1
|
Migliorini F, Pilone M, Eschweiler J, Katusic D, Memminger MK, Maffulli N. Therapeutic strategies that modulate the acute phase of secondary spinal cord injury scarring and inflammation and improve injury outcomes. Expert Rev Neurother 2025; 25:477-490. [PMID: 40042224 DOI: 10.1080/14737175.2025.2470326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Accepted: 02/18/2025] [Indexed: 04/02/2025]
Abstract
INTRODUCTION The acute phase of secondary spinal cord injury (SCI) is a crucial therapeutic window to mitigate ongoing damage and promote tissue repair. The present systematic review critically evaluates the efficacy and safety of current management modalities for this phase, identifying gaps in knowledge and providing insights for future research directions. METHODS In December 2024, PubMed, Web of Science, Google Scholar, and Embase were accessed with no time constraints. All the clinical studies investigating the pharmacological management of secondary SCI were accessed. RESULTS Data from 3017 patients (385 women) were collected. The mean length of the follow-up was 6 ± 3.4 months, and the mean age of the patients was 43.3 ± 10.3 years. CONCLUSION Erythropoietin (EPO) improves motor function, reduces impairment in secondary spinal cord injury, modulates antioxidation and neurogenesis, and minimizes apoptosis and inflammation. Although commonly administered, methylprednisolone shows uncertain efficacy. The rho-GTPases inhibitor VX-210 and levetiracetam did not demonstrate effectiveness in treatment. Monosialotetrahexosylganglioside Sodium Salt (GM-1) and riluzole are associated with favorable neurological outcomes. Granulocyte Colony-Stimulating Factor (G-CSF) and Hepatocyte Growth Factor (HGF) offer improved motor scores with fewer side effects.
Collapse
Affiliation(s)
- Filippo Migliorini
- Department of Life Sciences, Health, and Health Professions, Link Campus University, Rome, Italy
- Department of Orthopaedic and Trauma Surgery, Academic Hospital of Bolzano (SABES-ASDAA), Bolzano, Italy
| | - Marco Pilone
- Residency Program in Orthopaedic and Trauma Surgery, University of Milan, Milan, Italy
| | - Jörg Eschweiler
- Department of Orthopaedic and Trauma Surgery, BG Klinikum Bergmannstrost Halle, Halle, Germany
| | - Dragana Katusic
- Department of Orthopaedic and Trauma Surgery, Academic Hospital of Bolzano (SABES-ASDAA), Bolzano, Italy
| | - Michael Kurt Memminger
- Department of Orthopaedic and Trauma Surgery, Academic Hospital of Bolzano (SABES-ASDAA), Bolzano, Italy
| | - Nicola Maffulli
- Department of Trauma and Orthopaedic Surgery, Faculty of Medicine and Psychology, University La Sapienza, Roma, Italy
- School of Pharmacy and Bioengineering, Keele University Faculty of Medicine, Stoke on Trent, UK
- Centre for Sports and Exercise Medicine, Barts and the London School of Medicine and Dentistry, Mile End Hospital, Queen Mary University of London, London, UK
| |
Collapse
|
2
|
Hertig-Godeschalk A, Sailer CO, Perret C, Lehnick D, Scheel-Sailer A, Flueck JL. 25-Hydroxyvitamin D Levels and Vitamin D3 Supplementation During Postacute Spinal Cord Injury Rehabilitation. Top Spinal Cord Inj Rehabil 2024; 30:24-34. [PMID: 39619824 PMCID: PMC11603107 DOI: 10.46292/sci24-00024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2024]
Abstract
Background Insufficient 25-hydroxyvitamin D [25(OH)D] levels are associated with falls, fractures, and worse overall health outcomes. We evaluated 25(OH)D levels in individuals with spinal cord injury or disorder (SCI/D) during postacute rehabilitation who received vitamin D3 supplementation according to routine clinical practice. Associations with clinical outcomes were also assessed. Methods This prospective observational cohort study included individuals aged 18 to 85 years with newly acquired SCI/D admitted for inpatient rehabilitation to a specialized center. The following parameters were collected monthly from admission to discharge as part of the clinical routine: serum 25(OH)D, vitamin D3 supplementation, pressure injuries, bed rest, and falls. 25(OH)D levels were categorized as insufficient (≤75 nmol/L) or sufficient (>75 nmol/L). Descriptive statistics and group comparisons were performed. Results Eighty-seven patients (25 [29%] females, median age 53 [IQR 39-67] years) were included and followed for 186 (163-205) days. The proportion of patients with a sufficient 25(OH)D level increased from 8% (95% CI, 3-16) to 61% (95% CI, 50-71) (p < .001). Ninety-two percent of patients received vitamin D3 (1100 [1000-2000] IU/day). No differences in 25(OH)D levels or supplementation doses were found for the occurrence of pressure injuries, bed rest, or falls. Conclusion This is the first study to examine 25(OH)D levels and vitamin D3 supplementation during postacute SCI/D rehabilitation. Insufficient 25(OH)D levels were prevalent throughout rehabilitation. For some patients, the doses of vitamin D3 used in current clinical practice may be too low to achieve sufficient 25(OH)D levels. Regular monitoring of 25(OH)D levels and individualized supplementation strategies are warranted.
Collapse
Affiliation(s)
| | - Clara O. Sailer
- Department of Endocrinology, Diabetology and Metabolism, University Hospital Basel, Basel, Switzerland
- Department of Clinical Research, University of Basel, Basel, Switzerland
| | - Claudio Perret
- Swiss Paraplegic Research, Nottwil, Switzerland
- Faculty of Health Sciences and Medicine, University of Lucerne, Lucerne, Switzerland
| | - Dirk Lehnick
- Faculty of Health Sciences and Medicine, University of Lucerne, Lucerne, Switzerland
- Clinical Trial Unit Central Switzerland, University of Lucerne, Lucerne, Switzerland
| | - Anke Scheel-Sailer
- Faculty of Health Sciences and Medicine, University of Lucerne, Lucerne, Switzerland
- Department of Rehabilitation, Swiss Paraplegic Centre Nottwil, Nottwil, Switzerland
| | - Joelle L. Flueck
- Institute of Sports Medicine, Swiss Paraplegic Centre Nottwil, Nottwil, Switzerland
| |
Collapse
|
3
|
Bourguignon L, Lukas LP, Kondiles BR, Tong B, Lee JJ, Gomes T, Tetzlaff W, Kramer JLK, Walter M, Jutzeler CR. Impact of commonly administered drugs on the progression of spinal cord injury: a systematic review. COMMUNICATIONS MEDICINE 2024; 4:213. [PMID: 39448737 PMCID: PMC11502874 DOI: 10.1038/s43856-024-00638-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 10/09/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND Complications arising from acute traumatic spinal cord injury (SCI) are routinely managed by various pharmacological interventions. Despite decades of clinical application, the potential impact on neurological recovery has been largely overlooked. This study aims to highlight commonly administered drugs with potential disease-modifying effects. METHODS This systematic literature review included studies referenced in PubMed, Scopus and Web of Science from inception to March 31st, 2021, which assess disease-modifying properties on neurological and/or functional recovery of drugs routinely administered following spinal cord injury. Drug effects were classified as positive, negative, mixed, no effect, or not (statistically) reported. Risk of bias was assessed separately for animal, randomized clinical trials, and observational human studies. RESULTS We analyzed 394 studies conducting 486 experiments that evaluated 144 unique or combinations of drugs. 195 of the 464 experiments conducted on animals (42%) and one study in humans demonstrate positive disease-modifying properties on neurological and/or functional outcomes. Methylprednisolone, melatonin, estradiol, and atorvastatin are the most common drugs associated with positive effects. Two studies on morphine and ethanol report negative effects on recovery. CONCLUSION Despite a large heterogeneity observed in study protocols, research from bed to bench and back to bedside provides an alternative approach to identify new candidate drugs in the context of SCI. Future research in human populations is warranted to determine if introducing drugs like melatonin, estradiol, or atorvastatin would contribute to enhancing neurological outcomes after acute SCI.
Collapse
Affiliation(s)
- Lucie Bourguignon
- Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland.
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland.
- Schulthess Klinik, Zurich, Switzerland.
| | - Louis P Lukas
- Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland.
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland.
- Schulthess Klinik, Zurich, Switzerland.
| | - Bethany R Kondiles
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, BC, Canada
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| | - Bobo Tong
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, BC, Canada
| | - Jaimie J Lee
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, BC, Canada
| | - Tomás Gomes
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Wolfram Tetzlaff
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, BC, Canada
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| | - John L K Kramer
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, BC, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
- Department of Anesthesiology, Pharmacology, and Therapeutics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Matthias Walter
- Department of Urology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Catherine R Jutzeler
- Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Schulthess Klinik, Zurich, Switzerland
| |
Collapse
|
4
|
Zeller SL, Stein A, Frid I, Carpenter AB, Soldozy S, Rawanduzy C, Rosenberg J, Bauerschmidt A, Al-Mufti F, Mayer SA, Kinon MD, Wainwright JV. Critical Care of Spinal Cord Injury. Curr Neurol Neurosci Rep 2024; 24:355-363. [PMID: 39008022 DOI: 10.1007/s11910-024-01357-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2024] [Indexed: 07/16/2024]
Abstract
PURPOSE OF REVIEW Spinal cord injury (SCI) is a major cause of morbidity and mortality, posing a significant financial burden on patients and the healthcare system. While little can be done to reverse the primary mechanical insult, minimizing secondary injury due to ischemia and inflammation and avoiding complications that adversely affect neurologic outcome represent major goals of management. This article reviews important considerations in the acute critical care management of SCI to improve outcomes. RECENT FINDINGS Neuroprotective agents, such as riluzole, may allow for improved neurologic recovery but require further investigation at this time. Various forms of neuromodulation, such as transcranial magnetic stimulation, are currently under investigation. Early decompression and stabilization of SCI is recommended within 24 h of injury when indicated. Spinal cord perfusion may be optimized with a mean arterial pressure goal from a lower limit of 75-80 to an upper limit of 90-95 mmHg for 3-7 days after injury. The use of corticosteroids remains controversial; however, initiation of a 24-h infusion of methylprednisolone 5.4 mg/kg/hour within 8 h of injury has been found to improve motor scores. Attentive pulmonary and urologic care along with early mobilization can reduce in-hospital complications.
Collapse
Affiliation(s)
- Sabrina L Zeller
- Department of Neurosurgery, Westchester Medical Center, Valhalla, NY, USA
- Department of Neurosurgery, New York Medical College, Valhalla, NY, USA
| | - Alan Stein
- Department of Neurosurgery, Westchester Medical Center, Valhalla, NY, USA
- Department of Neurosurgery, New York Medical College, Valhalla, NY, USA
| | - Ilya Frid
- Department of Neurosurgery, Westchester Medical Center, Valhalla, NY, USA
- Department of Neurosurgery, New York Medical College, Valhalla, NY, USA
| | - Austin B Carpenter
- Department of Neurosurgery, Westchester Medical Center, Valhalla, NY, USA
- Department of Neurosurgery, New York Medical College, Valhalla, NY, USA
| | - Sauson Soldozy
- Department of Neurosurgery, Westchester Medical Center, Valhalla, NY, USA
- Department of Neurosurgery, New York Medical College, Valhalla, NY, USA
| | - Cameron Rawanduzy
- Department of Neurosurgery, Westchester Medical Center, Valhalla, NY, USA
- Department of Neurosurgery, New York Medical College, Valhalla, NY, USA
| | - Jon Rosenberg
- Department of Neurosurgery, Westchester Medical Center, Valhalla, NY, USA
- Department of Neurosurgery, New York Medical College, Valhalla, NY, USA
| | - Andrew Bauerschmidt
- Department of Neurosurgery, Westchester Medical Center, Valhalla, NY, USA
- Department of Neurosurgery, New York Medical College, Valhalla, NY, USA
| | - Fawaz Al-Mufti
- Department of Neurosurgery, Westchester Medical Center, Valhalla, NY, USA
- Department of Neurosurgery, New York Medical College, Valhalla, NY, USA
| | - Stephan A Mayer
- Department of Neurosurgery, Westchester Medical Center, Valhalla, NY, USA
- Department of Neurosurgery, New York Medical College, Valhalla, NY, USA
| | - Merritt D Kinon
- Department of Neurosurgery, Westchester Medical Center, Valhalla, NY, USA
- Department of Neurosurgery, New York Medical College, Valhalla, NY, USA
- Department of Orthopedic Surgery, New York Medical College, 100 Woods Road, Valhalla, NY, 10595, USA
| | - John V Wainwright
- Department of Neurosurgery, Westchester Medical Center, Valhalla, NY, USA.
- Department of Neurosurgery, New York Medical College, Valhalla, NY, USA.
- Department of Orthopedic Surgery, New York Medical College, 100 Woods Road, Valhalla, NY, 10595, USA.
| |
Collapse
|
5
|
Nasirzadeh S, Hamidi GA, Banafshe HR, Tehrani MN, Shabani M, Abed A. The mutual effect of progesterone and vitamin D in an animal model of peripheral nerve injury. Res Pharm Sci 2024; 19:415-424. [PMID: 39399728 PMCID: PMC11468167 DOI: 10.4103/rps.rps_18_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 06/17/2023] [Accepted: 12/16/2023] [Indexed: 10/15/2024] Open
Abstract
Background and purpose Experimental and clinical studies have shown the potential role of progesterone in relieving neural injury. In addition, emerging data on vitamin D, a steroid hormone, have shown its neuroprotective properties. This study was designed to evaluate the mutual effect of vitamin D and progesterone on neuropathic pain (NP) in male rats. Experimental approach Chronic constriction injury (CCI) was induced by inserting four ligatures around the sciatic nerve. Hyperalgesia and allodynia (cold and mechanical) were considered positive behavioral scores of NP. After surgery, Sprague Dawley male rats (weighing 200-250 g) were assigned into 7 groups. Vitamin D (250 and 500 units/kg/day, i.p.) and progesterone (4 and 6 mg/kg/day, i.p.) were injected from the 1st day after CCI which continued for 21 days. Moreover, one group received the co-administration of vitamin D (500 units/kg/day, i.p.) and progesterone (6 mg/kg/day, i.p.) from the 1st day until the 21st post-CCI day. Behavioral tests were performed on the 7th, 14th, and 21st days. Findings/Results Daily supplementation with vitamin D (250 and 500 units/kg) did not alter nociception. Progesterone (4 and 6 mg/kg/day) was ineffective on thermal hyperalgesia. In the allodynia test, progesterone significantly decreased pain-related behaviors. The co-administration of vitamin D (500 units/kg/day) with progesterone (6 mg/kg/day) significantly relieved thermal hyperalgesia. Finally, the combination significantly decreased cold and mechanical allodynia. Conclusion and implications This study showed the mutual effect of progesterone and vitamin D on NP for the first time. Hyperalgesia and allodynia were significantly relieved following co-administration of vitamin D and progesterone.
Collapse
Affiliation(s)
- Sedighe Nasirzadeh
- Physiology Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R. Iran
| | - Gholam Ali Hamidi
- Physiology Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R. Iran
| | - Hamid Reza Banafshe
- Physiology Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R. Iran
| | - Monireh Naderi Tehrani
- Physiology Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R. Iran
| | - Mohammad Shabani
- Physiology Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R. Iran
| | - Alireza Abed
- Physiology Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R. Iran
| |
Collapse
|
6
|
Oughourlian TC, Rizvi S, Wang C, Kostiuk A, Salamon N, Holly LT, Ellingson BM. Sex-specific alterations in functional connectivity and network topology in patients with degenerative cervical myelopathy. Sci Rep 2024; 14:16020. [PMID: 38992236 PMCID: PMC11239916 DOI: 10.1038/s41598-024-67084-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 07/08/2024] [Indexed: 07/13/2024] Open
Abstract
Patients with degenerative cervical myelopathy (DCM) experience structural and functional brain reorganization. However, few studies have investigated the influence of sex on cerebral alterations. The present study investigates the role of sex on brain functional connectivity (FC) and global network topology in DCM and healthy controls (HCs). The resting-state functional MRI data was acquired for 100 patients (58 males vs. 42 females). ROI-to-ROI FC and network topological features were characterized for each patient and HC. Group differences in FC and network topological features were examined. Compared to healthy counterparts, DCM males exhibited higher FC between vision-related brain regions, and cerebellum, brainstem, and thalamus, but lower FC between the intracalcarine cortex and frontal and somatosensory cortices, while DCM females demonstrated higher FC between the thalamus and cerebellar and sensorimotor regions, but lower FC between sensorimotor and visual regions. DCM males displayed higher FC within the cerebellum and between the posterior cingulate cortex (PCC) and vision-related regions, while DCM females displayed higher FC between frontal regions and the PCC, cerebellum, and visual regions. Additionally, DCM males displayed significantly greater intra-network connectivity and efficiency compared to healthy counterparts. Results from the present study imply sex-specific supraspinal functional alterations occur in patients with DCM.
Collapse
Affiliation(s)
- Talia C Oughourlian
- UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, 924 Westwood Blvd, Suite 615, Los Angeles, CA, 90024, USA
- Neuroscience Interdepartmental Graduate Program, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Shan Rizvi
- UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Neuroscience Undergraduate Interdepartmental Program, College of Life Sciences, University of California Los Angeles, Los Angeles, CA, USA
| | - Chencai Wang
- UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, 924 Westwood Blvd, Suite 615, Los Angeles, CA, 90024, USA
| | - Alex Kostiuk
- UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, 924 Westwood Blvd, Suite 615, Los Angeles, CA, 90024, USA
- Neuroscience Interdepartmental Graduate Program, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Noriko Salamon
- Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, 924 Westwood Blvd, Suite 615, Los Angeles, CA, 90024, USA
| | - Langston T Holly
- Department of Neurosurgery, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Benjamin M Ellingson
- UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.
- Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, 924 Westwood Blvd, Suite 615, Los Angeles, CA, 90024, USA.
- Neuroscience Interdepartmental Graduate Program, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
7
|
Abbaszadeh F, Javadpour P, Mousavi Nasab MM, Jorjani M. The Role of Vitamins in Spinal Cord Injury: Mechanisms and Benefits. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2024; 2024:4293391. [PMID: 38938696 PMCID: PMC11211004 DOI: 10.1155/2024/4293391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/18/2024] [Accepted: 06/06/2024] [Indexed: 06/29/2024]
Abstract
Spinal cord injury (SCI) is a common neurological disease worldwide, often resulting in a substantial decrease in quality of life, disability, and in severe cases, even death. Unfortunately, there is currently no effective treatment for this disease. Nevertheless, current basic and clinical evidence suggests that vitamins, with their antioxidant properties and biological functions, may play a valuable role in improving the quality of life for individuals with SCI. They can promote overall health and facilitate the healing process. In this review, we discuss the mechanisms and therapeutic potential of vitamins in the treatment of SCI.
Collapse
Affiliation(s)
- Fatemeh Abbaszadeh
- Neurobiology Research CenterShahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Pegah Javadpour
- Neuroscience Research CenterShahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Masoumeh Jorjani
- Neurobiology Research CenterShahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of PharmacologySchool of MedicineShahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Serag I, Abouzid M, Elmoghazy A, Sarhan K, Alsaad SA, Mohamed RG. An updated systematic review of neuroprotective agents in the treatment of spinal cord injury. Neurosurg Rev 2024; 47:132. [PMID: 38546884 DOI: 10.1007/s10143-024-02372-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 01/03/2024] [Accepted: 03/24/2024] [Indexed: 04/02/2024]
Abstract
This systematic review aims to summarize the findings from all clinical randomized trials assessing the efficacy of potential neuroprotective agents in influencing the outcomes of acute spinal cord injuries (SCI). Following the PRISMA guidelines, we conducted comprehensive searches in four electronic databases (PubMed, Scopus, Cochrane Library, and Web of Science) up to September 5th, 2023. Our analysis included a total of 30 studies. We examined the effects of 15 substances/drugs: methylprednisolone, tirilazad mesylate, erythropoietin, nimodipine, naloxone, Sygen, Rho protein antagonist, granulocyte colony-stimulating factor, autologous macrophages, autologous bone marrow cells, vitamin D, progesterone, riluzole, minocycline, and blood alcohol concentration. Notable improvements in neurological outcomes were observed with progesterone plus vitamin D and granulocyte colony-stimulating factor. In contrast, results for methylprednisolone, erythropoietin, Sygen, Rho Protein, and Riluzole were inconclusive, primarily due to insufficient sample size or outdated evidence. No significant differences were found in the remaining evaluated drugs. Progesterone plus vitamin D, granulocyte colony-stimulating factor, methylprednisolone, Sygen, Rho Protein, and Riluzole may enhance neurological outcomes in acute SCI cases. It is worth noting that different endpoints or additional subgroup analyses may potentially alter the conclusions of individual trials. Therefore, certain SCI grades may benefit more from these treatments than others, while the overall results may remain inconclusive.
Collapse
Affiliation(s)
- Ibrahim Serag
- Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Mohamed Abouzid
- Department of Physical Pharmacy and Pharmacokinetics, Faculty of Pharmacy, Poznan University of Medical Sciences, Rokietnicka 3 St, 60-806, Poznan, Poland.
- Doctoral School, Poznan University of Medical Sciences, 60-812, Poznan, Poland.
| | | | - Khalid Sarhan
- Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | | | - Rashad G Mohamed
- Mansoura Manchester Program for Medical Education, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
9
|
Pedroza-García KA, Careaga-Cárdenas G, Díaz-Galindo C, Quintanar JL, Hernández-Jasso I, Ramírez-Orozco RE. Bioactive role of vitamins as a key modulator of oxidative stress, cellular damage and comorbidities associated with spinal cord injury (SCI). Nutr Neurosci 2023; 26:1120-1137. [PMID: 36537581 DOI: 10.1080/1028415x.2022.2133842] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Introduction: Spinal cord injury (SCI) cause significant disability and impact the quality of life of those affected by it. The nutritional status and diet are fundamental to diminish the progression of complications; vitamins modulate the inflammatory response and oxidative stress, promote blood-spinal cord barrier preservation and the prompt recovery of homeostasis. A deep knowledge of the benefits achieved from vitamins in patients with SCI are summarized. Information of dosage, time, and effects of vitamins in these patients are also displayed. Vitamins have been extensively investigated; however, more clinical trials are needed to clarify the scope of vitamin supplementation.Objective: The objective of this review was to offer relevant therapeutic information based on vitamins supplementation for SCI patients.Methods: Basic and clinical studies that have implemented the use of vitamins in SCI were considered. They were selected from the year 2000-2022 from three databases: PubMed, Science Direct and Google Scholar.Results: Consistent benefits in clinical trials were shown in those who were supplemented with vitamin D (prevents osteoporosis and improves physical performance variables), B3 (improves lipid profile) and B12 (neurological prophylaxis of chronic SCI damage) mainly. On the other hand, improvement related to neuroprotection, damage modulation (vitamin A) and its prophylaxis were associated to B complex vitamins supplementation; the studies who reported positive results are displayed in this review.Discussion: Physicians should become familiar with relevant information that can support conventional treatment in patients with SCI, such as the use of vitamins, a viable option that can improve outcomes in patients with this condition.
Collapse
Affiliation(s)
- Karina A Pedroza-García
- Departamento de Nutrición, Centro de Ciencias de la Salud, Universidad Autónoma de Aguascalientes, Aguascalientes, México
| | - Gabriela Careaga-Cárdenas
- Biomedical Research, Centro de Ciencias de la Salud, Universidad Autónoma de Aguascalientes, Aguascalientes, México
| | - Carmen Díaz-Galindo
- Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, México
| | - J Luis Quintanar
- Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, México
| | - Irma Hernández-Jasso
- Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, México
| | - Ricardo E Ramírez-Orozco
- Departamento de Nutrición, Centro de Ciencias de la Salud, Universidad Autónoma de Aguascalientes, Aguascalientes, México
| |
Collapse
|
10
|
Hertig-Godeschalk A, Scheel-Sailer A, Wey Y, Perret C, Lehnick D, Krebs J, Jenny A, Flueck JL. Prevalence of an insufficient vitamin D status at the onset of a spinal cord injury - a cross-sectional study. Spinal Cord 2023; 61:211-217. [PMID: 36581746 DOI: 10.1038/s41393-022-00873-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 12/15/2022] [Accepted: 12/22/2022] [Indexed: 12/30/2022]
Abstract
STUDY DESIGN A cross-sectional study. OBJECTIVE This study aimed to investigate the vitamin D status after acute spinal cord injury (SCI) onset. SETTING Specialized SCI rehabilitation center in Switzerland. METHODS Patients admitted to the center after an acute SCI onset were included. The prevalence of a deficient (25(OH)D ≤ 50 nmol/l), insufficient (50 < 25(OH)D ≤ 75 nmol/l) and sufficient (25(OH)D > 75 nmol/l) vitamin D status were determined after admission. Vitamin D status was compared between different patient groups based on demographic and SCI characteristics. The occurrence of bed rest, falls and pressure injuries were also assessed. RESULTS In total, 87 patients (median (interquartile range); 53 (39-67) years, 25 females, 66 traumatic SCI, 54 paraplegia) were included. Assessed a median of 15 (9-22) days after SCI onset, median vitamin D status was 41 (26-57) (range 8-155) nmol/l. The majority of patients had a deficient (67%, 95% confidence interval (95% CI) 0.56-0.76) or insufficient (25%, 95% CI 0.17-0.36) vitamin D status. A moderate negative correlation was found between vitamin D status and body mass index (p = 0.003). A moderate positive correlation was found between vitamin D and calcium status (p = 0.01). CONCLUSION A deficient or insufficient vitamin D status directly after SCI onset is highly prevalent. Vitamin D status should be carefully observed during acute SCI rehabilitation. We recommend that all patients with recent SCI onset should receive vitamin D supplementation with a dosage depending on their actual vitamin D status.
Collapse
Affiliation(s)
| | - Anke Scheel-Sailer
- Department of Rehabilitation, Swiss Paraplegic Centre Nottwil, Nottwil, Switzerland
- Department of Health Sciences and Medicine, University of Lucerne, Lucerne, Switzerland
| | - Yannick Wey
- Institute of Sports Medicine, Swiss Paraplegic Centre Nottwil, Nottwil, Switzerland
| | - Claudio Perret
- Institute of Sports Medicine, Swiss Paraplegic Centre Nottwil, Nottwil, Switzerland
| | - Dirk Lehnick
- Department of Health Sciences and Medicine, University of Lucerne, Lucerne, Switzerland
- Clinical Trial Unit Central Switzerland, University of Lucerne, Lucerne, Switzerland
| | - Jörg Krebs
- Clinical Trial Unit, Swiss Paraplegic Centre, Nottwil, Switzerland
| | - Andreas Jenny
- Department of Rehabilitation, Swiss Paraplegic Centre Nottwil, Nottwil, Switzerland
| | - Joelle L Flueck
- Institute of Sports Medicine, Swiss Paraplegic Centre Nottwil, Nottwil, Switzerland
| |
Collapse
|
11
|
Wang L, Gan J, Wu J, Zhou Y, Lei D. Impact of vitamin D on the prognosis after spinal cord injury: A systematic review. Front Nutr 2023; 10:920998. [PMID: 36866055 PMCID: PMC9973556 DOI: 10.3389/fnut.2023.920998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 01/18/2023] [Indexed: 02/16/2023] Open
Abstract
Vitamin D (VitD) insufficiency is a worldwide health problem and affects billions of people. Spinal cord injury (SCI) patients seem more susceptible to developing suboptimal levels of VitD. However, the literature regarding its impact on the prognosis of SCI is limited. Thus, in this review, we systematically investigated the published studies via a combination of keywords associated with SCI and VitD in four medical databases (Medline, Embase, Scopus, and Web of Science). All included studies were analyzed, and selected clinical data on the prevalence of VitD insufficiency (serum 25-hydroxyvitamin D < 30 ng/ml) and deficiency (serum 25-hydroxyvitamin D < 20 ng/ml) were collected for further meta-analysis via random effects. Through literature review, a total of 35 studies were eligible and included. The meta-analysis of VitD status (13 studies, 1,962 patients) indicated high prevalence of insufficiency (81.6% [75.7, 87.5]) and deficiency (52.5% [38.1, 66.9]) after SCI. Besides, low levels of VitD were reported to be associated with a higher risk of skeletal diseases, venous thromboembolism, psychoneurological syndromes, and chest illness after injury. Existing literature suggested that supplemental therapy might act as an adjuvant treatment to facilitate post-injury rehabilitation. Non-human experimental studies highlighted the neuroprotective effect of VitD, which was associated with enhancing axonal and neuronal survival, suppressing neuroinflammation, and modulating autophagy. Therefore, the current evidence suggests that the prevalence of VitD insufficiency is high in the SCI population, and low-level VitD may impair functional restoration after SCI. VitD supplemental treatment may have potential benefits to accelerate rehabilitation in mechanistically related processes after SCI. However, due to the limitation of the available evidence, more well-designed randomized controlled trials and mechanism experimental research are still needed to validate its therapeutic effect, elucidate its neuroprotective mechanism, and develop novel treatments.
Collapse
Affiliation(s)
- Lei Wang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | | | | | | | - Deqiang Lei
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
12
|
Stojic S, Eriks-Hoogland I, Gamba M, Valido E, Minder B, Chatelan A, Karagounis LG, Ballesteros M, Díaz C, Brach M, Stoyanov J, Diviani N, Rubinelli S, Perret C, Glisic M. Mapping of Dietary Interventions Beneficial in the Prevention of Secondary Health Conditions in Spinal Cord Injured Population: A Systematic Review. J Nutr Health Aging 2023; 27:524-541. [PMID: 37498100 DOI: 10.1007/s12603-023-1937-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 06/06/2023] [Indexed: 07/28/2023]
Abstract
OBJECTIVES Individuals with spinal cord injury are at risk of secondary health conditions (SHC) that develop as a consequence of autonomic dysfunction, prolonged oxidative stress and inflammation, and physical inactivity coupled with inadequate energy and nutritional intake. SHC can be debilitating and even life-threatening, and its prevention remains one of the major challenges in the continuum of medical care of aging SCI population. An unhealthy diet is a major driver of inflammation, oxidative stress, and unfavourable metabolic status and may be a practical preventive target to tackle increased SHC risk post-injury. AIMS To provide a catalogue of dietary interventions beneficial in prevention of SHC among individuals with SCI by conducting a systematic review of the literature on dietary interventions and dietary supplementation in promoting health and well-being after the injury. In addition, we aimed to provide a summary of observational studies exploring the association between habitual diet (macro- and micronutrients intake and dietary patterns) and health patterns following the injury. METHOD This review was registered at PROSPERO (University of York) with registration number CRD42022373773. Four medical databases (EMBASE.com, MEDLINE [Ovid], Cochrane CENTRAL, and Web of Science Core Collection) and Google Scholar were searched from inception until 11th July 2022. Studies were included if they were clinical trials or observational studies conducted in adult individuals with SCI and provided information of interest. Based on strength of the study design and risk of bias assessment (using the NIH tool), we classified studies from Level 1 (most reliable studies) to Level 4 (least reliable studies). RESULTS Of 12,313 unique citations, 47 articles (based on 43 original studies) comprising 32 interventional (22 RCTs, 3 NRCT, and 7 pre-post studies) and 11 observational studies (2 cohort studies, 2 case-control, 1 post-intervention follow-up study, and 6 cross-sectional studies) were included in the present systematic review. Twenty studies (46.5%) were classified as Level 1 or 2, indicating high/moderate methodological quality. Based on those studies, dietary strategies including high protein diet, intermittent fasting, balanced diet in combination with physical conditioning and electrical stimulation, and dietary supplementation including alpha-lipoic acid, creatine, vitamin D, and cranberry-derived supplements and probiotics were mapped as the most promising in prevention of SHC among individuals with SCI. CONCLUSIONS To develop timely and effective preventive strategies targeting major SHC (e.g., cardiometabolic diseases, urinary tract infections) in SCI, further research is warranted to confirm the effectiveness of dietary strategies/interventions identified through the current systematic review of the literature.
Collapse
Affiliation(s)
- S Stojic
- PD. Dr Marija Glisic, Swiss Paraplegic Research, Guido A. Zäch Str. 4, 6207 Nottwil, Switzerland, and
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Furlan JC, Shen T, Kurban D. Sex-Related Discrepancies in the Access to Optimal Care and Outcomes After Traumatic Spinal Cord Injury: A Retrospective Cohort Study Using Data From a Canadian Registry. Arch Phys Med Rehabil 2023; 104:1-10. [PMID: 36170894 DOI: 10.1016/j.apmr.2022.09.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/26/2022] [Accepted: 09/02/2022] [Indexed: 02/04/2023]
Abstract
OBJECTIVE To compare males and females who were stratified into subgroups corresponding to premenopausal, perimenopausal, and postmenopausal ages, regarding access to optimal care and their outcomes after traumatic spinal cord injury (tSCI). STUDY DESIGN Retrospective cohort study. SETTING Eighteen acute care centers and 13 rehabilitation facilities across Canada. PARTICIPANTS This study included 5571 individuals with tSCI at C1-L2 who were enrolled in the Rick Hansen Spinal Cord Injury Registry from July 2004 to September 2019 (N=5571). Females were compared with males in the younger (aged ≤40 years), middle-aged (ages 41-50), and older (aged >50 years) subgroups. INTERVENTION Not applicable. MAIN OUTCOME MEASURES Females were compared with males in each subgroup with regard to their demographic data, pre-existing comorbidities, injury characteristics, management choices, access to optimal care, and clinical, neurologic, and functional outcomes after tSCI. RESULTS In the younger subgroups, females (n=408) were significantly younger, had a greater proportion of aboriginals and transportation-related tSCIs, underwent surgical treatment more often, and had a greater sensory score change than males (n=1613). In the middle-aged subgroups, females (n=174) had a greater proportion of high-thoracic tSCIs than males (n=666). In the older subgroups, females (n=660) were significantly older, had more fall-related and less severe tSCIs, had a shorter stay at the rehabilitation center, had less spasticity, and were discharged home less often than males (n=2050). CONCLUSIONS The results of this study suggest some sex-related differences in individuals' demographics and injury characteristics, but fewer discrepancies between females and males regarding their access to optimal care and outcomes after tSCI. Overall, future clinical trials could consider inclusion of males and females of all age groups to enhance recruitment and augment generalizability.
Collapse
Affiliation(s)
- Julio C Furlan
- Lyndhurst Centre, Toronto Rehabilitation Institute, University Health Network, Toronto, Canada; KITE Research Institute, University Health Network, Toronto, Canada; Department of Medicine, Division of Physical Medicine and Rehabilitation, University of Toronto, Toronto, Canada; Institute of Medical Science, University of Toronto, Toronto, Canada; Rehabilitation Sciences Institute, University of Toronto, Toronto, Canada; Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, Canada.
| | - Tian Shen
- Praxis Spinal Cord Institute, Vancouver, Canada
| | | |
Collapse
|
14
|
Yang X, Cao JF, Chen S, Xiong L, Zhang L, Wu M, Wang C, Xu H, Chen Y, Yang S, Zhong L, Wei X, Xiao Z, Gong Y, Li Y, Zhang X. Molecular docking and molecular dynamics simulation study the mechanism of progesterone in the treatment of spinal cord injury. Steroids 2022; 188:109131. [PMID: 36273543 DOI: 10.1016/j.steroids.2022.109131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 09/10/2022] [Accepted: 10/14/2022] [Indexed: 11/08/2022]
Abstract
PURPOSE Spinal cord injury can lead to incomplete or complete loss of voluntary movement and sensory function, leading to serious complications. Numerous studies have shown that progesterone exhibits strong therapeutic potential for spinal cord injury. However, the mechanism by which progesterone treats spinal cord injury remains unclear. Therefore, this article explores the mechanism of progesterone in the treatment of spinal cord injury by means of molecular docking and molecular dynamics simulation. METHODS We used bioinformatics to screen active pharmaceutical ingredients and potential targets, and molecular docking and molecular dynamics were used to validate and analysis by the supercomputer platform. RESULTS Progesterone had 3606 gene targets, spinal cord injury had 6560 gene targets, the intersection gene targets were 2355. GO and KEGG analysis showed that the abundant pathways involved multiple pathways related to cell metabolism and inflammation. Molecular docking showed that progesterone played a role in treating spinal cord injury by acting on BDNF, AR, NGF and TNF. Molecular dynamics was used to prove and analyzed the binding stability of active ingredients and protein targets, and AR/Progesterone combination has the strongest binding energy. CONCLUSION Progesterone promotes recovery from spinal cord injury by promoting axonal regeneration, remyelination, neuronal survival and reducing inflammation.
Collapse
Affiliation(s)
- Xingyu Yang
- Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - Jun-Feng Cao
- Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - Shengyan Chen
- Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - Li Xiong
- Clinical Medicine, Chengdu Medical College, Chengdu, China
| | | | - Mei Wu
- Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - Chaochao Wang
- Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - Hengxiang Xu
- Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - Yijun Chen
- Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - Siqi Yang
- Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - Li Zhong
- Center for Experimental Technology of Preclinical Medicine, Chengdu Medical College, Chengdu, China
| | - Xiaoliang Wei
- Center for Experimental Technology of Preclinical Medicine, Chengdu Medical College, Chengdu, China
| | - Zixuan Xiao
- Laboratory Medicine, Chengdu Medical College, Chengdu, China
| | - Yunli Gong
- Laboratory Medicine, Chengdu Medical College, Chengdu, China
| | - Yang Li
- Laboratory Medicine, Chengdu Medical College, Chengdu, China
| | - Xiao Zhang
- Center for Experimental Technology of Preclinical Medicine, Chengdu Medical College, Chengdu, China
| |
Collapse
|
15
|
Li N, Yao M, Liu J, Zhu Z, Lam TL, Zhang P, Kiang KMY, Leung GKK. Vitamin D Promotes Remyelination by Suppressing c-Myc and Inducing Oligodendrocyte Precursor Cell Differentiation after Traumatic Spinal Cord Injury. Int J Biol Sci 2022; 18:5391-5404. [PMID: 36147469 PMCID: PMC9461656 DOI: 10.7150/ijbs.73673] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 08/13/2022] [Indexed: 11/22/2022] Open
Abstract
Demyelination due to oligodendrocytes loss occurs after traumatic spinal cord injury (TSCI). Several studies have suggested the therapeutic potential of vitamin D (VitD) in demyelinating diseases. However, experimental evidence in the context of TSCI is limited, particularly in the presence of prior VitD-deficiency. In the present study, a contusion and a transection TSCI rat model were used, representing mild and severe injury, respectively. Motor recovery was assessed in rats with normal VitD level or with VitD-deficiency after 8 weeks' treatment post-TSCI (Cholecalciferol, 500 IU/kg/day). The impact on myelin integrity was examined by transmission electron microscopy and studied in vitro using primary culture of oligodendrocytes. We found that VitD treatment post-TSCI effectively improved hindlimb movement in rats with normal VitD level irrespective of injury severity. However, cord-transected rats with prior deficiency did not seem to benefit from VitD supplementation. Our data further suggested that having sufficient VitD was essential for persevering myelin integrity after injury. VitD rescued oligodendrocytes from apoptotic cell death in vitro and enhanced their myelinating ability towards dorsal root axons. Enhanced myelination was mediated by increased oligodendrocyte precursor cells (OPCs) differentiation into oligodendrocytes in concert with c-Myc downregulation and suppressed OPCs proliferation. Our study provides novel insights into the functioning of VitD as a regulator of OPCs differentiation as well as strong preclinical evidence supporting future clinical testing of VitD for TSCI.
Collapse
Affiliation(s)
- Ning Li
- Department of Surgery, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong.,Department of Neurosurgery, Zhongda Hospital, Southeast University, Nanjing, China
| | - Min Yao
- Department of Surgery, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong.,School of Pharmaceutical Sciences, Health Science Centre, Shenzhen University, Shenzhen, China
| | - Jiaxin Liu
- Department of Surgery, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong
| | - Zhiyuan Zhu
- Department of Surgery, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong.,Department of Functional Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Tsz-Lung Lam
- Department of Surgery, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong
| | - Pingde Zhang
- Department of Surgery, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong
| | - Karrie Mei-Yee Kiang
- Department of Surgery, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong
| | - Gilberto Ka-Kit Leung
- Department of Surgery, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong
| |
Collapse
|
16
|
Kolatorova L, Vitku J, Suchopar J, Hill M, Parizek A. Progesterone: A Steroid with Wide Range of Effects in Physiology as Well as Human Medicine. Int J Mol Sci 2022; 23:7989. [PMID: 35887338 PMCID: PMC9322133 DOI: 10.3390/ijms23147989] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/15/2022] [Accepted: 07/16/2022] [Indexed: 11/16/2022] Open
Abstract
Progesterone is a steroid hormone traditionally linked with female fertility and pregnancy. In current reproductive medicine, progesterone and its analogues play crucial roles. While the discovery of its effects has a long history, over recent decades, various novel actions of this interesting steroid have been documented, of which its neuro- and immunoprotective activities are the most widely discussed. Discoveries of the novel biological activities of progesterone have also driven research and development in the field of progesterone analogues used in human medicine. Progestogen treatment has traditionally and predominately been used in maintaining pregnancy, the prevention of preterm labor, various gynecological pathologies, and in lowering the negative effects of menopause. However, there are also various other medical fields where progesterone and its analogues could find application in the future. The aim of this work is to show the mechanisms of action of progesterone and its metabolites, the physiological and pharmacological actions of progesterone and its synthetic analogues in human medicine, as well as the impacts of its production and use on the environment.
Collapse
Affiliation(s)
- Lucie Kolatorova
- Department of Steroids and Proteofactors, Institute of Endocrinology, Narodni 8, 116 94 Prague, Czech Republic; (J.V.); (M.H.)
| | - Jana Vitku
- Department of Steroids and Proteofactors, Institute of Endocrinology, Narodni 8, 116 94 Prague, Czech Republic; (J.V.); (M.H.)
| | - Josef Suchopar
- DrugAgency, a.s., Klokotska 833/1a, 142 00 Prague, Czech Republic;
| | - Martin Hill
- Department of Steroids and Proteofactors, Institute of Endocrinology, Narodni 8, 116 94 Prague, Czech Republic; (J.V.); (M.H.)
| | - Antonin Parizek
- Department of Obstetrics and Gynecology, First Faculty of Medicine, Charles University and General Teaching Hospital, Apolinarska 18, 128 51 Prague, Czech Republic;
| |
Collapse
|
17
|
Liu C, Gao W, Zhao L, Cao Y. Progesterone attenuates neurological deficits and exerts a protective effect on damaged axons via the PI3K/AKT/mTOR-dependent pathway in a mouse model of intracerebral hemorrhage. Aging (Albany NY) 2022; 14:2574-2589. [PMID: 35305084 PMCID: PMC9004566 DOI: 10.18632/aging.203954] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 02/28/2022] [Indexed: 02/05/2023]
Abstract
Intracerebral hemorrhage (ICH) is a devastating event with high disability and fatality rates. However, there is a lack of effective treatments for this condition. We aimed to investigate the neuroprotective and axonal regenerative effects of progesterone after ICH. For this purpose, an ICH model was established in adult mice by injecting type VII collagenase into the striatum; the mice were then treated with progesterone (8 mg/kg). Hematoma absorption, neurological scores, and brain water content were evaluated on days one, three, and seven after the ICH. The effect of progesterone on inflammation and axonal regeneration was examined on day three after the ICH using western blotting, immunohistochemistry, immunofluorescence, as well as hematoxylin-eosin, Nissl, and Luxol fast blue staining. In addition, we combined progesterone with the phosphoinositide 3-kinase/serine/threonine-specific protein kinase (PI3K/AKT) inhibitor, LY294002, to explore its potential neuroprotective mechanisms. Administration of progesterone attenuated the neurological deficits and expression of inflammatory cytokines and promoted axonal regeneration after ICH, this effect was blocked by LY294002. Collectively, these results suggest that progesterone could reduce axonal damage and produced partial neuroprotective effects after ICH through the PI3K/AKT/mTOR pathway, providing a new therapeutic target and basis for the treatment of ICH.
Collapse
Affiliation(s)
- Chang Liu
- Department of Neurosurgery, West China Medical School, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, P.R. China
| | - Weina Gao
- Department of Intensive Care Unit, The Affiliated Chengdu 363 Hospital of Southwest Medical University, Chengdu 610041, Sichuan Province, P.R. China
| | - Long Zhao
- Department of Neurosurgery, Affiliated Hospital of North Sichuan Medical College, Nanchong 637002, Sichuan Province, P.R. China
| | - Yi Cao
- Department of Neurosurgery, Chengdu Second People's Hospital, Chengdu 610021, Sichuan Province, P.R. China
| |
Collapse
|
18
|
Aksoy Aydemir G, Yetkin E, Aydemir E, Bolu S, Asik A. Changes in the macular choroidal thickness of children who have type-1 diabetes mellitus, with and without vitamin D deficiency. Int Ophthalmol 2022; 42:1875-1884. [PMID: 35088355 DOI: 10.1007/s10792-021-02185-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 12/18/2021] [Indexed: 01/14/2023]
Abstract
PURPOSE To assess the peripapillary retinal nerve fiber layer (RNFL) and macular choroidal thickness (CT) of children who have Type 1 diabetes mellitus (DM), both with and without vitamin D deficiency (VDD). METHODS The prospective, case-control study herein comprised that included 46 children with DM and VDD (Group 1), 42 children with DM and normal vitamin D levels (Group 2), and 73 healthy children (Control group). The peripapillary RNFL thickness and macular CT were measured at three different points (subfoveal, 1500 μm nasal, and 1500 μm temporal from the fovea) and compared. RESULTS The subfoveal, 1500 μm nasal, and 1500 μm temporal CT values were determined to be lower in the patients in Group 1 and Group 2 when compared to those in the Control group (P < 0.001). The same parameters were determined to be lower in the patients in Group 1 when compared to those in Group 2, although this difference was not found to be statistically significant (P > 0.05). In all of the quadrants, the RNFL thickness was determined to be similar between the groups, with P > 0.05 for all of the groups, except for the nasal quadrant (P = 0.031). In the correlation analysis of the patients in Group 1, it was revealed that a positive correlation existed between the CT and the vitamin D levels (P < 0.05). CONCLUSION The choroids of pediatric diabetic children were thinner when compared to those of healthy children. The alterations in these parameters were more prominent in subjects who were determined to have lower levels of vitamin D.
Collapse
Affiliation(s)
- Gozde Aksoy Aydemir
- Ophthalmology Department, Adıyaman University Research and Training Hospital, Adıyaman, Turkey.
| | - Esat Yetkin
- Ophthalmology Department, Midyat State Hospital, Mardin, Turkey
| | - Emre Aydemir
- Ophthalmology Department, Adıyaman University Research and Training Hospital, Adıyaman, Turkey
| | - Semih Bolu
- Department of Pediatrics Endocrinology, Adıyaman University Research and Training Hospital, Adıyaman, Turkey
| | - Abdulvahit Asik
- Department of Pediatrics, Adıyaman University Research and Training Hospital, Adıyaman, Turkey
| |
Collapse
|
19
|
Oughourlian TC, Wang C, Salamon N, Holly LT, Ellingson BM. Sex-Dependent Cortical Volume Changes in Patients with Degenerative Cervical Myelopathy. J Clin Med 2021; 10:jcm10173965. [PMID: 34501413 PMCID: PMC8432178 DOI: 10.3390/jcm10173965] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 08/23/2021] [Accepted: 08/30/2021] [Indexed: 11/24/2022] Open
Abstract
Degenerative cervical myelopathy (DCM) is a progressive condition characterized by degeneration of osseocartilaginous structures within the cervical spine resulting in compression of the spinal cord and presentation of clinical symptoms. Compared to healthy controls (HCs), studies have shown DCM patients experience structural and functional reorganization in the brain; however, sex-dependent cortical differences in DCM patients remains largely unexplored. In the present study, we investigate the role of sex differences on the structure of the cerebral cortex in DCM and determine how structural differences may relate to clinical measures of neurological function. T1-weighted structural MRI scans were acquired in 85 symptomatic and asymptomatic patients with DCM and 90 age-matched HCs. Modified Japanese Orthopedic Association (mJOA) scores were obtained for patients. A general linear model was used to determine vertex-level significant differences in gray matter volume (GMV) between the following groups (1) male HCs and female HCs, (2) male patients and female patients, (3) male patients and male HCs, and (4) female patients and female HCs. Within patients, males exhibited larger GMV in motor, language, and vision related brain regions compared to female DCM patients. Males demonstrated a significant positive correlation between GMV and mJOA score, in which patients with worsening neurological symptoms exhibited decreasing GMV primarily across somatosensory and motor related cortical regions. Females exhibited a similar association, albeit across a broader range of cortical areas including those involved in pain processing. In sensorimotor regions, female patients consistently showed smaller GMV compared with male patients, independent of mJOA score. Results from the current study suggest strong sex-related differences in cortical volume in patients with DCM, which may reflect hormonal influence or differing compensation mechanisms.
Collapse
Affiliation(s)
- Talia C. Oughourlian
- UCLA Center for Computer Vision and Imaging Biomarkers, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90024, USA; (T.C.O.); (C.W.); (B.M.E.)
- Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA;
- Neuroscience Interdepartmental Graduate Program, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Chencai Wang
- UCLA Center for Computer Vision and Imaging Biomarkers, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90024, USA; (T.C.O.); (C.W.); (B.M.E.)
- Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA;
| | - Noriko Salamon
- Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA;
| | - Langston T. Holly
- Department of Neurosurgery, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Correspondence: ; Tel.: +1-(310)-319-3475
| | - Benjamin M. Ellingson
- UCLA Center for Computer Vision and Imaging Biomarkers, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90024, USA; (T.C.O.); (C.W.); (B.M.E.)
- Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA;
- Neuroscience Interdepartmental Graduate Program, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
20
|
Aspinall P, Harrison L, Scheuren P, Cragg JJ, Ferguson AR, Guest JD, Hsieh J, Jones L, Kirshblum S, Lammertse D, Kwon BK, Kramer JLK. A Systematic Review of Safety Reporting in Acute Spinal Cord Injury Clinical Trials: Challenges and Recommendations. J Neurotrauma 2021; 38:2047-2054. [PMID: 33899507 DOI: 10.1089/neu.2020.7540] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Accurate safety information in published clinical trials guides the assessment of risk-benefit, as well as the design of future clinical trials. Comprehensive reporting of adverse events, toxicity, and discontinuations from acute spinal cord injury clinical trials is an essential step in this process. Here, we sought to assess the degree of "satisfactoriness" of reporting in past clinical trials in spinal cord injury. A review of citations from MEDLINE and EMBASE identified eligible clinical trials in acute (within 30 days) spinal cord injury. English language studies, published between 1980 and 2020, with sensory, motor, or autonomic neurological assessments as the primary outcome measure were eligible for inclusion. Criteria were then established to qualify the safety reporting as satisfactory (i.e., distinguished severe/life-threatening events), partially satisfactory, or unsatisfactory (i.e., only mentioned in general statements, or reported but without distinguishing severe events). A total of 40 trials were included. Satisfactory reporting for clinical adverse events was observed in 30% of trials; partially satisfactory was achieved by 10% of the trials, and the remaining 60% were unsatisfactory. The majority of trials were determined to be unsatisfactory for the reporting of laboratory-defined toxicity (82.5%); only 17.5% were satisfactory. Discontinuations were satisfactorily reported for the majority of trials (80%), with the remaining partially satisfactory (5%) or unsatisfactory (15%). Reporting of safety in clinical trials for acute spinal cord injury is suboptimal. Due to the complexities of acute spinal cord injury (e.g., polytrauma, multiple systems affected), tailored and specific standards for tracking adverse events and safety reporting should be established.
Collapse
Affiliation(s)
- Paul Aspinall
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, British Columbia, Canada
| | - Liam Harrison
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, British Columbia, Canada
| | - Paulina Scheuren
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Jacquelyn J Cragg
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, British Columbia, Canada
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Adam R Ferguson
- Data Science, Brain and Spinal Injury Center, Department of Neurological Surgery, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, California, USA
- San Francisco Veteran's Affairs Healthcare System, San Francisco, California, USA
| | - James D Guest
- Department of Neurological Surgery, University of Miami and the Miami Project to Cure Paralysis, Miami, Florida, USA
| | | | - Linda Jones
- Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Steven Kirshblum
- Department of Physical Medicine and Rehabilitation, Rutgers New Jersey Medical School, Newark, New Jersey, USA
- Kessler Institute for Rehabilitation, West Orange, New Jersey, USA
| | | | - Brian K Kwon
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, British Columbia, Canada
| | - John L K Kramer
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, British Columbia, Canada
- Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia, Vancouver, British Columbia, Canada
- Djavad Mowafaghian Center for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
- Hugill Center for Anesthesiology, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
21
|
Tavarez T, Roehl K, Koffman L. Nutrition in the Neurocritical Care Unit: a New Frontier. Curr Treat Options Neurol 2021; 23:16. [PMID: 33814896 PMCID: PMC8009929 DOI: 10.1007/s11940-021-00670-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/22/2021] [Indexed: 12/15/2022]
Abstract
PURPOSE OF REVIEW This review presents the most current recommendations for providing nutrition to the neurocritical care population. This includes updates on initiation of feeding, immunonutrition, and metabolic substrates including ketogenic diet, cerebral microdialysis (CMD) monitoring, and the microbiome. RECENT FINDINGS Little evidence exists to support differences in feeding practices among the neurocritical care population. New areas of interest with limited data include use of immunonutrition, pre/probiotics for microbiome manipulation, ketogenic diet, and use of CMD catheters for substrate utilization monitoring. SUMMARY Acute neurologic injury incites a cascade of adrenergic and neuroendocrine events resulting in a pro-inflammatory and hypercatabolic state, which is associated with an increase in morbidity and mortality. Nutritional support provides substrates to mitigate the damaging effects of hypermetabolism. Despite this practice, studies on feeding delivery outcomes remain inconsistent. Guidelines suggest use of early enteral nutrition using standard polymeric formulas. Population heterogeneity, variability in interventions, complexities of the metabolic and inflammatory responses, and paucity of nutrition research in patients requiring neurocritical care have led to controversies in the field. It is imperative that more pragmatic and reproducible research be conducted to better understand underlying pathophysiology and develop interventions that may improve outcomes.
Collapse
Affiliation(s)
- Tachira Tavarez
- Department of Neurologic Sciences, Rush University Medical Center, 1725 West Harrison Street Professional Office Building, Suite 1106, Chicago, IL USA
| | - Kelly Roehl
- Department of Food and Nutrition, Rush University Medical Center, Chicago, IL USA
| | - Lauren Koffman
- Department of Neurologic Sciences, Rush University Medical Center, 1725 West Harrison Street Professional Office Building, Suite 1106, Chicago, IL USA
| |
Collapse
|
22
|
Sitruk-Ware R, Bonsack B, Brinton R, Schumacher M, Kumar N, Lee JY, Castelli V, Corey S, Coats A, Sadanandan N, Gonzales-Portillo B, Heyck M, Shear A, Blaise C, Zhang H, Sheyner M, García-Sánchez J, Navarro L, El-Etr M, De Nicola AF, Borlongan CV. Progress in progestin-based therapies for neurological disorders. Neurosci Biobehav Rev 2020; 122:38-65. [PMID: 33359391 DOI: 10.1016/j.neubiorev.2020.12.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 11/26/2020] [Accepted: 12/12/2020] [Indexed: 12/16/2022]
Abstract
Hormone therapy, primarily progesterone and progestins, for central nervous system (CNS) disorders represents an emerging field of regenerative medicine. Following a failed clinical trial of progesterone for traumatic brain injury treatment, attention has shifted to the progestin Nestorone for its ability to potently and selectively transactivate progesterone receptors at relatively low doses, resulting in robust neurogenetic, remyelinating, and anti-inflammatory effects. That CNS disorders, including multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS), spinal cord injury (SCI), and stroke, develop via demyelinating, cell death, and/or inflammatory pathological pathways advances Nestorone as an auspicious candidate for these disorders. Here, we assess the scientific and clinical progress over decades of research into progesterone, progestins, and Nestorone as neuroprotective agents in MS, ALS, SCI, and stroke. We also offer recommendations for optimizing timing, dosage, and route of the drug regimen, and identifying candidate patient populations, in advancing Nestorone to the clinic.
Collapse
Affiliation(s)
| | - Brooke Bonsack
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | | | | | | | - Jea-Young Lee
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Vanessa Castelli
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Sydney Corey
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Alexandreya Coats
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Nadia Sadanandan
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Bella Gonzales-Portillo
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Matt Heyck
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Alex Shear
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Cozene Blaise
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Henry Zhang
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Michael Sheyner
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Julián García-Sánchez
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Lisset Navarro
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | | | | | - Cesar V Borlongan
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA.
| |
Collapse
|
23
|
Stewart AN, MacLean SM, Stromberg AJ, Whelan JP, Bailey WM, Gensel JC, Wilson ME. Considerations for Studying Sex as a Biological Variable in Spinal Cord Injury. Front Neurol 2020; 11:802. [PMID: 32849242 PMCID: PMC7419700 DOI: 10.3389/fneur.2020.00802] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 06/26/2020] [Indexed: 12/13/2022] Open
Abstract
In response to NIH initiatives to investigate sex as a biological variable in preclinical animal studies, researchers have increased their focus on male and female differences in neurotrauma. Inclusion of both sexes when modeling neurotrauma is leading to the identification of novel areas for therapeutic and scientific exploitation. Here, we review the organizational and activational effects of sex hormones on recovery from injury and how these changes impact the long-term health of spinal cord injury (SCI) patients. When determining how sex affects SCI it remains imperative to expand outcomes beyond locomotor recovery and consider other complications plaguing the quality of life of patients with SCI. Interestingly, the SCI field predominately utilizes female rodents for basic science research which contrasts most other male-biased research fields. We discuss the unique caveats this creates to the translatability of preclinical research in the SCI field. We also review current clinical and preclinical data examining sex as biological variable in SCI. Further, we report how technical considerations such as housing, size, care management, and age, confound the interpretation of sex-specific effects in animal studies of SCI. We have uncovered novel findings regarding how age differentially affects mortality and injury-induced anemia in males and females after SCI, and further identified estrus cycle dysfunction in mice after injury. Emerging concepts underlying sexually dimorphic responses to therapy are also discussed. Through a combination of literature review and primary research observations we present a practical guide for considering and incorporating sex as biological variable in preclinical neurotrauma studies.
Collapse
Affiliation(s)
- Andrew N Stewart
- Department of Physiology, University of Kentucky, Lexington, KY, United States.,Spinal Cord and Brain Injury Research Center, College of Medicine, University of Kentucky, Lexington, KY, United States
| | - Steven M MacLean
- Department of Physiology, University of Kentucky, Lexington, KY, United States.,Spinal Cord and Brain Injury Research Center, College of Medicine, University of Kentucky, Lexington, KY, United States
| | - Arnold J Stromberg
- Department of Statistics, College of Arts and Sciences, University of Kentucky, Lexington, KY, United States
| | - Jessica P Whelan
- Department of Physiology, University of Kentucky, Lexington, KY, United States.,Spinal Cord and Brain Injury Research Center, College of Medicine, University of Kentucky, Lexington, KY, United States
| | - William M Bailey
- Department of Physiology, University of Kentucky, Lexington, KY, United States.,Spinal Cord and Brain Injury Research Center, College of Medicine, University of Kentucky, Lexington, KY, United States
| | - John C Gensel
- Department of Physiology, University of Kentucky, Lexington, KY, United States.,Spinal Cord and Brain Injury Research Center, College of Medicine, University of Kentucky, Lexington, KY, United States
| | - Melinda E Wilson
- Department of Physiology, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
24
|
Neuroprotective Agents as an Adjuvant Treatment in Patients With Acute Spinal Cord Injuries: A Qualitative Systematic Review of Randomized Trials. Clin Spine Surg 2020; 33:65-75. [PMID: 31404015 DOI: 10.1097/bsd.0000000000000861] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
STUDY DESIGN This was a systematic literature review. OBJECTIVE The objective of this study was to evaluate randomized clinical trials that address potential neuroprotective agents used to improve neurological outcome in patients with spinal cord injury (SCI). SUMMARY OF BACKGROUND DATA Clinical treatment of acute SCI has evolved significantly, but neurological recovery of severely injured patients remains modest. Neuroprotective agents may act to limit secondary damage in the sequence of pathophysiologic insults that occur after primary SCI. METHODS We performed a systematic review in accordance with Preferred Reporting Items for Systematic Reviews and Meta-analysis (PRISMA) guidelines of all clinical randomized trials that evaluated potential neuroprotective agents (drugs, stem cells, and any type of medicative interventions) in neurological outcome of acute SCI. All the studies were graded according to their level of evidence in accordance with the Oxford Level of Evidence-based Medicine. RESULTS A total of 16 randomized clinical trials were included and fully analyzed in our review. The following 12 substances/drugs were analyzed: methylprednisolone (MP), naloxone, tirilizad, nimodipine, Sygen, autologous incubated macrophages, autologous bone marrow cells, minocycline, erythropoietin, ganglioside, vitamin D, and progesterone. Modest benefits were attributed to minocycline and Sygen (without statistical significance), and some benefits were obtained with erythropoietin and progesterone plus vitamin D in neurological outcome. For MP, the benefits are also controversial and may be attributed to statistical artifacts and with a high risk of adverse effects. The other substances did not change the final outcome. All studies were considered as grade B of recommendation (100%) and levels of evidences as B2 (81.25%) and B3 (18.75%). CONCLUSIONS Our review reported some potential substances that may improve neurological outcome in acute SCI: MP, vitamin D associated with progesterone, and erythropoietin. Their potential benefits were modest in the evaluated studies, requiring further randomized clinical trials with large samples of patients, without statistical artifacts, for routine clinical use. Furthermore, potential adverse effects must be considered with the use of neuroprotective agents in SCI. Until then, the use of these substances may be experimental or restricted to specific clinical situations.
Collapse
|
25
|
AlJohri R, AlOkail M, Haq SH. Neuroprotective role of vitamin D in primary neuronal cortical culture. eNeurologicalSci 2018; 14:43-48. [PMID: 30619951 PMCID: PMC6312860 DOI: 10.1016/j.ensci.2018.12.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 08/31/2018] [Accepted: 12/16/2018] [Indexed: 01/24/2023] Open
Abstract
Background A role of Vitamin D in brain development and function has been gaining support over the last decade. There are compelling pieces of evidence that suggest vitamin D may have a neuroprotective role. The administration of vitamin D or its metabolites has been shown to reduce neurological injury and/or neurotoxicity in a variety of animal systems. The detail biochemical mechanism mediating neurons, to its ability to withstand greater oxidative stress in the presence of Vitamin D is unclear. This study was undertaken to study the biochemical effect of treatments of primary cortical neuronal cultures, with the active form of vitamin D(1,25(OH)2D3), against the induced oxidative stress. Methods Primary neuronal cultures from cerebral cortex were set up from neonatal (from 6 to 7 days old) Wister Rat's brain. Different doses of [1,25(OH)2D3], ranges from 0 to 1 μg/ml, was added to the culture medium and the cells were cultured in its presence for 24 h to 120 h. The effect of induced extracellular oxidative stress was measured by subjecting these cultured cells with 0.5 mM H2O2 for 2 h, prior to collection of condition medium and the cell pellet for biochemical assay. The control and H2O2 treated cultures were maintained in similar culture conditions, for similar periods of time without any [1,25(OH)2D3] treatments. Result The optimum concentration of [1,25(OH)2D3] for treatment of primary cortical neuronal cultures was found to be 0.25 μg/ml by Trypan exclusion assay and MTT assay. Pre-treatments of cultured neuronal cells with 0.25 μg/ml of [1,25(OH)2D3] caused significantly increased levels of reduced glutathione, accompanied by a similar increase in the enzyme levels of GST, to neutralize the induced oxidative stress by H2O2. The level of Lipid peroxidation was significantly higher in the cells treated with H2O2 alone, but it was completely reversed in the neuronal cultures pre-treated with [1,25(OH)2D3]. The levels of Catalase enzyme also significantly reduced (≥0.05) in the [1,25(OH)2D3] pre-treated neuronal cultures. Conclusion We concluded that the systemic treatment of primary neuronal cultures with [1,25(OH)2D3] gave better protection to neurons against the induced oxidative stress, as shown by quantitative measurements of various biomarkers of oxidative stress. This study also suggested that Vitamin D is vital for the growth, survival, and proliferation of the neurons and hence it has a potential therapeutic role against various neurodegenerative diseases.
Collapse
Affiliation(s)
- Reham AlJohri
- Department of Biochemistry, College of Science, King Saud University, Saudi Arabia
| | - Majid AlOkail
- Department of Biochemistry, College of Science, King Saud University, Saudi Arabia
| | - Samina Hyder Haq
- Department of Biochemistry, College of Science, King Saud University, Saudi Arabia
| |
Collapse
|
26
|
Mailhot G, Lamarche J, Gagnon DH. Effectiveness of two vitamin D 3 repletion protocols on the vitamin D status of adults with a recent spinal cord injury undergoing inpatient rehabilitation: a prospective case series. Spinal Cord Ser Cases 2018; 4:96. [PMID: 30393567 DOI: 10.1038/s41394-018-0129-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 10/02/2018] [Accepted: 10/09/2018] [Indexed: 01/24/2023] Open
Abstract
Study design Prospective case series. Objectives To assess the effectiveness and safety of two vitamin D3 repletion protocols given to individuals with spinal cord injury (SCI). Setting Publicly-funded intensive inpatient rehabilitation center, Montreal, Canada. Methods Thirty adults with recent SCI complete or incomplete sensorimotor impairments were recruited upon admission from designated regional SCI trauma centers. Participants with serum 25OHD ≤ 30 nmol/L were given 10,000 IU of weekly and 1000 IU of daily vitamin D3 for 36.8 ± 11.9 days (higher dose: HD). Subjects with serum 25OHD > 30 nmol/L received 1000 IU of daily vitamin D3 for 38.2 ± 11.6 days (lower dose: LD). Outcomes were changes in 25OHD levels from baseline to the end of the study period and safety outcomes. Thresholds for vitamin D deficiency, insufficiency and sufficiency were: 25OHD levels ≤30 nmol/L, 30-74 nmol/L, and ≥75 nmol/L. Results At baseline, 34 and 66% of participants had serum 25OHD < 30 and >30 nmol/L. Both protocols induced a rise in serum 25OHD with a greater increase in the HD vs. LD regimen (31.4 [95% CI: 16.7, 46.0] vs. 11.7 nmol/L [95% CI: 2.2, 21.2]). None of the participants given the HD remained vitamin D deficient, but only one achieved vitamin D sufficiency. Nearly all individuals on the LD regimen remained vitamin D insufficient with only two reaching vitamin D sufficiency. No adverse effects were observed over the course of the supplementation. Conclusions Although 1000 IU of daily vitamin D3 alone or in combination with weekly 10,000 IU for an average of 37.6 days increased serum 25OHD, they were unsuccessful in improving the impaired vitamin D status during inpatient rehabilitation of individuals with a recent SCI.
Collapse
Affiliation(s)
- Geneviève Mailhot
- 1Research Centre, CHU Sainte-Justine, Montreal, Quebec Canada.,2Department of Nutrition, Université de Montréal, Montreal, Quebec Canada
| | - Josée Lamarche
- 2Department of Nutrition, Université de Montréal, Montreal, Quebec Canada.,3Center for Interdisciplinary Research in Rehabilitation (CRIR), Montreal, Quebec Canada.,4Institut universitaire sur la réadaptation en déficience physique de Montréal of the Centre intégré universitaire de santé et de services sociaux (CIUSSS) du Centre-Sud-de-l'Ile-de-Montréal, Montreal, Quebec Canada
| | - Dany H Gagnon
- 3Center for Interdisciplinary Research in Rehabilitation (CRIR), Montreal, Quebec Canada.,4Institut universitaire sur la réadaptation en déficience physique de Montréal of the Centre intégré universitaire de santé et de services sociaux (CIUSSS) du Centre-Sud-de-l'Ile-de-Montréal, Montreal, Quebec Canada.,5School of Rehabilitation, Université de Montréal, Montreal, Quebec Canada
| |
Collapse
|
27
|
Joshi S, Sun H, Rajasekaran K, Williamson J, Perez-Reyes E, Kapur J. A novel therapeutic approach for treatment of catamenial epilepsy. Neurobiol Dis 2018; 111:127-137. [PMID: 29274741 PMCID: PMC5803337 DOI: 10.1016/j.nbd.2017.12.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 11/27/2017] [Accepted: 12/19/2017] [Indexed: 12/21/2022] Open
Abstract
Many women with epilepsy experience perimenstrual seizure exacerbation, referred to as catamenial epilepsy. There is no effective treatment for this condition, proposed to result from withdrawal of neurosteroid-mediated effects of progesterone. A double-blind, multicenter, phase III, clinical trial of catamenial epilepsy has failed to find a beneficial effect of progesterone. The neurosteroid-mediated effects of progesterone have been extensively studied in relation to catamenial epilepsy; however, the effects mediated by progesterone receptor activation have been overlooked. We determined whether progesterone increased excitatory transmission in the hippocampus via activation of progesterone receptors, which may play a role in regulating catamenial seizure exacerbation. In a double-blind study using a rat model of catamenial epilepsy, we found that treatment with RU-486, which blocks progesterone and glucocorticoid receptors, significantly attenuated neurosteroid withdrawal-induced seizures. Furthermore, progesterone treatment as well as endogenous rise in progesterone during estrous cycle increased the expression of GluA1 and GluA2 subunits of AMPA receptors in the hippocampi, and enhanced the AMPA receptor-mediated synaptic transmission of CA1 pyramidal neurons. The progesterone-induced plasticity of AMPA receptors was blocked by RU-486 treatment and progesterone also failed to increase AMPA receptor expression in progesterone receptor knockout mice. These studies demonstrate that progesterone receptor activation regulates AMPA receptor expression and may play a role in catamenial seizure exacerbation.
Collapse
Affiliation(s)
- Suchitra Joshi
- Department of Neurology, University of Virginia, Charlottesville, VA 22908, United States
| | - Huayu Sun
- Department of Neurology, University of Virginia, Charlottesville, VA 22908, United States
| | - Karthik Rajasekaran
- Department of Neurology, University of Virginia, Charlottesville, VA 22908, United States
| | - John Williamson
- Department of Neurology, University of Virginia, Charlottesville, VA 22908, United States
| | - Edward Perez-Reyes
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, United States
| | - Jaideep Kapur
- Department of Neurology, University of Virginia, Charlottesville, VA 22908, United States; Department of Neuroscience, University of Virginia, Charlottesville, VA 22908, United States.
| |
Collapse
|
28
|
Vitamin D and spinal cord injury: should we care? Spinal Cord 2016; 54:1060-1075. [PMID: 27645263 DOI: 10.1038/sc.2016.131] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 07/26/2016] [Accepted: 08/11/2016] [Indexed: 12/18/2022]
Abstract
STUDY DESIGN Narrative review. OBJECTIVES This review provides an overview of the etiological factors and consequences of vitamin D insufficiency in relation to spinal cord injury (SCI) as well as important considerations for vitamin D supplementation. SETTING Montreal, Canada. METHODS Literature search. RESULTS Vitamin D insufficiency is common in SCI individuals owing to the presence of many contributing factors including limited sun exposure and intake, use of medication and endocrine perturbations. Although there are several biological plausible mechanisms by which vitamin D may act upon musculoskeletal and cardiometabolic health, the impact of vitamin D insufficiency on such systems remains ill defined in SCI. In the absence of guidelines for the management of vitamin D insufficiency in this high-risk population and in an attempt to provide clinical guidance, considerations for vitamin D supplementation such as the type of vitamin D, dosing regimens and toxicity are discussed and tentative recommendations suggested with particular reference to issues faced by SCI patients. CONCLUSION Although high rates of vitamin D insufficiency are encountered in SCI individuals, its consequences and the amount of vitamin D required to prevent insufficiency are still unknown, indicating a need for more intervention studies with well-defined outcome measures. Routine screening and monitoring of vitamin D as well as treatment of suboptimal status should be instituted in both acute and chronic setting. The close interactions between vitamin D and related bone minerals should be kept in mind when supplementing SCI individuals, and practices should be individualized with clinical conditions.
Collapse
|