1
|
Tay MRJ, Kong KH. Relationship of serial muscle ultrasound of rectus femoris and ambulatory recovery in patients with acute incomplete spinal cord injury: A prospective observational study. J Spinal Cord Med 2024:1-7. [PMID: 38819981 DOI: 10.1080/10790268.2024.2344317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/02/2024] Open
Abstract
CONTEXT/OBJECTIVE To investigate the change in serial muscle ultrasound of rectus femoris of patients with incomplete spinal cord injury (SCI) performed within 2 months after SCI during acute rehabilitation, and the relationship with functional outcomes at 1 year post-injury. DESIGN Prospective observational study. SETTING Inpatient multi-speciality tertiary rehabilitation center in Singapore. PARTICIPANTS Fifty-four patients with incomplete SCI, defined as American Spinal Injury Association Impairment Scale B-D, with SCI above L2, were recruited from March 2020 to June 2021. Serial muscle ultrasound of the rectus femoris thickness and echo intensity were obtained at 1 week post-injury and after 2 months via standardized protocols. OUTCOME MEASURES Functional Independence Measure (FIM) motor score, Lower Extremity Motor Score (LEMS), Spinal Cord Independence Measure III (SCIM III) indoor mobility component and Walking Index for Spinal Cord Injury II (WISCI II) were assessed in the first week post-admission and at 1 year. RESULTS There was a significant positive correlation between change in rectus femoris muscle thickness over 2 months and FIM motor score (P < 0.001), LEMS (P < 0.001), SCIM III indoor mobility component (P < 0.001) and WISCI II (P < 0.001) at 1 year. For the change in echo intensity over 2 months, there was a significantly negative correlation with FIM motor score (P = 0.002), LEMS (P = 0.002), SCIM III indoor mobility component (P = 0.001) and WISCI II (P = 0.001) at 1 year. CONCLUSION The findings suggest that ultrasonographic serial assessment of rectus femoris muscle thickness and echo intensity during rehabilitation may be useful for determining the long-term functional outcomes in patients with incomplete SCI.
Collapse
Affiliation(s)
| | - Keng He Kong
- Tan Tock Seng Hospital, Rehabilitation Medicine, Singapore, Singapore
| |
Collapse
|
2
|
Fell JD, Medina-Aguiñaga D, Burke DA, Hubscher CH. Impact of Activity-Based Training on Bowel Function in a Rat Model of Spinal Cord Injury. J Neurotrauma 2024; 41:1181-1195. [PMID: 38117145 DOI: 10.1089/neu.2023.0486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023] Open
Abstract
Significant bowel-related issues after spinal cord injury (SCI) that affect morbidity and quality of life (QOL) include diminished bowel motility, loss of sphincter control, gastric ulcers, autonomic dysreflexia, pain, diarrhea, constipation, and fecal incontinence. Clinical diagnoses and research in humans have largely relied on anorectal manometry (ARM) procedures to increase understanding of the functional effects of SCI on colorectal motility and defecation physiology. Recent pre-clinical rodent studies have also used ARM to further our understanding of bowel-related dysfunctions post-SCI. In the present study, the benefits of different activity-based training (ABT) durations on bowel function were examined. Six groups of male rats including two non-training (NT; uninjured and SCI) and four ABT (quadrupedal [Quad or Q] stepping on a treadmill) groups. All ABT animals received 4 weeks of 1-h daily stepping beginning 2 weeks post-SCI followed by variable amounts for 4 additional weeks (none; daily; once a week; daily for final 4th week only). Outcome measures included fecal output (home cage; metabolic cage) throughout the study and terminal measurements (post 8-week ABT) of external anal sphincter (EAS) electromyography, resting anorectal pressure, and giant contraction (GC) activation under urethane anesthesia. The results indicate that treadmill training normalized defecation amount based on feces weight and food intake, as well as GC frequency, EAS latency and amplitude during fecal expulsion, and resting pressure in specific areas within the colorectum. The two intermittent training groups consistently showed recorded metrics comparable to the non-injured group. The results demonstrate bowel dysfunction in the rodent SCI contusion model with improvements in functional outcomes following ABT. Importantly, the benefits to bowel-related functions with versus without intermittent ABT illustrate the need for periodic therapy to maintain the functional gains of ABT.
Collapse
Affiliation(s)
- Jason D Fell
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Daniel Medina-Aguiñaga
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Darlene A Burke
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky, USA
| | - Charles H Hubscher
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky, USA
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky, USA
| |
Collapse
|
3
|
Bogard AT, Hembree TG, Pollet AK, Smith AC, Ryder SC, Marzloff G, Tan AQ. Intermittent Hypoxia-Induced Enhancements in Corticospinal Excitability Predict Gains in Motor Learning and Metabolic Efficiency. RESEARCH SQUARE 2024:rs.3.rs-4259378. [PMID: 38746438 PMCID: PMC11092812 DOI: 10.21203/rs.3.rs-4259378/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Acute intermittent hypoxia (AIH) enhances human motor function after incomplete spinal cord injury. Although the underlying mechanisms in humans are unknown, emerging evidence indicates that AIH facilitates corticospinal excitability to the upper limb. However, the functional relevance of this plasticity remains unexplored, and it is unclear whether similar plasticity can be induced for lower limb motor areas. We recently demonstrated that AIH improves motor learning and metabolic efficiency during split-belt walking. Thus, we hypothesized that AIH increases lower limb excitability and that these enhancements would predict the magnitude of motor learning and the corresponding reductions in net metabolic power. We assessed tibialis anterior (TA) excitability using transcranial magnetic stimulation and quantified changes in spatiotemporal asymmetries and net metabolic power in response to split-belt speed perturbations. We show that AIH enhances TA excitability, and that the magnitude of this facilitation positively correlates with greater spatiotemporal adaptation. Notably, we demonstrate a novel association between increased excitability and reduced net metabolic power during motor learning and savings. Together, our results suggest that AIH-induced gains in excitability predict both the magnitude of motor learning and the associated metabolic efficiency. Determining indices of AIH-induced improvements in motor performance is critical for optimizing its therapeutic reach.
Collapse
Affiliation(s)
- Alysha T. Bogard
- Sensorimotor Recovery and Neuroplasticity Lab at the University of Colorado, Boulder, Dept. of Integrative Physiology, 80309, USA
| | - Thomas G. Hembree
- Sensorimotor Recovery and Neuroplasticity Lab at the University of Colorado, Boulder, Dept. of Integrative Physiology, 80309, USA
| | - Aviva K. Pollet
- Sensorimotor Recovery and Neuroplasticity Lab at the University of Colorado, Boulder, Dept. of Integrative Physiology, 80309, USA
| | - Andrew C. Smith
- University of Colorado School of Medicine, Dept. of Physical Medicine and Rehabilitation, Aurora, 80045, USA
| | | | - George Marzloff
- Rocky Mountain Regional VA Medical Center, Aurora, 80045, USA
| | - Andrew Q. Tan
- Sensorimotor Recovery and Neuroplasticity Lab at the University of Colorado, Boulder, Dept. of Integrative Physiology, 80309, USA
- Rocky Mountain Regional VA Medical Center, Aurora, 80045, USA
- Center for Neuroscience, University of Colorado, Boulder, 80309, USA
| |
Collapse
|
4
|
Ibitoye MO, Hamzaid NA, Ahmed YK. Effectiveness of FES-supported leg exercise for promotion of paralysed lower limb muscle and bone health-a systematic review. BIOMED ENG-BIOMED TE 2023:bmt-2021-0195. [PMID: 36852605 DOI: 10.1515/bmt-2021-0195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 02/07/2023] [Indexed: 03/01/2023]
Abstract
Leg exercises through standing, cycling and walking with/without FES may be used to preserve lower limb muscle and bone health in persons with physical disability due to SCI. This study sought to examine the effectiveness of leg exercises on bone mineral density and muscle cross-sectional area based on their clinical efficacy in persons with SCI. Several literature databases were searched for potential eligible studies from the earliest return date to January 2022. The primary outcome targeted was the change in muscle mass/volume and bone mineral density as measured by CT, MRI and similar devices. Relevant studies indicated that persons with SCI that undertook FES- and frame-supported leg exercise exhibited better improvement in muscle and bone health preservation in comparison to those who were confined to frame-assisted leg exercise only. However, this observation is only valid for exercise initiated early (i.e., within 3 months after injury) and for ≥30 min/day for ≥ thrice a week and for up to 24 months or as long as desired and/or tolerable. Consequently, apart from the positive psychological effects on the users, leg exercise may reduce fracture rate and its effectiveness may be improved if augmented with FES.
Collapse
Affiliation(s)
- Morufu Olusola Ibitoye
- Department of Biomedical Engineering, Faculty of Engineering and Technology, University of Ilorin, Ilorin, Nigeria
| | - Nur Azah Hamzaid
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur Malaysia
| | - Yusuf Kola Ahmed
- Department of Biomedical Engineering, Faculty of Engineering and Technology, University of Ilorin, Ilorin, Nigeria
| |
Collapse
|
5
|
Gibbs JC, Patsakos EM, Maltais DB, Wolfe DL, Gagnon DH, Craven BC. Rehabilitation interventions to modify endocrine-metabolic disease risk in individuals with chronic spinal cord injury living in the community (RIISC): A systematic search and review of prospective cohort and case-control studies. J Spinal Cord Med 2023; 46:6-25. [PMID: 33596167 PMCID: PMC9897753 DOI: 10.1080/10790268.2020.1863898] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
CONTEXT Endocrine-metabolic disease (EMD) is associated with functional disability, social isolation, hospitalization and even death in individuals living with a chronic spinal cord injury (SCI). There is currently very low-quality evidence that rehabilitation interventions can reduce EMD risk during chronic SCI. Non-randomized trials and alternative study designs are excluded from traditional knowledge synthesis. OBJECTIVE To characterize evidence from level 3-4 studies evaluating rehabilitation interventions for their effectiveness to improve EMD risk in community-dwelling adults with chronic SCI. METHODS Systematic searches of MEDLINE PubMed, EMBASE Ovid, CINAHL, Cochrane Database of Systematic Reviews, and PsychInfo were completed. All longitudinal trials, prospective cohort, case-control studies, and case series evaluating the effectiveness of rehabilitation/therapeutic interventions to modify/associate with EMD outcomes in adults with chronic SCI were eligible. Two authors independently selected studies and abstracted data. Mean changes from baseline were reported for EMD outcomes. The Downs and Black Checklist was used to rate evidence quality. RESULTS Of 489 articles identified, 44 articles (N = 842) were eligible for inclusion. Individual studies reported statistically significant effects of electrical stimulation-assisted training on lower-extremity bone outcomes, and the combined effects of exercise and dietary interventions to improve body composition and cardiometabolic biomarkers (lipid profiles, glucose regulation). In contrast, there were also reports of no clinically important changes in EMD outcomes, suggesting lower quality evidence (study bias, inconsistent findings). CONCLUSION Longitudinal multicentre pragmatic studies involving longer-term exercise and dietary intervention and follow-up periods are needed to fully understand the impact of these rehabilitation approaches to mitigate EMD risk. Our broad evaluation of prospective cohort and case-control studies provides new perspectives on alternative study designs, a multi-impairment paradigm approach of studying EMD outcomes, and knowledge gaps related to SCI rehabilitation.
Collapse
Affiliation(s)
- Jenna C. Gibbs
- Department of Kinesiology and Physical Education, Faculty of Education, McGill University, Montréal, QC, Canada
| | - Eleni M. Patsakos
- KITE, Toronto Rehabilitation Institute – University Health Network, Toronto, ON, Canada
| | - Desiree B. Maltais
- Department of Rehabilitation, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - Dalton L. Wolfe
- Parkwood Institute Research, Lawson Health Research Institute, London, ON, Canada
- Department of Physical Medicine and Rehabilitation, Western University, London, ON, Canada
| | - Dany H. Gagnon
- Centre intégré universitaire de santé et de services sociaux (CIUSSS) du Centre-Sud-de-l'Île-de-Montréal, Montréal, QC, Canada
- School of Rehabilitation, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - B. Catharine Craven
- KITE, Toronto Rehabilitation Institute – University Health Network, Toronto, ON, Canada
- Division of Physical Therapy and Rehabilitation, Department of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
6
|
Hohl K, Smith AC, Macaluso R, Giffhorn M, Prokup S, O’Dell DR, Kleinschmidt L, Elliott JM, Jayaraman A. Muscle adaptations in acute SCI following overground exoskeleton + FES training: A pilot study. FRONTIERS IN REHABILITATION SCIENCES 2022; 3:963771. [PMID: 36311207 PMCID: PMC9608781 DOI: 10.3389/fresc.2022.963771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 09/23/2022] [Indexed: 11/21/2022]
Abstract
Objective To evaluate the combined effects of robotic exoskeleton and functional electrical stimulation (FES) training on muscle composition during over-ground gait training in persons with acute spinal cord injury (SCI). Design Randomized crossover pilot study. Setting Inpatient-rehabilitation Hospital. Participants Six individuals with acute SCI. Intervention Participants were randomized to either receive training with the Ekso® Bionics exoskeleton combined with FES in addition to standard-of-care or standard-of-care alone. Outcome measures The main outcome measures for the study were quantified using magnetic resonance imaging (MRI), specifically, lower extremity muscle volume and intramuscular adipose tissue (IMAT). Static balance and fall risk were assessed using the Berg Balance Scale. Results Significant improvements were observed in muscle volume in the exoskeleton intervention group when compared to only standard-of-care (p < 0.001). There was no significant difference between the groups in IMAT even though the intervention group saw a reduction in IMAT that trended towards statistical significance (p = 0.07). Static balance improved in both groups, with greater improvements seen in the intervention group. Conclusions Early intervention with robotic exoskeleton may contribute to improved muscle function measured using MRI in individuals with acute SCI.
Collapse
Affiliation(s)
- Kristen Hohl
- Max Näder Lab for Rehabilitation Technologies / Outcomes Lab, Shirley Ryan AbilityLab, Chicago, IL, United States
| | - Andrew C. Smith
- Department of Physical Medicine and Rehabilitation, Physical Therapy Program, School of Medicine, University of Colorado, Aurora, CO, United States
| | - Rebecca Macaluso
- Max Näder Lab for Rehabilitation Technologies / Outcomes Lab, Shirley Ryan AbilityLab, Chicago, IL, United States
| | - Matthew Giffhorn
- Max Näder Lab for Rehabilitation Technologies / Outcomes Lab, Shirley Ryan AbilityLab, Chicago, IL, United States
| | - Sara Prokup
- Max Näder Lab for Rehabilitation Technologies / Outcomes Lab, Shirley Ryan AbilityLab, Chicago, IL, United States
| | - Denise R. O’Dell
- Department of Physical Therapy, University of Kentucky College of Health Sciences, Lexington, KY, United States
| | - Lina Kleinschmidt
- Department of Physical Therapy / Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Jim M. Elliott
- Department of Physical Therapy / Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States,Northern Sydney Local Health District, The Kolling Institute and Faculty of Medicine and Health, The University of Sydney, St. Leonards, NSW, Australia
| | - Arun Jayaraman
- Max Näder Lab for Rehabilitation Technologies / Outcomes Lab, Shirley Ryan AbilityLab, Chicago, IL, United States,Department of Physical Therapy / Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States,Department of Physical Medicine / Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States,Correspondence: Arun Jayaraman
| |
Collapse
|
7
|
Alajam RA, Alqahtani AS, Moon S, Sarmento CVM, Frederick J, Smirnova IV, Liu W. Effects of walking training on risk markers of cardiovascular disease in individuals with chronic spinal cord injury. J Spinal Cord Med 2022; 45:622-630. [PMID: 33443465 PMCID: PMC9246252 DOI: 10.1080/10790268.2020.1853332] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
OBJECTIVE To investigate the effects of an 8-week walking training program on glycemic control, lipid profile, and inflammatory markers in individuals with chronic spinal cord injury (SCI). DESIGN A pilot, single-group, pretest-posttest study. SETTING A neuromuscular research laboratory. PARTICIPANTS Eleven participants with chronic SCI. INTERVENTION An 8-week walking training program using a treadmill, a body weight-supported system, and an assistive gait training device. OUTCOME MEASURES Levels of glycated hemoglobin (HbA1c), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), C-reactive protein (CRP), and interleukin-6 were assessed before and after the walking training. RESULTS Following the walking training, there was a statistically significant decrease in HbA1c level (P<0.01) of uncertain clinical significance. The lipid profile improved after training, as shown by a statistically and clinically significant increase in HDL-C level (P<0.01) and a statistically significant decrease in LDL-C level (P<0.1) of no clinical significance. The ratio of LDL-C to HDL-C was significantly reduced (P<0.01). In regard to inflammatory markers, concentrations of IL-6 showed a significant reduction after training (P=0.05) of unknown clinical significance, while those of CRP trended to decrease (P=0.13). CONCLUSION The findings of this pilot study suggest that an 8-week walking training program may produce favorable changes in risk markers of cardiovascular disease in individuals with chronic SCI as shown by clinically meaningful improvements in HDL-C, and small changes in the right direction, but uncertain clinical significance, in HbA1c, LDL-C and IL-6. A randomized controlled trial is needed to compare the effects of walking training on these outcome measures with those of other exercise modalities suitable for this population, and to see if more prolonged exercise exposure leads to favorable parameters of significant size to justify the exercise modality.
Collapse
Affiliation(s)
- Ramzi A. Alajam
- Department of Physical Therapy and Rehabilitation Science, University of Kansas Medical Center, Kansas City, Kansas, United States,Department of Physical Therapy, Jazan University, Jazan, Saudi Arabia,Corresponding author: Ramzi Alajam, Department of Physical Therapy, Faculty of Applied Medical Science, Jazan University, Jazan, Saudi Arabia;
| | - Abdulfattah S. Alqahtani
- Department of Physical Therapy and Rehabilitation Science, University of Kansas Medical Center, Kansas City, Kansas, United States,Department of Health Rehabilitation Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Sanghee Moon
- Department of Physical Therapy and Rehabilitation Science, University of Kansas Medical Center, Kansas City, Kansas, United States
| | - Caio V. M. Sarmento
- Department of Physical Therapy and Rehabilitation Science, University of Kansas Medical Center, Kansas City, Kansas, United States,Department of Physical Therapy, California State University, Fresno, California, United States
| | - Jason Frederick
- Department of Physical Medicine and Rehabilitation, University of Kansas Medical Center, Kansas City, Kansas, United States
| | - Irina V. Smirnova
- Department of Physical Therapy and Rehabilitation Science, University of Kansas Medical Center, Kansas City, Kansas, United States
| | - Wen Liu
- Department of Physical Therapy and Rehabilitation Science, University of Kansas Medical Center, Kansas City, Kansas, United States
| |
Collapse
|
8
|
Yip CCH, Lam CY, Cheung KMC, Wong YW, Koljonen PA. Knowledge Gaps in Biophysical Changes After Powered Robotic Exoskeleton Walking by Individuals With Spinal Cord Injury—A Scoping Review. Front Neurol 2022; 13:792295. [PMID: 35359657 PMCID: PMC8960715 DOI: 10.3389/fneur.2022.792295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 02/07/2022] [Indexed: 11/13/2022] Open
Abstract
In addition to helping individuals with spinal cord injury (SCI) regain the ability to ambulate, the rapidly evolving capabilities of robotic exoskeletons provide an array of secondary biophysical benefits which can reduce the complications resulting from prolonged immobilization. The proposed benefits of increased life-long over-ground walking capacity include improved upper body muscular fitness, improved circulatory response, improved bowel movement regularity, and reduced pain and spasticity. Beyond the positive changes related to physical and biological function, exoskeletons have been suggested to improve SCI individuals' quality of life (QOL) by allowing increased participation in day-to-day activities. Most of the currently available studies that have reported on the impact of exoskeletons on the QOL and prevention of secondary health complications on individuals with SCI, are of small scale and are heterogeneous in nature. Moreover, few meta-analyses and reviews have attempted to consolidate the dispersed data to reach more definitive conclusions of the effects of exoskeleton use. This scoping review seeks to provide an overview on the known effects of overground exoskeleton use, on the prevention of secondary health complications, changes to the QOL, and their effect on the independence of SCI individuals in the community settings. Moreover, the intent of the review is to identify gaps in the literature currently available, and to make recommendations on focus study areas and methods for future investigations.
Collapse
Affiliation(s)
- Christopher C. H. Yip
- Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Chor-Yin Lam
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Kenneth M. C. Cheung
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Yat Wa Wong
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Department of Orthopaedics and Traumatology, Maclehose Medical Rehabilitation Centre, Hong Kong West Cluster, Hospital Authority, Kowloon, Hong Kong SAR, China
| | - Paul A. Koljonen
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Department of Orthopaedics and Traumatology, Maclehose Medical Rehabilitation Centre, Hong Kong West Cluster, Hospital Authority, Kowloon, Hong Kong SAR, China
- *Correspondence: Paul A. Koljonen
| |
Collapse
|
9
|
Fidan M, Bayrak A, Karli U. A novel adaptable isometric strength analysis and exercise development system design. Proc Inst Mech Eng H 2021; 235:913-926. [PMID: 33971770 DOI: 10.1177/09544119211015562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this study, a low-cost and adaptable isometric strength measurement and exercise development system are described. The implemented system consists of mechanical structure, force measurement sensor, electronic circuit, and computer software. Isometric-isotonic (via spring resistance) strength analysis and various exercise programs can be applied with the system. The developed system has a lower cost compared to its counterparts in the literature and has a structure that can be adapted to different machines and measuring methods. The operability and reliability of the isometric strength measurement and exercise development system have been proven by calibration tests.
Collapse
Affiliation(s)
- Murat Fidan
- Department of Electrical and Electronic Engineering, Faculty of Engineering, Bolu Abant Izzet Baysal University, Bolu, Turkey
| | - Alper Bayrak
- Department of Electrical and Electronic Engineering, Faculty of Engineering, Bolu Abant Izzet Baysal University, Bolu, Turkey
| | - Umid Karli
- Department of Coaching Education, Faculty of Sports Sciences, Bolu Abant Izzet Baysal University, Bolu, Turkey
| |
Collapse
|
10
|
Hou J, Nelson R, Mohammad N, Mustafa G, Plant D, Thompson FJ, Bose P. Effect of Simultaneous Combined Treadmill Training and Magnetic Stimulation on Spasticity and Gait Impairments after Cervical Spinal Cord Injury. J Neurotrauma 2020; 37:1999-2013. [DOI: 10.1089/neu.2019.6961] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Affiliation(s)
- Jiamei Hou
- Department of Physiological Sciences, University of Florida, Gainesville, Florida, USA
- BRRC, North Florida/South Georgia Veterans Health System, Gainesville, Florida, USA
| | - Rachel Nelson
- BRRC, North Florida/South Georgia Veterans Health System, Gainesville, Florida, USA
| | - Naweed Mohammad
- BRRC, North Florida/South Georgia Veterans Health System, Gainesville, Florida, USA
| | - Golam Mustafa
- Department of Physiological Sciences, University of Florida, Gainesville, Florida, USA
- BRRC, North Florida/South Georgia Veterans Health System, Gainesville, Florida, USA
| | - Daniel Plant
- Research Service, North Florida/South Georgia Veterans Health System, Gainesville, Florida, USA
| | - Floyd J. Thompson
- Department of Physiological Sciences, University of Florida, Gainesville, Florida, USA
- BRRC, North Florida/South Georgia Veterans Health System, Gainesville, Florida, USA
- Department of Neuroscience, University of Florida, Gainesville, Florida, USA
| | - Prodip Bose
- Department of Physiological Sciences, University of Florida, Gainesville, Florida, USA
- BRRC, North Florida/South Georgia Veterans Health System, Gainesville, Florida, USA
- Department of Anesthesiology, University of Florida, Gainesville, Florida, USA
- Department of Neurology, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
11
|
Duffell LD, Donaldson NDN. A Comparison of FES and SCS for Neuroplastic Recovery After SCI: Historical Perspectives and Future Directions. Front Neurol 2020; 11:607. [PMID: 32714270 PMCID: PMC7344227 DOI: 10.3389/fneur.2020.00607] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 05/25/2020] [Indexed: 12/17/2022] Open
Abstract
There is increasing evidence that neuroplastic changes can occur even years after spinal cord injury, leading to reduced disability and better health which should reduce the cost of healthcare. In motor-incomplete spinal cord injury, recovery of leg function may occur if repetitive training causes afferent input to the lumbar spinal cord. The afferent input may be due to activity-based therapy without electrical stimulation but we present evidence that it is faster with electrical stimulation. This may be spinal cord stimulation or peripheral nerve stimulation. Recovery is faster if the stimulation is phasic and that the patient is trying to use their legs during the training. All the published studies are small, so all conclusions are provisional, but it appears that patients with more disability (AIS A and B) may need to continue using stimulation and for them, an implanted stimulator is likely to be convenient. Patients with less disability (AIS C and D) may make useful recovery and improve their quality of life from a course of therapy. This might be locomotion therapy but we argue that cycling with electrical stimulation, which uses biofeedback to encourage descending drive, causes rapid recovery and might be used with little supervision at home, making it much less expensive. Such an electrical therapy followed by conventional physiotherapy might be affordable for the many people living with chronic SCI. To put this in perspective, we present some information about what treatments are funded in the UK and the US.
Collapse
Affiliation(s)
- Lynsey D Duffell
- Implanted Devices Group, University College London, London, United Kingdom.,Aspire CREATe, University College London, London, United Kingdom
| | | |
Collapse
|
12
|
Hicks AL. Locomotor training in people with spinal cord injury: is this exercise? Spinal Cord 2020; 59:9-16. [PMID: 32581307 DOI: 10.1038/s41393-020-0502-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 06/02/2020] [Accepted: 06/05/2020] [Indexed: 11/09/2022]
Abstract
Locomotor training holds tremendous appeal to people with spinal cord injury who are wheelchair dependent, as the reacquisition of gait remains one of the most coveted goals in this population. For the last few decades this type of training has remained primarily in the clinical environment, as it requires the use of expensive treadmills with bodyweight support or complex overhead suspension tracks to facilitate overground walking. The development of powered exoskeletons has taken locomotor training out of the clinic, both improving accessibility and providing a potential option for community ambulation in people with lower limb paralysis. A question that has yet to be answered, however, is whether or not locomotor training offers a sufficiently intense stimulus to induce improvements in fitness or health. As inactivity-related secondary health complications are a major source of morbidity and mortality in people with SCI, it would be important to characterize the potential of locomotor training to not only improve functional walking ability, but also improve health-related fitness. This narrative review will summarize the key literature in this area to determine whether locomotor training challenges the cardiovascular, muscular or metabolic systems enough to be considered a viable form of exercise.
Collapse
Affiliation(s)
- Audrey L Hicks
- Department of Kinesiology, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
13
|
Donovan J, Snider B, Miller A, Kirshblum S. Walking after Spinal Cord Injury: Current Clinical Approaches and Future Directions. CURRENT PHYSICAL MEDICINE AND REHABILITATION REPORTS 2020. [DOI: 10.1007/s40141-020-00277-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
14
|
Gorgey AS, Witt O, O’Brien L, Cardozo C, Chen Q, Lesnefsky EJ, Graham ZA. Mitochondrial health and muscle plasticity after spinal cord injury. Eur J Appl Physiol 2018; 119:315-331. [DOI: 10.1007/s00421-018-4039-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Accepted: 11/22/2018] [Indexed: 01/15/2023]
|
15
|
Todd KR, Martin Ginis KA. An examination of diurnal variations in neuropathic pain and affect, on exercise and non-exercise days, in adults with spinal cord injury. Spinal Cord Ser Cases 2018; 4:94. [PMID: 30393565 PMCID: PMC6204132 DOI: 10.1038/s41394-018-0130-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 10/05/2018] [Accepted: 10/06/2018] [Indexed: 11/08/2022] Open
Abstract
STUDY DESIGN Case series. OBJECTIVES The temporal relationships between exercise, neuropathic pain and affect are not well understood. The purpose of this study was to utilize ecological momentary assessment to measure intra-individual diurnal variations in neuropathic pain and affect on exercise and non-exercise days. This study aimed to provide a deeper understanding of how neuropathic pain and affect change from pre- to post-exercise, and over time. SETTING Community. METHODS Six physically active men with SCI participated in a 6-day protocol (M age = 39.33 ± 8.24; 83.3% tetraplegics; years post injury = 6-17 years). Using their Smartphones, participants completed the Feeling Scale, Felt Arousal Scale, and Neuropathic Pain Scale in response to six daily prompts, and before and after exercise. Paired samples t-tests were conducted on changes in neuropathic pain and affect from pre to post-exercise. Bivariate Pearson's correlational analyses were computed between time of day, neuropathic pain and affect. RESULTS Participants experienced a significant decrease in neuropathic pain (t(5) = 3.93; p = 0.01) following completion of at least one bout of exercise. A large, but non-significant increase (Hgav = 0.76) in Feeling Scale scores occurred following one bout of exercise. Time of day, neuropathic pain and affect were significantly correlated for two participants. CONCLUSIONS Overall, results suggest exercise can reduce neuropathic pain, and may also increase feelings of pleasure. Given the inconsistent pattern of results across participants, further research is needed to look at both individual characteristics, and characteristics of exercise that may moderate changes in neuropathic pain and affect for adults with SCI.
Collapse
Affiliation(s)
- Kendra R. Todd
- School of Health and Exercise Sciences, University of British Columbia, Kelowna, BC Canada
- International Collaboration on Repair Discoveries (iCORD), Blusson Spinal Cord Centre (BSCC), University of British Columbia, Vancouver, BC Canada
| | - Kathleen A. Martin Ginis
- School of Health and Exercise Sciences, University of British Columbia, Kelowna, BC Canada
- International Collaboration on Repair Discoveries (iCORD), Blusson Spinal Cord Centre (BSCC), University of British Columbia, Vancouver, BC Canada
- Southern Medical Program, Faculty of Medicine, University of British Columbia, Kelowna, BC Canada
| |
Collapse
|
16
|
Otzel DM, Lee J, Ye F, Borst SE, Yarrow JF. Activity-Based Physical Rehabilitation with Adjuvant Testosterone to Promote Neuromuscular Recovery after Spinal Cord Injury. Int J Mol Sci 2018; 19:ijms19061701. [PMID: 29880749 PMCID: PMC6032131 DOI: 10.3390/ijms19061701] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Revised: 05/31/2018] [Accepted: 06/01/2018] [Indexed: 12/22/2022] Open
Abstract
Neuromuscular impairment and reduced musculoskeletal integrity are hallmarks of spinal cord injury (SCI) that hinder locomotor recovery. These impairments are precipitated by the neurological insult and resulting disuse, which has stimulated interest in activity-based physical rehabilitation therapies (ABTs) that promote neuromuscular plasticity after SCI. However, ABT efficacy declines as SCI severity increases. Additionally, many men with SCI exhibit low testosterone, which may exacerbate neuromusculoskeletal impairment. Incorporating testosterone adjuvant to ABTs may improve musculoskeletal recovery and neuroplasticity because androgens attenuate muscle loss and the slow-to-fast muscle fiber-type transition after SCI, in a manner independent from mechanical strain, and promote motoneuron survival. These neuromusculoskeletal benefits are promising, although testosterone alone produces only limited functional improvement in rodent SCI models. In this review, we discuss the (1) molecular deficits underlying muscle loss after SCI; (2) independent influences of testosterone and locomotor training on neuromuscular function and musculoskeletal integrity post-SCI; (3) hormonal and molecular mechanisms underlying the therapeutic efficacy of these strategies; and (4) evidence supporting a multimodal strategy involving ABT with adjuvant testosterone, as a potential means to promote more comprehensive neuromusculoskeletal recovery than either strategy alone.
Collapse
Affiliation(s)
- Dana M Otzel
- Brain Rehabilitation Research Center, Malcom Randall Veterans Affairs Medical Center, North Florida/South Georgia Veterans Health System, Gainesville, FL 32608, USA.
| | - Jimmy Lee
- Research Service, Malcom Randall Veterans Affairs Medical Center, North Florida/South Georgia Veterans Health System, Gainesville, FL 32608, USA.
| | - Fan Ye
- Research Service, Malcom Randall Veterans Affairs Medical Center, North Florida/South Georgia Veterans Health System, Gainesville, FL 32608, USA.
| | - Stephen E Borst
- Department of Applied Physiology, Kinesiology and University of Florida College of Health and Human Performance, Gainesville, FL 32603, USA.
| | - Joshua F Yarrow
- Research Service, Malcom Randall Veterans Affairs Medical Center, North Florida/South Georgia Veterans Health System, Gainesville, FL 32608, USA.
- Division of Endocrinology, Diabetes and Metabolism, University of Florida College of Medicine, Gainesville, FL 32610, USA.
| |
Collapse
|
17
|
Hubscher CH, Herrity AN, Williams CS, Montgomery LR, Willhite AM, Angeli CA, Harkema SJ. Improvements in bladder, bowel and sexual outcomes following task-specific locomotor training in human spinal cord injury. PLoS One 2018; 13:e0190998. [PMID: 29385166 PMCID: PMC5791974 DOI: 10.1371/journal.pone.0190998] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 12/22/2017] [Indexed: 12/28/2022] Open
Abstract
OBJECTIVE Locomotor training (LT) as a therapeutic intervention following spinal cord injury (SCI) is an effective rehabilitation strategy for improving motor outcomes, but its impact on non-locomotor functions is unknown. Given recent results of our labs' pre-clinical animal SCI LT studies and existing overlap of lumbosacral spinal circuitries controlling pelvic-visceral and locomotor functions, we addressed whether LT can improve bladder, bowel and sexual function in humans at chronic SCI time-points (> two years post-injury). STUDY DESIGN Prospective cohort study; pilot trial with small sample size. METHODS Eight SCI research participants who were undergoing 80 daily one-hour sessions of LT on a treadmill using body-weight support, or one-hour of LT and stand training on alternate days, as part of another research study conducted at the Kentucky Spinal Cord Injury Research Center, University of Louisville, were enrolled in this pilot trial. Urodynamic assessments were performed and International Data Set questionnaire forms completed for bladder, bowel and sexual functions at pre-and post-training time points. Four usual care (non-trained; regular at-home routine) research participants were also enrolled in this study and had the same assessments collected twice, at least 3 months apart. RESULTS Filling cystometry documented significant increases in bladder capacity, voiding efficiency and detrusor contraction time as well as significant decreases in voiding pressure post-training relative to baseline. Questionnaires revealed a decrease in the frequency of nocturia and urinary incontinence for several research participants as well as a significant decrease in time required for defecation and a significant increase in sexual desire post-training. No significant differences were found for usual care research participants. CONCLUSIONS These results suggest that an appropriate level of sensory information provided to the spinal cord, generated through task-specific stepping and/or loading, can positively benefit the neural circuitries controlling urogenital and bowel functions. TRIAL REGISTRATION ClinicalTrials.gov NCT03036527.
Collapse
Affiliation(s)
- Charles H. Hubscher
- Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, Kentucky, United States of America
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky, United States of America
- * E-mail:
| | - April N. Herrity
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky, United States of America
- Department of Neurological Surgery, University of Louisville, Louisville, Kentucky, United States of America
| | - Carolyn S. Williams
- Department of Urology, University of Louisville, Louisville, Kentucky, United States of America
| | - Lynnette R. Montgomery
- Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, Kentucky, United States of America
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky, United States of America
| | - Andrea M. Willhite
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky, United States of America
- Department of Neurological Surgery, University of Louisville, Louisville, Kentucky, United States of America
| | - Claudia A. Angeli
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky, United States of America
- Frazier Rehabilitation Institute, Louisville, Kentucky, United States of America
| | - Susan J. Harkema
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky, United States of America
- Department of Neurological Surgery, University of Louisville, Louisville, Kentucky, United States of America
- Frazier Rehabilitation Institute, Louisville, Kentucky, United States of America
| |
Collapse
|
18
|
Capelari TV, Borin JS, Grigol M, Saccani R, Zardo F, Cechetti F. EVALUATION OF MUSCLE STRENGTH IN MEDULLAR INJURY: A LITERATURE REVIEW. COLUNA/COLUMNA 2017. [DOI: 10.1590/s1808-185120171604179802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
ABSTRACT Objective: To identify the tools used to evaluate muscle strength in subjects with spinal cord injury in both clinical practice and scientific research. Methods: Initially, the literature review was carried out to identify the tools used in scientific research. The search was conducted in the following databases: Virtual Health Library (VHL), Pedro, and PubMed. Studies published between 1990 and 2016 were considered and selected, depicting an evaluation of muscle strength as an endpoint or for characterization of the sample. Next, a survey was carried out with physiotherapists to identify the instruments used for evaluation in clinical practice, and the degree of satisfaction of professionals with respect to them. Results: 495 studies were found; 93 were included for qualitative evaluation. In the studies, we verified the use of manual muscle test with different graduation systems, isokinetic dynamometer, hand-held dynamometer, and manual dynamometer. In clinical practice, the manual muscle test using the motor score recommended by the American Spinal Cord Injury Association was the most used method, despite the limitations highlighted by the physiotherapists interviewed. Conclusion: In scientific research, there is great variation in the methods and tools used to evaluate muscle strength in individuals with spinal cord injury, differently from clinical practice. The tools available and currently used have important limitations, which were highlighted by the professionals interviewed. No instrument depicts direct relationship of muscle strength and functionality of the subject. There is no consensus as to the best method for assessing muscle strength in spinal cord injury, and new instruments are needed that are specific for use in this population.
Collapse
Affiliation(s)
| | | | - Melissa Grigol
- Pontifícia Universidade Católica do Rio Grande do Sul, Brazil
| | | | - Franciele Zardo
- Universidade Federal de Ciências da Saúde de Porto Alegre, Brazil
| | - Fernanda Cechetti
- Universidade Federal de Ciências da Saúde de Porto Alegre, Brazil; Universidade Federal de Ciências da Saúde de Porto Alegre, Brazil
| |
Collapse
|
19
|
Smith AC, Knikou M, Yelick KL, Alexander AR, Murnane MM, Kritselis AA, Houmpavlis PJ, McPherson JG, Wasielewski M, Hoggarth MA, Elliott JM. MRI measures of fat infiltration in the lower extremities following motor incomplete spinal cord injury: reliability and potential implications for muscle activation. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2017; 2016:5451-5456. [PMID: 28269491 DOI: 10.1109/embc.2016.7591960] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Muscle fat infiltration (MFI) is an expected consequence of incomplete spinal cord injury (iSCI). The MFI magnitude may have clinical value in determining functional recovery. However, there is a lack of understanding of how MFI relates to the volitional muscle activity in people with motor incomplete spinal cord injury (iSCI). Five iSCI and 5 uninjured age-matched control subjects participated in the study. In this preliminary study, we established the reliability of MFI quantification of select lower extremity muscles across different raters. Secondly, we assessed the magnitude and distribution of MFI in the lower legs of iSCI and uninjured control participants. Thirdly, we explored the relationship between MFI in the plantar flexor muscles and the ability to volitionally activate these muscles. High levels of inter-rater reliability were observed. The iSCI group had significantly elevated and a vastly different MFI distribution in the lower leg muscles compared to healthy controls. MFI was negatively correlated with volitional activation in iSCI. Our preliminary results sanction the importance of lower extremity MFI quantification as a potential measure in determining the functional outcomes in iSCI, and the subsequent pathological sequelae.
Collapse
|
20
|
Garbeloti EJR, Paiva RCA, Restini CBA, Durand MT, Miranda CES, Teixeira VE. Biochemical biomarkers are not dependent on physical exercise in patients with spinal cord injury. BBA CLINICAL 2016; 6:5-11. [PMID: 27331022 PMCID: PMC4900297 DOI: 10.1016/j.bbacli.2016.05.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Revised: 04/29/2016] [Accepted: 05/03/2016] [Indexed: 11/05/2022]
|
21
|
Neural Stem Cell Therapy and Rehabilitation in the Central Nervous System: Emerging Partnerships. Phys Ther 2016; 96:734-42. [PMID: 26847015 PMCID: PMC6281018 DOI: 10.2522/ptj.20150063] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 01/27/2016] [Indexed: 12/17/2022]
Abstract
The goal of regenerative medicine is to restore function through therapy at levels such as the gene, cell, tissue, or organ. For many disorders, however, regenerative medicine approaches in isolation may not be optimally effective. Rehabilitation is a promising adjunct therapy given the beneficial impact that physical activity and other training modalities can offer. Accordingly, "regenerative rehabilitation" is an emerging concentration of study, with the specific goal of improving positive functional outcomes by enhancing tissue restoration following injury. This article focuses on one emerging example of regenerative rehabilitation-namely, the integration of clinically based protocols with stem cell technologies following central nervous system injury. For the purposes of this review, the state of stem cell technologies for the central nervous system is summarized, and a rationale for a synergistic benefit of carefully orchestrated rehabilitation protocols in conjunction with cellular therapies is provided. An overview of practical steps to increase the involvement of physical therapy in regenerative rehabilitation research also is provided.
Collapse
|
22
|
Hubscher CH, Montgomery LR, Fell JD, Armstrong JE, Poudyal P, Herrity AN, Harkema SJ. Effects of exercise training on urinary tract function after spinal cord injury. Am J Physiol Renal Physiol 2016; 310:F1258-68. [PMID: 26984956 DOI: 10.1152/ajprenal.00557.2015] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 03/09/2016] [Indexed: 02/07/2023] Open
Abstract
Spinal cord injury (SCI) causes dramatic changes in the quality of life, including coping with bladder dysfunction which requires repeated daily and nightly catheterizations. Our laboratory has recently demonstrated in a rat SCI model that repetitive sensory information generated through task-specific stepping and/or loading can improve nonlocomotor functions, including bladder function (Ward PJ, Herrity AN, Smith RR, Willhite A, Harrison BJ, Petruska JC, Harkema SJ, Hubscher CH. J Neurotrauma 31: 819-833, 2014). To target potential underlying mechanisms, the current study included a forelimb-only exercise group to ascertain whether improvements may be attributed to general activity effects that impact target organ-neural interactions or to plasticity of the lumbosacral circuitry that receives convergent somatovisceral inputs. Male Wistar rats received a T9 contusion injury and were randomly assigned to three groups 2 wk postinjury: quadrupedal locomotion, forelimb exercise, or a nontrained group. Throughout the study (including preinjury), all animals were placed in metabolic cages once a week for 24 h to monitor water intake and urine output. Following the 10-wk period of daily 1-h treadmill training, awake cystometry data were collected and bladder and kidney tissue harvested for analysis. Metabolic cage frequency-volume measurements of voiding and cystometry reveal an impact of exercise training on multiple SCI-induced impairments related to various aspects of urinary tract function. Improvements in both the quadrupedal and forelimb-trained groups implicate underlying mechanisms beyond repetitive sensory information from the hindlimbs driving spinal network excitability of the lumbosacral urogenital neural circuitry. Furthermore, the impact of exercise training on the upper urinary tract (kidney) underscores the health benefit of activity-based training on the entire urinary system within the SCI population.
Collapse
Affiliation(s)
- Charles H Hubscher
- Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, Kentucky; Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky;
| | - Lynnette R Montgomery
- Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, Kentucky; Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky
| | - Jason D Fell
- Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, Kentucky
| | - James E Armstrong
- Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, Kentucky
| | - Pradeepa Poudyal
- Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, Kentucky
| | - April N Herrity
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky; Frazier Rehab Institute, University of Louisville, Louisville, Kentucky; and
| | - Susan J Harkema
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky; Frazier Rehab Institute, University of Louisville, Louisville, Kentucky; and Department of Neurological Surgery, University of Louisville, Louisville, Kentucky
| |
Collapse
|
23
|
Duffell LD, Brown GL, Mirbagheri MM. Interventions to Reduce Spasticity and Improve Function in People With Chronic Incomplete Spinal Cord Injury: Distinctions Revealed by Different Analytical Methods. Neurorehabil Neural Repair 2015; 29:566-76. [PMID: 25398727 PMCID: PMC4431959 DOI: 10.1177/1545968314558601] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND Spinal cord injury (SCI) results in impaired function, and ankle joint spasticity is a common secondary complication. Different interventions have been trialed with variable results. OBJECTIVE We investigated the effects of pharmacological and physical (locomotor training) interventions on function in people living with incomplete motor function loss caused by SCI and used different analytical techniques to understand whether functional levels affect recovery with different interventions. METHODS Participants with an incomplete SCI were assigned to 3 groups: no intervention, Lokomat, or tizanidine. Outcome measures were the 10-m walk test, 6-minute walk test, and the Timed Up and Go. Participants were classified in 2 ways: (1) based on achieving an improvement above the minimally important difference (MID) and (2) using growth mixture modeling (GMM). Functional levels of participants who achieved the MID were compared and random coefficient regression (RCR) was used to assess recovery in GMM classes. RESULTS Overall, walking speed and endurance improved, with no difference between interventions. Only a small number of participants achieved the MID. Both MID and GMM-RCR analyses revealed that tizanidine improved endurance in high-functioning participants. GMM-RCR classification also showed that speed and mobility improved after locomotor training. CONCLUSIONS Improvements in function were achieved in a limited number of people with SCI. Using the MID and GMM techniques, differences in responses to interventions between high-and low-functioning participants could be identified. These techniques may, therefore, have potential to be used for characterizing therapeutic effects resulting from different interventions.
Collapse
Affiliation(s)
| | | | - Mehdi M Mirbagheri
- Northwestern University, Chicago, IL, USA Rehabilitation Institute of Chicago, Chicago, IL, USA
| |
Collapse
|
24
|
Magnetic Resonance Assessment of Hypertrophic and Pseudo-Hypertrophic Changes in Lower Leg Muscles of Boys with Duchenne Muscular Dystrophy and Their Relationship to Functional Measurements. PLoS One 2015; 10:e0128915. [PMID: 26103164 PMCID: PMC4477876 DOI: 10.1371/journal.pone.0128915] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 05/01/2015] [Indexed: 11/19/2022] Open
Abstract
Introduction The primary objectives of this study were to evaluate contractile and non-contractile content of lower leg muscles of boys with Duchenne muscular dystrophy (DMD) and determine the relationships between non-contractile content and functional abilities. Methods Lower leg muscles of thirty-two boys with DMD and sixteen age matched unaffected controls were imaged. Non-contractile content, contractile cross sectional area and non-contractile cross sectional area of lower leg muscles (tibialis anterior, extensor digitorum longus, peroneal, medial gastrocnemius and soleus) were assessed by magnetic resonance imaging (MRI). Muscle strength, timed functional tests and the Brooke lower extremity score were also assessed. Results Non-contractile content of lower leg muscles (peroneal, medial gastrocnemius, and soleus) was significantly greater than control group (p<0.05). Non-contractile content of lower leg muscles correlated with Brooke score (rs = 0.64-0.84) and 30 feet walk (rs = 0.66-0.80). Dorsiflexor (DF) and plantarflexor (PF) specific torque was significantly different between the groups. Discussion Overall, non-contractile content of the lower leg muscles was greater in DMD than controls. Furthermore, there was an age dependent increase in contractile content in the medial gastrocnemius of boys with DMD. The findings of this study suggest that T1 weighted MR images can be used to monitor disease progression and provide a quantitative estimate of contractile and non-contractile content of tissue in children with DMD.
Collapse
|
25
|
DiPiro ND, Holthaus KD, Morgan PJ, Embry AE, Perry LA, Bowden MG, Gregory CM. Lower Extremity Strength Is Correlated with Walking Function After Incomplete SCI. Top Spinal Cord Inj Rehabil 2015; 21:133-9. [PMID: 26364282 DOI: 10.1310/sci2102-133] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
BACKGROUND Lower extremity strength has been reported to relate to walking ability, however, the relationship between voluntary lower extremity muscle function as measured by isokinetic dynamometry and walking have not been thoroughly examined in individuals with incomplete spinal cord injury (iSCI). OBJECTIVE To determine the extent to which measures of maximal voluntary isometric contraction (MVIC) and rate of torque development (RTD) in the knee extensor (KE) and plantar flexor (PF) muscle groups correlate with self-selected overground walking speed and spatiotemporal characteristics of walking. METHODS Twenty-two subjects with chronic (>6 months) iSCI participated in a cross-sectional study. Values for MVIC and RTD in the KE and PF muscle groups were determined by isokinetic dynamometry. Walking speed and spatiotemporal characteristics of walking were measured during overground walking. RESULTS MVIC in the KE and PF muscle groups correlated significantly with walking speed. RTD was significantly correlated with walking speed in both muscle groups, the more-involved PF muscle group showing the strongest correlation with walking speed (r = 0.728). RTD in the KE and PF muscle groups of the more-involved limb was significantly correlated with single support time of the more-involved limb. CONCLUSIONS These data demonstrate that lower extremity strength is associated with walking ability after iSCI. Correlations for the muscle groups of the move-involved side were stronger compared to the less-involved limb. In addition, PF function is highlighted as a potential limiting factor to walking speed along with the importance of RTD.
Collapse
Affiliation(s)
- Nicole D DiPiro
- Department of Health Sciences & Research, Medical University of South Carolina, Charleston
| | - Katy D Holthaus
- Department of Health Sciences & Research, Medical University of South Carolina, Charleston.,Ralph H. Johnson VAMC, Charleston, South Carolina
| | - Patrick J Morgan
- Department of Health Sciences & Research, Medical University of South Carolina, Charleston.,Ralph H. Johnson VAMC, Charleston, South Carolina
| | - Aaron E Embry
- Department of Health Sciences & Research, Medical University of South Carolina, Charleston.,Ralph H. Johnson VAMC, Charleston, South Carolina.,Division of Physical Therapy, Medical University of South Carolina, Charleston
| | - Lindsay A Perry
- Department of Health Sciences & Research, Medical University of South Carolina, Charleston.,Ralph H. Johnson VAMC, Charleston, South Carolina.,Division of Physical Therapy, Medical University of South Carolina, Charleston
| | - Mark G Bowden
- Department of Health Sciences & Research, Medical University of South Carolina, Charleston.,Ralph H. Johnson VAMC, Charleston, South Carolina.,Division of Physical Therapy, Medical University of South Carolina, Charleston
| | - Chris M Gregory
- Department of Health Sciences & Research, Medical University of South Carolina, Charleston.,Ralph H. Johnson VAMC, Charleston, South Carolina.,Division of Physical Therapy, Medical University of South Carolina, Charleston
| |
Collapse
|
26
|
Kozlowski AJ, Bryce TN, Dijkers MP. Time and Effort Required by Persons with Spinal Cord Injury to Learn to Use a Powered Exoskeleton for Assisted Walking. Top Spinal Cord Inj Rehabil 2015; 21:110-21. [PMID: 26364280 DOI: 10.1310/sci2102-110] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
BACKGROUND Powered exoskeletons have been demonstrated as being safe for persons with spinal cord injury (SCI), but little is known about how users learn to manage these devices. OBJECTIVE To quantify the time and effort required by persons with SCI to learn to use an exoskeleton for assisted walking. METHODS A convenience sample was enrolled to learn to use the first-generation Ekso powered exoskeleton to walk. Participants were given up to 24 weekly sessions of instruction. Data were collected on assistance level, walking distance and speed, heart rate, perceived exertion, and adverse events. Time and effort was quantified by the number of sessions required for participants to stand up, walk for 30 minutes, and sit down, initially with minimal and subsequently with contact guard assistance. RESULTS Of 22 enrolled participants, 9 screen-failed, and 7 had complete data. All of these 7 were men; 2 had tetraplegia and 5 had motor-complete injuries. Of these, 5 participants could stand, walk, and sit with contact guard or close supervision assistance, and 2 required minimal to moderate assistance. Walk times ranged from 28 to 94 minutes with average speeds ranging from 0.11 to 0.21 m/s. For all participants, heart rate changes and reported perceived exertion were consistent with light to moderate exercise. CONCLUSIONS This study provides preliminary evidence that persons with neurological weakness due to SCI can learn to walk with little or no assistance and light to somewhat hard perceived exertion using a powered exoskeleton. Persons with different severities of injury, including those with motor complete C7 tetraplegia and motor incomplete C4 tetraplegia, may be able to learn to use this device.
Collapse
Affiliation(s)
- Allan J Kozlowski
- Department of Rehabilitation Medicine, Icahn School of Medicine at Mount Sinai, New York New York
| | - Thomas N Bryce
- Department of Rehabilitation Medicine, Icahn School of Medicine at Mount Sinai, New York New York
| | - Marcel P Dijkers
- Department of Rehabilitation Medicine, Icahn School of Medicine at Mount Sinai, New York New York
| |
Collapse
|
27
|
Moore C, Craven B, Thabane L, Laing A, Frank-Wilson A, Kontulainen S, Papaioannou A, Adachi J, Giangregorio L. Lower-extremity muscle atrophy and fat infiltration after chronic spinal cord injury. JOURNAL OF MUSCULOSKELETAL & NEURONAL INTERACTIONS 2015; 15:32-41. [PMID: 25730650 PMCID: PMC5092153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Atrophy and fatty-infiltration of lower-extremity muscle after spinal cord injury (SCI) predisposes individuals to metabolic disease and related mortality. OBJECTIVES To determine the magnitude of atrophy and fatty-infiltration of lower-extremity muscles and related factors in a group of individuals with chronic SCI and diverse impairment. METHODS Muscle cross-sectional area and density were calculated from peripheral quantitative computed tomography scans of the 66% site of the calf of 70 participants with chronic SCI [50 male, mean age 49 (standard deviation 12) years, C2-T12, AIS A-D] and matched controls. Regression models for muscle area and density were formed using 16 potential correlates selected a priori. RESULTS Participants with motor-complete SCI had ≈ 32% lower muscle area, and ≈ 43% lower muscle density values relative to controls. Participants with motor-incomplete SCI had muscle area and density values that were both ≈ 14% lower than controls. Body mass (+), tetraplegia (+), motor function (+), spasticity (+), vigorous physical activity (+), wheelchair use (-), age (-), and waist circumference (-) were associated with muscle size and/or density in best-fit regression models. CONCLUSIONS There are modifiable factors related to muscle size, body composition, and activity level that may offer therapeutic targets for preserving metabolic health after chronic SCI.
Collapse
Affiliation(s)
- C.D. Moore
- Brain and Spinal Cord Rehabilitation Program, Toronto Rehabilitation Institute, University Health Network,Department of Kinesiology, University of Waterloo,Corresponding author: Cameron Moore, Toronto Rehabilitation Institute, University Health Network, 520 Sutherland Drive, Toronto, Ontario, M4G 3V9, Canada E-mail:
| | - B.C. Craven
- Brain and Spinal Cord Rehabilitation Program, Toronto Rehabilitation Institute, University Health Network,Department of Kinesiology, University of Waterloo
| | - L. Thabane
- Department of Clinical Epidemiology and Biostatistics, McMaster University
| | - A.C. Laing
- Department of Kinesiology, University of Waterloo
| | | | | | - A. Papaioannou
- Department of Clinical Epidemiology and Biostatistics, McMaster University,Department of Medicine, McMaster University
| | | | - L.M. Giangregorio
- Brain and Spinal Cord Rehabilitation Program, Toronto Rehabilitation Institute, University Health Network,Department of Kinesiology, University of Waterloo
| |
Collapse
|
28
|
do Espírito Santo CC, Swarowsky A, Recchia TL, Lopes APF, Ilha J. Is body weight-support treadmill training effective in increasing muscle trophism after traumatic spinal cord injury? A systematic review. Spinal Cord 2014; 53:176-181. [PMID: 25403505 DOI: 10.1038/sc.2014.198] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 09/09/2014] [Accepted: 10/08/2014] [Indexed: 11/09/2022]
Abstract
STUDY DESIGN Systematic review. OBJECTIVE To determine the effectiveness of body weight-support treadmill training (BWSTT) for muscle atrophy management in people with spinal cord injury (SCI). SETTING Studies from multiple countries were included. METHODS The following databases were consulted from January to October 2013: PubMed, Institute for Scientific Information (ISI), Science Direct and Lilacs. The methodological quality of the articles included was classified according to Jovell and Navarro-Rubio. RESULTS A total of five studies were included. These studies reported a significant association between BWSTT and increased trophism of the lower limb muscles of humans with SCI, which was observed as an increase in the cross-sectional area. Moreover, improvements in the ability to generate peak torque, contract the knee extensors and ankle plantarflexors with reduction of body weight support were observed after BWSTT. CONCLUSION The results were considered inconclusive because of the low methodological quality of the articles, which was because of the absence of sample homogeneity, thereby providing a low level of evidence for clinical practice.
Collapse
Affiliation(s)
- C C do Espírito Santo
- Programa de Pós-Graduação em Fisioterapia, Centro do Ciências da Saúde e do Esporte, Universidade do Estado de Santa Catarina (UDESC), Florianópolis, Brazil.,Departamento de Fisioterapia, Laboratório de Pesquisa Experimental (LAPEx), Centro de Ciência da Saúde e do Esporte, UDESC, Florianópolis, Brazil
| | - A Swarowsky
- Programa de Pós-Graduação em Fisioterapia, Centro do Ciências da Saúde e do Esporte, Universidade do Estado de Santa Catarina (UDESC), Florianópolis, Brazil.,Departamento de Fisioterapia, Laboratório de Pesquisa Experimental (LAPEx), Centro de Ciência da Saúde e do Esporte, UDESC, Florianópolis, Brazil
| | - T L Recchia
- Departamento de Fisioterapia, Laboratório de Pesquisa Experimental (LAPEx), Centro de Ciência da Saúde e do Esporte, UDESC, Florianópolis, Brazil
| | - A P F Lopes
- Departamento de Fisioterapia, Laboratório de Pesquisa Experimental (LAPEx), Centro de Ciência da Saúde e do Esporte, UDESC, Florianópolis, Brazil
| | - J Ilha
- Programa de Pós-Graduação em Fisioterapia, Centro do Ciências da Saúde e do Esporte, Universidade do Estado de Santa Catarina (UDESC), Florianópolis, Brazil.,Departamento de Fisioterapia, Laboratório de Pesquisa Experimental (LAPEx), Centro de Ciência da Saúde e do Esporte, UDESC, Florianópolis, Brazil
| |
Collapse
|
29
|
Abstract
BACKGROUND AND PURPOSE Step training on a treadmill is a common intervention for adult and pediatric patients with spinal cord injuries (SCI). Treadmill training has not been used as an intervention for infants and toddlers with SCI before walking onset. This case report describes the intervention and stepping behaviors on a treadmill and overground of a toddler after the surgical removal of a rare spinal tumor resulting in SCI. CASE DESCRIPTION The toddler presented with an inability to step on the left, rare stepping on the right, and an apparent lack of sensation in the lower extremities. After spinal tumor excision at 5.5 weeks of age, step training on a treadmill and overground occurred once per week from 15 to 35 months of age in addition to traditional physical therapy. OUTCOMES Independent symmetrical stepping emerged both on and off the treadmill over 20 months. Improvements in the number and pattern of steps occurred with training. Walking speed increased, and milestones important to overground walking developed. DISCUSSION Independent steps developed during the intervention with little motor development of the lower extremities during the first year of life. Furthermore, improvements in stepping alternation, standing, and walking occurred despite no evidence of sensation in the lower extremities.
Collapse
|
30
|
Varoqui D, Niu X, Mirbagheri MM. Ankle voluntary movement enhancement following robotic-assisted locomotor training in spinal cord injury. J Neuroeng Rehabil 2014; 11:46. [PMID: 24684813 PMCID: PMC3974744 DOI: 10.1186/1743-0003-11-46] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 03/24/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In incomplete spinal cord injury (iSCI), sensorimotor impairments result in severe limitations to ambulation. To improve walking capacity, physical therapies using robotic-assisted locomotor devices, such as the Lokomat, have been developed. Following locomotor training, an improvement in gait capabilities-characterized by increases in the over-ground walking speed and endurance-is generally observed in patients. To better understand the mechanisms underlying these improvements, we studied the effects of Lokomat training on impaired ankle voluntary movement, known to be an important limiting factor in gait for iSCI patients. METHODS Fifteen chronic iSCI subjects performed twelve 1-hour sessions of Lokomat training over the course of a month. The voluntary movement was qualified by measuring active range of motion, maximal velocity peak and trajectory smoothness for the spastic ankle during a movement from full plantar-flexion (PF) to full dorsi-flexion (DF) at the patient's maximum speed. Dorsi- and plantar-flexor muscle strength was quantified by isometric maximal voluntary contraction (MVC). Clinical assessments were also performed using the Timed Up and Go (TUG), the 10-meter walk (10MWT) and the 6-minute walk (6MWT) tests. All evaluations were performed both before and after the training and were compared to a control group of fifteen iSCI patients. RESULTS After the Lokomat training, the active range of motion, the maximal velocity, and the movement smoothness were significantly improved in the voluntary movement. Patients also exhibited an improvement in the MVC for their ankle dorsi- and plantar-flexor muscles. In terms of functional activity, we observed an enhancement in the mobility (TUG) and the over-ground gait velocity (10MWT) with training. Correlation tests indicated a significant relationship between ankle voluntary movement performance and the walking clinical assessments. CONCLUSIONS The improvements of the kinematic and kinetic parameters of the ankle voluntary movement, and their correlation with the functional assessments, support the therapeutic effect of robotic-assisted locomotor training on motor impairment in chronic iSCI.
Collapse
Affiliation(s)
- Deborah Varoqui
- Sensory Motor Performance Program, Rehabilitation Institute of Chicago, Chicago, USA
- Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, USA
| | - Xun Niu
- Sensory Motor Performance Program, Rehabilitation Institute of Chicago, Chicago, USA
- Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, USA
| | - Mehdi M Mirbagheri
- Sensory Motor Performance Program, Rehabilitation Institute of Chicago, Chicago, USA
- Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, USA
| |
Collapse
|
31
|
Short-term maximal-intensity resistance training increases volitional function and strength in chronic incomplete spinal cord injury: a pilot study. J Neurol Phys Ther 2014; 37:112-7. [PMID: 23673372 DOI: 10.1097/npt.0b013e31828390a1] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND AND PURPOSE Recent research shows that individuals with an incomplete spinal cord injury (SCI) have a reserve of force-generating capability that is observable during repeated intermittent maximal volitional effort contractions. Previous studies suggest that increased neural drive contributes to the enhanced short-term force-generating capabilities. Whether this reserve can be harnessed with repeated training is unclear. The purpose of this pilot study was to investigate the effects of 4 weeks of maximal-intensity resistance training, compared with conventional progressive resistance training, on lower extremity function and strength in chronic incomplete SCI. METHODS Using a randomized crossover design, 5 individuals with chronic (> 1 year postinjury) SCI American Spinal Injury Association Impairment Scale classification C or D were tested before and after 4 weeks of both maximal-intensity training and progressive resistance training paradigms. Outcomes measures included the 6-Minute Walk Test, the Berg Balance Scale, and peak isometric torque for strength of lower extremity muscles. RESULTS Maximal-intensity resistance training was associated with an average increase of 12.19 ± 8.29 m on the 6-Minute Walk Test, 4 ± 1.9 points on the Berg Balance Scale, 4 ± 4.5 points on the lower extremity motor score), while no changes on the above scores were seen with conventional training. Furthermore, significant increases in peak volitional isometric torques (mean increase = 20 ± 8 Nm) were observed following maximal-intensity resistance training when compared with conventional training (mean increase = 0.12 ± 3 Nm, P = 0.03). DISCUSSION AND CONCLUSIONS Maximal-intensity training paradigm may facilitate rapid gains in volitional function and strength in persons with chronic motor-incomplete SCI, using a simple short-term training paradigm.
Collapse
|
32
|
Dutra CMR, Dutra CMR, Moser ADDL, Manffra EF. Treino locomotor com suporte parcial de peso corporal na reabilitação da lesão medular: revisão da literatura. FISIOTERAPIA EM MOVIMENTO 2013. [DOI: 10.1590/s0103-51502013000400019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
INTRODUÇÃO: O treino locomotor com suporte de peso corporal (TLSP) é utilizado há aproximadamente 20 anos no campo da reabilitação em pacientes que sofrem de patologias neurológicas. O TLSP favorece melhoras osteomusculares, cardiovasculares e psicológicas, pois desenvolve ao máximo o potencial residual do organismo, proporcionando a reintegração na convivência familiar, profissional e social. OBJETIVO: Identificar as principais modalidades de TLSP e seus parâmetros de avaliação com a finalidade de contribuir com o estabelecimento de evidências confiáveis para as práticas reabilitativas de pessoas com lesão medular. MATERIAIS E MÉTODOS: Foram analisados artigos originais, publicados entre 2000 e 2011, que envolvessem treino de marcha após a lesão medular, com ou sem suporte parcial de peso corporal, e tecnologias na assistência do treino, como biofeedback e estimulação elétrica funcional, entre outras. RESULTADOS: A maioria dos participantes dos estudos era do sexo masculino; os níveis de lesão variavam de C3 a L3; ASIA teve pontuações de A a D; os tempos de lesão variaram entre 0,3 meses a 33 anos. Também se verificou que não há consenso em relação ao protocolo de TLSP. CONCLUSÃO: O treino locomotor com suporte de peso corporal mostra-se viável na reabilitação de pacientes que sofrem de uma patologia neurológica como a lesão medular. Independentemente do protocolo de treino utilizado, os benefícios referentes ao aumento da força muscular, manutenção ou aumento da densidade óssea, diminuição da frequência cardíaca e aumento do condicionamento físico estão presentes
Collapse
|
33
|
Labruyère R, Zimmerli M, van Hedel HJ. Slowed Down: Response Time Deficits in Well-Recovered Subjects With Incomplete Spinal Cord Injury. Arch Phys Med Rehabil 2013; 94:2020-6. [DOI: 10.1016/j.apmr.2013.04.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 03/28/2013] [Accepted: 04/04/2013] [Indexed: 10/26/2022]
|
34
|
Harkema SJ, Hillyer J, Schmidt-Read M, Ardolino E, Sisto SA, Behrman AL. Locomotor training: as a treatment of spinal cord injury and in the progression of neurologic rehabilitation. Arch Phys Med Rehabil 2012; 93:1588-97. [PMID: 22920456 DOI: 10.1016/j.apmr.2012.04.032] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Revised: 03/28/2012] [Accepted: 04/12/2012] [Indexed: 12/14/2022]
Abstract
Scientists, clinicians, administrators, individuals with spinal cord injury (SCI), and caregivers seek a common goal: to improve the outlook and general expectations of the adults and children living with neurologic injury. Important strides have already been accomplished; in fact, some have labeled the changes in neurologic rehabilitation a "paradigm shift." Not only do we recognize the potential of the damaged nervous system, but we also see that "recovery" can and should be valued and defined broadly. Quality-of-life measures and the individual's sense of accomplishment and well-being are now considered important factors. The ongoing challenge from research to clinical translation is the fine line between scientific uncertainty (ie, the tenet that nothing is ever proven) and the necessary burden of proof required by the clinical community. We review the current state of a specific SCI rehabilitation intervention (locomotor training), which has been shown to be efficacious although thoroughly debated, and summarize the findings from a multicenter collaboration, the Christopher and Dana Reeve Foundation's NeuroRecovery Network.
Collapse
Affiliation(s)
- Susan J Harkema
- Department of Neurological Surgery, Kentucky Spinal Cord Research Center, University of Louisville, Louisville, KY, USA.
| | | | | | | | | | | |
Collapse
|
35
|
Roy RR, Harkema SJ, Edgerton VR. Basic concepts of activity-based interventions for improved recovery of motor function after spinal cord injury. Arch Phys Med Rehabil 2012; 93:1487-97. [PMID: 22920448 DOI: 10.1016/j.apmr.2012.04.034] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2011] [Revised: 03/29/2012] [Accepted: 04/12/2012] [Indexed: 01/22/2023]
Abstract
Spinal cord injury (SCI) is a devastating condition that affects a large number of individuals. Historically, the recovery process after an SCI has been slow and with limited success. Recently, a number of advances have been made in the strategies used for rehabilitation, resulting in marked improved recovery, even after a complete SCI. Several rehabilitative interventions, that is, assisted motor training, spinal cord epidural stimulation, and/or administration of pharmacologic agents, alone or in combination, have produced remarkable recovery in motor function in both humans and animals. The success with each of these interventions appears to be related to the fact that the spinal cord is smart, in that it can use ensembles of sensory information to generate appropriate motor responses without input from supraspinal centers, a property commonly referred to as central pattern generation. This ability of the spinal cord reflects a level of automaticity, that is, the ability of the neural circuitry of the spinal cord to interpret complex sensory information and to make appropriate decisions to generate successful postural and locomotor tasks. Herein, we provide a brief review of some of the neurophysiologic rationale for the success of these interventions.
Collapse
Affiliation(s)
- Roland R Roy
- Department of Integrative Biology and Physiology and the Brain Research Institute, University of California, Los Angeles, CA, USA
| | | | | |
Collapse
|
36
|
|
37
|
Harkema SJ, Schmidt-Read M, Behrman AL, Bratta A, Sisto SA, Edgerton VR. Establishing the NeuroRecovery Network: Multisite Rehabilitation Centers That Provide Activity-Based Therapies and Assessments for Neurologic Disorders. Arch Phys Med Rehabil 2012; 93:1498-507. [DOI: 10.1016/j.apmr.2011.01.023] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Revised: 12/08/2010] [Accepted: 01/06/2011] [Indexed: 11/24/2022]
|
38
|
Alexeeva N, Sames C, Jacobs PL, Hobday L, Distasio MM, Mitchell SA, Calancie B. Comparison of training methods to improve walking in persons with chronic spinal cord injury: a randomized clinical trial. J Spinal Cord Med 2011; 34:362-79. [PMID: 21903010 PMCID: PMC3152808 DOI: 10.1179/2045772311y.0000000018] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
OBJECTIVE To compare two forms of device-specific training - body-weight-supported (BWS) ambulation on a fixed track (TRK) and BWS ambulation on a treadmill (TM) - to comprehensive physical therapy (PT) for improving walking speed in persons with chronic, motor-incomplete spinal cord injury (SCI). METHODS Thirty-five adult subjects with a history of chronic SCI (>1 year; AIS 'C' or 'D') participated in a 13-week (1 hour/day; 3 days per week) training program. Subjects were randomized into one of the three training groups. Subjects in the two BWS groups trained without the benefit of additional input from a physical therapist or gait expert. For each training session, performance values and heart rate were monitored. Pre- and post-training maximal 10-m walking speed, balance, muscle strength, fitness, and quality of life were assessed in each subject. RESULTS All three training groups showed significant improvement in maximal walking speed, muscle strength, and psychological well-being. A significant improvement in balance was seen for PT and TRK groups but not for subjects in the TM group. In all groups, post-training measures of fitness, functional independence, and perceived health and vitality were unchanged. CONCLUSIONS Our results demonstrate that persons with chronic, motor-incomplete SCI can improve walking ability and psychological well-being following a concentrated period of ambulation therapy, regardless of training method. Improvement in walking speed was associated with improved balance and muscle strength. In spite of the fact that we withheld any formal input of a physical therapist or gait expert from subjects in the device-specific training groups, these subjects did just as well as subjects receiving comprehensive PT for improving walking speed and strength. It is likely that further modest benefits would accrue to those subjects receiving a combination of device-specific training with input from a physical therapist or gait expert to guide that training.
Collapse
|
39
|
The effects of exercise training on physical capacity, strength, body composition and functional performance among adults with spinal cord injury: a systematic review. Spinal Cord 2011; 49:1103-27. [DOI: 10.1038/sc.2011.62] [Citation(s) in RCA: 205] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
40
|
Leahy TE. Impact of a limited trial of walking training using body weight support and a treadmill on the gait characteristics of an individual with chronic, incomplete spinal cord injury. Physiother Theory Pract 2011; 26:483-9. [PMID: 20649496 DOI: 10.3109/09593980903580225] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Studies showing improvement in locomotor ability for individuals with chronic spinal cord injury (SCI) use training times that may be prohibitive for clinics. The purpose of this study was to examine the impact of a limited period of training on the gait characteristics of a man with chronic, incomplete SCI. The participant was a minimally ambulatory 59-year-old man almost 3 years post C(3) central cord injury with an ASIA Impairment Scale (AIS) classification of C. The participant received 11 training sessions using body weight support and a treadmill (BWST) over a 6-week period. The Six Minute Walk Test (6 MWT), and gait characteristics measured with motion analysis were obtained pretraining and posttraining. The participant made improvements on all measured gait characteristics. The participant's walking speed and comfort level on the treadmill improved enough for him to use community resources. This participant was able to make improvements in his gait with a much shorter training time period than those reported in previous locomotor training studies. Although this man did not obtain community ambulation status, his decreased dependence on his power chair at home and his new ability to use an available treadmill allow for continued walking practice outside the clinic.
Collapse
Affiliation(s)
- Theresa E Leahy
- Department of Physical Therapy, Langston University, Langston, Oklahoma 73050, USA.
| |
Collapse
|
41
|
Using robot-applied resistance to augment body-weight-supported treadmill training in an individual with incomplete spinal cord injury. Phys Ther 2011; 91:143-51. [PMID: 21127165 DOI: 10.2522/ptj.20100026] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND AND PURPOSE The efficacy of task-specific gait training for people with spinal cord injury (SCI) is premised on evidence that the provision of gait-related afferent feedback is key for the recovery of stepping movements. Recent findings have shown that sensory feedback from flexor muscle afferents can facilitate flexor muscle activity during the swing phase of walking. This case report was undertaken to determine the feasibility of using robot-applied forces to resist leg movements during body-weight-supported treadmill training (BWSTT) and to measure its effect on gait and other health-related outcomes. CASE DESCRIPTION The patient described in this case report was a 43-year-old man with a T11 incomplete chronic SCI. He underwent 36 sessions of BWSTT using a robotic gait orthosis to provide forces that resist hip and knee flexion. OUTCOMES Tolerance to the training program was monitored using the Borg CR10 scale and heart rate and blood pressure changes during each training session. Outcome measures (ie, 10-Meter Walk Test, Six-Minute Walk Test, modified Emory Functional Ambulation Profile [mEFAP], Activities-specific Balance Confidence Scale, and Canadian Occupational Performance Measure) were completed and kinematic parameters of gait, lower-extremity muscle strength (force-generating capacity), lower-limb girth, and tolerance to orthostatic stress were measured before and after the training program. DISCUSSION The patient could tolerate the training. Overground walking speed, endurance, and performance on all subtasks of the mEFAP improved and were accompanied by increased lower-limb joint flexion and toe clearance during gait. The patient's ambulatory self-confidence and self-perceived performance in walking also improved. These findings suggest that this new approach to BWSTT is a feasible and potentially effective therapy for improving skilled overground walking performance.
Collapse
|
42
|
|
43
|
Krishnan C, Allen EJ, Williams GN. Torque-based triggering improves stimulus timing precision in activation tests. Muscle Nerve 2009; 40:130-3. [PMID: 19533648 DOI: 10.1002/mus.21279] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The aim of this study was to assess whether automated torque-based stimulator triggering could improve precision in delivering stimuli near peak torque during voluntary activation tests. The quadriceps activation test was used as a test model in 11 volunteers. Automated torque-based triggering reduced stimulus delivery timing errors by 75% when compared with conventional automated time-based triggering. Torque-based stimulator triggering is recommended as an alternative to automated time-based triggering in voluntary activation tests, as it improves stimulus timing precision and thereby reduces measurement error.
Collapse
Affiliation(s)
- Chandramouli Krishnan
- Graduate Program in Physical Therapy and Rehabilitation Science, Musculoskeletal Biomechanics and Sports Medicine Research Laboratory, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242-1190, USA
| | | | | |
Collapse
|