1
|
Zhao R, Liang Z, Chu J, Zheng Q, Zhao J, Tang S, Chen Q, Huang Y, Zhou X, Pan X. Downregulation of NEBL promotes migration and invasion of clear cell renal cell carcinoma by inducing epithelial-mesenchymal transition. Pathol Res Pract 2024; 254:155068. [PMID: 38215565 DOI: 10.1016/j.prp.2023.155068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 10/04/2023] [Accepted: 12/27/2023] [Indexed: 01/14/2024]
Abstract
As a member of the nebulin protein family and a structural protein of cytoskeleton, NEBL plays an important role in cardiac diseases. Recently, literature have reported the involvement of NEBL in the occurrence and development of various cancers except clear cell renal cell carcinoma (ccRCC). In this study, we found that mRNA and protein of NEBL are downregulated remarkably in ccRCC tissues based on both the TCGA database and clinical samples we collected. The areas under curve values of NEBL analyzed based on the TCGA database, qRT-PCR and IHC results were 0.9376, 0.9733 and 0.9807, respectively. The lower mRNA level of NEBL was associated with worse outcomes in ccRCC patients. When overexpressing NEBL in ccRCC cell lines, the proliferation, migration and invasion of ccRCC cells were suppressed significantly, suggesting a tumor suppressor role of NEBL. In addition, we identified that NEBL is closely related to epithelial-mesenchymal transition (EMT), thereby reducing the motility of ccRCC cells. Furthermore, the lower expression of NEBL was correlated with ccRCC patients with distant organ metastasis. In summary, we firstly described the aberrant expression of NEBL and revealed its tumor suppressor role in ccRCC. Our data support that NEBL could serve as a valuable diagnostic and prognostic biomarker in ccRCC, as well as a promising therapeutic target.
Collapse
Affiliation(s)
- Ran Zhao
- Life Science Institute, Guangxi Medical University, China; Key Laboratory of High-Incidence-Tumor Prevention & Treatment (Guangxi Medical University), Ministry of Education, Nanning, China
| | - Ziyuan Liang
- Life Science Institute, Guangxi Medical University, China; Key Laboratory of High-Incidence-Tumor Prevention & Treatment (Guangxi Medical University), Ministry of Education, Nanning, China
| | - Jiemei Chu
- Life Science Institute, Guangxi Medical University, China
| | - Qian Zheng
- Life Science Institute, Guangxi Medical University, China; Key Laboratory of High-Incidence-Tumor Prevention & Treatment (Guangxi Medical University), Ministry of Education, Nanning, China
| | - Jun Zhao
- Key Laboratory of High-Incidence-Tumor Prevention & Treatment (Guangxi Medical University), Ministry of Education, Nanning, China
| | - Shiyue Tang
- Key Laboratory of High-Incidence-Tumor Prevention & Treatment (Guangxi Medical University), Ministry of Education, Nanning, China
| | - Qiaoli Chen
- Key Laboratory of High-Incidence-Tumor Prevention & Treatment (Guangxi Medical University), Ministry of Education, Nanning, China
| | - Yiying Huang
- Key Laboratory of High-Incidence-Tumor Prevention & Treatment (Guangxi Medical University), Ministry of Education, Nanning, China
| | - Xiaoying Zhou
- Life Science Institute, Guangxi Medical University, China.
| | - Xinli Pan
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Academy of Sciences, China.
| |
Collapse
|
2
|
Santos LC, de Souza CA, Silva JF, Ocarino NM, Serakides R. Maternal hyperthyroidism alters the immunological mediators profile and population of natural killers cells in decidua of rats. Acta Histochem 2023; 125:152026. [PMID: 37058857 DOI: 10.1016/j.acthis.2023.152026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/16/2023]
Abstract
Decidual immunological mediators modulate placental formation, decidualization and fetal development. However, the effect of maternal hyperthyroidism on decidual immunology needs further research. The aim of this study was to evaluate the population of uterine natural killer cells (uNKs) and the expression of immunological mediators in the decidua of female rats throughout pregnancy. Wistar rats were used and hyperthyroidism was induced by daily administration of L-thyroxine (T4) throughout pregnancy. The population of uNK cells in decidua was evaluated by immunostaining Lectin DBA, as well as the expression of interferon γ (INFγ), macrophage migration inhibitory factor (MIF), interleukin 15 (IL-15) and inducible nitric oxide synthase (iNOS) at 7, 10, 12, 14 and 19 days of gestation (DG). Maternal hyperthyroidism reduced the DBA+ uNK cell population in the decidua at 7 (P < 0.05) and 10 (P < 0.01) DGs compared to that in the control group, while it increased in the basal decidua (P < 0.05) and metrial gland (P < 0.0001) at the 12th DG. Hyperthyroidism also increased immunostaining of IL-15 (P < 0.0001), INFγ (P < 0.05), and MIF (P < 0.05) in the 7th DG, and increased immunostaining of IL-15 (P < 0.0001) and MIF (P < 0.01) in the 10th DG. However, excess thyroxine reduced IL-15 expression in the metrial gland and/or basal decidua in the 12th (P < 0.05), 14th (P < 0.01), and 19th (P < 0.001) DGs, as was also observed for INFγ in the basal decidua (P<0.001) and metrial gland (P < 0.0001) in the 12th DG. Regarding iNOS, an antiinflammatory cytokine, lower expression was observed in the basal decidua of hyperthyroid animals at 7 and 12 DGs (P < 0.05), whereas an increase occurred in the 10th DG (P < 0.05). These data demonstrate that maternal hyperthyroidism in female rats, particularly between 7 and 10 DGs, reduces the population of DBA+ uNKs in the decidua and increases the expression of inflammatory cytokines, suggesting a more proinflammatory environment in early pregnancy caused by this gestational disease.
Collapse
Affiliation(s)
- Luciano Cardoso Santos
- Centro de Microscopia Eletronica, Departamento de Ciencias Biologicas, Universidade Estadual de Santa Cruz, Campus Soane Nazare de Andrade, 45662-900 Ilheus, Brazil
| | - Cíntia Almeida de Souza
- Departamento de Clinica e Cirurgia Veterinarias, Escola de Veterinaria, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, Brazil
| | - Juneo Freitas Silva
- Centro de Microscopia Eletronica, Departamento de Ciencias Biologicas, Universidade Estadual de Santa Cruz, Campus Soane Nazare de Andrade, 45662-900 Ilheus, Brazil
| | - Natália Melo Ocarino
- Departamento de Clinica e Cirurgia Veterinarias, Escola de Veterinaria, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, Brazil
| | - Rogéria Serakides
- Departamento de Clinica e Cirurgia Veterinarias, Escola de Veterinaria, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, Brazil.
| |
Collapse
|
3
|
Wang M, Zhang L, Huang X, Sun Q. Ligustrazine promotes hypoxia/reoxygenation-treated trophoblast cell proliferation and migration by regulating the microRNA-27a-3p/ATF3 axis. Arch Biochem Biophys 2023; 737:109522. [PMID: 36657605 DOI: 10.1016/j.abb.2023.109522] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 01/06/2023] [Accepted: 01/15/2023] [Indexed: 01/17/2023]
Abstract
OBJECTIVE Preeclampsia (PE) is a pregnancy-specific syndrome. Ligustrazine (LSZ) is involved in hypoxia/reoxygenation (H/R)-treated trophoblast cell regulation, but its mechanism remains elusive. This study explored the mechanism of LSZ in H/R-treated trophoblast cells to provide a theoretical basis for the new treatment method development for PE. METHODS H/R HTR8/SVneo cell model was established for PE simulation to some extent. Trophoblast cell proliferation, apoptosis rate, migration, and invasion were detected by MTT assay, flow cytometry, scratch test, and Transwell assay. miR-27a-3p expression in trophoblast cells was detected by RT-qPCR. Binding sites between miR-27a-3p and ATF3 were predicted using Starbase and verified by dual-luciferase reporter assay. Activating transcription factor 3 (ATF3), β-catenin, Cyclin D1, and c-Myc protein levels were examined using Western blot. After LSZ treatment, H/R-induced HTR8/SVneo cells were delivered with miR-27a-3p mimic or ATF3 siRNA to verify their roles in HTR8/SVneo cells. RESULTS LSZ facilitated the proliferation, migration, and invasion of trophoblast cells and inhibited apoptosis. miR-27a-3p was elevated in H/R-induced HTR8/SVneo cells and miR-27a-3p overexpression annulled the effect of LSZ on trophoblast cells. miR-27a-3p targeted ATF3. ATF3 silencing averted the property of LSZ on trophoblast cells. Wnt/β-catenin pathway-related proteins were repressed in H/R-induced HTR8/SVneo cells, and LSZ activated the Wnt/β-catenin pathway by promoting ATF3 expression. CONCLUSION LSZ mediated the Wnt pathway by regulating the miR-27a-3p/ATF3 axis, thus promoting the proliferation and migration of trophoblast cells. The protective mechanism of LSZ showed the potential application value in the treatment of PE.
Collapse
Affiliation(s)
- Min Wang
- Department of Gynaecology and Obstetrics, Jinan Maternity and Child Care Hospital, Jinan, 250001, Shandong Province, China
| | - Li Zhang
- Department of Gynaecology and Obstetrics, Jinan Maternity and Child Care Hospital, Jinan, 250001, Shandong Province, China
| | - Xiuyan Huang
- Department of Gynaecology and Obstetrics, Jinan Maternity and Child Care Hospital, Jinan, 250001, Shandong Province, China
| | - Qian Sun
- Department of Gynaecology and Obstetrics, Jinan Maternity and Child Care Hospital, Jinan, 250001, Shandong Province, China.
| |
Collapse
|
4
|
Tan B, Zhou C, Zang X, Zhao X, Xiao L, Zeng J, Hong L, Wu Z, Gu T. Integrated Analysis of DNA Methylation and Gene Expression in Porcine Placental Development. Int J Mol Sci 2023; 24:ijms24065169. [PMID: 36982243 PMCID: PMC10049215 DOI: 10.3390/ijms24065169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/04/2023] [Accepted: 03/06/2023] [Indexed: 03/30/2023] Open
Abstract
Proper placental development is crucial for the conceptus to grow and survive, because the placenta is responsible for transporting nutrients and oxygen from the pregnant female to the developing fetus. However, the processes of placental morphogenesis and fold formation remain to be fully elucidated. In this study, we used whole-genome bisulfite sequencing and RNA sequencing to produce a global map of DNA methylation and gene expression changes in placentas from Tibetan pig fetuses 21, 28, and 35 days post-coitus. Substantial changes in morphology and histological structures at the uterine-placental interface were revealed via hematoxylin-eosin staining. Transcriptome analysis identified 3959 differentially expressed genes (DEGs) and revealed the key transcriptional properties in three stages. The DNA methylation level in the gene promoter was negatively correlated with gene expression. We identified a set of differentially methylated regions associated with placental developmental genes and transcription factors. The decrease in DNA methylation level in the promoter was associated with the transcriptional activation of 699 DEGs that were functionally enriched in cell adhesion and migration, extracellular matrix remodeling, and angiogenesis. Our analysis provides a valuable resource for understanding the mechanisms of DNA methylation in placental development. The methylation status of different genomic regions plays a key role in establishing transcriptional patterns from placental morphogenesis to fold formation.
Collapse
Affiliation(s)
- Baohua Tan
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Chen Zhou
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Xupeng Zang
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Xinming Zhao
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Liyao Xiao
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Jiekang Zeng
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Linjun Hong
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Zhenfang Wu
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Ting Gu
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
5
|
Yang Z, Jia X, Deng Q, Luo M, Hou Y, Yue J, Mei J, Shan N, Wu Z. Human umbilical cord mesenchymal stem cell-derived extracellular vesicles loaded with TFCP2 activate Wnt/β-catenin signaling to alleviate preeclampsia. Int Immunopharmacol 2023; 115:109732. [PMID: 37724958 DOI: 10.1016/j.intimp.2023.109732] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/04/2023] [Accepted: 01/10/2023] [Indexed: 01/21/2023]
Abstract
BACKGROUND Failures in invasive extravillous trophoblasts (EVTs) migration into the maternal uterus have been noticed in preeclampsia (PE). Human umbilical cord mesenchymal stem cell (hUCMSC)-derived extracellular vesicles (EVs) have been highlighted for the role as a potential therapeutic method in PE. This study intends to investigate the mechanistic basis of hUCMSCs-derived EVs loaded with bioinformatically identified TFCP2 in the activities of EVTs of PE. METHODS Primary human EVTs were exposed to hypoxic/reoxygenation (H/R) to mimic the environment encountered in PE. The in vivo PE-like phenotypes were induced in mice by reduced uterine perfusion pressure (RUPP) surgery. CCK-8, Transwell and flow cytometry assays were performed to detect proliferation, migration, invasion and apoptosis of H/R-exposed EVTs. More importantly, EVs were extracted from hUCMSCs and transduced with ectopically expressed TFCP2, followed by co-culture with EVTs. RESULTS TFCP2 was found to be down-regulated in the preeclamptic placental tissues and in H/R-exposed EVTs. hUCMSCs-EVs loaded with TFCP2 activated the Wnt/β-catenin pathway, thereby promoting the proliferative, migratory, and invasive potential of EVTs. Furthermore, overexpression of TFCP2 alleviated PE-like phenotypes in mice, which was associated with activated Wnt/β-catenin pathway. CONCLUSION From our data we conclude that hUCMSCs-EVs overexpressing TFCP2 may be instrumental for the therapeutic targeting and clinical management of PE.
Collapse
Affiliation(s)
- Zhongmei Yang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P. R. China; Department of Obstetrics and Gynecology, Sichuan Provincial People's Hospital, School of Medicine UESTC, Chengdu 610072, P. R. China; Sichuan Translational Medicine Research Hospital, Chinese Academy of Sciences, Chengdu 610072, P. R. China
| | - Xiaoyan Jia
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P. R. China
| | - Qinyin Deng
- Department of Obstetrics and Gynecology, Sichuan Provincial People's Hospital, School of Medicine UESTC, Chengdu 610072, P. R. China; Sichuan Translational Medicine Research Hospital, Chinese Academy of Sciences, Chengdu 610072, P. R. China
| | - Mengdie Luo
- Department of Obstetrics and Gynecology, Chengdu Second People's Hospital, Chengdu 610021, PR China
| | - Yan Hou
- Department of Obstetrics and Gynecology, Sichuan Provincial People's Hospital, School of Medicine UESTC, Chengdu 610072, P. R. China; Sichuan Translational Medicine Research Hospital, Chinese Academy of Sciences, Chengdu 610072, P. R. China
| | - Jun Yue
- Department of Obstetrics and Gynecology, Sichuan Provincial People's Hospital, School of Medicine UESTC, Chengdu 610072, P. R. China; Sichuan Translational Medicine Research Hospital, Chinese Academy of Sciences, Chengdu 610072, P. R. China
| | - Jie Mei
- Department of Obstetrics and Gynecology, Sichuan Provincial People's Hospital, School of Medicine UESTC, Chengdu 610072, P. R. China; Sichuan Translational Medicine Research Hospital, Chinese Academy of Sciences, Chengdu 610072, P. R. China
| | - Nan Shan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P. R. China.
| | - Zhao Wu
- Department of Obstetrics and Gynecology, Sichuan Provincial People's Hospital, School of Medicine UESTC, Chengdu 610072, P. R. China; Sichuan Translational Medicine Research Hospital, Chinese Academy of Sciences, Chengdu 610072, P. R. China.
| |
Collapse
|
6
|
Fan M, Dong L, Meng Y, Wang Y, Zhen J, Qiu J. Leptin Promotes HTR-8/SVneo Cell Invasion via the Crosstalk between MTA1/WNT and PI3K/AKT Pathways. DISEASE MARKERS 2022; 2022:7052176. [PMID: 36457544 PMCID: PMC9708374 DOI: 10.1155/2022/7052176] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 10/16/2022] [Accepted: 11/08/2022] [Indexed: 08/31/2023]
Abstract
The process of placental invasion is essential for a successful pregnancy. Leptin is involved in trophoblast invasiveness, and its dysregulation is connected with a series of diseases, including preeclampsia. However, the knowledge of the precise mechanisms in leptin-induced trophoblast invasiveness is still limited. According to the present research, transwell assay suggested that leptin is a dose- and time-dependent regulator in inducing HTR-8/SVneo cell invasion. Western blot analysis and immunofluorescence staining revealed that leptin-induced MMP9 expression is essential in the invasion process of HTR-8/SVneo cells. Mechanistically, we demonstrated that leptin activated β-catenin via the crosstalk between the MTA1/WNT and PI3K/AKT pathways. Besides, we showed that downregulating the key molecules in the signaling pathways by siRNA can inhibit leptin-induced MMP9 expression and further suppress invasion of HTR-8/SVneo cells. In conclusion, our study revealed a new regulatory mechanism of leptin-induced HTR-8/SVneo cell invasiveness and will provide novel insights into the causes and potential therapeutic targets for diseases related to dysregulation of trophoblast invasion in the future.
Collapse
Affiliation(s)
- Minghua Fan
- Department of Obstetrics and Gynecology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250033, China
| | - Lihua Dong
- Department of Obstetrics and Gynecology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250033, China
- Department of Obstetrics and Gynecology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Yanping Meng
- Department of Obstetrics and Gynecology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250033, China
| | - Yao Wang
- Department of Obstetrics and Gynecology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250033, China
| | - Junhui Zhen
- Department of Pathology, School of Medicine, Shandong University, Jinan, 250021 Shandong, China
| | - Jianqing Qiu
- Department of Obstetrics and Gynecology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250033, China
| |
Collapse
|
7
|
Liang Y, Wang P, Shi Y, Cui B, Meng J. Long noncoding RNA maternally expressed gene 3 improves trophoblast dysfunction and inflammation in preeclampsia through the Wnt/β-Catenin/nod-like receptor pyrin domain-containing 3 axis. Front Mol Biosci 2022; 9:1022450. [PMID: 36310595 PMCID: PMC9613960 DOI: 10.3389/fmolb.2022.1022450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 09/30/2022] [Indexed: 11/13/2022] Open
Abstract
Inadequate trophoblastic infiltration and resulting placental hypoxia and inflammation comprise the core pathological basis of preeclampsia (PE). Maternally expressed gene 3 (MEG3) is known to be involved in the pathogenesis of preeclampsia by inhibiting the migration and invasion of trophoblasts and promoting their apoptosis. Nevertheless, the specific underlying downstream molecular mechanism of MEG3 is less well characterized. In this study, we detected lower expression levels of MEG3 and β-Catenin and higher expression of nod-like receptor pyrin domain-containing 3 (NLRP3) in placental tissues of pregnant women with severe preeclampsia (sPE) than in normal pregnancies. Elevated serum levels of IL-1β and TNF-α were also observed in the sPE group. Then, we established a hypoxia/reoxygenation (H/R) model to mimic preeclampsia. Similar results with sPE group were found in the H/R group compared with the control group. In addition, suppressive trophoblast proliferation, migration and invasion and increases in the apoptotic rate and inflammation were also detected in the H/R group. Notably, overexpressing MEG3 markedly improved trophoblast dysfunction and inflammation caused by H/R. However, the effects of MEG3 on trophoblasts, whether upregulated or downregulated, can be reversed by DKK-1 (Wnt/β-Catenin inhibitor) and MCC950 (NLRP3 inhibitor). The current study revealed that MEG3 regulates trophoblast function and inflammation through the Wnt/β-Catenin/NLRP3 axis and provided new insights into the pathogenesis of preeclampsia.
Collapse
Affiliation(s)
- Yue Liang
- Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Ping Wang
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Yueyang Shi
- Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Bihong Cui
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Jinlai Meng
- Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Key Laboratory of Birth Regulation and Control Technology of National Health and Family Planning Commission of China, Maternal and Child Health Care Hospital of Shandong Province, Jinan, Shandong, China
- *Correspondence: Jinlai Meng,
| |
Collapse
|
8
|
Saadeldin IM, Tanga BM, Bang S, Seo C, Koo O, Yun SH, Kim SI, Lee S, Cho J. ROCK Inhibitor (Y-27632) Abolishes the Negative Impacts of miR-155 in the Endometrium-Derived Extracellular Vesicles and Supports Embryo Attachment. Cells 2022; 11:cells11193178. [PMID: 36231141 PMCID: PMC9564368 DOI: 10.3390/cells11193178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/07/2022] [Accepted: 10/07/2022] [Indexed: 11/16/2022] Open
Abstract
Extracellular vesicles (EVs) are nanosized vesicles that act as snapshots of cellular components and mediate cellular communications, but they may contain cargo contents with undesired effects. We developed a model to improve the effects of endometrium-derived EVs (Endo-EVs) on the porcine embryo attachment in feeder-free culture conditions. Endo-EVs cargo contents were analyzed using conventional and real-time PCR for micro-RNAs, messenger RNAs, and proteomics. Porcine embryos were generated by parthenogenetic electric activation in feeder-free culture conditions supplemented with or without Endo-EVs. The cellular uptake of Endo-EVs was confirmed using the lipophilic dye PKH26. Endo-EVs cargo contained miR-100, miR-132, and miR-155, together with the mRNAs of porcine endogenous retrovirus (PERV) and β-catenin. Targeting PERV with CRISPR/Cas9 resulted in reduced expression of PERV mRNA transcripts and increased miR-155 in the Endo-EVs, and supplementing these in embryos reduced embryo attachment. Supplementing the medium containing Endo-EVs with miR-155 inhibitor significantly improved the embryo attachment with a few outgrowths, while supplementing with Rho-kinase inhibitor (RI, Y-27632) dramatically improved both embryo attachment and outgrowths. Moreover, the expression of miR-100, miR-132, and the mRNA transcripts of BCL2, zinc finger E-box-binding homeobox 1, β-catenin, interferon-γ, protein tyrosine phosphatase non-receptor type 1, PERV, and cyclin-dependent kinase 2 were all increased in embryos supplemented with Endo-EVs + RI compared to those in the control group. Endo-EVs + RI reduced apoptosis and increased the expression of OCT4 and CDX2 and the cell number of embryonic outgrowths. We examined the individual and combined effects of RI compared to those of the miR-155 mimic and found that RI can alleviate the negative effects of the miR-155 mimic on embryo attachment and outgrowths. EVs can improve embryo attachment and the unwanted effects of the de trop cargo contents (miR-155) can be alleviated through anti-apoptotic molecules such as the ROCK inhibitor.
Collapse
Affiliation(s)
- Islam M. Saadeldin
- Laboratory of Theriogenology, College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea
- Research Institute of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea
| | - Bereket Molla Tanga
- Laboratory of Theriogenology, College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea
| | - Seonggyu Bang
- Laboratory of Theriogenology, College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea
| | - Chaerim Seo
- Laboratory of Theriogenology, College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea
| | | | - Sung Ho Yun
- Korea Basic Science Institute (KBSI), Ochang 28119, Korea
| | - Seung Il Kim
- Korea Basic Science Institute (KBSI), Ochang 28119, Korea
| | - Sanghoon Lee
- Laboratory of Theriogenology, College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea
| | - Jongki Cho
- Laboratory of Theriogenology, College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea
- Correspondence: ; Tel.: +82-42-821-6788
| |
Collapse
|
9
|
Zhao Z, Zhang C, Zhu Y. Transcriptional Factor Forkhead Box D1 Upregulates Sirtuin3 by Activating the Wnt/ β-Catenin Pathway to Alleviate HTR-8/Svneo Trophoblast Cell Dysfunction in Preeclampsia. J BIOMATER TISS ENG 2022. [DOI: 10.1166/jbt.2022.3124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The proliferation, invasion, migration and apoptosis of trophoblast cells in preeclampsia are closely related to the occurrence and development of preeclampsia. Transcription factors forkhead box D1 and Sirtuin3 are abnormally expressed in preeclampsia, and Sirtuin3 plays a regulatory
role in cell proliferation, invasion and apoptosis in related diseases. However, the studies on forkhead box D1 and Sirtuin3 in preeclampsia and their specific mechanisms have not been reported so far. In this study, the expression of Sirtuin3 in Human chorionic trophoblast cells HTR-8/Svneo
was inhibited by cell transfection, and then the effects of Sirtuin3 expression in interfering cells on cell invasion, migration and apoptosis were detected by MTT, TUNEL, Western blot, wound healing and Transwell techniques. Subsequently, the binding between forkhead box D1 and Sirtuin3 was
predicted by JASPAR website and verified by luciferase assay and ChIP assay. Finally, cell invasion, migration and apoptosis were detected after overexpression of forkhead box D1 and interference with Sirtuin3, and the Wnt/β-catenin signaling pathway was detected to explore the
mechanism. We found that interfering with Sirtuin3 induced apoptosis of HTR-8/Svneo cells and inhibited cell invasion and migration. Forkhead box D1 transcriptional activation of Sirtuin3 alleviated HTR-8/SVneo cell dysfunction through activation of the Wnt/β-catenin signaling
pathway. Overall, transcriptional factor forkhead box D1 can upregulate Sirtuin3 by activating the Wnt/β-catenin pathway to alleviate HTR-8/Svneo trophoblast cell dysfunction in preeclampsia.
Collapse
Affiliation(s)
- Zhiqiang Zhao
- Department of Gynecology and Obstetrics, Beijing You’an Hospital of Capital Medical University, Beijing, 100069, China
| | - Chong Zhang
- Department of Gynecology and Obstetrics, Beijing You’an Hospital of Capital Medical University, Beijing, 100069, China
| | - Yunxia Zhu
- Department of Gynecology and Obstetrics, Beijing You’an Hospital of Capital Medical University, Beijing, 100069, China
| |
Collapse
|
10
|
Louwen F, Kreis NN, Ritter A, Friemel A, Solbach C, Yuan J. BCL6, a key oncogene, in the placenta, pre-eclampsia and endometriosis. Hum Reprod Update 2022; 28:890-909. [PMID: 35640966 PMCID: PMC9629482 DOI: 10.1093/humupd/dmac027] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 05/02/2022] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The key oncogene B-cell lymphoma 6 (BCL6) drives malignant progression by promoting proliferation, overriding DNA damage checkpoints and blocking cell terminal differentiation. However, its functions in the placenta and the endometrium remain to be defined. OBJECTIVE AND RATIONALE Recent studies provide evidence that BCL6 may play various roles in the human placenta and the endometrium. Deregulated BCL6 might be related to the pathogenesis of pre-eclampsia (PE) as well as endometriosis. In this narrative review, we aimed to summarize the current knowledge regarding the pathophysiological role of BCL6 in these two reproductive organs, discuss related molecular mechanisms, and underline associated research perspectives. SEARCH METHODS We conducted a comprehensive literature search using PubMed for human, animal and cellular studies published until October 2021 in the following areas: BCL6 in the placenta, in PE and in endometriosis, in combination with its functions in proliferation, fusion, migration, invasion, differentiation, stem/progenitor cell maintenance and lineage commitment. OUTCOMES The data demonstrate that BCL6 is important in cell proliferation, survival, differentiation, migration and invasion of trophoblastic cells. BCL6 may have critical roles in stem/progenitor cell survival and differentiation in the placenta and the endometrium. BCL6 is aberrantly upregulated in pre-eclamptic placentas and endometriotic lesions through various mechanisms, including changes in gene transcription and mRNA translation as well as post-transcriptional/translational modifications. Importantly, increased endometrial BCL6 is considered to be a non-invasive diagnostic marker for endometriosis and a predictor for poor outcomes of IVF. These data highlight that BCL6 is crucial for placental development and endometrium homeostasis, and its upregulation is associated with the pathogenesis of PE, endometriosis and infertility. WIDER IMPLICATIONS The lesson learned from studies of the key oncogene BCL6 reinforces the notion that numerous signaling pathways and regulators are shared by tumors and reproductive organs. Their alteration may promote the progression of malignancies as well as the development of gestational and reproductive disorders.
Collapse
Affiliation(s)
- Frank Louwen
- Division of Obstetrics and Prenatal Medicine, Department of Gynecology and Obstetrics, University Hospital Frankfurt, J. W. Goethe-University, Frankfurt, Germany
| | - Nina-Naomi Kreis
- Division of Obstetrics and Prenatal Medicine, Department of Gynecology and Obstetrics, University Hospital Frankfurt, J. W. Goethe-University, Frankfurt, Germany
| | - Andreas Ritter
- Division of Obstetrics and Prenatal Medicine, Department of Gynecology and Obstetrics, University Hospital Frankfurt, J. W. Goethe-University, Frankfurt, Germany
| | - Alexandra Friemel
- Division of Obstetrics and Prenatal Medicine, Department of Gynecology and Obstetrics, University Hospital Frankfurt, J. W. Goethe-University, Frankfurt, Germany
| | - Christine Solbach
- Division of Obstetrics and Prenatal Medicine, Department of Gynecology and Obstetrics, University Hospital Frankfurt, J. W. Goethe-University, Frankfurt, Germany
| | - Juping Yuan
- Division of Obstetrics and Prenatal Medicine, Department of Gynecology and Obstetrics, University Hospital Frankfurt, J. W. Goethe-University, Frankfurt, Germany
| |
Collapse
|
11
|
Zhang Z, Yang Y, Lv X, Liu H. Interleukin-17 promotes proliferation, migration, and invasion of trophoblasts via regulating PPAR-γ/RXR-α/Wnt signaling. Bioengineered 2022; 13:1224-1234. [PMID: 35258399 PMCID: PMC8805847 DOI: 10.1080/21655979.2021.2020468] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/13/2021] [Accepted: 12/13/2021] [Indexed: 12/12/2022] Open
Abstract
To investigate the effect of Interleukin 17 (IL-17) on the invasive capacity of trophoblast cells and the underlying mechanism, we collected placental tissues samples from pregnant women with preeclampsia (PE) and healthy pregnant women. The expression levels of IL-17 mRNA and protein in tissue samples were determined using qRT-PCR and Western blot, respectively. Cell viability and cell proliferation was determined using CCK-8 assay, and colony formation assay, respectively. Cell migration and invasion capacity were determined using transwell cell migration assay. Our results showed that the mRNA expression of IL-17 was significantly increased in PE patients and may be used as a sensitive biomarker for PE (P < 0.01). IL-17 overexpression promoted cell viability, migration, and invasion of human extravillous trophoblast cell line, HTR8/SVneo; however, IL-17 knockdown inhibited these effects. Additionally, IL-17 activated PPAR-γ/RXR-α signaling pathway, which promoted proliferation, migration, and invasion of trophoblast cells. Moreover, PPAR-γ/RXR-α heterodimers activated Wnt signaling. In conclusion, our study provides evidence that IL-17 is overexpressed in PE and promotes proliferation, migration and invasion of trophoblast cells via activating PPAR-γ/RXR-α/Wnt signaling.
Collapse
Affiliation(s)
- Zhuo Zhang
- Department of Pathology, Shijiazhuang People’s Hospital, Shijiazhuang City, Hebei Province, China
| | - Yuhua Yang
- Department of Pathology, Shijiazhuang People’s Hospital, Shijiazhuang City, Hebei Province, China
| | - Xiaomei Lv
- Department of Pathology, Shijiazhuang People’s Hospital, Shijiazhuang City, Hebei Province, China
| | - Hongyuan Liu
- Department of Pathology, Shijiazhuang People’s Hospital, Shijiazhuang City, Hebei Province, China
| |
Collapse
|
12
|
Expression of lncRNA TINCR in the placenta of patients with pre-eclampsia and its effect on the biological behaviours of trophoblasts. ZYGOTE 2021; 30:111-119. [PMID: 34176530 DOI: 10.1017/s0967199421000290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
To explore the effect of lncRNA TINCR on the biological behaviours of trophoblasts, we detected and analyzed the expression of terminal differentiation-induced non-protein coding RNA (TINCR) in the placenta tissues of pre-eclamptic and non-pre-eclamptic pregnant women. The gain- and loss-of-function of TINCR was performed to examine the proliferation, migration and invasion abilities of Htr-8/Svneo cells. The levels of epithelial-mesenchymal transition (EMT)-related proteins, cyclin and Wnt/β-catenin pathway were detected. High expression of lncRNA TINCR appeared in placental tissues of patients with pre-eclampsia. The proliferation, invasion and migration of Htr-8/Svneo cells were promoted by TINCR downregulation; the cells were transited from G0/G1 to S phase; and EMT was promoted and the Wnt/β-catenin pathway was activated. In summary, the downregulation of lncRNA TINCR activated the Wnt/β-catenin pathway and promoted the proliferation, invasion and migration of Htr-8/Svneo cells. This study may provide a theoretical basis for treatment of patients with pre-eclampsia.
Collapse
|
13
|
Ubiquitin-Specific Peptidase 5 is Involved in the Proliferation of Trophoblast Cells by Regulating Wnt/β-Catenin Signaling. Mol Biotechnol 2021; 63:686-693. [PMID: 33977498 DOI: 10.1007/s12033-021-00330-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 04/23/2021] [Indexed: 12/19/2022]
Abstract
Preeclampsia (PE) is a pathologic condition in pregnant women which accounts for the inhibition of proliferation, migration and invasion of trophoblast cells. This study aimed to investigate the regulation of ubiquitin-specific peptidase 5 (USP5) on the trophoblast cells in PE. Expressions of USP5 in the placentas of PE patients and healthy donors were examined by qRT-PCR and Western blot. Hypoxia/reoxygenation (H/R) model in trophoblast cells was further established. Cell viability was examined using CCK-8 assay. Finally, the effect of overexpression and silence of USP5 using lentivirus transduction was studied. Our results showed that USP5 was lowly expressed in the placentas of PE patients as well as in H/R-induced trophoblast cells. In the experiments of overexpression, USP5 promoted the proliferation of trophoblast cells, and up-regulated the expressions of β-catenin and the downstream signals c-Myc and Cyclin D1 in trophoblast cells. On the other hand, silence of USP5 elicited the opposite results. The overexpression of USP5 in the H/R model greatly released the H/R-induced inhibition in the trophoblast cells, and moderated the down-regulation of β-catenin and c-Myc induced by H/R. We concluded that USP5 promoted the proliferation of trophoblast cells via the up-regulation of the Wnt/β-catenin signaling pathway.
Collapse
|