1
|
Boulbazine M, Djellala I, Boudjahem AG. A density functional theory study on the adsorption of the β-lapachone anti-cancer drug onto the MB 11N 12 (M = au, Rh and Ru) nanoclusters as a drug delivery. J Mol Graph Model 2025; 138:109044. [PMID: 40233483 DOI: 10.1016/j.jmgm.2025.109044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/22/2025] [Accepted: 03/30/2025] [Indexed: 04/17/2025]
Abstract
The structural and electronic properties of the pristine and metal(M)-doped B12N12 (M = Ru, Rh and Au) nanoclusters were systematically analyzed using DFT calculations. The results indicate that the B12N12 behaves like a semiconductor with a substantial HOMO-LUMO energy gap of 6.75 eV. The introduction of the metal dopants (Ru, Rh and Au) in the pristine leads to a significant reduction of its gap energy with a variation in Eg ranging from 48.7 % to 80 %. This substantial decrease in the value of Eg underlines the crucial role that the metal can play in the electronic structure and the catalytic performance of the resulting material. The performance of the B12N12 cluster has been greatly improved with doping, and the doped clusters can be used in advanced technological applications. In order to explore the surface reactivity and sensing performance of the B12N12 nanocluster and their counterparts doped with transition metals such as Ru, Rh and Au towards the molecule cancer drugs, we systematically studied the adsorption behavior of the β-lapachone drug onto their surface. The molecule drug exhibited strong binding to B12N12 with adsorption energies of - 31.42 to - 40.0 kcal mol-1 for the two most stable configurations. For the metal-doped B12N12 nanoclusters, the highest adsorption energy (- 68.0 kcal mol-1) was obtained for the cluster doped by the Ru atom. The charge transfer analysis confirmed that β-lapachone gives electrons to nanoclusters, improving their chemical stability. In addition, the evaluation of the solvation energies indicates an improvement in drug delivery performance in biological environment. This study demonstrates the promise of the metal-doped B12N12 nanoclusters as effective carriers for the β-lapachone drug, highlighting their stability, reactivity and suitability for drug delivery applications.
Collapse
Affiliation(s)
- Mouhssin Boulbazine
- The Division of Research in School and Its Environment, National Institute for Research in Education, BP 193, Industrial Zone, Oued Romane-El Achour, Algeria.
| | - Imane Djellala
- Laboratory of Computational Chemistry and Nanostructures, Department of Material Sciences, University of 8 Mai 1945, Guelma, Algeria.
| | - Abdel-Ghani Boudjahem
- Computational Catalysis Group, Laboratory of Applied Chemistry, University of 8 Mai 1945, Guelma, Algeria.
| |
Collapse
|
2
|
Ghosh D, Guin A, Kumar A, Das A, Paul S. Comprehensive insights of etiological drivers of hepatocellular carcinoma: Fostering targeted nano delivery to anti-cancer regimes. Biochim Biophys Acta Rev Cancer 2025; 1880:189318. [PMID: 40222420 DOI: 10.1016/j.bbcan.2025.189318] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 04/05/2025] [Accepted: 04/06/2025] [Indexed: 04/15/2025]
Abstract
Hepatocellular carcinoma (HCC) stands as one of the most prevalent and deadliest malignancies on a global scale. Its complex pathogenesis arises from multifactorial etiologies, including viral infections, metabolic syndromes, and environmental carcinogens, all of which drive genetic and molecular aberrations in hepatocytes. This intricate condition is associated with multiple causative factors, resulting in the abnormal activation of various cellular and molecular pathways. Given that HCC frequently manifests within the context of a compromised or cirrhotic liver, coupled with the tendency of late-stage diagnoses, the overall prognosis tends to be unfavorable. Systemic therapy, especially conventional cytotoxic drugs, generally proves ineffective. Despite advancements in therapeutic interventions, conventional treatments such as chemotherapy often exhibit limited efficacy and substantial systemic toxicity. In this context, nanomedicine, particularly lipid-based nanoparticles (LNPs), has emerged as a promising strategy for enhancing drug delivery specificity and reducing adverse effects. This review provides a comprehensive overview of the molecular and metabolic underpinnings of HCC. Furthermore, we explored the role of lipid-based nano-formulations including liposomes, solid lipid nanoparticles, and nanostructured lipid carriers in targeted drug delivery for HCC. We have highlighted recent advances in LNP-based delivery approaches, FDA-approved drugs, and surface modification strategies to improve liver-specific delivery and therapeutic efficacy. It will provide a comprehensive summary of various treatment strategies, recent clinical advances, receptor-targeting strategies and the role of lipid composition in cellular uptake. The review concludes with a critical assessment of existing challenges and future prospects in nanomedicines-driven HCC therapy.
Collapse
Affiliation(s)
- Dipanjan Ghosh
- Department of Biotechnology and Dr. B.C. Guha Centre for Genetic Engineering and Biotechnology, University of Calcutta, Kolkata 700019, West Bengal, India
| | - Aharna Guin
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517619, Andhra Pradesh, India
| | - Aryan Kumar
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517619, Andhra Pradesh, India
| | - Amlan Das
- Department of Microbiology & Department of Biochemistry, Royal School of Biosciences, The Assam Royal Global University, Guwahati 781035, Assam, India.
| | - Santanu Paul
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517619, Andhra Pradesh, India.
| |
Collapse
|
3
|
Zhou S, Qin Y, Lei A, Liu H, Sun Y, Zhang J, Deng C, Chen Y. The role of green synthesis metal and metal oxide nanoparticles in oral cancer therapy: a review. J Drug Target 2025; 33:853-876. [PMID: 39883061 DOI: 10.1080/1061186x.2025.2461091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 01/09/2025] [Accepted: 01/25/2025] [Indexed: 01/31/2025]
Abstract
There are 275,000 new cases of oral cancer (OC) per year, making it the sixth most common cancer in the world. Severe adverse effects, including loss of function, deformity, and systemic toxicity, are familiar with traditional therapies such as radiation, chemotherapy, and surgery; due to their unique properties, nanoparticles (NPs) have emerged as a superior alternative over chemo/radiotherapy and surgery due to their targeting capability, bioavailability, compatibility, and high solubility. Due to their unique properties, metallic NPs have garnered significant attention in OC control. In addition to the fact that metal NPs may be harmful to human cells, the reactive chemicals used to make them pose the same risk, which limits their use in medicine. Green synthesis (GS) is a novel strategy that uses biological materials like yeast, bacteria, fungi, and plant extracts. Compared to more traditional chemical synthesis processes, these are more environmentally benign and manageable for living organisms. This article summarises the GS of NPs made of metals and metal oxides and their anticancer effects on OC. The method's potential benefits and drawbacks in advancing metallic NPs' GS and shaping OC therapy's future were also discussed.
Collapse
Affiliation(s)
- Songlin Zhou
- School of Stomatology, Wannan Medical College, Wuhu, Anhui, China
- Anhui Engineering Research Center for Oral Materials and Application, Wannan Medical College, Wuhu, China
| | - Yutao Qin
- School of Stomatology, Wannan Medical College, Wuhu, Anhui, China
- Anhui Engineering Research Center for Oral Materials and Application, Wannan Medical College, Wuhu, China
| | - Anwen Lei
- School of Stomatology, Wannan Medical College, Wuhu, Anhui, China
- Xuancheng City People's Hospital, Xuancheng, Anhui Province, China
| | - Hai Liu
- School of Stomatology, Wannan Medical College, Wuhu, Anhui, China
- Anhui Engineering Research Center for Oral Materials and Application, Wannan Medical College, Wuhu, China
| | - Yi Sun
- School of Stomatology, Wannan Medical College, Wuhu, Anhui, China
- Anhui Engineering Research Center for Oral Materials and Application, Wannan Medical College, Wuhu, China
| | - Jue Zhang
- School of Stomatology, Wannan Medical College, Wuhu, Anhui, China
- Anhui Engineering Research Center for Oral Materials and Application, Wannan Medical College, Wuhu, China
| | - Chao Deng
- School of Stomatology, Wannan Medical College, Wuhu, Anhui, China
- Anhui Engineering Research Center for Oral Materials and Application, Wannan Medical College, Wuhu, China
| | - Yu Chen
- School of Stomatology, Wannan Medical College, Wuhu, Anhui, China
- Anhui Engineering Research Center for Oral Materials and Application, Wannan Medical College, Wuhu, China
| |
Collapse
|
4
|
Aciole RCG, Lima MJS, de Oliveira EB, Santos DKDN, Aguiar JS, Alves S, dos Anjos JV. Development of Photopolymerizable Implants for Controlled Release of Pro-Apoptotic 1,2,4-Oxadiazoles. ACS OMEGA 2025; 10:19314-19325. [PMID: 40415809 PMCID: PMC12096222 DOI: 10.1021/acsomega.4c09142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 04/16/2025] [Accepted: 04/30/2025] [Indexed: 05/27/2025]
Abstract
We present a study on developing photopolymerizable implants for the controlled release of pro-apoptotic 1,2,4-oxadiazoles to enhance their efficacy and safety in cancer treatment. The research focuses on synthesizing, testing, and incorporating 3,5-diaryl-1,2,4-oxadiazoles into a polymeric matrix based on methacrylates and utilizing these photopolymerizable devices for cancer therapy. Swelling tests showed that while the resin swells in contact with liquids, the presence of oxadiazole slowed this swelling, leading to a prolonged drug release over 50 days. The implant retained the cytotoxic activity of the isolated drug, indicating its potential for cancer therapy.
Collapse
Affiliation(s)
- Rayane C. G. Aciole
- Departamento
de Química Fundamental, Universidade
Federal de Pernambuco, Recife, Pernambuco50740-560, Brazil
| | - Maria J. S. Lima
- Departamento
de Química Fundamental, Universidade
Federal de Pernambuco, Recife, Pernambuco50740-560, Brazil
| | - Erwelly B. de Oliveira
- Departamento
de Antibióticos, Universidade Federal
de Pernambuco, Recife, Pernambuco50740-560, Brazil
| | - Dayane K. D. N. Santos
- Departamento
de Química Fundamental, Universidade
Federal de Pernambuco, Recife, Pernambuco50740-560, Brazil
| | - Jaciana S. Aguiar
- Departamento
de Antibióticos, Universidade Federal
de Pernambuco, Recife, Pernambuco50740-560, Brazil
| | - Severino Alves
- Departamento
de Química Fundamental, Universidade
Federal de Pernambuco, Recife, Pernambuco50740-560, Brazil
| | - Janaína V. dos Anjos
- Departamento
de Química Fundamental, Universidade
Federal de Pernambuco, Recife, Pernambuco50740-560, Brazil
| |
Collapse
|
5
|
Celesti C, Mele A, Espro C, Raffaini G, Laganà A, Visalli G, Giofrè SV, Gaetano FD, Neri G, Caronna T, Iannazzo D. A smart β-Cyclodextrin-Aza[5]Helicene system for enhanced gemcitabine delivery and tracking in cancer cells. Int J Pharm 2025; 676:125611. [PMID: 40252865 DOI: 10.1016/j.ijpharm.2025.125611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 04/15/2025] [Accepted: 04/15/2025] [Indexed: 04/21/2025]
Abstract
A novel β-cyclodextrin-aza[5]helicene conjugate as theranostic platform for anticancer agents delivery in cancer cells is here reported. The carrier was synthesized via monotosylation of hydroxyethyl-β-cyclodextrin (HE-β-CD), followed by reaction with the synthesized aza[5]helicene, yielding the corresponding ammonium tosylate salt. The system was characterized by NMR, FTIR, UV-vis, and PL measurements, demonstrating favorable optical properties. The suitability of the fluorescent system to act as smart drug delivery system for cancer therapy was investigated by choosing gemcitabine (GMC) as a model drug. The GMC inclusion inside the system was evaluated by experimental and computational studies which confirmed the formation of a 1:1 complex between β-CD and GMC. The inclusion of GMC within the β-CD cavity led to a marked enhancement in its water solubility. Biological tests conducted on A549 cells revealed high cell internalization (∼80 %) and low cytotoxicity (IC50 = 262.7 µg mL-1) of the β-CD-aza[5]helicene conjugate. The results obtained by exploiting the host-guest chemistry of β-cyclodextrin combined with the unique photophysical properties of aza[5]helicene could pave the way for new anticancer therapies, by increasing the therapeutic index of anticancer agents endowed with poor solubility in water and characterized by systemic toxicity and, thanks to the fluorescent properties of the inserted probe, following their release into biological pathways.
Collapse
Affiliation(s)
- Consuelo Celesti
- Department of Engineering, University of Messina, C.da Di Dio, I-98166 Messina, Italy.
| | - Andrea Mele
- Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, Piazza L. da Vinci 32, 20133 Milano, Italy
| | - Claudia Espro
- Department of Engineering, University of Messina, C.da Di Dio, I-98166 Messina, Italy
| | - Giuseppina Raffaini
- Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, Piazza L. da Vinci 32, 20133 Milano, Italy
| | - Antonio Laganà
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina 98125 Messina, Italy
| | - Giuseppa Visalli
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina 98125 Messina, Italy
| | - Salvatore Vincenzo Giofrè
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V.le Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Federica De Gaetano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V.le Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Giovanni Neri
- Department of Engineering, University of Messina, C.da Di Dio, I-98166 Messina, Italy
| | - Tullio Caronna
- Department of Engineering and Applied Sciences, University of Bergamo, Bergamo 24044, Italy
| | - Daniela Iannazzo
- Department of Engineering, University of Messina, C.da Di Dio, I-98166 Messina, Italy
| |
Collapse
|
6
|
Al-Shehaby N, Elshoky HA, Zidan M, Salaheldin TA, Gaber MH, Ali MA, El-Sayed NM. In vitro localization of modified zinc oxide nanoparticles showing selective anticancer effects against colorectal carcinoma using biophysical techniques. Sci Rep 2025; 15:16811. [PMID: 40369004 PMCID: PMC12078601 DOI: 10.1038/s41598-025-00434-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 04/28/2025] [Indexed: 05/16/2025] Open
Abstract
In recent decades, despite advancements in conventional cancer therapies, their serious side effects on both healthy and tumor cells remain a major concern. Aiming to address indiscriminate drug distribution, unwanted toxicity, and high chemotherapy doses, this study explores the targeted delivery of zinc oxide nanoparticles (ZnO NPs). ZnO NPs were synthesized and coated with bovine serum albumin (BSA) and tetraethoxysilane (TEOS) to control cellular uptake and enhance anticancer activity. Characterized by UV-visible spectroscopy, DLS, FTIR, XRD, and TEM, ZnO, ZnOB, and ZnOT particles displayed sizes of 140 ± 13.6 nm, 342 ± 8.4 nm, and 145 ± 23.8 nm, respectively, with ZnOT showing a positive charge of + 19.3 ± 4.16 mV, enhancing stability and cellular interaction. Cytotoxicity assays revealed ZnO's potent anticancer effect in Caco-2 cells with an IC50 of 219 µg/ml, while ZnOB and ZnOT showed moderate toxicity (IC50 values of 308 µg/ml and 235 µg/ml). HepG2 cells maintained viability close to 100%, highlighting ZnO NPs' selectivity for Caco-2 cells. Flow cytometry and confocal microscopy indicated differential uptake, with ZnOB showing the highest uptake in Caco-2 cells after 24 h at 37 °C, increasing fluorescence intensity by over 80% compared to ZnO. ZnOT notably increased late apoptotic cells by 65% in Caco-2 lines and caused a 40% rise in G2/M phase arrest. Mitochondrial function assays showed that ZnO reduced mitochondrial membrane potential by over 30%, indicating stress induction. These results support the potential of ZnO-based nanoparticles in colorectal cancer treatment, offering selective cytotoxicity, enhanced cellular uptake, and clear apoptotic activity, making them a promising alternative to conventional chemotherapy.
Collapse
Affiliation(s)
- Nouran Al-Shehaby
- Tumor Biology Research Program, Basic Research Unit, Research Department, Children's Cancer Hospital Egypt 57357, Cairo, 11441, Egypt
| | - Hisham A Elshoky
- Tumor Biology Research Program, Basic Research Unit, Research Department, Children's Cancer Hospital Egypt 57357, Cairo, 11441, Egypt.
- Nanotechnology and Advanced Materials Central Lab, Agricultural Research Center, P.O. 588 Orman, 9 Elgamaa St., Giza, 12619, Egypt.
- Regional Center for Food and Feed, Agricultural Research Center, Giza, 12619, Egypt.
| | - Mona Zidan
- Immunology research program, Basic Research Unit, Research Department, Children's Cancer Hospital Egypt 57357, Cairo, 11441, Egypt
| | - Taher A Salaheldin
- Tumor Biology Research Program, Basic Research Unit, Research Department, Children's Cancer Hospital Egypt 57357, Cairo, 11441, Egypt
- SUNY Schenectady Community College, New York, USA
| | - Mohamed H Gaber
- Biophysics Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Maha A Ali
- Biophysics Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Nayera M El-Sayed
- Physics Department, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
| |
Collapse
|
7
|
Huq MA, Rana MR, Samad A, Rahman MS, Rahman MM, Ashrafudoulla M, Akter S, Park JW. Green Synthesis, Characterization, and Potential Antibacterial and Anticancer Applications of Gold Nanoparticles: Current Status and Future Prospects. Biomedicines 2025; 13:1184. [PMID: 40427012 PMCID: PMC12109534 DOI: 10.3390/biomedicines13051184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2025] [Revised: 05/07/2025] [Accepted: 05/10/2025] [Indexed: 05/29/2025] Open
Abstract
Drug resistance is a serious problem for human health worldwide. Day by day this drug resistance is increasing and creating an anxious situation for the treatment of both cancer and infectious diseases caused by pathogenic microorganisms. Researchers are trying to solve this terrible situation to overcome drug resistance. Biosynthesized gold nanoparticles (AuNPs) could be a promising agent for controlling drug-resistant pathogenic microorganisms and cancer cells. AuNPs can be synthesized via chemical and physical approaches, carrying many threats to the ecosystem. Green synthesis of AuNPs using biological agents such as plants and microbes is the most fascinating and attractive alternative to physicochemical synthesis as it offers many advantages, such as simplicity, non-toxicity, cost-effectiveness, and eco-friendliness. Plant extracts contain numerous biomolecules, and microorganisms produce various metabolites that act as reducing, capping, and stabilizing agents during the synthesis of AuNPs. The characterization of green-synthesized AuNPs has been conducted using multiple instruments including UV-Vis spectrophotometry (UV-Vis), transmission electron microscopy (TEM), scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray diffraction (XRD), DLS, and Fourier transform infrared spectroscopy (FT-IR). AuNPs have detrimental effects on bacterial and cancer cells via the disruption of cell membranes, fragmentation of DNA, production of reactive oxygen species, and impairment of metabolism. The biocompatibility and biosafety of synthesized AuNPs must be investigated using a proper in vitro and in vivo screening model system. In this review, we have emphasized the green, facile, and eco-friendly synthesis of AuNPs using plants and microorganisms and their potential antimicrobial and anticancer applications and highlighted their antibacterial and anticancer mechanisms. This study demonstrates that green-synthesized AuNPs may potentially be used to control pathogenic bacteria as well as cancer cells.
Collapse
Affiliation(s)
- Md. Amdadul Huq
- Department of Life Sciences, College of BioNano Technology, Gachon University, Seongnam 13120, Republic of Korea
| | - Md. Rasel Rana
- Department of Microbiology, Faculty of Science and Engineering, Rabindra Maitree University, Kushtia 7000, Bangladesh;
| | - Abdus Samad
- Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Yongin 17104, Republic of Korea;
| | - Md. Shahedur Rahman
- Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore 7408, Bangladesh;
| | - M. Mizanur Rahman
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Science, Islamic University, Kushtia 7003, Bangladesh;
| | - Md Ashrafudoulla
- Department of Food Science, Center for Food Safety, University of Arkansas System Division of Agriculture, Fayetteville, AR 72704, USA;
| | - Shahina Akter
- Department of Food Science and Biotechnology, Gachon University, Seongnam 13120, Republic of Korea;
| | - Jong-Whi Park
- Department of Life Sciences, College of BioNano Technology, Gachon University, Seongnam 13120, Republic of Korea
| |
Collapse
|
8
|
Chai M, Wang S, Chen Y, Pei X, Zhen X. Targeted and intelligent nano-drug delivery systems for colorectal cancer treatment. Front Bioeng Biotechnol 2025; 13:1582659. [PMID: 40352359 PMCID: PMC12061940 DOI: 10.3389/fbioe.2025.1582659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Accepted: 04/14/2025] [Indexed: 05/14/2025] Open
Abstract
Colorectal cancer (CRC) remains a highly heterogeneous malignancy with significant morbidity and mortality worldwide. Despite advancements in surgery, chemotherapy, immunotherapy, and targeted therapy, treatment efficacy is often hampered by drug resistance and systemic toxicity. In recent years, nano-drug delivery systems (NDDS) have emerged as a promising strategy to enhance therapeutic precision, reduce adverse effects, and overcome resistance in CRC treatment. This review discusses the recent advancements in NDDS for CRC treatment, focusing on the optimization of oral drug delivery systems, the development of tumor-specific targeting strategies, and the design of intelligent delivery systems responsive to the tumor microenvironment (TME). Furthermore, we summarize current challenges in NDDS translation and explore future research directions for enhancing their clinical feasibility and therapeutic impact.
Collapse
Affiliation(s)
- Meihong Chai
- Department of Pharmacy, Xi’an Hospital of Traditional Chinese Medicine, Xi’an, Shaanxi, China
| | - Shihua Wang
- School of Medicine, Xi’an Peihua University, Xi’an, Shaanxi, China
| | - Yuxin Chen
- Health Science Center, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Xing Pei
- Tianjin Key Laboratory of Food and Biotechnology, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, China
| | - Xueyan Zhen
- Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
9
|
George M, Boukherroub R, Sanyal A, Szunerits S. Treatment of lung diseases via nanoparticles and nanorobots: Are these viable alternatives to overcome current treatments? Mater Today Bio 2025; 31:101616. [PMID: 40124344 PMCID: PMC11930446 DOI: 10.1016/j.mtbio.2025.101616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 02/24/2025] [Accepted: 02/25/2025] [Indexed: 03/25/2025] Open
Abstract
Challenges Respiratory diseases remain challenging to treat, with current efforts primarily focused on managing symptoms rather than maintaining overall lung health. Traditional treatment methods, such as oral or parenteral administration of antiviral, antibacterial, and anti-inflammatory drugs, face limitations. These include difficulty in delivering therapeutic agents to pathogens residing deep in the airways and the risk of severe side effects due to high systemic drug concentrations. The growing threat of drug-resistant pathogens further complicates infection management. Advancements The lung's large surface area offers an attractive target for inhalation-based drug delivery. Nanoparticles (NP) enable uniform and sustained drug distribution across the alveolar network, overcoming challenges posed by complex lung anatomy. Recent breakthroughs in nanorobots (NR) have demonstrated precise navigation through biological environments, delivering therapies directly to affected lung areas with enhanced accuracy. Nanotechnology has also shown promise in treating lung cancer, with nanoparticles engineered to overcome biological barriers, improve drug solubility, and enable controlled drug release. Future scope This review explores the progress of NP and NR in addressing challenges in pulmonary drug delivery. These innovations allow targeted delivery of nucleic acids, drugs, or peptides to the pulmonary epithelium with unprecedented accuracy, offering significant potential for improving therapeutic effectiveness in respiratory disorders.
Collapse
Affiliation(s)
- Meekha George
- Laboratory for Life Sciences and Technology (LiST), Faculty of Medicine and Dentistry, Danube Private University (DPU), Viktor-Kaplan-Straße 2, Geb. E, 2700, Wiener Neustadt, Austria
| | - Rabah Boukherroub
- Univ. Lille, CNRS, Univ. Polytechnique, Hauts-de-France, UMR 8520 - IEMN, F-59000, Lille, France
| | - Amitav Sanyal
- Department of Chemistry, Bogazici University, Bebek, 34342, Istanbul, Turkey
| | - Sabine Szunerits
- Laboratory for Life Sciences and Technology (LiST), Faculty of Medicine and Dentistry, Danube Private University (DPU), Viktor-Kaplan-Straße 2, Geb. E, 2700, Wiener Neustadt, Austria
- Univ. Lille, CNRS, Univ. Polytechnique, Hauts-de-France, UMR 8520 - IEMN, F-59000, Lille, France
| |
Collapse
|
10
|
Shaw S, Pore SK, Liu D, Kumeria T, Nayak R, Bose S. Combating chemoresistance: Current approaches & nanocarrier mediated targeted delivery. Biochim Biophys Acta Rev Cancer 2025; 1880:189261. [PMID: 39798822 DOI: 10.1016/j.bbcan.2025.189261] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 12/23/2024] [Accepted: 01/06/2025] [Indexed: 01/15/2025]
Abstract
Chemoresistance, a significant challenge in effective cancer treatment needs clear elucidation of the underlying molecular mechanism for the development of novel therapeutic strategies. Alterations in transporter pumps, oncogenes, tumour suppressor genes, mitochondrial function, DNA repair processes, autophagy, epithelial-mesenchymal transition (EMT), cancer stemness, epigenetic modifications, and exosome secretion lead to chemoresistance. Despite notable advancements in targeted cancer therapies employing both small molecules and macromolecules success rates remain suboptimal due to adverse effects like drug efflux, target mutation, increased mortality of normal cells, defective apoptosis, etc. This review proposes an advanced nanotechnological technique precisely targeting molecular determinants of chemoresistance which holds promise for enhancing cancer treatment efficacy. Further, the review explores various cancer hallmarks and pathways implicated in chemoresistance, current therapeutic modalities, and their limitations. It advocates the combination of nanoparticle-conjugated conventional drugs and natural compounds to specifically target molecular pathways that can potentially reverse or minimize chemoresistance incidences in cancer patients.
Collapse
Affiliation(s)
- Siuli Shaw
- Centre for Medical Biotechnology, Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | - Subrata Kumar Pore
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University, Noida, Uttar Pradesh, India
| | - Dutong Liu
- School of Materials Science and Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Tushar Kumeria
- School of Materials Science and Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Ranu Nayak
- Amity Institute of Nanotechnology, Amity University, Noida, Uttar Pradesh, India.
| | - Sudeep Bose
- Centre for Medical Biotechnology, Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India; Amity Institute of Molecular Medicine and Stem Cell Research, Amity University, Noida, Uttar Pradesh, India.
| |
Collapse
|
11
|
Sivakumar PM, Zarepour A, Akhter S, Perumal G, Khosravi A, Balasekar P, Zarrabi A. Anionic polysaccharides as delivery carriers for cancer therapy and theranostics: An overview of significance. Int J Biol Macromol 2025; 294:139211. [PMID: 39732249 DOI: 10.1016/j.ijbiomac.2024.139211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 11/13/2024] [Accepted: 12/24/2024] [Indexed: 12/30/2024]
Abstract
Recently, cancer therapy has witnessed remarkable advancements with a growing focus on precision medicine and targeted drug delivery strategies. The application of anionic polysaccharides has gained traction in various drug delivery systems. Anionic polysaccharides have emerged as promising delivery carriers in cancer therapy and theranostics, offering numerous advantages such as biocompatibility, low toxicity, and the ability to encapsulate and deliver therapeutic agents to tumor sites with high specificity. This review underscores the significance of anionic polysaccharides as essential components of the evolving landscape of cancer therapy and theranostics. These polymers can be tailored to carry a wide range of therapeutic cargo, including chemotherapeutic agents, nucleic acids, and imaging agents. Their negative charge enables electrostatic interactions with positively charged drugs and facilitates the formation of stable nanoparticles, liposomes, or hydrogels for controlled drug release. Additionally, their hydrophilic nature aids in prolonging circulation time, reducing drug degradation, and minimizing off-target effects. Besides, some of them could act as targeting agents or therapeutic compounds that lead to improved therapeutic performance. This review offers valuable information for researchers, clinicians, and biomedical engineers. It provides insights into the recent progress in the applications of anionic polysaccharide-based delivery platforms in cancer theranostics to transform patient outcomes.
Collapse
Affiliation(s)
- Ponnurengam Malliappan Sivakumar
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam; School of Medicine and Pharmacy, Duy Tan University, Da Nang, Vietnam
| | - Atefeh Zarepour
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600 077, India.
| | - Sohail Akhter
- New Product Development, Global R&D, Sterile ops, TEVA Pharmaceutical Industries Ltd., Aston Ln N, Halton, Preston Brook, Runcorn WA7 3FA, UK.
| | - Govindaraj Perumal
- Department of Biomedical Engineering, School of Dental Medicine, University of Connecticut (UConn) Health, Farmington, CT 06030, USA.
| | - Arezoo Khosravi
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, Istanbul Okan University, Istanbul 34959, Türkiye
| | - Premkumar Balasekar
- Department of Pharmacology, K.K. College of Pharmacy, Affiliated to The Tamilnadu Dr. M.G.R. Medical University, Gerugambakkam 600128, India
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Türkiye; Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Taoyuan 320315, Taiwan.
| |
Collapse
|
12
|
Mubarak N, Waqar MA, Khan AM, Asif Z, Alvi AS, Virk AA, Amir S. A comprehensive insight of innovations and recent advancements in nanocarriers for nose-to-brain drug targeting. Des Monomers Polym 2025; 28:7-29. [PMID: 39935823 PMCID: PMC11812116 DOI: 10.1080/15685551.2025.2464132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 02/03/2025] [Indexed: 02/13/2025] Open
Abstract
Central Nervous System (CNS) disorders are the leading cause of illness and affect the everyday lives of people all around the globe and are predicted to increase tremendously in the upcoming decades. Traditional methods of delivering drugs to the CNS face considerable limitations. Nose-to-brain targeting offers a promising alternative that bypasses the blood-brain barrier (BBB), enabling targeted drug administration to the central nervous system (CNS). Nanotechnology has brought forward innovative solutions to the challenges of drug delivery in CNS disorders. Nanocarriers such as liposomes, nanoparticles, nanoemulsions and dendrimers can enhance drug stability, bioavailability, and targeted delivery to the brain. These nanocarriers are designed to overcome physiological barriers and provide controlled and sustained drug release directly to the CNS. Nanocarrier technology has made significant strides in recent years, enabling more effective and targeted delivery of drugs to the brain. With recent advancements, intranasal delivery coupled with nanocarriers seems to be a promising combination that can provide better clinical profiles, pharmacokinetics, and pharmacodynamics for neurodegenerative disorders. This study focuses on exploring the nose-to-brain drug delivery system, emphasizing the use of various nanocarriers designed for this purpose. Additionally, the study encompasses recent advancements in nanocarrier technology tailored specifically to improve the efficiency of drug administration through the nasal route to the brain.
Collapse
Affiliation(s)
- Naeem Mubarak
- Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Lahore University of Biological and Applied Sciences, Lahore, Pakistan
| | - Muhammad Ahsan Waqar
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Lahore University of Biological and Applied Sciences, Lahore, Pakistan
| | - Asad Majeed Khan
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Lahore University of Biological and Applied Sciences, Lahore, Pakistan
| | - Zainab Asif
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Lahore University of Biological and Applied Sciences, Lahore, Pakistan
| | - Aima Subia Alvi
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Lahore University of Biological and Applied Sciences, Lahore, Pakistan
| | - Aqsa Arshad Virk
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Lahore University of Biological and Applied Sciences, Lahore, Pakistan
| | - Sakeena Amir
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Lahore University of Biological and Applied Sciences, Lahore, Pakistan
| |
Collapse
|
13
|
Dey S, Ghosh M, Dev A. Signalling and molecular pathways, overexpressed receptors of colorectal cancer and effective therapeutic targeting using biogenic silver nanoparticles. Gene 2025; 936:149099. [PMID: 39557372 DOI: 10.1016/j.gene.2024.149099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/18/2024] [Accepted: 11/13/2024] [Indexed: 11/20/2024]
Abstract
Increasing morbidity and mortality in CRC is a potential threat to human health. The major challenges for better treatment outcomes are the heterogeneity of CRC cases, complicated molecular pathway cross-talks, the influence of gut dysbiosis in CRC, and the lack of multimodal target-specific drug delivery. The overexpression of many receptors in CRC cells may pave the path for targeting them with multiple ligands. The design of a more target-specific drug-delivery device with multiple ligand-functionalized, green-synthesized silver nanoparticles is highly promising and may also deliver other approved chemotherapeutic agents. This review presents the various aspects of colorectal cancer and over-expressed receptors that can be targeted with appropriate ligands to enhance the specific drug delivery potency of green synthesised silver nanoparticles. This review aims to broaden further research into this multi-ligand functionalised, safer and effective silver nano drug delivery system.
Collapse
Affiliation(s)
- Sandip Dey
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Jharkhand, India
| | - Manik Ghosh
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Jharkhand, India
| | - Abhimanyu Dev
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Jharkhand, India.
| |
Collapse
|
14
|
Singh P, Pandit S, Balusamy SR, Madhusudanan M, Singh H, Amsath Haseef HM, Mijakovic I. Advanced Nanomaterials for Cancer Therapy: Gold, Silver, and Iron Oxide Nanoparticles in Oncological Applications. Adv Healthc Mater 2025; 14:e2403059. [PMID: 39501968 PMCID: PMC11804848 DOI: 10.1002/adhm.202403059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/07/2024] [Indexed: 01/05/2025]
Abstract
Cancer remains one of the most challenging health issues globally, demanding innovative therapeutic approaches for effective treatment. Nanoparticles, particularly those composed of gold, silver, and iron oxide, have emerged as promising candidates for changing cancer therapy. This comprehensive review demonstrates the landscape of nanoparticle-based oncological interventions, focusing on the remarkable advancements and therapeutic potentials of gold, silver, and iron oxide nanoparticles. Gold nanoparticles have garnered significant attention for their exceptional biocompatibility, tunable surface chemistry, and distinctive optical properties, rendering them ideal candidates for various cancer diagnostic and therapeutic strategies. Silver nanoparticles, renowned for their antimicrobial properties, exhibit remarkable potential in cancer therapy through multiple mechanisms, including apoptosis induction, angiogenesis inhibition, and drug delivery enhancement. With their magnetic properties and biocompatibility, iron oxide nanoparticles offer unique cancer diagnosis and targeted therapy opportunities. This review critically examines the recent advancements in the synthesis, functionalization, and biomedical applications of these nanoparticles in cancer therapy. Moreover, the challenges are discussed, including toxicity concerns, immunogenicity, and translational barriers, and ongoing efforts to overcome these hurdles are highlighted. Finally, insights into the future directions of nanoparticle-based cancer therapy and regulatory considerations, are provided aiming to accelerate the translation of these promising technologies from bench to bedside.
Collapse
Affiliation(s)
- Priyanka Singh
- The Novo Nordisk FoundationCenter for BiosustainabilityTechnical University of DenmarkKogens LyngbyDK‐2800Denmark
| | - Santosh Pandit
- Systems and Synthetic Biology DivisionDepartment of Life SciencesChalmers University of TechnologyGothenburgSE‐412 96Sweden
| | - Sri Renukadevi Balusamy
- Department of Food Science and BiotechnologySejong UniversityGwangjin‐GuSeoul05006Republic of Korea
| | - Mukil Madhusudanan
- The Novo Nordisk FoundationCenter for BiosustainabilityTechnical University of DenmarkKogens LyngbyDK‐2800Denmark
| | - Hina Singh
- Division of Biomedical SciencesSchool of MedicineUniversity of CaliforniaRiversideCA92521USA
| | | | - Ivan Mijakovic
- The Novo Nordisk FoundationCenter for BiosustainabilityTechnical University of DenmarkKogens LyngbyDK‐2800Denmark
- Systems and Synthetic Biology DivisionDepartment of Life SciencesChalmers University of TechnologyGothenburgSE‐412 96Sweden
| |
Collapse
|
15
|
Wahnou H, El Kebbaj R, Liagre B, Sol V, Limami Y, Duval RE. Curcumin-Based Nanoparticles: Advancements and Challenges in Tumor Therapy. Pharmaceutics 2025; 17:114. [PMID: 39861761 PMCID: PMC11768525 DOI: 10.3390/pharmaceutics17010114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/07/2025] [Accepted: 01/09/2025] [Indexed: 01/27/2025] Open
Abstract
Curcumin, a bioactive compound derived from the rhizome of Curcuma longa L., has garnered significant attention for its potent anticancer properties. Despite its promising therapeutic potential, its poor bioavailability, rapid metabolism, and low water solubility hinder curcumin's clinical application. Nanotechnology offers a viable solution to these challenges by enabling the development of curcumin-based nanoparticles (CNPs) that enhance its bioavailability and therapeutic efficacy. This review provides a comprehensive overview of the recent advancements in the design and synthesis of CNPs for cancer therapy. We discuss various NP formulations, including polymeric, lipid-based, and inorganic nanoparticles, highlighting their role in improving curcumin's pharmacokinetic and pharmacodynamic profiles. The mechanisms by which CNPs exert anticancer effects, such as inducing apoptosis, inhibiting cell proliferation, and modulating signaling pathways, are explored in details. Furthermore, we examine the preclinical and clinical studies that have demonstrated the efficacy of CNPs in treating different types of tumors, including breast, colorectal, and pancreatic cancers. Finally, the review addresses the current challenges and future perspectives in the clinical translation of CNPs, emphasizing the need for further research to optimize their design for targeted delivery and to enhance their therapeutic outcomes. By synthesizing the latest research, this review underscores the potential of CNPs as a promising avenue for advancing cancer therapy.
Collapse
Affiliation(s)
- Hicham Wahnou
- Laboratory of Immunology and Biodiversity, Faculty of Sciences Ain Chock, Hassan II University, B.P2693, Maarif, Casablanca 20100, Morocco;
| | - Riad El Kebbaj
- Laboratory of Health Sciences and Technologies, Higher Institute of Health Sciences, Hassan First University of Settat, Settat 26000, Morocco;
| | - Bertrand Liagre
- Univ. Limoges, LABCiS, UR 22722, F-87000 Limoges, France; (B.L.); (V.S.)
| | - Vincent Sol
- Univ. Limoges, LABCiS, UR 22722, F-87000 Limoges, France; (B.L.); (V.S.)
| | - Youness Limami
- Laboratory of Health Sciences and Technologies, Higher Institute of Health Sciences, Hassan First University of Settat, Settat 26000, Morocco;
| | | |
Collapse
|
16
|
Ciccone L, Nencetti S. Special Issue "Advances in Drug Discovery and Synthesis". Int J Mol Sci 2025; 26:584. [PMID: 39859300 PMCID: PMC11765983 DOI: 10.3390/ijms26020584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Accepted: 01/08/2025] [Indexed: 01/27/2025] Open
Abstract
In modern medicinal chemistry, drug discovery is a long, difficult, highly expensive and highly risky process for the identification of new drug compounds [...].
Collapse
Affiliation(s)
- Lidia Ciccone
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy;
| | | |
Collapse
|
17
|
Ullah A, Khan M, Zhang Y, Shafiq M, Ullah M, Abbas A, Xianxiang X, Chen G, Diao Y. Advancing Therapeutic Strategies with Polymeric Drug Conjugates for Nucleic Acid Delivery and Treatment. Int J Nanomedicine 2025; 20:25-52. [PMID: 39802382 PMCID: PMC11717654 DOI: 10.2147/ijn.s429279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 11/26/2024] [Indexed: 01/16/2025] Open
Abstract
The effective clinical translation of messenger RNA (mRNA), small interfering RNA (siRNA), and microRNA (miRNA) for therapeutic purposes hinges on the development of efficient delivery systems. Key challenges include their susceptibility to degradation, limited cellular uptake, and inefficient intracellular release. Polymeric drug conjugates (PDCs) offer a promising solution, combining the benefits of polymeric carriers and therapeutic agents for targeted delivery and treatment. This comprehensive review explores the clinical translation of nucleic acid therapeutics, focusing on polymeric drug conjugates. It investigates how these conjugates address delivery obstacles, enhance systemic circulation, reduce immunogenicity, and provide controlled release, improving safety profiles. The review delves into the conjugation strategies, preparation methods, and various classes of PDCs, as well as strategic design, highlighting their role in nucleic acid delivery. Applications of PDCs in treating diseases such as cancer, immune disorders, and fibrosis are also discussed. Despite significant advancements, challenges in clinical adoption persist. The review concludes with insights into future directions for this transformative technology, underscoring the potential of PDCs to advance nucleic acid-based therapies and combat infectious diseases significantly.
Collapse
Affiliation(s)
- Aftab Ullah
- School of Medicine, Huaqiao University, Quanzhou, Fujian, People’s Republic of China
| | - Marina Khan
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology, Kohat, Pakistan
| | - Yibang Zhang
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu, People’s Republic of China
| | - Muhammad Shafiq
- Research Institute of Clinical Pharmacy, Department of Pharmacology, Shantou University Medical College, Shantou, Guangdong, People’s Republic of China
| | - Mohsan Ullah
- School of Medicine, Huaqiao University, Quanzhou, Fujian, People’s Republic of China
| | - Azar Abbas
- Institute of Medicine, Shenzhen Institute of Advanced Technology, Shenzhen, Guangdong, People’s Republic of China
| | - Xu Xianxiang
- School of Medicine, Huaqiao University, Quanzhou, Fujian, People’s Republic of China
| | - Gang Chen
- School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, Shandong, People’s Republic of China
- Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao central Medical Group), Qingdao, Shandong, People’s Republic of China
| | - Yong Diao
- School of Medicine, Huaqiao University, Quanzhou, Fujian, People’s Republic of China
| |
Collapse
|
18
|
Halwai K, Khanna S, Gupta G, Wahab S, Khalid M, Kesharwani P. Folate-conjugated carbon nanotubes as a promising therapeutic approach for targeted cancer therapy. J Drug Target 2025; 33:1-16. [PMID: 39141661 DOI: 10.1080/1061186x.2024.2393423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/02/2024] [Accepted: 08/11/2024] [Indexed: 08/16/2024]
Abstract
Conventional systemic cancer therapy often causes numerous adverse events. However, discovering overexpressed folate receptors in solid tumours has paved the way for targeted chemotherapy. Folic acid (FA), a ligand for these receptors, is frequently combined with chemotherapeutic drugs to improve their effectiveness. Carbon nanotubes have emerged as a versatile and promising method for delivering these folate-conjugated nano-systems, ensuring targeted delivery of therapeutic agents to cancerous cells. When FA-conjugated nanotubes dissociate, they release the drug-loaded nanotubes inside the malignant cells, reducing off-target effects. These nanotubes can also be used for combination therapies, producing synergistic effects. This review aims to comprehensively gather and critically evaluate the latest methods for delivering therapeutics using FA-conjugated nanovehicles. Additionally, it seeks to enhance our comprehension of the pertinent chemistry and biochemical pathways involved in this approach.
Collapse
Affiliation(s)
- Kratika Halwai
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Suruchi Khanna
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | | | - Shadma Wahab
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Mohammad Khalid
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| |
Collapse
|
19
|
Adjei-Sowah E, Rangasami V, Loiselle AE, Benoit DSW. Optimizing Ligand Valency to Maximize Tendon Accumulation of Peptide-Targeted Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2024; 16:68864-68876. [PMID: 39630483 DOI: 10.1021/acsami.4c13388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
In many tissues, including musculoskeletal tissues such as tendon, systemic delivery typically results in poor targeting of free drugs. Hence, we previously developed a targeted drug delivery nanoparticle (NP) system for tendon healing, leveraging a tartrate resistant acid phosphatase (TRAP) binding peptide (TBP) ligand. The greatest tendon targeting was observed with NPs functionalized with 30 000 TBP ligands per NP at day 7 during the proliferative healing phase, relative to the inflammatory (day 3) and early remodeling (day 14) phases of healing. Nevertheless, TRAP activity varies throughout healing and, therefore, may offer an opportunity for optimizing temporal therapeutic targeting through multivalent interactions. Hence, in this study, we hypothesized that the ligand density (9000-55,000 TBPs per NP) can optimize tendon accumulation on the basis of variable TRAP levels. The multivalent nanoparticles were loaded with three different fluorophores. In vitro, the ligand density and fluorophore had no effect on the physicochemical properties of the NPs, including size, charge, polydispersity index, or dye loading efficiency; however, the TRAP binding affinity correlated positively with the ligand density. In vivo, the ligand density correlated positively with NP homing and retention in the tendon, establishing opportunities to leverage ligand density for tendon targeting across the tendon healing cascade, during aging, and in other tendon pathologies, including tendinopathies.
Collapse
Affiliation(s)
- Emmanuela Adjei-Sowah
- Department of Biomedical Engineering, University of Rochester, Rochester, New York 14623, United States
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York 14642, United States
| | - Vigneshkumar Rangasami
- Department of Bioengineering, Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, Oregon 97403, United States
| | - Alayna E Loiselle
- Department of Biomedical Engineering, University of Rochester, Rochester, New York 14623, United States
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York 14642, United States
- Department of Orthopedics & Physical Performance, University of Rochester Medical Center, Rochester, New York 14642, United States
- Department of Pathology & Laboratory Medicine, University of Rochester Medical Center, Rochester, New York 14642, United States
| | - Danielle S W Benoit
- Department of Biomedical Engineering, University of Rochester, Rochester, New York 14623, United States
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York 14642, United States
- Department of Bioengineering, Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, Oregon 97403, United States
- Department of Orthopedics & Physical Performance, University of Rochester Medical Center, Rochester, New York 14642, United States
| |
Collapse
|
20
|
Khanicheragh P, Abbasi-Malati Z, Saghebasl S, Hassanpour P, Milani SZ, Rahbarghazi R, Hasani A. Exosomes and breast cancer angiogenesis; Highlights in intercellular communication. Cancer Cell Int 2024; 24:402. [PMID: 39696346 DOI: 10.1186/s12935-024-03606-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 12/06/2024] [Indexed: 12/20/2024] Open
Abstract
Breast cancer (BC) is a prevalent and highly lethal cancer in females. Like other cancer types, the intricate cellular and molecular heterogeneity leads to the variation of therapeutic outcomes. The development and progression of blood vessels increase the tumor cell expansion and metastasis to remote sites. Based on several pieces of scientific data, different mediators and cells are involved in the promotion of angiogenesis into the tumor parenchyma. Recent data have indicated the critical role of extracellular vesicles, especially exosomes (Exos), in the transfer of angiogenesis molecules between the BC cells. Due to unique physicochemical properties, and the transfer of certain signaling molecules, Exos are at the center of attention in terms of biomarkers and therapeutic bullets in cancer patients. Along with these statements, understanding the modulatory role of Exos in BC angiogenesis seems critical in the clinical setting. Here, the mechanisms by which BC cells can orchestrate the angiogenesis phenomenon via Exos are discussed in detail. The present study can help us to understand the pro-/anti-angiogenesis role of Exos in BC and to design better oncostatic strategies.
Collapse
Affiliation(s)
- Parisa Khanicheragh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Clinical Biochemistry and Laboratory Medicine, Tabriz University of Medical Sciences, Tabriz, 5165687386, Iran
| | - Zahra Abbasi-Malati
- Student Committee Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Solmaz Saghebasl
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parisa Hassanpour
- Department of Clinical Biochemistry and Laboratory Medicine, Tabriz University of Medical Sciences, Tabriz, 5165687386, Iran
| | - Soheil Zamen Milani
- Student Committee Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Rahbarghazi
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Akbar Hasani
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Clinical Biochemistry and Laboratory Medicine, Tabriz University of Medical Sciences, Tabriz, 5165687386, Iran.
| |
Collapse
|
21
|
Yadav DK, Singh DD, Shin D. Distinctive roles of aquaporins and novel therapeutic opportunities against cancer. RSC Med Chem 2024:d4md00786g. [PMID: 39697243 PMCID: PMC11650210 DOI: 10.1039/d4md00786g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 11/11/2024] [Indexed: 12/20/2024] Open
Abstract
Aquaporins (AQPs) are integral membrane proteins responsible for facilitating the transmembrane transport of water and small solutes. Their involvement in diverse physiological functions extends to pathological conditions, including cancer, positioning them as promising targets for anticancer therapy. Tumor cells, particularly those with high metastatic potential, exhibit elevated AQP expression, reinforcing their critical role in tumor biology. Emerging evidence highlights AQPs' involvement in key oncogenic processes such as cell migration, proliferation, and tumor-associated edema, suggesting their potential as novel therapeutic targets. Despite this, the development of selective and potent AQP inhibitors has proven challenging. Efforts to produce small-molecule AQP inhibitors have largely been unsuccessful. However, recent advancements include monoclonal human IgG antibodies targeting extracellular domains of aquaporin-4, offering new therapeutic strategies, particularly in glioblastoma, where AQP-4 is overexpressed. However, recent advancements include monoclonal human IgG antibodies targeting extracellular domains of aquaporin-4, offering new therapeutic strategies, particularly in glioblastoma, where AQP-4 is over expressed. These antibodies hold promise for selectively targeting and eradicating AQP-4-expressing cells in malignant brain tumors. This review discusses the critical role AQPs play in cancer, including their contributions to tumor cell proliferation, migration, angiogenesis, and edema formation. Additionally, we explore innovative therapeutic approaches, such as antibody-based interventions, and outline potential future research directions in AQP-targeted cancer therapies.
Collapse
Affiliation(s)
- Dharmendra Kumar Yadav
- College of Pharmacy, Gachon University Hambakmoeiro 191, Yeonsu-gu Incheon 21924 Republic of Korea +82 32 820 4948 +82 32 820 4945
| | - Desh Deepak Singh
- Amity Institute of Biotechnology, Amity University Rajasthan Jaipur India
| | - Dongyun Shin
- College of Pharmacy, Gachon University Hambakmoeiro 191, Yeonsu-gu Incheon 21924 Republic of Korea +82 32 820 4948 +82 32 820 4945
| |
Collapse
|
22
|
Zhang X, Li T, Tong J, Zhou M, Wang Z, Liu X, Lu W, Lou J, Yi Q. Gemcitabine-Loaded Microbeads for Transarterial Chemoembolization of Rabbit Renal Tumor Monitored by 18F-FDG Positron Emission Tomography/X-Ray Computed Tomography Imaging. Pharmaceutics 2024; 16:1609. [PMID: 39771587 PMCID: PMC11678015 DOI: 10.3390/pharmaceutics16121609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/22/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND/OBJECTIVES The purpose of this study was to develop the gemcitabine-loaded drug-eluting beads (G-DEBs) for transarterial chemoembolization (TACE) in rabbit renal tumors and to evaluate their antitumor effect using 2-deoxy-2-[(18)F]fluoro-D-glucose positron emission tomography/X-ray computed tomography (18F-FDG PET/CT). METHODS DEBs were prepared by polyvinyl alcohol-based macromer crosslinked with N-acryl tyrosine and N,N'-methylenebis(acrylamide). Gemcitabine was loaded through ion change to obtain G-DEBs. Their particle size and drug release profile were characterized. VX2 tumors were implanted in the right kidney of rabbits to establish the renal tumor model. The tumor-bearing rabbits received pre-scan by 18F-FDG PET/CT, followed by targeted transarterial injection of G-DEBs under digital subtraction angiography (DSA) guidance. The rabbits received another 18F-FDG PET/CT scan 10 or 14 days after the treatment. The therapeutic effect was further validated by histopathological analysis of the dissected tumors. RESULTS The average particle size of the microspheres was 58.06 ± 0.50 µm, and the polydisperse index was 0.26 ± 0.002. The maximum loading rate of G-DEBs was 18.09 ± 0.35%, with almost 100% encapsulation efficiency. Within 24 h, GEM was eluted from G-DEBs rapidly and completely, and more than 20% was released in different media. DSA illustrated that G-DEBs were delivered to rabbit renal tumors. Compared with the untreated control group with increased tumor volume and intense 18F -FDG uptake, the G-DEBs group showed significant reductions in tumor volume and maximum standard uptake value (SUVmax) 10 or 14 days after the treatment. Histopathological analysis confirmed that the proliferating area of tumor cells was significantly reduced in the G-DEBs group. CONCLUSIONS Our results demonstrated that G-DEBs are effective in TACE treatment of rabbit VX2 renal tumors, and 18F-FDG PET/CT provides a non-invasive imaging modality to monitor the antitumor effects of TACE in renal tumors.
Collapse
Affiliation(s)
- Xiaoli Zhang
- Department of Urology and Department of Nuclear Medicine, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China; (X.Z.); (M.Z.); (Z.W.); (X.L.)
| | - Tingting Li
- Quzhou Fudan Institute, Quzhou 324002, China; (T.L.); (W.L.)
- Key Laboratory of Smart Drug Delivery, Ministry of Education & State Key Laboratory of Molecular Engineering of Polymers, School of Pharmacy & Minhang Hospital, Fudan University, Shanghai 201203, China
| | - Jindong Tong
- Department of Vascular Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center & Shanghai Key Laboratory of Vascular Lesions Regulation and Remodeling, Shanghai 201399, China;
| | - Meihong Zhou
- Department of Urology and Department of Nuclear Medicine, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China; (X.Z.); (M.Z.); (Z.W.); (X.L.)
| | - Zi Wang
- Department of Urology and Department of Nuclear Medicine, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China; (X.Z.); (M.Z.); (Z.W.); (X.L.)
| | - Xingdang Liu
- Department of Urology and Department of Nuclear Medicine, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China; (X.Z.); (M.Z.); (Z.W.); (X.L.)
| | - Wei Lu
- Quzhou Fudan Institute, Quzhou 324002, China; (T.L.); (W.L.)
- Key Laboratory of Smart Drug Delivery, Ministry of Education & State Key Laboratory of Molecular Engineering of Polymers, School of Pharmacy & Minhang Hospital, Fudan University, Shanghai 201203, China
| | - Jingjing Lou
- Department of Urology and Department of Nuclear Medicine, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China; (X.Z.); (M.Z.); (Z.W.); (X.L.)
| | - Qingtong Yi
- Department of Urology and Department of Nuclear Medicine, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China; (X.Z.); (M.Z.); (Z.W.); (X.L.)
| |
Collapse
|
23
|
Baena JC, Pérez LM, Toro-Pedroza A, Kitawaki T, Loukanov A. CAR T Cell Nanosymbionts: Revealing the Boundless Potential of a New Dyad. Int J Mol Sci 2024; 25:13157. [PMID: 39684867 DOI: 10.3390/ijms252313157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 11/08/2024] [Accepted: 11/11/2024] [Indexed: 12/18/2024] Open
Abstract
Cancer treatment has traditionally focused on eliminating tumor cells but faces challenges such as resistance and toxicity. A promising direction involves targeting the tumor microenvironment using CAR T cell immunotherapy, which has shown potential for treating relapsed and refractory cancers but is limited by high costs, resistance, and toxicity, especially in solid tumors. The integration of nanotechnology into ICAM cell therapy, a concept we have named "CAR T nanosymbiosis", offers new opportunities to overcome these challenges. Nanomaterials can enhance CAR T cell delivery, manufacturing, activity modulation, and targeting of the tumor microenvironment, providing better control and precision. This approach aims to improve the efficacy of CAR T cells against solid tumors, reduce associated toxicities, and ultimately enhance patient outcomes. Several studies have shown promising results, and developing this therapy further is essential for increasing its accessibility and effectiveness. Our "addition by subtraction model" synthesizes these multifaceted elements into a unified strategy to advance cancer treatment paradigms.
Collapse
Affiliation(s)
- Juan C Baena
- Division of Oncology, Department of Medicine, Fundación Valle del Lili, ICESI University, Carrera 98 No. 18-49, Cali 760032, Colombia
- LiliCAR-T Group, Fundación Valle del Lili, ICESI University, Cali 760032, Colombia
| | - Lucy M Pérez
- Division of Oncology, Department of Medicine, Fundación Valle del Lili, ICESI University, Carrera 98 No. 18-49, Cali 760032, Colombia
- LiliCAR-T Group, Fundación Valle del Lili, ICESI University, Cali 760032, Colombia
| | - Alejandro Toro-Pedroza
- Division of Oncology, Department of Medicine, Fundación Valle del Lili, ICESI University, Carrera 98 No. 18-49, Cali 760032, Colombia
- LiliCAR-T Group, Fundación Valle del Lili, ICESI University, Cali 760032, Colombia
| | - Toshio Kitawaki
- Department of Hematology, Kyoto University Hospital, Kyoto 606-8507, Japan
| | - Alexandre Loukanov
- Department of Chemistry and Materials Science, National Institute of Technology, Gunma College, Maebashi 371-8530, Japan
- Laboratory of Engineering Nanobiotechnology, University of Mining and Geology "St. Ivan Rilski", 1700 Sofia, Bulgaria
| |
Collapse
|
24
|
Zhang Y, Zhang Q, Li C, Zhou Z, Lei H, Liu M, Zhang D. Advances in cell membrane-based biomimetic nanodelivery systems for natural products. Drug Deliv 2024; 31:2361169. [PMID: 38828914 PMCID: PMC11149581 DOI: 10.1080/10717544.2024.2361169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 05/14/2024] [Indexed: 06/05/2024] Open
Abstract
Active components of natural products, which include paclitaxel, curcumin, gambogic acid, resveratrol, triptolide and celastrol, have promising anti-inflammatory, antitumor, anti-oxidant, and other pharmacological activities. However, their clinical application is limited due to low solubility, instability, low bioavailability, rapid metabolism, short half-life, and strong off-target toxicity. To overcome these drawbacks, cell membrane-based biomimetic nanosystems have emerged that avoid clearance by the immune system, enhance targeting, and prolong drug circulation, while also improving drug solubility and bioavailability, enhancing drug efficacy, and reducing side effects. This review summarizes recent advances in the preparation and coating of cell membrane-coated biomimetic nanosystems and in their applications to disease for targeted natural products delivery. Current challenges, limitations, and prospects in this field are also discussed, providing a research basis for the development of multifunctional biomimetic nanosystems for natural products.
Collapse
Affiliation(s)
- Yifeng Zhang
- School of Pharmacy, Southwest Medical University, Luzhou, P. R. China
| | - Qian Zhang
- School of Pharmacy, Southwest Medical University, Luzhou, P. R. China
| | - Chunhong Li
- School of Pharmacy, Southwest Medical University, Luzhou, P. R. China
| | - Ziyun Zhou
- School of Pharmacy, Southwest Medical University, Luzhou, P. R. China
| | - Hui Lei
- School of Pharmacy, Southwest Medical University, Luzhou, P. R. China
| | - Minghua Liu
- School of Pharmacy, Southwest Medical University, Luzhou, P. R. China
| | - Dan Zhang
- School of Pharmacy, Southwest Medical University, Luzhou, P. R. China
| |
Collapse
|
25
|
Jarmila P, Veronika M, Peter M. Advances in the delivery of anticancer drugs by nanoparticles and chitosan-based nanoparticles. Int J Pharm X 2024; 8:100281. [PMID: 39297017 PMCID: PMC11408389 DOI: 10.1016/j.ijpx.2024.100281] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/22/2024] [Accepted: 08/24/2024] [Indexed: 09/21/2024] Open
Abstract
Cancer is the leading cause of death globally, and conventional treatments have limited efficacy with severe side effects. The use of nanotechnology has the potential to reduce the side effects of drugs by creating efficient and controlled anticancer drug delivery systems. Nanoparticles (NPs) used as drug carriers offer several advantages, including enhanced drug protection, biodistribution, selectivity and, pharmacokinetics. Therefore, this review is devoted to various organic (lipid, polymeric) as well as inorganic nanoparticles based on different building units and providing a wide range of potent anticancer drug delivery systems. Within these nanoparticulate systems, chitosan (CS)-based NPs are discussed with particular emphasis due to the unique properties of CS and its derivatives including non-toxicity, biodegradability, mucoadhesivity, and tunable physico-chemical as well as biological properties allowing their alteration to specifically target cancer cells. In the context of streamlining the nanoparticulate drug delivery systems (DDS), innovative nanoplatform-based cancer therapy pathways involving passive and active targeting as well as stimuli-responsive DDS enhancing overall orthogonality of developed NP-DDS towards the target are included. The most up-to-date information on delivering anti-cancer drugs using modern dosage forms based on various nanoparticulate systems and, specifically, CSNPs, are summarised and evaluated concerning their benefits, limitations, and advanced applications.
Collapse
Affiliation(s)
- Prieložná Jarmila
- Department of Galenic Pharmacy, Faculty of Pharmacy, Comenius University Bratislava, Odbojárov 10, 83232 Bratislava, Slovakia
| | - Mikušová Veronika
- Department of Galenic Pharmacy, Faculty of Pharmacy, Comenius University Bratislava, Odbojárov 10, 83232 Bratislava, Slovakia
| | - Mikuš Peter
- Department of Pharmaceutical Analysis and Nuclear Pharmacy, Faculty of Pharmacy, Comenius University Bratislava, Odbojárov 10, 83232 Bratislava, Slovakia
- Toxicological and Antidoping Center, Faculty of Pharmacy, Comenius University Bratislava, Odbojárov 10, 83232 Bratislava, Slovakia
| |
Collapse
|
26
|
Silva MLS. Lectin-modified drug delivery systems - Recent applications in the oncology field. Int J Pharm 2024; 665:124685. [PMID: 39260750 DOI: 10.1016/j.ijpharm.2024.124685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 09/03/2024] [Accepted: 09/07/2024] [Indexed: 09/13/2024]
Abstract
Chemotherapy with cytotoxic drugs remains the core treatment for cancer but, due to the difficulty to find general and usable biochemical differences between cancer cells and normal cells, many of these drugs are associated with lack of specificity, resulting in side effects and collateral cytotoxicity that impair patients' adherence to therapy. Novel cancer treatments in which the cytotoxic effect is maximized while adverse effects are reduced can be implemented by developing targeted therapies that exploit the specific features of cancer cells, such as the typical expression of aberrant glycans. Modification of drug delivery systems with lectins is one of the strategies to implement targeted chemotherapies, as lectins are able to specifically recognize and bind to cancer-associated glycans expressed at the surface of cancer cells, guiding the drug treatment towards these cells and not affecting healthy ones. In this paper, recent advances on the development of lectin-modified drug delivery systems for targeted cancer treatments are thoroughly reviewed, with a focus on their properties and performance in diverse applications, as well as their main advantages and limitations. The synthesis and analytical characterization of the cited lectin-modified drug delivery systems is also briefly described. A comparison with free-drug treatments and with antibody-modified drug delivery systems is presented, emphasizing the advantages of lectin-modified drug delivery systems. Main constraints and potential challenges of lectin-modified drug delivery systems, including key difficulties for clinical translation of these systems, and the required developments in this area, are also signalled.
Collapse
Affiliation(s)
- Maria Luísa S Silva
- Centro de Estudos Globais, Universidade Aberta, Rua da Escola Politécnica 147, 1269-001 Lisboa, Portugal.
| |
Collapse
|
27
|
Li Y, Liu Q, Ding J, Zou J, Yang B. Responsive Supramolecular Nanomicelles Formed through Self-Assembly of Acyclic Cucurbit[ n]uril for Targeted Drug Delivery to Cancer Cells. Mol Pharm 2024; 21:5784-5796. [PMID: 39374616 DOI: 10.1021/acs.molpharmaceut.4c00796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
The supramolecular drug delivery systems (SDDSs) based on host-guest recognition through noncovalent interactions, capable of responsive behavior and dynamic switching to external stimuli, have attracted considerable attention in cancer therapy. In this study, a targeted dual-functional drug delivery system was designed and synthesized. A hydrophilic macrocyclic host molecule (acyclic cucurbit[n]uril ACB) was modified with folic acid (FA) as a targeting ligand. The guest molecule consists of a disulfide bond attached to adamantane (DA) and cannabidiol (CBD) at both ends of the response element of glutathione. Recognition and self-assembly of host and guest molecules successfully functionalize supramolecular nanomicelles (SNMs), targeting cancer cells and releasing drugs in a high glutathione environment. The interactions between host and guest molecules were investigated by using nuclear magnetic resonance (NMR), fluorescence titration, Fourier-transform infrared spectroscopy (FT-IR), and thermal analysis (TGA). Transmission electron microscopy (TEM) and dynamic light scattering (DLS) confirmed the nanostructure of the SNMs. Experimentation with 5,5'-dithiobis (2-nitrobenzoic acid) (DTNB) demonstrated the responsiveness of SNMs to glutathione (GSH). In vitro cytotoxicity assays demonstrated that SNMs had a greater targeting efficacy for four types of cancer cells (HeLa, HCT-116, A549, and HepG2) compared to normal 293T cells. Cellular uptake studies revealed that HeLa cells more readily absorbed SNMs, leading to their accumulation in the tumor cell cytoplasm. Fluorescence colocalization assays verified that SNMs efficiently accumulated in organelles related to energy metabolism and signaling, including mitochondria and the endoplasmic reticulum, affecting cellular metabolic death. Both flow cytometry and confocal nuclear staining assays confirmed that SNMs effectively induced apoptosis over time, ultimately resulting in the death of cancer cells. These findings demonstrate that SNMs exhibit excellent targeting ability, responsiveness, high bioavailability, and stability, suggesting significant potential in drug delivery applications.
Collapse
Affiliation(s)
- Yamin Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Qingmeng Liu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Jiawei Ding
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Jia Zou
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Bo Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, PR China
| |
Collapse
|
28
|
Tripathi D, Pandey P, Sharma S, Rai AK, Prabhu B.H. M. Advances in nanomaterials for precision drug delivery: Insights into pharmacokinetics and toxicity. BIOIMPACTS : BI 2024; 15:30573. [PMID: 40256227 PMCID: PMC12008503 DOI: 10.34172/bi.30573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/27/2024] [Accepted: 09/17/2024] [Indexed: 04/22/2025]
Abstract
By integrating the cutting-edge principles of nanotechnology with medical science, nanomedicine offers unprecedented opportunities to develop advanced drug delivery systems that surpass the limitations of conventional therapies. These nanoscale systems are designed to enhance treatments' efficacy, specificity, and safety by optimizing pharmacokinetics and biodistribution, ensuring that therapeutic agents reach their intended targets with minimal side effects. The article provides an in-depth analysis of nanomaterials' pivotal role in overcoming challenges related to drug delivery, including the ability to bypass biological barriers, improve bioavailability, and achieve controlled release of drugs. Despite these promising advancements, the transition of nanomedicine from research to clinical practice faces significant hurdles. The review highlights key obstacles such as patient heterogeneity, physiological variability, and the complex ADME (Absorption, Distribution, Metabolism, Excretion) profiles of nanocarriers, which complicate treatment predictability and effectiveness. Moreover, the article addresses the issues of limited tissue penetration, variable patient responses, and the need for standardized protocols in nanomaterial characterization, all of which hinder the widespread clinical adoption of nanomedicine. Nevertheless, the potential of nanomedicine in revolutionizing personalized cancer therapy remains immense. The article advocates for increased translational research and international collaboration to overcome these challenges, paving the way for fully realizing nanomedicine's capabilities in precision oncology and beyond.
Collapse
Affiliation(s)
- Devika Tripathi
- PSIT-Pranveer Singh Institute of Technology (Pharmacy), Kanpur Uttar Pradesh, 208002, India
| | - Prashant Pandey
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh 226025, India
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - Sakshi Sharma
- PSIT-Pranveer Singh Institute of Technology (Pharmacy), Kanpur Uttar Pradesh, 208002, India
| | - Awani K Rai
- PSIT-Pranveer Singh Institute of Technology (Pharmacy), Kanpur Uttar Pradesh, 208002, India
| | - Manjunatha Prabhu B.H.
- Department of Food Protection and Infestation Control, CSIR- Central Food Technological Research Institute (CFTRI), Mysore-570012, Karnataka, India
| |
Collapse
|
29
|
Wiggins R, Woo J, Mito S. Optimizing Niclosamide for Cancer Therapy: Improving Bioavailability via Structural Modification and Nanotechnology. Cancers (Basel) 2024; 16:3548. [PMID: 39456642 PMCID: PMC11506536 DOI: 10.3390/cancers16203548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Inhibition of multiple cancer-related pathways has made niclosamide a promising candidate for the treatment of various cancers. However, its clinical application has been significantly limited by poor bioavailability. This review will discuss current findings on improving niclosamide bioavailability through modification of its chemical structure and utilization of novel nanotechnologies, like electrospraying and supercritical fluids, to improve drug delivery. For example, niclosamide derivatives, such as o-alkylamino-tethered niclosamide derivates, niclosamide ethanolamine salt, and niclosamide piperazine salt, have demonstrated increased water solubility without compromising anticancer activity in vitro. Additionally, this review briefly discusses recent findings on the first pass metabolism of niclosamide in vivo, the role of cytochrome P450-mediated hydroxylation, UDP-glucuronosyltransferase mediated glucuronidation, and how enzymatic inhibition could enhance niclosamide bioavailability. Ultimately, there is a need for researchers to synthesize, evaluate, and improve upon niclosamide derivatives while experimenting with the employment of nanotechnologies, such as targeted delivery and nanoparticle modification, as a way to improve drug administration. Researchers should strive to improve drug-target accuracy, its therapeutic index, and increase the drug's efficacy as an anti-neoplastic agent.
Collapse
Affiliation(s)
| | | | - Shizue Mito
- Department of Medical Education, School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX 78541, USA; (R.W.); (J.W.)
| |
Collapse
|
30
|
Parisi C, Laneri F, Fraix A, Sortino S. Multifunctional Molecular Hybrids Photoreleasing Nitric Oxide: Advantages, Pitfalls, and Opportunities. J Med Chem 2024; 67:16932-16950. [PMID: 39009572 DOI: 10.1021/acs.jmedchem.4c01038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
The multifaceted role nitric oxide (NO) plays in human physiology and pathophysiology has opened new scenarios in biomedicine by exploiting this free radical as an unconventional therapeutic against important diseases. The difficulties in handling gaseous NO and the strict dependence of the biological effects on its doses and location have made the light-activated NO precursors, namely NO photodonors (NOPDs), very appealing by virtue of their precise spatiotemporal control of NO delivery. The covalent integration of NOPDs and additional functional components within the same molecular skeleton through suitable linkers can lead to an intriguing class of multifunctional photoactivatable molecular hybrids. In this Perspective, we provide an overview of the recent advances in these molecular constructs, emphasizing those merging NO photorelease with targeting, fluorescent reporting, and phototherapeutic functionalities. We will highlight the rational design behind synthesizing these molecular hybrids and critically describe the advantages, drawbacks, and opportunities they offer in biomedical research.
Collapse
Affiliation(s)
- Cristina Parisi
- PhotoChemLab, Department of Drug and Health Sciences, University of Catania, I-95125 Catania, Italy
| | - Francesca Laneri
- PhotoChemLab, Department of Drug and Health Sciences, University of Catania, I-95125 Catania, Italy
| | - Aurore Fraix
- PhotoChemLab, Department of Drug and Health Sciences, University of Catania, I-95125 Catania, Italy
| | - Salvatore Sortino
- PhotoChemLab, Department of Drug and Health Sciences, University of Catania, I-95125 Catania, Italy
| |
Collapse
|
31
|
Hong S, Lin C, Hu J, Piao J, Piao MG. Octa-Arginine-Conjugated Liposomal Nimodipine Incorporated in a Temperature-Responsive Gel for Nasoencephalic Delivery. Mol Pharm 2024; 21:5217-5237. [PMID: 39185610 DOI: 10.1021/acs.molpharmaceut.4c00634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Nimodipine is the primary clinical drug used to treat cerebral vasospasm following subarachnoid hemorrhage. Currently, tablets have low bioavailability when taken orally, and injections contain ethanol. Therefore, we investigated a new method of nimodipine administration, namely, nasoencephalic administration. Nasal administration of nimodipine was carried out by attaching the cell-penetrating peptide octa-arginine (R8) to liposomes of nimodipine and incorporating it into a temperature-sensitive in situ gel. The prepared liposomes and gels underwent separate evaluations for in vitro characterization. In vitro release exhibited a significant slow-release effect. In vitro toad maxillary cilia model, RPMI 2650 cytotoxicity, and in vivo SD rat pathological histotoxicity experiments showed that all the dosage from the groups had no significant toxicity to toad maxillary cilia, RPMI 2650 cells, and SD rat tissues and organs, and the cilia continued to oscillate up to 694 ± 10.15 min, with the survival rate of the cells being above 85%. A transwell nasal mucosa cell model and an isolated porcine nasal mucosa model were established, and the results showed that the osmolality of the R8-modified nimodipine liposomal gel to nasal mucosal cells and isolated porcine nasal mucosa was 30.41 ± 2.14 and 65.9 ± 7.34 μg/mL, respectively, which was significantly higher than that of the NM-Solution and PEGylated nimodipine liposome gel groups. Animal fluorescence imaging studies revealed that the R8-modified nimodipine liposomal gel displayed increased brain fluorescence intensity compared to the normal liposomal gel. Pharmacokinetic results showed that after transnasal administration, the AUC(0-∞) of the R8-modified nimodipine liposomal gel was 11.662 ± 1.97 μg·mL-1, which was significantly higher than that of the plain nimodipine liposomal gel (5.499 ± 2.89 μg·mL-1). Brain-targeting experiments showed that the brain-targeting efficiencies of the PEGylated nimodipine liposome gel and R8-modified PEGylated nimodipine liposome gels were 20.44 and 33.45, respectively, suggesting that R8/PEG/Lip-NM-TSG significantly increased the brain-targeting of the drug.
Collapse
Affiliation(s)
- Shuai Hong
- College of Pharmacy, Yanbian University, Yanji 133002, Jilin, China
| | - Changxiu Lin
- Central Laboratory of the Affiliated Hospital, Yanbian University, Yanji 133000, Jilin, China
| | - Junsheng Hu
- College of Pharmacy, Yanbian University, Yanji 133002, Jilin, China
| | - Jingshu Piao
- College of Pharmacy, Yanbian University, Yanji 133002, Jilin, China
| | - Ming Guan Piao
- College of Pharmacy, Yanbian University, Yanji 133002, Jilin, China
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji 133002, Jilin, China
| |
Collapse
|
32
|
Wells K, Liu T, Zhu L, Yang L. Immunomodulatory nanoparticles activate cytotoxic T cells for enhancement of the effect of cancer immunotherapy. NANOSCALE 2024; 16:17699-17722. [PMID: 39257225 DOI: 10.1039/d4nr01780c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Cancer immunotherapy represents a promising targeted treatment by leveraging the patient's immune system or adoptive transfer of active immune cells to selectively eliminate cancer cells. Despite notable clinical successes, conventional immunotherapies face significant challenges stemming from the poor infiltration of endogenous or adoptively transferred cytotoxic T cells in tumors, immunosuppressive tumor microenvironment and the immune evasion capability of cancer cells, leading to limited efficacy in many types of solid tumors. Overcoming these hurdles is essential to broaden the applicability of immunotherapies. Recent advances in nanotherapeutics have emerged as an innovative tool to overcome these challenges and enhance the therapeutic potential of tumor immunotherapy. The unique biochemical and biophysical properties of nanomaterials offer advantages in activation of immune cells in vitro for cell therapy, targeted delivery, and controlled release of immunomodulatory agents in vivo. Nanoparticles are excellent carriers for tumor associated antigens or neoantigen peptides for tumor vaccine, empowering activation of tumor specific T cell responses. By precisely delivering immunomodulatory agents to the tumor site, immunoactivating nanoparticles can promote tumor infiltration of endogenous T cells or adoptively transferred T cells into tumors, to overcoming delivery and biological barriers in the tumor microenvironment, augmenting the immune system's ability to recognize and eliminate cancer cells. This review provides an overview of the current advances in immunotherapeutic approaches utilizing nanotechnology. With a focus on discussions concerning strategies to enhance activity and efficacy of cytotoxic T cells and explore the intersection of engineering nanoparticles and immunomodulation aimed at bolstering T cell-mediated immune responses, we introduce various nanoparticle formulations designed to deliver therapeutic payloads, tumor antigens and immunomodulatory agents for T cell activation. Diverse mechanisms through which nanoparticle-based approaches influence T cell responses by improving antigen presentation, promoting immune cell trafficking, and reprogramming immunosuppressive tumor microenvironments to potentiate anti-tumor immunity are examined. Additionally, the synergistic potential of combining nanotherapeutics with existing immunotherapies, such as immune checkpoint inhibitors and adoptive T cell therapies is explored. In conclusion, this review highlights emerging research advances on activation of cytotoxic T cells using nanoparticle agents to support the promises and potential applications of nanoparticle-based immunomodulatory agents for cancer immunotherapy.
Collapse
Affiliation(s)
- Kory Wells
- Department of Surgery, Emory University School of Medicine, Winship Cancer Institute, Clinic C, Room 4088, 1365 C Clifton Road, NE, Atlanta, GA 30322, USA.
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Tongrui Liu
- Department of Surgery, Emory University School of Medicine, Winship Cancer Institute, Clinic C, Room 4088, 1365 C Clifton Road, NE, Atlanta, GA 30322, USA.
| | - Lei Zhu
- Department of Surgery, Emory University School of Medicine, Winship Cancer Institute, Clinic C, Room 4088, 1365 C Clifton Road, NE, Atlanta, GA 30322, USA.
| | - Lily Yang
- Department of Surgery, Emory University School of Medicine, Winship Cancer Institute, Clinic C, Room 4088, 1365 C Clifton Road, NE, Atlanta, GA 30322, USA.
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
33
|
Borowczak J, Łaszczych D, Olejnik K, Michalski J, Gutowska A, Kula M, Bator A, Sekielska-Domanowska M, Makarewicz R, Marszałek A, Szylberg Ł, Bodnar M. Tight Junctions and Cancer: Targeting Claudin-1 and Claudin-4 in Thyroid Pathologies. Pharmaceuticals (Basel) 2024; 17:1304. [PMID: 39458944 PMCID: PMC11509894 DOI: 10.3390/ph17101304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/22/2024] [Accepted: 09/25/2024] [Indexed: 10/28/2024] Open
Abstract
Purpose: Claudins are tight junction proteins partaking in epithelial-mesenchymal transition and cancer progression. In this study, we investigated the expression patterns of claudin-1 and claudin-4 in thyroid pathologies, discussed their links with the pathogenesis of thyroid cancers, and reviewed the therapeutic potential of targeting claudins in cancers. Methods: The research group 162 cores of thyroid samples from patients (70 female and 11 male) diagnosed with thyroid adenoma, goiter, papillary, medullary, and anaplastic thyroid cancers. All samples were stained for the expression of claudin-1 and claudin-4, and the analysis of IHC was performed. Results: Goiter samples showed negative claudin-1 and mostly positive expression of claudin-4. Papillary thyroid cancer and thyroid adenoma showed positive expression of claudin-1, while claudin-4 was positive in papillary thyroid cancers, goiters, and adenomas. In The Cancer Genome Atlas cohort, claudin-1 and claudin-4 were overexpressed in papillary thyroid cancer compared to normal thyroid tissues. Patients with high claudin-1 expression had significantly lower 5-year overall survival than patients with low claudin-1 levels (86.75% vs. 98.65, respectively). In multivariate analysis, high claudin-1 expression (HR 7.91, CI 95% 1.79-35, p = 0.006) and advanced clinical stage remained statistically significant prognostic factors of poor prognosis in papillary thyroid cancer. Conclusions: The pattern of claudin-1 staining was pathology-specific and changed between cancers of different histology. This phenomenon may be associated with the different pathogenesis of thyroid cancers and early metastasis. The loss of claudin-1 and claudin-4 characterized more aggressive cancers. Several studies have shown the benefits of targeting claudins in cancers, but their implementation into clinical practice requires further trials.
Collapse
Affiliation(s)
- Jędrzej Borowczak
- Department of Clinical Oncology, Oncology Centre Prof. Franciszek Łukaszczyk Memorial Hospital, 85-796 Bydgoszcz, Poland;
| | - Dariusz Łaszczych
- Department of Tumor Pathology and Pathomorphology, Oncology Centre Prof. Franciszek Łukaszczyk Memorial Hospital, 85-796 Bydgoszcz, Poland; (D.Ł.); (Ł.S.)
| | - Katarzyna Olejnik
- Chair of Pathology, Dr Jan Biziel University Hospital No. 2, 85-168 Bydgoszcz, Poland
| | - Jakub Michalski
- Chair of Pathology, Dr Jan Biziel University Hospital No. 2, 85-168 Bydgoszcz, Poland
| | - Anna Gutowska
- Department of Tumor Pathology and Pathomorphology, Oncology Centre Prof. Franciszek Łukaszczyk Memorial Hospital, 85-796 Bydgoszcz, Poland; (D.Ł.); (Ł.S.)
| | - Monika Kula
- Chair of Pathology, Dr Jan Biziel University Hospital No. 2, 85-168 Bydgoszcz, Poland
| | - Anita Bator
- Department of Tumor Pathology and Pathomorphology, Oncology Centre Prof. Franciszek Łukaszczyk Memorial Hospital, 85-796 Bydgoszcz, Poland; (D.Ł.); (Ł.S.)
| | - Marta Sekielska-Domanowska
- Department of Obstetrics, Gynaecology and Oncology, Collegium Medicum, Nicolaus Copernicus University, 85-168 Bydgoszcz, Poland
| | - Roman Makarewicz
- Department of Oncology and Brachytherapy, Collegium Medicum, Nicolaus Copernicus University, 85-796 Bydgoszcz, Poland
| | - Andrzej Marszałek
- Chair of Oncologic Pathology and Prophylaxis, Poznan University of Medical Sciences and Greater Poland Cancer Center, 61-866 Poznan, Poland
| | - Łukasz Szylberg
- Department of Tumor Pathology and Pathomorphology, Oncology Centre Prof. Franciszek Łukaszczyk Memorial Hospital, 85-796 Bydgoszcz, Poland; (D.Ł.); (Ł.S.)
- Chair of Pathology, Dr Jan Biziel University Hospital No. 2, 85-168 Bydgoszcz, Poland
- Department of Obstetrics, Gynaecology and Oncology, Collegium Medicum, Nicolaus Copernicus University, 85-168 Bydgoszcz, Poland
| | - Magdalena Bodnar
- Chair of Pathology, Dr Jan Biziel University Hospital No. 2, 85-168 Bydgoszcz, Poland
- Department of Obstetrics, Gynaecology and Oncology, Collegium Medicum, Nicolaus Copernicus University, 85-168 Bydgoszcz, Poland
| |
Collapse
|
34
|
Zhang M, Chen Y, Feng S, He Y, Liu Z, Zhang N, Wang Q. Transferrin-Modified Carprofen Platinum(IV) Nanoparticles as Antimetastasis Agents with Tumor Targeting, Inflammation Inhibition, Epithelial-Mesenchymal Transition Suppression, and Immune Activation Properties. J Med Chem 2024; 67:16416-16434. [PMID: 39235464 DOI: 10.1021/acs.jmedchem.4c01265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
The inflammatory microenvironment is a central driver of tumor metastasis, intimately associated with the promotion of epithelial-mesenchymal transition (EMT) and immune suppression. Here, transferrin-modified carprofen platinum(IV) nanoparticles Tf-NPs@CPF2-Pt(IV) with promising antiproliferative and antimetastatic properties were developed, which activated by inhibiting inflammation, suppressing EMT, and activating immune responses besides causing DNA injury. The nanoparticles released the active ingredient CPF2-Pt(IV) in a sustained manner and offered enhanced pharmacokinetic properties compared to free CPF2-Pt(IV) in vivo. Additionally, they possessed satisfactory tumor targeting effects via the transferrin motif. Serious DNA damage was induced with the upregulation of γ-H2AX and P53, and the mitochondria-mediated apoptotic pathway Bcl-2/Bax/caspase3 was initiated. Inflammation was alleviated by inhibiting COX-2 and MMP9 and decreasing inflammatory cytokines TNF-α and IL-6. Subsequently, the EMT was reversed by inhibiting the Wnt/β-catenin pathway. Furthermore, the antitumor immunity was provoked by blocking the immune checkpoint PD-L1 and increasing CD3+ and CD8+ T lymphocytes in tumors.
Collapse
Affiliation(s)
- Ming Zhang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, P. R. China
| | - Yan Chen
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, P. R. China
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Shuaiqi Feng
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, P. R. China
| | - Yanqin He
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, P. R. China
| | - Zhifang Liu
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, P. R. China
| | - Ning Zhang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, P. R. China
| | - Qingpeng Wang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, P. R. China
| |
Collapse
|
35
|
Bognanni N, Viale M, Sabatino G, Pappalardo G, Vecchio G. New Conjugates of Hyaluronic Acid with γ-Cyclodextrin as Sorafenib Carrier in Cancer Cells. ChemMedChem 2024; 19:e202400219. [PMID: 38856008 DOI: 10.1002/cmdc.202400219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/11/2024]
Abstract
In recent years, nanoparticles based on cyclodextrins have been widely investigated, mainly for drug delivery. In this work, we synthesized nanoparticles with a hyaluronic acid backbone (11 kDa and 45 kDa) functionalized with γ-cyclodextrins. We tested sorafenib in the presence of the new hyaluronan-cyclodextrin conjugates in A2780 (ovarian cancer), SK-HeP-1 (adenocarcinoma) and MDA-MB-453 (breast cancer) cell lines. We found that hyaluronan-cyclodextrin conjugates improve the antiproliferative activity of sorafenib. Remarkably, the system based on the 11 kDa hyaluronan conjugate was the most effective and, in the MDA-MB-453 cell line, significantly reduced the IC50 value of sorafenib cells by about 75 %.
Collapse
Affiliation(s)
- Noemi Bognanni
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale A. Doria 6, 95125, Catania, Italy
| | - Maurizio Viale
- UOC Bioterapie, IRCCS Ospedale Policlinico San Martino, Largo R. Benzi 10, 16132, Genova, Italy
| | - Giuseppina Sabatino
- Istituto di Cristallografia, Consiglio Nazionale delle Ricerche, Via Paolo Gaifami 18, 95126, Catania, Italy
| | - Giuseppe Pappalardo
- Istituto di Cristallografia, Consiglio Nazionale delle Ricerche, Via Paolo Gaifami 18, 95126, Catania, Italy
| | - Graziella Vecchio
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale A. Doria 6, 95125, Catania, Italy
| |
Collapse
|
36
|
Serras A, Faustino C, Pinheiro L. Functionalized Polymeric Micelles for Targeted Cancer Therapy: Steps from Conceptualization to Clinical Trials. Pharmaceutics 2024; 16:1047. [PMID: 39204392 PMCID: PMC11359152 DOI: 10.3390/pharmaceutics16081047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/28/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024] Open
Abstract
Cancer is still ranked among the top three causes of death in the 30- to 69-year-old age group in most countries and carries considerable societal and macroeconomic costs that differ depending on the cancer type, geography, and patient gender. Despite advances in several pharmacological approaches, the lack of stability and specificity, dose-related toxicity, and limited bioavailability of chemotherapy (standard therapy) pose major obstacles in cancer treatment, with multidrug resistance being a driving factor in chemotherapy failure. The past three decades have been the stage for intense research activity on the topic of nanomedicine, which has resulted in many nanotherapeutics with reduced toxicity, increased bioavailability, and improved pharmacokinetics and therapeutic efficacy employing smart drug delivery systems (SDDSs). Polymeric micelles (PMs) have become an auspicious DDS for medicinal compounds, being used to encapsulate hydrophobic drugs that also exhibit substantial toxicity. Through preclinical animal testing, PMs improved pharmacokinetic profiles and increased efficacy, resulting in a higher safety profile for therapeutic drugs. This review focuses on PMs that are already in clinical trials, traveling the pathways from preclinical to clinical studies until introduction to the market.
Collapse
Affiliation(s)
| | - Célia Faustino
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa (ULisboa), Avenida Professor Gama PintoGama Pinto, 1649-003 Lisboa, Portugal; (A.S.); (L.P.)
| | | |
Collapse
|
37
|
Wu X, Tian Y, Ran K, Yao J, Wang Y, Ouyang X, Mao W, Zhang J, Li B, Yang P, Ba Z, Liu H, Gou S, Zhong C, Zhang Y, Ni J. Rational design of a new short anticancer peptide with good potential for cancer treatment. Eur J Med Chem 2024; 273:116519. [PMID: 38795519 DOI: 10.1016/j.ejmech.2024.116519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 05/19/2024] [Accepted: 05/19/2024] [Indexed: 05/28/2024]
Abstract
Anticancer peptides (ACPs) have regarded as a new generation of promising antitumor drugs due to the unique mode of action. The main challenge is to develop potential anticancer peptides with satisfied antitumor activity and low toxicity. Here, a series of new α-helical anticancer peptides were designed and synthesized based on the regular repeat motif KLLK. The optimal peptides 14E and 14Aad were successfully derived from the new short α-helical peptide KL-8. Our results demonstrated that 14E and 14Aad had good antitumor activity and low toxicity, exhibiting excellent selectivity index. This result highlighted that the desirable modification position and appropriate hydrophobic side-chain structure of acidic amino acids played critical roles in regulating the antitumor activity/toxicity of new peptides. Further studies indicated that they could induce tumor cell death via the multiple actions of efficient membrane disruption and intracellular mechanisms, displaying apparent superiority in combination with PTX. In addition, the new peptides 14E and 14Aad showed excellent antitumor efficacy in vivo and low toxicity in mice compared to KL-8 and PTX. Particularly, 14Aad with the longer side chain at the 14th site exhibited the best therapeutic performance. In conclusion, our work provided a new avenue to develop promising anticancer peptides with good selectivity for tumor therapy.
Collapse
Affiliation(s)
- Xiaoyan Wu
- Institute of Pharmaceutics, School of Pharmacy, Lanzhou University, Lanzhou, 730000, PR China; Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, 730000, PR China; Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, PR China
| | - Yali Tian
- Institute of Pharmaceutics, School of Pharmacy, Lanzhou University, Lanzhou, 730000, PR China; Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, 730000, PR China; Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, PR China
| | - Kaixin Ran
- Institute of Pharmaceutics, School of Pharmacy, Lanzhou University, Lanzhou, 730000, PR China; Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, 730000, PR China; Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, PR China
| | - Jia Yao
- The First Hospital, Lanzhou University, Lanzhou, 730000, PR China
| | - Yuxia Wang
- Institute of Pharmaceutics, School of Pharmacy, Lanzhou University, Lanzhou, 730000, PR China; Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, 730000, PR China; Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, PR China
| | - Xu Ouyang
- Institute of Pharmaceutics, School of Pharmacy, Lanzhou University, Lanzhou, 730000, PR China; Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, 730000, PR China; Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, PR China
| | - Wenbo Mao
- Institute of Pharmaceutics, School of Pharmacy, Lanzhou University, Lanzhou, 730000, PR China; Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, 730000, PR China; Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, PR China
| | - Jingying Zhang
- Institute of Pharmaceutics, School of Pharmacy, Lanzhou University, Lanzhou, 730000, PR China; Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, 730000, PR China; Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, PR China
| | - Beibei Li
- Institute of Pharmaceutics, School of Pharmacy, Lanzhou University, Lanzhou, 730000, PR China; Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, 730000, PR China; Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, PR China
| | - Ping Yang
- Institute of Pharmaceutics, School of Pharmacy, Lanzhou University, Lanzhou, 730000, PR China; Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, 730000, PR China; Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, PR China
| | - Zufang Ba
- Institute of Pharmaceutics, School of Pharmacy, Lanzhou University, Lanzhou, 730000, PR China; Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, 730000, PR China; Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, PR China
| | - Hui Liu
- Institute of Pharmaceutics, School of Pharmacy, Lanzhou University, Lanzhou, 730000, PR China; Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, 730000, PR China; Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, PR China
| | - Sanhu Gou
- Institute of Pharmaceutics, School of Pharmacy, Lanzhou University, Lanzhou, 730000, PR China; Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, 730000, PR China; Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, PR China
| | - Chao Zhong
- Institute of Pharmaceutics, School of Pharmacy, Lanzhou University, Lanzhou, 730000, PR China; Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, 730000, PR China; Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, PR China
| | - Yun Zhang
- Institute of Pharmaceutics, School of Pharmacy, Lanzhou University, Lanzhou, 730000, PR China; Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, 730000, PR China; Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, PR China.
| | - Jingman Ni
- Institute of Pharmaceutics, School of Pharmacy, Lanzhou University, Lanzhou, 730000, PR China; Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, 730000, PR China; Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, PR China.
| |
Collapse
|
38
|
S PR, Banerjee R, Drummond CJ, Conn CE. Permanently Charged Cationic Lipids-Evolution from Excipients to Therapeutic Lipids. SMALL SCIENCE 2024; 4:2300270. [PMID: 40212121 PMCID: PMC11935225 DOI: 10.1002/smsc.202300270] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 04/28/2024] [Indexed: 04/13/2025] Open
Abstract
Cationic lipids are crucial in medical and biotechnological applications including cellular transfection and gene delivery. Ionizable cationic lipids are critical components of the mRNA-based COVID vaccines while permanently charged cationic lipids have shown promise in cancer treatment. Despite significant research progress over the past few decades in designing improved, biocompatible cationic lipids, their transfection efficiency remains lower than that of viral vectors. Cationic lipids with additional functionalities like fusogenicity, stimuli-responsiveness, targeting capabilities, and therapeutic activity have been engineered to improve their performance. This review highlights the importance of molecular hybridization toward the design of biocompatible cationic lipids having fusogenic, stimuli-responsive, targeting, or therapeutic properties. This review mainly focuses on cationic lipids, having a permanent positive charge in the headgroup region, as these are typically employed to both increase cellular interactions and for improved loading, particularly for anionic nucleic acid-based therapeutics and vaccines. Structure-activity relationships between the lipid chemical structure (headgroup, spacer, hydrocarbon chain) and, to a lesser extent, the self-assembled nanostructure and the intrinsic biological activity of the multi-functional cationic lipids are described. Finally, the challenges involved in developing smart lipids without affecting their inherent capacity to self-assemble into structured nano-carriers are discussed.
Collapse
Affiliation(s)
- Pushpa Ragini S
- Academy of Scientific and Innovation Research (AcSIR)Ghaziabad201002India
- Department of Oils, Lipid Science and TechnologyCSIR‐Indian Institute of Chemical TechnologyHyderabad500 007India
- School of ScienceSTEM CollegeRMIT University124 La Trobe StreetMelbourneVIC3000Australia
| | - Rajkumar Banerjee
- Academy of Scientific and Innovation Research (AcSIR)Ghaziabad201002India
- Department of Oils, Lipid Science and TechnologyCSIR‐Indian Institute of Chemical TechnologyHyderabad500 007India
| | - Calum J. Drummond
- School of ScienceSTEM CollegeRMIT University124 La Trobe StreetMelbourneVIC3000Australia
| | - Charlotte E. Conn
- School of ScienceSTEM CollegeRMIT University124 La Trobe StreetMelbourneVIC3000Australia
| |
Collapse
|
39
|
Zhou X, Zhang Q, Zhu H, Zhao J, Cai Y. The application of graphene oxide and ferroptosis in the diagnosis and treatment of colorectal cancer: a narrative review. J Gastrointest Oncol 2024; 15:1297-1308. [PMID: 38989438 PMCID: PMC11231853 DOI: 10.21037/jgo-23-1016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 04/26/2024] [Indexed: 07/12/2024] Open
Abstract
Background and Objective Colorectal cancer (CRC), a leading global malignancy, continues to challenge the medical community. Despite advancements in surgical, chemotherapeutic, radiation, targeted, and immunotherapeutic strategies, issues like resistance and side effects persist. This review illuminates the potential of ferroptosis, an emerging non-apoptotic cell death form, and graphene oxide (GO), with its distinctive physicochemical properties, in CRC therapy. Methods The databases search included PubMed, Medline and Web of Science. Search terms focused on CRC, graphene, GO, ferroptosis, and related aspects in therapy and drug delivery. The time frame for literature retrieval was up to April 2024. Studies in languages other than English were excluded. Key Content and Findings Ferroptosis has been recognized for its role in addressing treatment resistance, a notable hurdle in effective CRC management. This form of cell death offers a promising avenue for enhancing the effectiveness of existing treatments. However, understanding its mechanisms and clinical implications in CRC remains an area of active research, with significant progress required for its practical application. Simultaneously, GO, a versatile two-dimensional material, has demonstrated substantial potential in biomedical applications, especially in cancer therapy. Its high specific surface area and unique π-electron domains facilitate the effective binding of chemotherapy drugs, target genes, and photosensitizers. This makes GO a promising candidate in cancer diagnosis and treatment, particularly through tumor photothermal and photodynamic therapy (PDT). Despite these advancements, GO's clinical application faces challenges, including in vitro cytotoxicity and decreased biodegradability, necessitating further research. Conclusions This review focuses on the characteristics of GO and ferroptosis, as well as their applications in tumor diagnosis and treatment, with a particular emphasis on their potential in CRC.
Collapse
Affiliation(s)
- Xiecheng Zhou
- Department of General Surgery, The Fifth People’s Hospital of Shanghai, Fudan University, Shanghai, China
| | - Qixing Zhang
- Department of Pediatrics, The Fifth People’s Hospital of Shanghai, Fudan University, Shanghai, China
| | - Haoran Zhu
- Department of General Surgery, The Fifth People’s Hospital of Shanghai, Fudan University, Shanghai, China
| | - Jiaying Zhao
- Department of General Surgery, The Fifth People’s Hospital of Shanghai, Fudan University, Shanghai, China
| | - Yuankun Cai
- Department of General Surgery, The Fifth People’s Hospital of Shanghai, Fudan University, Shanghai, China
| |
Collapse
|
40
|
Dafhalla AKY, Dhahi T, Al-Mufti AW, Saad SA, Alqahtani AS, Al-nuaimi MAH, Elobaid ME, Adam T, Gopinath SC. Nanogap nanowires and its applications in biosensing. SENSING AND BIO-SENSING RESEARCH 2024; 44:100638. [DOI: 10.1016/j.sbsr.2024.100638] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
|
41
|
Sobieraj J, Strzelecka K, Sobczak M, Oledzka E. How Biodegradable Polymers Can be Effective Drug Delivery Systems for Cannabinoids? Prospectives and Challenges. Int J Nanomedicine 2024; 19:4607-4649. [PMID: 38799700 PMCID: PMC11128233 DOI: 10.2147/ijn.s458907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/15/2024] [Indexed: 05/29/2024] Open
Abstract
Cannabinoids are compounds found in and derived from the Cannabis plants that have become increasingly recognised as significant modulating factors of physiological mechanisms and inflammatory reactions of the organism, thus inevitably affecting maintenance of homeostasis. Medical Cannabis popularity has surged since its legal regulation growing around the world. Numerous promising discoveries bring more data on cannabinoids' pharmacological characteristics and therapeutic applications. Given the current surge in interest in the medical use of cannabinoids, there is an urgent need for an effective method of their administration. Surpassing low bioavailability, low water solubility, and instability became an important milestone in the advancement of cannabinoids in pharmaceutical applications. The numerous uses of cannabinoids in clinical practice remain restricted by limited administration alternatives, but there is hope when biodegradable polymers are taken into account. The primary objective of this review is to highlight the wide range of indications for which cannabinoids may be used, as well as the polymeric carriers that enhance their effectiveness. The current review described a wide range of therapeutic applications of cannabinoids, including pain management, neurological and sleep disorders, anxiety, and cancer treatment. The use of these compounds was further examined in the area of dermatology and cosmetology. Finally, with the use of biodegradable polymer-based drug delivery systems (DDSs), it was demonstrated that cannabinoids can be delivered specifically to the intended site while also improving the drug's physicochemical properties, emphasizing their utility. Nevertheless, additional clinical trials on novel cannabinoids' formulations are required, as their full spectrum therapeutical potential is yet to be unravelled.
Collapse
Affiliation(s)
- Jan Sobieraj
- Department of Pharmaceutical Chemistry and Biomaterials, Faculty of Pharmacy, Medical University of Warsaw, Warsaw, 02-097, Poland
| | - Katarzyna Strzelecka
- Department of Pharmaceutical Chemistry and Biomaterials, Faculty of Pharmacy, Medical University of Warsaw, Warsaw, 02-097, Poland
| | - Marcin Sobczak
- Department of Pharmaceutical Chemistry and Biomaterials, Faculty of Pharmacy, Medical University of Warsaw, Warsaw, 02-097, Poland
| | - Ewa Oledzka
- Department of Pharmaceutical Chemistry and Biomaterials, Faculty of Pharmacy, Medical University of Warsaw, Warsaw, 02-097, Poland
| |
Collapse
|
42
|
Zahiri M, Kamali H, Abnous K, Mohammad Taghdisi S, Nekooei S, Nekooei N, Ramezani M, Alibolandi M. Synthesis of folate targeted theranostic cubosomal platform for co-delivery of bismuth oxide and doxorubicin to melanoma in vitro and in vivo. Eur J Pharm Biopharm 2024; 198:114259. [PMID: 38479563 DOI: 10.1016/j.ejpb.2024.114259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/21/2024] [Accepted: 03/11/2024] [Indexed: 04/19/2024]
Abstract
Liquid crystalline nanoparticles (LCNPs) have gained much attention in cancer nanomedicines due to their unique features such as high surface area, storage stability, and sustained-release profile. In the current study, a novel LCNP for co-encapsulation of Bi2O3 and hydrophilic doxorubicin (DOX) was fabricated and functionalized with folic acid (FA) to achieve efficient tumor targeting toward CT-scan imaging and chemotherapy of melanoma in vitro and in vivo. LCNPs Bi2O3 NPs were prepared using glycerol monooleate-pluronic F-127 (GMO/PF127/water). Firstly, GMO/water were homogenized to prepare LC gel. Then, the stabilizer aqueous solution (PF127/Bi2O3/DOX) was added to the prepared LC gel and homogenized using homogenization and ultrasonication. The formulated NPs exhibited superior stability with encapsulation efficiency. High cytotoxicity and cellular internalization of the FA-Bi2O3-DOX-NPs were observed in comparison with Bi2O3-DOX-NPs and the free DOX in folate-receptor (FR) overexpressing cells (B16F10) in vitro. Moreover, ideal tumor suppression with increased survival rate were observed in tumorized mice treated with FA-Bi2O3-DOX-NPs compared to those treated with non-targeted one. On the other hand, the CT-imaging ability of the Bi2O3-DOX-NPs was tested inB16F10 tumor-bearing mice. The obtained data indicated a high potential of the developed targeted theranostic FA-Bi2O3-DOX-NPs for diagnostics and treatment of melanoma.
Collapse
Affiliation(s)
- Mahsa Zahiri
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hosein Kamali
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Khalil Abnous
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mohammad Taghdisi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sirous Nekooei
- Department of Radiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Negar Nekooei
- Department of Radiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Ramezani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Mona Alibolandi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
43
|
Bejenaru C, Radu A, Segneanu AE, Biţă A, Ciocîlteu MV, Mogoşanu GD, Bradu IA, Vlase T, Vlase G, Bejenaru LE. Pharmaceutical Applications of Biomass Polymers: Review of Current Research and Perspectives. Polymers (Basel) 2024; 16:1182. [PMID: 38732651 PMCID: PMC11085205 DOI: 10.3390/polym16091182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/15/2024] [Accepted: 04/19/2024] [Indexed: 05/13/2024] Open
Abstract
Polymers derived from natural biomass have emerged as a valuable resource in the field of biomedicine due to their versatility. Polysaccharides, peptides, proteins, and lignin have demonstrated promising results in various applications, including drug delivery design. However, several challenges need to be addressed to realize the full potential of these polymers. The current paper provides a comprehensive overview of the latest research and perspectives in this area, with a particular focus on developing effective methods and efficient drug delivery systems. This review aims to offer insights into the opportunities and challenges associated with the use of natural polymers in biomedicine and to provide a roadmap for future research in this field.
Collapse
Affiliation(s)
- Cornelia Bejenaru
- Department of Pharmaceutical Botany, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Dolj, Romania; (C.B.); (A.R.)
| | - Antonia Radu
- Department of Pharmaceutical Botany, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Dolj, Romania; (C.B.); (A.R.)
| | - Adina-Elena Segneanu
- Institute for Advanced Environmental Research, West University of Timişoara (ICAM–WUT), 4 Oituz Street, 300086 Timişoara, Timiş, Romania; (I.A.B.); (T.V.); (G.V.)
| | - Andrei Biţă
- Department of Pharmacognosy & Phytotherapy, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Dolj, Romania; (A.B.); (G.D.M.); (L.E.B.)
| | - Maria Viorica Ciocîlteu
- Department of Analytical Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Dolj, Romania;
| | - George Dan Mogoşanu
- Department of Pharmacognosy & Phytotherapy, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Dolj, Romania; (A.B.); (G.D.M.); (L.E.B.)
| | - Ionela Amalia Bradu
- Institute for Advanced Environmental Research, West University of Timişoara (ICAM–WUT), 4 Oituz Street, 300086 Timişoara, Timiş, Romania; (I.A.B.); (T.V.); (G.V.)
| | - Titus Vlase
- Institute for Advanced Environmental Research, West University of Timişoara (ICAM–WUT), 4 Oituz Street, 300086 Timişoara, Timiş, Romania; (I.A.B.); (T.V.); (G.V.)
- Research Center for Thermal Analyzes in Environmental Problems, West University of Timişoara, 16 Johann Heinrich Pestalozzi Street, 300115 Timişoara, Timiş, Romania
| | - Gabriela Vlase
- Institute for Advanced Environmental Research, West University of Timişoara (ICAM–WUT), 4 Oituz Street, 300086 Timişoara, Timiş, Romania; (I.A.B.); (T.V.); (G.V.)
- Research Center for Thermal Analyzes in Environmental Problems, West University of Timişoara, 16 Johann Heinrich Pestalozzi Street, 300115 Timişoara, Timiş, Romania
| | - Ludovic Everard Bejenaru
- Department of Pharmacognosy & Phytotherapy, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Dolj, Romania; (A.B.); (G.D.M.); (L.E.B.)
| |
Collapse
|
44
|
Marques AC, Costa PC, Velho S, Amaral MH. Analytical Techniques for Characterizing Tumor-Targeted Antibody-Functionalized Nanoparticles. Life (Basel) 2024; 14:489. [PMID: 38672759 PMCID: PMC11051252 DOI: 10.3390/life14040489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/07/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
The specific interaction between cell surface receptors and corresponding antibodies has driven opportunities for developing targeted cancer therapies using nanoparticle systems. It is challenging to design and develop such targeted nanomedicines using antibody ligands, as the final nanoconjugate's specificity hinges on the cohesive functioning of its components. The multicomponent nature of antibody-conjugated nanoparticles also complicates the characterization process. Regardless of the type of nanoparticle, it is essential to perform physicochemical characterization to establish a solid foundation of knowledge and develop suitable preclinical studies. A meaningful physicochemical evaluation of antibody-conjugated nanoparticles should include determining the quantity and orientation of the antibodies, confirming the antibodies' integrity following attachment, and assessing the immunoreactivity of the obtained nanoconjugates. In this review, the authors describe the various techniques (electrophoresis, spectroscopy, colorimetric assays, immunoassays, etc.) used to analyze the physicochemical properties of nanoparticles functionalized with antibodies and discuss the main results.
Collapse
Affiliation(s)
- Ana Camila Marques
- UCIBIO—Applied Molecular Biosciences Unit, MEDTECH, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Paulo C. Costa
- UCIBIO—Applied Molecular Biosciences Unit, MEDTECH, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Sérgia Velho
- i3S—Institute for Research and Innovation in Health, University of Porto, 4200-135 Porto, Portugal
- IPATIMUP—Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135 Porto, Portugal
| | - Maria Helena Amaral
- UCIBIO—Applied Molecular Biosciences Unit, MEDTECH, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| |
Collapse
|
45
|
Zhang Z, Chen Z, Liu S, Xiao Z, Luo Y, Pan X, Feng X, Xu L. Anisamide-conjugated hairpin antisense oligonucleotides prodrug co-delivering doxorubicin exhibited enhanced anticancer efficacy. Biomed Pharmacother 2024; 173:116390. [PMID: 38460362 DOI: 10.1016/j.biopha.2024.116390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/26/2024] [Accepted: 03/06/2024] [Indexed: 03/11/2024] Open
Abstract
Antisense oligonucleotides (ASONs)-based therapeutics offers tremendous promise for the treatment of diverse diseases. However, there is still a need to develop ASONs with enhanced stability against enzymes, improved drug delivery, and enhanced biological potency. In this study, we propose a novel anisamide (AA)-conjugated hairpin oligonucleotide prodrug loading with chemotherapeutic agent (doxorubicin, DOX) (AA-loop-ASON/DOX) for oncotherapy. Results indicated that the introduction of a hairpin conformation and AA ligand in prodrug significantly improved the stability against enzymatic hydrolysis, as well as the cellar uptake of ASONs and DOX. The incorporation of disulfide bonds could trigger mechanical opening, resulting in the release of ASON and DOX in response to the intracellular glutathione (GSH) in tumors. Moreover, the composite of DOX-loading ASONs prodrug exhibited a robust and selective inhibition of tumor cell proliferation. This paper introduces a novel design concept for nucleic acid-based therapeutics, aiming to enhance the delivery of drug and improve biological effectiveness.
Collapse
Affiliation(s)
- Zhe Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing 100850, China
| | - Zuyi Chen
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing 100850, China; China Medical University, School of Pharmacy, Shenyang 110122, China
| | - Shuangshuang Liu
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing 100850, China; China Medical University, School of Pharmacy, Shenyang 110122, China
| | - Zhenyu Xiao
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing 100850, China
| | - Yuan Luo
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing 100850, China
| | - Xiaochen Pan
- Beijing Easyresearch Technology Limited, Beijing 100850, China
| | - Xuesong Feng
- China Medical University, School of Pharmacy, Shenyang 110122, China.
| | - Liang Xu
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing 100850, China.
| |
Collapse
|
46
|
Nasr M, Hashem F, Teiama M, Tantawy N, Abdelmoniem R. Folic acid grafted mixed polymeric micelles as a targeted delivery strategy for tamoxifen citrate in treatment of breast cancer. Drug Deliv Transl Res 2024; 14:945-958. [PMID: 37906415 DOI: 10.1007/s13346-023-01443-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2023] [Indexed: 11/02/2023]
Abstract
The objective of this study was to develop folic acid (FA) grafted mixed polymeric micelles loaded with Tamoxifen citrate (TMXC) to enhance its antitumor activity in breast tissues. The conjugated folic acid Pluronic 123 (FA-P123) was prepared using carbonyl diimidazole cross-linker chemistry and confirmed using FTIR and 1HNMR. TMXC-loaded P123/P84 (unconjugated) and TMXC-loaded FA-P123/P84 (conjugated) micelles were examined for encapsulation efficiency, particle size, surface charge, in vitro drug release, cytotoxic effect, and cellular uptake by a breast cancer cell line. The conjugated TMXC-loaded micelle exhibited a nanoparticle size of 35.01 ± 1.20 nm, a surface charge of-20.50 ± 0.95 mV, entrapped 87.83 ± 5.10% and released 67.58 ± 2.47% of TMXC after 36 h. The conjugated micelles exhibited a significantly higher cellular uptake of TMXC by the MCF-7 cell line and improved in vitro cytotoxicity by 2.48 folds compared to the TMXC-loaded unconjugated micelles. The results of in vivo studies indicated that TMXC-loaded FA-P123/P84 has a potential antitumor activity, as revealed by a significant reduction of tumor volume in tumor-bearing mice compared to TMXC-loaded unconjugated micelles. In conclusion, the obtained results suggested that conjugated FA-P123/P84 micelles could be an encouraging carrier for the treatment of breast cancer with TMXC.
Collapse
Affiliation(s)
- Mohamed Nasr
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Helwan University, Cairo, 11790, Egypt.
- Department of Pharmaceutics, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, 11152, Egypt.
| | - Fahima Hashem
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Helwan University, Cairo, 11790, Egypt
| | - Mohammed Teiama
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Helwan University, Cairo, 11790, Egypt
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Galala University, Attaka, 43713, Suez, Egypt
| | - Norhan Tantawy
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Helwan University, Cairo, 11790, Egypt
| | - Raghda Abdelmoniem
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Helwan University, Cairo, 11790, Egypt
| |
Collapse
|
47
|
Manzari‐Tavakoli A, Babajani A, Tavakoli MM, Safaeinejad F, Jafari A. Integrating natural compounds and nanoparticle-based drug delivery systems: A novel strategy for enhanced efficacy and selectivity in cancer therapy. Cancer Med 2024; 13:e7010. [PMID: 38491817 PMCID: PMC10943377 DOI: 10.1002/cam4.7010] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/05/2023] [Accepted: 12/10/2023] [Indexed: 03/18/2024] Open
Abstract
Cancer remains a leading cause of death worldwide, necessitating the development of innovative and more effective treatment strategies. Conventional cancer treatments often suffer from limitations such as systemic toxicity, poor pharmacokinetics, and drug resistance. Recently, there has been growing attention to utilizing natural compounds derived from various sources as possible cancer therapeutics. Natural compounds have demonstrated diverse bioactive properties, including antioxidant, anti-inflammatory, and antitumor effects, making them attractive candidates for cancer treatment. However, their limited solubility and bioavailability present challenges for effective delivery to cancer cells. To overcome these limitations, researchers have turned to nanotechnology-based drug delivery systems. Nanoparticles, with their small size and unique properties, can encapsulate therapeutic agents and offer benefits such as improved solubility, prolonged drug release, enhanced cellular uptake, and targeted delivery. Functionalizing nanoparticles with specific ligands further enhances their precision in recognizing and binding to cancer cells. Combining natural compounds with nanotechnology holds great promise in achieving efficient and safe cancer treatments by enhancing bioavailability, pharmacokinetics, and selectivity toward cancer cells. This review article provides an overview of the advancements in utilizing natural substances and nanotechnology-based drug delivery systems for cancer treatment. It discusses the benefits and drawbacks of various types of nanoparticles, as well as the characteristics of natural compounds that make them appealing for cancer therapy. Additionally, current research on natural substances and nanoparticles in preclinical and clinical settings is highlighted. Finally, the challenges and future perspectives in developing natural compound-nanoparticle-based cancer therapies are discussed.
Collapse
Affiliation(s)
| | - Amirhesam Babajani
- Oncopathology Research Center, Department of Molecular Medicine, School of MedicineIran University of Medical SciencesTehranIran
| | - Maryam Manzari Tavakoli
- Department of PhytochemistryMedicinal Plants and Drugs Research Institute, Shahid Beheshti UniversityTehranIran
| | - Fahimeh Safaeinejad
- Traditional Medicine and Materia Medica Research CenterShahid Beheshti University of Medical SciencesTehranIran
| | - Ameneh Jafari
- Chronic Respiratory Diseases Research Center, NRITLDShahid Beheshti University of Medical SciencesTehranIran
| |
Collapse
|
48
|
Solanki R, Srivastav AK, Patel S, Singh SK, Jodha B, Kumar U, Patel S. Folate conjugated albumin as a targeted nanocarrier for the delivery of fisetin: in silico and in vitro biological studies. RSC Adv 2024; 14:7338-7349. [PMID: 38433936 PMCID: PMC10906141 DOI: 10.1039/d3ra08434e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 02/20/2024] [Indexed: 03/05/2024] Open
Abstract
Fisetin (FST), a natural flavonoid compound derived from various fruits and vegetables, including apple, strawberry, and onion, demonstrates potential for a wide range of pharmaceutical applications, including potential anticancer properties. However, challenges such as low bioavailability, poor aqueous solubility, and limited permeability restrict the use of FST in the pharmaceutical sector. Nowadays, targeted nanomedicines have garnered attention to overcome limitations associated with phytochemicals, including FST. In the present study, we have designed and successfully prepared folate-targeted FST nanoparticles (FFNPs). Characterization through DLS and FE-SEM revealed the successful preparation of monodisperse (PDI: 0.117), nanoscale-sized (150 nm), and spherical nanoparticles. Physicochemical characterization including FTIR, XRD, DSC, and TGA analysis, confirmed the encapsulation of the FST within the Folic acid (FA) - conjugated nanoparticles (CNPs) and revealed its amorphous nature. Molecular docking analysis revealed the strong binding affinity and specific amino acid interactions involved in the BSA-FST-FA complex, suggesting the potential synergistic effect of FST and FA in enhancing the therapeutic activity of the FFANPs. Cytotoxic assessments by the MTT assay, migration assay, AO-EtBr staining assay, colony formation assay, and cellular uptake study demonstrated enhanced anticancer efficacy, apoptosis induction, and enhanced uptake of FFNPs compared to pure FST. These findings propose prepared FFNPs as a promising targeted drug delivery nanocarrier for effective FST delivery in cancer therapy.
Collapse
Affiliation(s)
- Raghu Solanki
- School of Life Sciences, Central University of Gujarat Gandhinagar 382030 India
| | | | - Sejal Patel
- School of Life Sciences, Central University of Gujarat Gandhinagar 382030 India
| | - Sanju Kumari Singh
- School of Life Sciences, Central University of Gujarat Gandhinagar 382030 India
| | - Bhavana Jodha
- School of Life Sciences, Central University of Gujarat Gandhinagar 382030 India
| | - Umesh Kumar
- School of Nano Sciences, Central University of Gujarat Gandhinagar 382030 India
- Nutrition Biology Department, School of Interdisciplinary and Applied Sciences, Central University of Haryana Mahendergarh 123031 India
| | - Sunita Patel
- School of Life Sciences, Central University of Gujarat Gandhinagar 382030 India
| |
Collapse
|
49
|
Arafat M, Sakkal M, Beiram R, AbuRuz S. Nanomedicines: Emerging Platforms in Smart Chemotherapy Treatment-A Recent Review. Pharmaceuticals (Basel) 2024; 17:315. [PMID: 38543101 PMCID: PMC10974155 DOI: 10.3390/ph17030315] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/21/2024] [Accepted: 02/24/2024] [Indexed: 01/06/2025] Open
Abstract
Cancer continues to pose one of the most critical challenges in global healthcare. Despite the wide array of existing cancer drugs, the primary obstacle remains in selectively targeting and eliminating cancer cells while minimizing damage to healthy ones, thereby reducing treatment side effects. The revolutionary approach of utilizing nanomaterials for delivering cancer therapeutic agents has significantly enhanced the efficacy and safety of chemotherapeutic drugs. This crucial shift is attributed to the unique properties of nanomaterials, enabling nanocarriers to transport therapeutic agents to tumor sites in both passive and active modes, while minimizing drug elimination from delivery systems. Furthermore, these nanocarriers can be designed to respond to internal or external stimuli, thus facilitating controlled drug release. However, the production of nanomedications for cancer therapy encounters various challenges that can impede progress in this field. This review aims to provide a comprehensive overview of the current state of nanomedication in cancer treatment. It explores a variety of nanomaterials, focusing on their unique properties that are crucial for overcoming the limitations of conventional chemotherapy. Additionally, the review delves into the properties and functionalities of nanocarriers, highlighting their significant impact on the evolution of nanomedicine. It also critically assesses recent advancements in drug delivery systems, covering a range of innovative delivery methodologies. Finally, the review succinctly addresses the challenges encountered in developing nanomedications, offering insightful perspectives to guide future research in this field.
Collapse
Affiliation(s)
- Mosab Arafat
- College of Pharmacy, Al Ain University, Al Ain P.O. Box 64141, United Arab Emirates; (M.A.)
| | - Molham Sakkal
- College of Pharmacy, Al Ain University, Al Ain P.O. Box 64141, United Arab Emirates; (M.A.)
| | - Rami Beiram
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates
| | - Salahdein AbuRuz
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates
- Department of Biopharmaceutics and Clinical Pharmacy, School of Pharmacy, The University of Jordan, Amman 11942, Jordan
| |
Collapse
|
50
|
Yan S, Na J, Liu X, Wu P. Different Targeting Ligands-Mediated Drug Delivery Systems for Tumor Therapy. Pharmaceutics 2024; 16:248. [PMID: 38399302 PMCID: PMC10893104 DOI: 10.3390/pharmaceutics16020248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/06/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Traditional tumor treatments have the drawback of harming both tumor cells and normal cells, leading to significant systemic toxic side effects. As a result, there is a pressing need for targeted drug delivery methods that can specifically target cells or tissues. Currently, researchers have made significant progress in developing targeted drug delivery systems for tumor therapy using various targeting ligands. This review aims to summarize recent advancements in targeted drug delivery systems for tumor therapy, focusing on different targeting ligands such as folic acid, carbohydrates, peptides, aptamers, and antibodies. The review also discusses the advantages, challenges, and future prospects of these targeted drug delivery systems.
Collapse
Affiliation(s)
- Shuxin Yan
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China; (S.Y.); (J.N.)
| | - Jintong Na
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China; (S.Y.); (J.N.)
| | - Xiyu Liu
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China; (S.Y.); (J.N.)
| | - Pan Wu
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China; (S.Y.); (J.N.)
- School of Pharmacy, Guangxi Medical University, Nanning 530021, China
| |
Collapse
|