1
|
Ain NU, Khan B, Zhu K, Ji W, Tian H, Yu X, Yi L, Li D, Zhang Z. Fabrication of mesoporous silica nanoparticles for releasable delivery of licorice polysaccharide at the acne site in topical application. Carbohydr Polym 2024; 339:122250. [PMID: 38823917 DOI: 10.1016/j.carbpol.2024.122250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/05/2024] [Accepted: 05/08/2024] [Indexed: 06/03/2024]
Abstract
Glycyrrhizae Radix et rhizome/licorice is a precious herb in traditional Chinese medicine (TCM). TCM's polysaccharides are medicinally active. But herbal polysaccharides pose some limitations for topical applications. Therefore, this study aimed to utilize licorice polysaccharide via mesoporous silica nanoparticles (MSN) for anti-acne efficacy in topical delivery. The polysaccharide (GGP) was extracted with a 10 % NaOH solution. Chemical characterization suggested that GGP possesses an Mw of 267.9 kDa, comprised primarily of Glc (54.1 %) and Ara (19.12 %), and probably 1,4-linked Glc as a backbone. Then, MSN and amino-functionalized MSN were synthesized, GGP entrapped, and coated with polydopamine (PDA) to produce nanoparticle cargo. The resulted product exhibited 76 % entrapment efficiency and an in vitro release of 89 % at pH 5, which is usually an acne-prone skin's pH. Moreover, it significantly increased Sebocytes' cellular uptake. GGP effectively acted as an anti-acne agent and preserved its efficacy in synthesized nanoparticles. In vivo, the results showed that a 20 % gel of MSN-NH2-GGP@PDA could mediate an inflammatory response via inhibiting pro-inflammatory cytokines and regulating anti-inflammatory cytokines. The MSN-NH2-GGP@PDA inhibited TLR2-activated-MAPK and NF-κB pathway triggered by heat-killed P. acnes. In conclusion, fabricated MSN entrapped GGP for biomimetic anti-acne efficacy in topical application.
Collapse
Affiliation(s)
- Noor Ul Ain
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215021, PR China
| | - Bibimaryam Khan
- School of Medicine, Jiangsu University, Zhenjiang 212013, PR China
| | - Kehan Zhu
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215021, PR China
| | - Wen Ji
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215021, PR China
| | - He Tian
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215021, PR China
| | - Xiaoxiao Yu
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215021, PR China
| | - Lin Yi
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215021, PR China.
| | - Duxin Li
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215021, PR China.
| | - Zhenqing Zhang
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215021, PR China.
| |
Collapse
|
2
|
Zhao D, Wang Y, Wu S, Ji X, Gong K, Zheng H, Zhu M. Research progress on the role of macrophages in acne and regulation by natural plant products. Front Immunol 2024; 15:1383263. [PMID: 38736879 PMCID: PMC11082307 DOI: 10.3389/fimmu.2024.1383263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 04/01/2024] [Indexed: 05/14/2024] Open
Abstract
Acne vulgaris is one of the most common skin diseases. The current understanding of acne primarily revolves around inflammatory responses, sebum metabolism disorders, aberrant hormone and receptor expression, colonization by Cutibacterium acnes, and abnormal keratinization of follicular sebaceous glands. Although the precise mechanism of action remains incompletely understood, it is plausible that macrophages exert an influence on these pathological features. Macrophages, as a constituent of the human innate immune system, typically manifest distinct phenotypes across various diseases. It has been observed that the polarization of macrophages toward the M1 phenotype plays a pivotal role in the pathogenesis of acne. In recent years, extensive research on acne has revealed an increasing number of natural remedies exhibiting therapeutic efficacy through the modulation of macrophage polarization. This review investigates the role of cutaneous macrophages, elucidates their potential significance in the pathogenesis of acne, a prevalent chronic inflammatory skin disorder, and explores the therapeutic mechanisms of natural plant products targeting macrophages. Despite these insights, the precise role of macrophages in the pathogenesis of acne remains poorly elucidated. Subsequent investigations in this domain will further illuminate the pathogenesis of acne and potentially offer guidance for identifying novel therapeutic targets for this condition.
Collapse
Affiliation(s)
- Dan Zhao
- Department of Dermatology, The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Yun Wang
- Department of Dermatology, The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Shuhui Wu
- Department of Dermatology, The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Xiaotian Ji
- Department of Dermatology, The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Ke Gong
- Department of Traditional Chinese Medicine, Cangzhou Central Hospital, Cangzhou, China
| | - Huie Zheng
- Department of Dermatology, The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Mingfang Zhu
- Department of Dermatology, The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
3
|
Folle C, Sánchez-López E, Mallandrich M, Díaz-Garrido N, Suñer-Carbó J, Halbaut L, Carvajal-Vidal P, Marqués AM, Espina M, Badia J, Baldoma L, García ML, Calpena AC. Semi-solid functionalized nanostructured lipid carriers loading thymol for skin disorders. Int J Pharm 2024; 651:123732. [PMID: 38142012 DOI: 10.1016/j.ijpharm.2023.123732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 12/25/2023]
Abstract
Acne constitutes one of the most prevalent skin disorder affecting both skin and mental health of patients. However, no cure has been developed so far. In this area, Thymol constitutes a potential candidate since it is able to restore the healthy microbiota of the skin. However, its permeation properties cause its fast elimination and, to avoid this problem, thymol has been loaded into nanostructured lipid carriers (TH-NLCs). Moreover, to increase the suitability of these systems for skin applications, several surface functionalization strategies of TH-NLCs had been assessed. Among the different molecules, phosphatidylcholine-TH-NLCs demonstrated to be safe as well as to provide high antioxidant activity in cellular studies. Therefore, to administer these systems to the skin, functionalized TH-NLCs were dispersed into a carbomer gel developing semi-solid formulations. Rheological properties, porosity and extensibility of TH dispersed in carbomer as well as phosphatidylcholine-TH-NLCs were assessed demonstrating suitable properties for dermal applications. Moreover, both formulations were applied in healthy volunteers demonstrating that gel-phosphatidylcholine-TH-NLCs were able to increase in skin hydration, decrease water loss and reduce skin sebum. Therefore, gel-phosphatidylcholine-TH-NLCs proved to be a suitable system for skin pathologies linked with high sebum generation, loss of hydration and high oxidation, such as acne vulgaris.
Collapse
Affiliation(s)
- Camila Folle
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028, Barcelona, Spain.
| | - Elena Sánchez-López
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028, Barcelona, Spain; Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028, Barcelona, Spain.
| | - Mireia Mallandrich
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028, Barcelona, Spain; Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028, Barcelona, Spain
| | - Natalia Díaz-Garrido
- Department of Biochemistry and Physiology, Biochemistry and Biomolecular Science, University of Barcelona, 08028, Barcelona, Spain; Institute of Biomedicine of the University of Barcelona (IBUB), 08028, Barcelona, Spain; Research Institute Sant Joan De Déu (IR‑SJD), 08950, Barcelona, Spain
| | - Joaquim Suñer-Carbó
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028, Barcelona, Spain; Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028, Barcelona, Spain
| | - Lyda Halbaut
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028, Barcelona, Spain; Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028, Barcelona, Spain
| | - Paulina Carvajal-Vidal
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028, Barcelona, Spain
| | - Ana M Marqués
- Department of Biology, Healthcare and Environment, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028, Barcelona, Spain
| | - Marta Espina
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028, Barcelona, Spain; Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028, Barcelona, Spain
| | - Josefa Badia
- Department of Biochemistry and Physiology, Biochemistry and Biomolecular Science, University of Barcelona, 08028, Barcelona, Spain; Institute of Biomedicine of the University of Barcelona (IBUB), 08028, Barcelona, Spain; Research Institute Sant Joan De Déu (IR‑SJD), 08950, Barcelona, Spain
| | - Laura Baldoma
- Department of Biochemistry and Physiology, Biochemistry and Biomolecular Science, University of Barcelona, 08028, Barcelona, Spain; Institute of Biomedicine of the University of Barcelona (IBUB), 08028, Barcelona, Spain; Research Institute Sant Joan De Déu (IR‑SJD), 08950, Barcelona, Spain
| | - Maria Luisa García
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028, Barcelona, Spain; Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028, Barcelona, Spain
| | - Ana Cristina Calpena
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028, Barcelona, Spain; Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028, Barcelona, Spain
| |
Collapse
|
4
|
Sun L, Wang Q, Wang H, Huang J, Yu Z. A cross-sectional cohort study on the skin microbiota in patients with different acne durations. Exp Dermatol 2023; 32:2102-2111. [PMID: 37846925 DOI: 10.1111/exd.14951] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 09/27/2023] [Accepted: 09/30/2023] [Indexed: 10/18/2023]
Abstract
Acne is a chronic disease that often persists for years. Skin microbial communities play an essential role in the development of acne. However, limited information is available about the dynamic patterns of skin microbiota in acne. This study aimed to characterize microbial community changes in skin pores and surfaces of acne patients with varying disease time. In this study, a total of 70 skin samples from 22 subjects were collected and sequenced using 16S rRNA amplicon sequencing. Although microbial compositions in skin pores were similar over time, significant differences in microbial structure were observed on the skin surface, with the dominance of Cutibacterium in the first 3 years and replacement by Staphylococcus in 4-6 years. Lactobacillus and Acinetobacter were more abundant in the normal group and continuingly decreased with disease time on the skin surface. Microbial networks further revealed substantial increases in microbial interactions in the 4-6 years group in both skin surfaces and pores. These results demonstrate that the skin microbiota alters with the disease duration and may provide a potential guide in redirecting skin microbiota towards healthy states.
Collapse
Affiliation(s)
- Lang Sun
- Human Microbiome and Health Group, Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China
| | - Qingqun Wang
- Human Microbiome and Health Group, Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China
| | - Huan Wang
- Department of Dermatology, The Fourth Hospital of Changsha, Changsha, China
| | - Jing Huang
- Department of Parasitology, School of Basic Medical Science, Central South University, Changsha, China
| | - Zheng Yu
- Human Microbiome and Health Group, Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China
| |
Collapse
|
5
|
Wei J, Ma X, Chen M, Pan S, Pang Y. In vitro and in vivo study of the efficacy of a new sebum control essence. J Cosmet Dermatol 2023; 22:2605-2611. [PMID: 37114429 DOI: 10.1111/jocd.15764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/06/2023] [Accepted: 03/27/2023] [Indexed: 04/29/2023]
Abstract
BACKGROUND People with oily skin often suffer from skin problems such as oily face, blackheads, acne, and enlarged pores. It is necessary to regulate oily skin with skin care products. AIMS To develop an effective sebum control essence to reduce oiliness of skin. METHODS The composition of the essence was designed in consideration of different oil control mechanism targets. The skin irritation was assessed in 30 volunteers by a single application close patch test. The efficacy of the essence was evaluated by in vitro experiment, short- and long-term clinical trials with over 60 volunteers. RESULTS The results of both in vitro and clinical trials showed that the essence had significant oil control and moisturizing effect, the skin oil content decreased by 21.8% within 8 h and 30.05% after 28 days, which indicated that the essence could achieve rapid and persistent sebum control efficacy. In addition, the essence could relieve the problems of enlarged pores, blackheads and whiteheads in long-term use. CONCLUSIONS The essence developed in this study can alleviate the problems of oily skin from many aspects, and achieve an excellent effect in oily skin regulation. It is suitable for a daily application in oily skin regulation.
Collapse
Affiliation(s)
- Juan Wei
- Hangzhou CNFormulator Technology Co., Ltd, Hangzhou, China
| | - Xuemei Ma
- Hangzhou CNFormulator Technology Co., Ltd, Hangzhou, China
| | - Min Chen
- Hangzhou CNFormulator Technology Co., Ltd, Hangzhou, China
| | - Sha Pan
- Hangzhou CNFormulator Technology Co., Ltd, Hangzhou, China
| | - Ying Pang
- Hangzhou CNFormulator Technology Co., Ltd, Hangzhou, China
| |
Collapse
|
6
|
Zouboulis CC, Coenye T, He L, Kabashima K, Kobayashi T, Niemann C, Nomura T, Oláh A, Picardo M, Quist SR, Sasano H, Schneider MR, Törőcsik D, Wong SY. Sebaceous immunobiology - skin homeostasis, pathophysiology, coordination of innate immunity and inflammatory response and disease associations. Front Immunol 2022; 13:1029818. [PMID: 36439142 PMCID: PMC9686445 DOI: 10.3389/fimmu.2022.1029818] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 10/17/2022] [Indexed: 08/01/2023] Open
Abstract
This review presents several aspects of the innovative concept of sebaceous immunobiology, which summarizes the numerous activities of the sebaceous gland including its classical physiological and pathophysiological tasks, namely sebum production and the development of seborrhea and acne. Sebaceous lipids, which represent 90% of the skin surface lipids in adolescents and adults, are markedly involved in the skin barrier function and perifollicular and dermal innate immune processes, leading to inflammatory skin diseases. Innovative experimental techniques using stem cell and sebocyte models have clarified the roles of distinct stem cells in sebaceous gland physiology and sebocyte function control mechanisms. The sebaceous gland represents an integral part of the pilosebaceous unit and its status is connected to hair follicle morphogenesis. Interestingly, professional inflammatory cells contribute to sebocyte differentiation and homeostasis, whereas the regulation of sebaceous gland function by immune cells is antigen-independent. Inflammation is involved in the very earliest differentiation changes of the pilosebaceous unit in acne. Sebocytes behave as potent immune regulators, integrating into the innate immune responses of the skin. Expressing inflammatory mediators, sebocytes also contribute to the polarization of cutaneous T cells towards the Th17 phenotype. In addition, the immune response of the perifollicular infiltrate depends on factors produced by the sebaceous glands, mostly sebaceous lipids. Human sebocytes in vitro express functional pattern recognition receptors, which are likely to interact with bacteria in acne pathogenesis. Sex steroids, peroxisome proliferator-activated receptor ligands, neuropeptides, endocannabinoids and a selective apoptotic process contribute to a complex regulation of sebocyte-induced immunological reaction in numerous acquired and congenital skin diseases, including hair diseases and atopic dermatitis.
Collapse
Affiliation(s)
- Christos C. Zouboulis
- Departments of Dermatology, Venereology, Allergology and Immunology, Dessau Medical Center, Brandenburg Medical School Theodor Fontane and Faculty of Health Sciences Brandenburg, Dessau, Germany
| | - Tom Coenye
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | - Li He
- Department of Dermatology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Kenji Kabashima
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Tetsuro Kobayashi
- Laboratory for Innate Immune Systems, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Kanagawa, Japan
| | - Catherin Niemann
- Center for Molecular Medicine Cologne, CMMC Research Institute, University of Cologne, Cologne, Germany
- Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany
| | - Takashi Nomura
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Attila Oláh
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Mauro Picardo
- San Gallicano Dermatologic Institute, IRCCS, Rome, Italy
| | - Sven R. Quist
- Department of Dermatology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Hironobu Sasano
- Department of Pathology, Tohoku University School of Medicine, Sendai, Japan
| | - Marlon R. Schneider
- Institute of Veterinary Physiology, Faculty of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| | - Daniel Törőcsik
- Department of Dermatology, Faculty of Medicine, University of Debrecen and ELKH-DE Allergology Research Group, Debrecen, Hungary
| | - Sunny Y. Wong
- Departments of Dermatology and Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
7
|
Jiang Z, Jin S, Fan X, Cao K, Liu Y, Wang X, Ma Y, Xiang L. Cannabidiol Inhibits Inflammation Induced by Cutibacterium acnes-Derived Extracellular Vesicles via Activation of CB2 Receptor in Keratinocytes. J Inflamm Res 2022; 15:4573-4583. [PMID: 35982758 PMCID: PMC9379120 DOI: 10.2147/jir.s374692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 07/26/2022] [Indexed: 12/02/2022] Open
Abstract
Background Acne is a common inflammatory skin disease, while cannabidiol (CBD) is a representative non-psychoactive phytocannabinoid which has been proved to exert universal anti-inflammatory properties. This study aimed to explore the effect of CBD on acne inflammation induced by Cutibacterium acnes-derived extracellular vesicles (CEVs) in keratinocytes and reveal the underlying mechanisms. Methods Normal human epidermal keratinocytes (NHEKs) were stimulated by CEVs in the presence of CBD or vehicle. Interleukin (IL)-6, IL-8, and tumor necrosis factor (TNF)-α levels were examined by RT-PCR and ELISA. The expression of cannabinoid type-2 (CB2) receptor and transient receptor potential vanilloid type-1 (TRPV1) was detected by Western blotting. TNF-α levels in the presence of CB2 receptor antagonist (AM630) or TRPV1 antagonist (Capsazepine) were detected by RT-PCR. The activation of MAPK and NF-κB signaling pathways and the nuclear translocation of NF-κB p65 upon CBD treatment were analyzed by Western blotting and immunofluorescence assay, respectively. Results The expression of inflammatory cytokines (IL-6, IL-8 and TNF-α) in CEVs-stimulated NHEKs was suppressed by CBD. CB2 receptor expression was upregulated by CBD, whereas CEVs-promoted TRPV1 expression was downregulated by CBD. AM630 reversed TNF-α levels inhibited by CBD. Capsazepine exerted an inhibitory effect on CEVs-induced inflammation and had synergistic effect with CBD. The phosphorylation of ERK1/2 and NF-κB p65 and nuclear translocation of NF-κB p65 were induced by CEVs but reduced by CBD. Conclusion The results indicated that CBD could inhibit inflammation induced by CEVs in NHEKs, which was mediated by activation of CB2 receptor and enhanced by the TRPV1 antagonist, through inactivation of the MAPK and NF-κB signaling pathways. CBD might be a potential novel strategy for acne treatment in the future.
Collapse
Affiliation(s)
- Ziqi Jiang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, 200040, People's Republic of China
| | - Shanglin Jin
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, 200040, People's Republic of China
| | - Xiaoyao Fan
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, 200040, People's Republic of China
| | - Ke Cao
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, 200040, People's Republic of China
| | - Ye Liu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, 200040, People's Republic of China
| | - Xuan Wang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, 200040, People's Republic of China
| | - Ying Ma
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, 200040, People's Republic of China
| | - Leihong Xiang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, 200040, People's Republic of China
| |
Collapse
|
8
|
Li X, Luo S, Chen X, Li S, Hao L, Yang D. Adipose-derived stem cells attenuate acne-related inflammation via suppression of NLRP3 inflammasome. Stem Cell Res Ther 2022; 13:334. [PMID: 35871079 PMCID: PMC9308350 DOI: 10.1186/s13287-022-03007-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 12/02/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Acne is a chronic facial disease caused by Propionibacterium acnes, which proliferates within sebum-blocked skin follicles and increases inflammatory cytokine production. Several therapeutic drugs and products have been proposed to treat acne, yet no single treatment that ensures long-term treatment efficacy for all patients is available. Here, we explored the use of facial autologous fat transplant of adipose-derived stem cells (ADSCs) to dramatically reduce acne lesions. METHODS THP-1 cells were treated with active P. acnes for 24 h at different multiplicities of infection, and alterations in inflammatory factors were detected. To study the effect of THP-1 on inflammasome-related proteins, we first co-cultured ADSCs with THP-1 cells treated with P. acnes and evaluated the levels of these proteins in the supernatant. Further, an acne mouse model injected with ADSCs was used to assess inflammatory changes. RESULTS Propionibacterium acnes-mediated stimulation of THP-1 cells had a direct correlation with the expression of active caspase-1 and interleukin (IL)-1β in an infection-dependent manner. ADSCs significantly reduced the production of IL-1β induced by P. acnes stimulation through the reactive oxygen species (ROS)/Nod-like receptor family pyrin domain-containing 3 (NLRP3)/caspase-1 pathway. The results showed that ADSCs inhibit the skin inflammation induced by P. acnes by blocking the NLRP3 inflammasome via reducing the secretion of IL-1β in vivo. CONCLUSIONS Our findings suggest that ADSCs can alter IL-1β secretion by restricting the production of mitochondria ROS, thereby inhibiting the NLRP3/caspase-1 pathway in P. acnes-induced inflammatory responses. This study indicates that anti-acne therapy can potentially be developed by targeting the NLRP3 inflammasome.
Collapse
Affiliation(s)
- Xiaoxi Li
- The 1st Affiliated Hospital of Harbin Medical University, No. 23, YouZheng Rd, NanGang Dist, Harbin, Heilongjiang, China
| | - Sai Luo
- The 1st Affiliated Hospital of Harbin Medical University, No. 23, YouZheng Rd, NanGang Dist, Harbin, Heilongjiang, China
| | - Xinyao Chen
- The 1st Affiliated Hospital of Harbin Medical University, No. 23, YouZheng Rd, NanGang Dist, Harbin, Heilongjiang, China
| | - Shasha Li
- The 1st Affiliated Hospital of Harbin Medical University, No. 23, YouZheng Rd, NanGang Dist, Harbin, Heilongjiang, China
| | - Lijun Hao
- The 1st Affiliated Hospital of Harbin Medical University, No. 23, YouZheng Rd, NanGang Dist, Harbin, Heilongjiang, China.
| | - Dan Yang
- Harbin Medical University, No. 157, BaoJian Rd, NanGang Dist, Harbin, Heilongjiang, China.
| |
Collapse
|
9
|
Gratton R, Del Vecchio C, Zupin L, Crovella S. Unraveling the Role of Sex Hormones on Keratinocyte Functions in Human Inflammatory Skin Diseases. Int J Mol Sci 2022; 23:3132. [PMID: 35328552 PMCID: PMC8955788 DOI: 10.3390/ijms23063132] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/09/2022] [Accepted: 03/11/2022] [Indexed: 12/23/2022] Open
Abstract
The skin exerts several fundamental functions that are the first physical, chemical and immune barriers to the human body. Keratinocytes, the main cell type of the epidermis, provide mechanical defense, support skin integrity and actively endorse cutaneous immune responses. Not surprisingly, considering these crucial activities, alterations in keratinocyte functions are associated with different inflammatory skin diseases. Recent findings indicate that the skin should not only be regarded as a target for hormones but that it should also be considered as an endocrine peripheral organ that is directly involved in the synthesis and metabolism of these chemical messengers. Sex hormones have multiple effects on the skin, attributed to the binding with intracellular receptors expressed by different skin cell populations, including keratinocytes, that activate downstream signaling routes that modulate specific cellular functions and activities. This review is aimed at reorganizing the current knowledge on the role exerted by sex hormones on keratinocyte function in five different inflammatory skin diseases: Hidradenitis suppurativa; Acne vulgaris; Atopic dermatitis; progesterone hypersensitivity; psoriasis. The results of our work aim to provide a deeper insight into common cellular mechanisms and molecular effectors that might constitute putative targets to address for the development of specific therapeutic interventions.
Collapse
Affiliation(s)
- Rossella Gratton
- Department of Advanced Diagnostics, Institute for Maternal and Child Health—IRCCS Burlo Garofolo, 34137 Trieste, Italy
| | - Cecilia Del Vecchio
- Dermatology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy;
| | - Luisa Zupin
- Maternal-Neonatal Department, Institute for Maternal and Child Health—IRCCS Burlo Garofolo, 34137 Trieste, Italy;
| | - Sergio Crovella
- Biological Sciences Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, University of Qatar, Doha 2713, Qatar;
| |
Collapse
|
10
|
Zhang L, Shao X, Chen Y, Wang J, Ariyawati A, Zhang Y, Chen J, Liu L, Pu Y, Li Y, Chen J. 30% supramolecular salicylic acid peels effectively treats acne vulgaris and reduces facial sebum. J Cosmet Dermatol 2022; 21:3398-3405. [PMID: 35073439 DOI: 10.1111/jocd.14799] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/29/2021] [Accepted: 01/17/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Lingzhao Zhang
- Department of Dermatology the First Affiliated Hospital of Chongqing Medical University Chongqing 400010 China
| | - Xinyi Shao
- Department of Dermatology the First Affiliated Hospital of Chongqing Medical University Chongqing 400010 China
| | - Yangmei Chen
- Department of Dermatology the First Affiliated Hospital of Chongqing Medical University Chongqing 400010 China
| | - Jiawei Wang
- Department of Orthopedics the First Affiliated Hospital of Chongqing Medical University Chongqing 400016 China
| | - Asoka Ariyawati
- Department of Dermatology the First Affiliated Hospital of Chongqing Medical University Chongqing 400010 China
| | - Yujie Zhang
- Department of Dermatology the First Affiliated Hospital of Chongqing Medical University Chongqing 400010 China
| | - Jiayi Chen
- Department of Dermatology the First Affiliated Hospital of Chongqing Medical University Chongqing 400010 China
| | - Lin Liu
- Department of Dermatology the First Affiliated Hospital of Chongqing Medical University Chongqing 400010 China
| | - Yihuan Pu
- Department of Dermatology the First Affiliated Hospital of Chongqing Medical University Chongqing 400010 China
| | - Yuxin Li
- Department of Dermatology the First Affiliated Hospital of Chongqing Medical University Chongqing 400010 China
| | - Jin Chen
- Department of Dermatology the First Affiliated Hospital of Chongqing Medical University Chongqing 400010 China
| |
Collapse
|
11
|
Dull K, Fazekas F, Deák D, Kovács D, Póliska S, Szegedi A, Zouboulis CC, Törőcsik D. miR-146a modulates TLR1/2 and 4 induced inflammation and links it with proliferation and lipid production via the indirect regulation of GNG7 in human SZ95 sebocytes. Sci Rep 2021; 11:21510. [PMID: 34728702 PMCID: PMC8563942 DOI: 10.1038/s41598-021-00907-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 10/18/2021] [Indexed: 11/09/2022] Open
Abstract
Activation of Toll-like receptors (TLR) 1/2 and 4 are central in inducing inflammation in sebocytes by regulating the expression of protein coding mRNAs, however the microRNA (miRNA) profile in response to TLR activation and thus the possible role of miRNAs in modulating sebocyte functions has not been elucidated. In this work we identified miR-146a to have the highest induction in the TLR1/2 and 4 activated SZ95 sebocytes and found that its increased levels led to the down-regulation of IL-8 secretion, decreased the chemoattractant potential and stimulated the proliferation of sebocytes. Assessing the gene expression profile of SZ95 sebocytes treated with a miR-146a inhibitor, the induction of GNG7 was one of the highest, while when cells were treated with a miR-146a mimic, the expression of GNG7 was down-regulated. These findings correlated with our in situ hybridization results, that compared with control, miR-146a showed an increased, while GNG7 a decreased expression in sebaceous glands of acne samples. Further studies revealed, that when inhibiting the levels of GNG7 in SZ95 sebocytes, cells increased their lipid content and decreased their proliferation. Our findings suggest, that miR-146a could be a potential player in acne pathogenesis by regulating inflammation, inducing proliferation and, through the indirect down-regulation of GNG7, promoting the lipid production of sebocytes.
Collapse
Affiliation(s)
- Katalin Dull
- Department of Dermatology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, Debrecen, 4032, Hungary
| | - Fruzsina Fazekas
- Department of Dermatology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, Debrecen, 4032, Hungary
| | - Dávid Deák
- Department of Dermatology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, Debrecen, 4032, Hungary
| | - Dóra Kovács
- Department of Dermatology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, Debrecen, 4032, Hungary
| | - Szilárd Póliska
- Department of Biochemistry and Molecular Biology, Genomic Medicine and Bioinformatics Core Facility, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Andrea Szegedi
- Department of Dermatology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, Debrecen, 4032, Hungary.,Division of Dermatological Allergology, Department of Dermatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Christos C Zouboulis
- Departments of Dermatology, Venereology, Allergology and Immunology, Dessau Medical Center, Brandenburg Medical School Theodor Fontane and Faculty of Health Sciences Brandenburg, Dessau, Germany
| | - Dániel Törőcsik
- Department of Dermatology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, Debrecen, 4032, Hungary.
| |
Collapse
|
12
|
Folle C, Díaz-Garrido N, Sánchez-López E, Marqués AM, Badia J, Baldomà L, Espina M, Calpena AC, García ML. Surface-Modified Multifunctional Thymol-Loaded Biodegradable Nanoparticles for Topical Acne Treatment. Pharmaceutics 2021; 13:pharmaceutics13091501. [PMID: 34575577 PMCID: PMC8471012 DOI: 10.3390/pharmaceutics13091501] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/06/2021] [Accepted: 09/10/2021] [Indexed: 12/02/2022] Open
Abstract
The present work is focused on the development of novel surface-functionalized poly(lactic-co-glycolic acid) nanoparticles loaded with thymol (TH-NPs) for topical administration enhancing thymol anti-inflammatory, antioxidant and wound healing activities against acne. TH-NPs were prepared by solvent evaporation method using different surface functionalization strategies and obtaining suitable physicochemical parameters and a good short-term stability at 4 °C. Moreover, TH-NPs skin penetration and antioxidant activity were assessed in ex vivo pig skin models. Skin penetration of TH-NPs followed the follicular route, independently of the surface charge and they were able to enhance antioxidant capacity. Furthermore, antimicrobial activity against Cutibacterium acnes was evaluated in vitro by the suspension test showing improved antibacterial performance. Using human keratinocyte cells (HaCat), cytotoxicity, cellular uptake, antioxidant, anti-inflammatory and wound healing activities were studied. TH-NPs were non-toxic and efficiently internalized inside the cells. In addition, TH-NPs displayed significant anti-inflammatory, antioxidant and wound healing activities, which were highly influenced by TH-NPs surface modifications. Moreover, a synergic activity between TH-NPs and their surface functionalization was demonstrated. To conclude, surface-modified TH-NPs had proven to be suitable to be used as anti-inflammatory, antioxidant and wound healing agents, constituting a promising therapy for treating acne infection and associated inflammation.
Collapse
Affiliation(s)
- Camila Folle
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (C.F.); (M.E.); (A.C.C.); (M.L.G.)
| | - Natalia Díaz-Garrido
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (N.D.-G.); (J.B.); (L.B.)
- Institute of Biomedicine, University of Barcelona, 08028 Barcelona, Spain
- Sant Joan de Déu Research Institute (IR-SJD), 08950 Barcelona, Spain
| | - Elena Sánchez-López
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (C.F.); (M.E.); (A.C.C.); (M.L.G.)
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain
- Correspondence:
| | - Ana Maria Marqués
- Department of Biology, Healthcare and Environment, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain;
| | - Josefa Badia
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (N.D.-G.); (J.B.); (L.B.)
- Institute of Biomedicine, University of Barcelona, 08028 Barcelona, Spain
- Sant Joan de Déu Research Institute (IR-SJD), 08950 Barcelona, Spain
| | - Laura Baldomà
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (N.D.-G.); (J.B.); (L.B.)
- Institute of Biomedicine, University of Barcelona, 08028 Barcelona, Spain
- Sant Joan de Déu Research Institute (IR-SJD), 08950 Barcelona, Spain
| | - Marta Espina
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (C.F.); (M.E.); (A.C.C.); (M.L.G.)
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain
| | - Ana Cristina Calpena
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (C.F.); (M.E.); (A.C.C.); (M.L.G.)
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain
| | - María Luisa García
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (C.F.); (M.E.); (A.C.C.); (M.L.G.)
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain
| |
Collapse
|