH-sensitive poly(2-ethyl-2-oxazoline)-poly(lactic acid)-poly(β-amino ester) (PEOz-PLA-PBAE) triblock copolymers were synthesized and were conjugated with an antimalaria drug artesunate (ART), for inhibition of a colon cancer xenograft model. Methods The as-prepared polymer prodrugs are tended to self-assemble into polymeric micelles in aqueous milieu, with PEOz segment as hydrophilic shell and PLA-PBAE segment as hydrophobic core. Results The pH sensitivity of the as-prepared copolymers was confirmed by acid-base titration with pKb values around 6.5. The drug-conjugated polymer micelles showed high stability for at least 96 h in PBS and 37°C, respectively. The as-prepared copolymer prodrugs showed high drug loading content, with 9.57%±1.24% of drug loading for PEOz-PLA-PBAE-ART4. The conjugated ART could be released in a sustained and pH-dependent manner, with 92% of released drug at pH 6.0 and 57% of drug released at pH 7.4, respectively. In addition, in vitro experiments showed higher inhibitory effect of the prodrugs on rodent CT-26 cells than that of free ART. Animal studies also demonstrated the enhanced inhibitory efficacy of PEOz-PLA-PBAE-ART2 micelles on the growth of rodent xenograft tumor. Conclusion The pH-responsive artesunate polymer prodrugs are promising candidates for colon cancer adjuvant therapy.
Collapse
Affiliation(s)
- Dan-Li Hao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, People's Republic of China
| | - Ran Xie
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, People's Republic of China
| | - Ge-Jing De
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, People's Republic of China
| | - Hong Yi
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, People's Republic of China
| | - Chen Zang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, People's Republic of China
| | - Mi-Yi Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, People's Republic of China
| | - Li Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, People's Republic of China
| | - Hai Ma
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, People's Republic of China
| | - Wei-Yan Cai
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, People's Republic of China
| | - Qing-He Zhao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, People's Republic of China
| | - Feng Sui
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, People's Republic of China
| | - Yan-Jun Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, People's Republic of China
| |
Collapse
|
19
|
Yu C, Tan X, Xu Z, Zhu G, Teng W, Zhao Q, Liang Z, Wu Z, Xiong D. Smart drug carrier based on polyurethane material for enhanced and controlled DOX release triggered by redox stimulus. REACT FUNCT POLYM 2020. [DOI: 10.1016/j.reactfunctpolym.2020.104507] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
20
|
Yang Z, Guo Q, Cai Y, Zhu X, Zhu C, Li Y, Li B. Poly(ethylene glycol)-sheddable reduction-sensitive polyurethane micelles for triggered intracellular drug delivery for osteosarcoma treatment. J Orthop Translat 2020; 21:57-65. [PMID: 32099805 PMCID: PMC7029171 DOI: 10.1016/j.jot.2019.11.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 11/07/2019] [Accepted: 11/12/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The survival rate of osteosarcoma therapy still lags behind overall cancer therapies due to the intrinsic or acquired drug resistance. Developing novel drug delivery systems that may overcome drug resistance would greatly facilitate osteosarcoma therapy. METHODS Poly(ethylene glycol) (PEG)-sheddable reduction-sensitive polyurethane (SS-PU-SS-PEG) was synthesized using a disulfide-containing polycaprolactone diol as the hydrophobic block and a cystamine-functionalized PEG as the hydrophilic block. SS-PU-SS-PEG micelles were then prepared to load the anti-tumor drug Doxorubicin (DOX) in order to achieve triggered intracellular drug delivery to improve the efficacy of osteosarcoma therapy. RESULTS When DOX was used as a model drug, the drug-loaded SS-PU-SS-PEG micelles were about 82∼94 nm in diameter and exhibited good stability in phosphate buffer saline (PBS). The micelles could release about 80% DOX in a quantitative fashion within 5 hours under a reductive environment. The intracellular drug release of DOX-loaded SS-PU-SS-PEG micelles increased upon incubation with Saos-2 cells in vitro. The micelles had good biocompatibility. In vitro, DOX-loaded SS-PU-SS-PEG micelles showed significant antitumor activity toward Saos-2 cells, which was close to that of free DOX. In vivo, DOX-loaded SS-PU-SS-PEG micelles exhibited better antitumor activity than free DOX. CONCLUSION Findings from this study suggest that the SS-PU-SS-PEG micelles could achieve well-controlled triggered drug release in a reduction environment and could therefore improve the antitumor efficacy of osteosarcoma therapies. TRANSLATION POTENTIAL OF THIS ARTICLE In this study we developed PEG-sheddable reduction-sensitive polyurethane micelles (SS-PU-SS-PEG), which were able to achieve well-controlled triggered release of anti-tumor drug Doxorubicin (DOX) in an intracellular reduction environment. DOX-loaded SS-PU-SS-PEG micelles markedly improved the antitumor efficacy in a Saos-2 cells-bearing xenograft tumor model. Therefore, such micelles might be used as a novel drug delivery system for osteosarcoma treatment.
Collapse
Affiliation(s)
- Zhengjie Yang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University, Suzhou, China
- Department of Orthopedic Surgery, Wuxi No.2 People's Hospital, Nanjing Medical University, Wuxi, China
| | - Qianping Guo
- Department of Orthopedic Surgery, The First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University, Suzhou, China
| | - Yan Cai
- Department of Orthopedic Surgery, The First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University, Suzhou, China
| | - Xuesong Zhu
- Department of Orthopedic Surgery, The First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University, Suzhou, China
| | - Caihong Zhu
- Department of Orthopedic Surgery, The First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University, Suzhou, China
| | - Yuling Li
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, China
| | - Bin Li
- Department of Orthopedic Surgery, The First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University, Suzhou, China
| |
Collapse
|
21
|
Ding C, Wu H, Yin ZZ, Gao J, Wu D, Qin Y, Kong Y. Disulfide-cleavage- and pH-triggered drug delivery based on a vesicle structured amphiphilic self-assembly. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 107:110366. [DOI: 10.1016/j.msec.2019.110366] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 10/19/2019] [Accepted: 10/22/2019] [Indexed: 01/10/2023]
|
22
|
Song J, Liu Y, Lin L, Zhao Y, Wang X, Zhong M, Xie T, Luo Y, Li S, Yang R, Li H. Glycyrrhetinic acid modified and pH-sensitive mixed micelles improve the anticancer effect of curcumin in hepatoma carcinoma cells. RSC Adv 2019; 9:40131-40145. [PMID: 35541419 PMCID: PMC9076264 DOI: 10.1039/c9ra07250k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 11/27/2019] [Indexed: 01/06/2023] Open
Abstract
Curcumin (CUR), a natural polyphenolic compound existing in plants, exhibits anticancer potential in inhibiting the growth of various types of human cancer. However, the poor aqueous solubility and low bioavailability limit its clinical applications. pH-sensitive macromolecule F68-acetal-PCL (FAP) and active targeting macromolecule F68-glycyrrhetinic acid (FGA) were designed to fabricate mixed micelles for efficient delivery of CUR. The thin film hydration method was used to prepare CUR loaded mixed (MIX/CUR) micelles. The drug loading rate (DL) of MIX/CUR micelles was 6.31 ± 0.92%, which remained stable for 15 days at 4 °C. The particle size and zeta potential of the MIX/CUR micelles were 91.06 ± 1.37 nm and -9.79 ± 0.47 mV, respectively. The MIX/CUR micelles exhibited pH sensitivity in a weak acid environment, and showed rapid particle size variation and drug release. In addition, in vitro tests demonstrated that MIX/CUR micelles induced higher cytotoxicity and apoptosis than free CUR, non-pH-sensitive F68-PCL (FBP)/CUR micelles and pH-sensitive FAP/CUR micelles in SMMC7721 and Hepa1-6 cells. Besides, mixed micelles were more effective than FBP and FAP micelles in a cell uptake experiment, which was medicated by a GA receptor. All in all, these results indicated that MIX/CUR micelles could be regarded as an ideal drug administration strategy against hepatoma carcinoma cells.
Collapse
Affiliation(s)
- Jizheng Song
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences Beijing 100700 China
| | - Yuling Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences Beijing 100700 China
| | - Longfei Lin
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences Beijing 100700 China
| | - Ye Zhao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences Beijing 100700 China
| | - Xiuqing Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences Beijing 100700 China
| | - Ming Zhong
- Guangxi Key Laboratory of Traditional Chinese Medicine Quality Standards, Guangxi Institute of Chinese Medicine and Pharmaceutical Science Nanning 530022 China
| | - Tanggui Xie
- Guangxi Key Laboratory of Traditional Chinese Medicine Quality Standards, Guangxi Institute of Chinese Medicine and Pharmaceutical Science Nanning 530022 China
| | - Yuting Luo
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences Beijing 100700 China
| | - Shaojing Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences Beijing 100700 China
| | - Ruocong Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences Beijing 100700 China
| | - Hui Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences Beijing 100700 China
| |
Collapse
|
23
|
|