1
|
Hama Faraj GS, Hussen BM, Abdullah SR, Fatih Rasul M, Hajiesmaeili Y, Baniahmad A, Taheri M. Advanced approaches of the use of circRNAs as a replacement for cancer therapy. Noncoding RNA Res 2024; 9:811-830. [PMID: 38590433 PMCID: PMC10999493 DOI: 10.1016/j.ncrna.2024.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/18/2024] [Accepted: 03/29/2024] [Indexed: 04/10/2024] Open
Abstract
Cancer is a broad name for a group of diseases in which abnormal cells grow out of control and are characterized by their complexity and recurrence. Although there has been progress in cancer therapy with the entry of precision medicine and immunotherapy, cancer incidence rates have increased globally. Non-coding RNAs in the form of circular RNAs (circRNAs) play crucial roles in the pathogenesis, clinical diagnosis, and therapy of different diseases, including cancer. According to recent studies, circRNAs appear to serve as accurate indicators and therapeutic targets for cancer treatment. However, circRNAs are promising candidates for cutting-edge cancer therapy because of their distinctive circular structure, stability, and wide range of capabilities; many challenges persist that decrease the applications of circRNA-based cancer therapeutics. Here, we explore the roles of circRNAs as a replacement for cancer therapy, highlight the main challenges facing circRNA-based cancer therapies, and discuss the key strategies to overcome these challenges to improve advanced innovative therapies based on circRNAs with long-term health effects.
Collapse
Affiliation(s)
- Goran Sedeeq Hama Faraj
- Department of Medical Laboratory Science, Komar University of Science and Technology, Sulaymaniyah, 46001, Iraq
| | - Bashdar Mahmud Hussen
- Department of Biomedical Sciences, College of Science, Cihan University-Erbil, Erbil, Kurdistan Region, 44001, Iraq
- Department of Clinical Analysis, College of Pharmacy, Hawler Medical University, Erbil, Kurdistan Region, 44001, Iraq
| | - Snur Rasool Abdullah
- Medical Laboratory Science, Lebanese French University, Erbil, Kurdistan Region, 44001, Iraq
| | - Mohammed Fatih Rasul
- Department of Pharmaceutical Basic Science, Faculty of Pharmacy, Tishk International University, Erbil, Kurdistan Region, Iraq
| | | | - Aria Baniahmad
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
George Warren W, Osborn M, Yates A, O'Sullivan SE. The emerging role of fatty acid binding protein 7 (FABP7) in cancers. Drug Discov Today 2024; 29:103980. [PMID: 38614160 DOI: 10.1016/j.drudis.2024.103980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/27/2024] [Accepted: 04/05/2024] [Indexed: 04/15/2024]
Abstract
Fatty acid binding protein 7 (FABP7) is an intracellular protein involved in the uptake, transportation, metabolism, and storage of fatty acids (FAs). FABP7 is upregulated up to 20-fold in multiple cancers, usually correlated with poor prognosis. FABP7 silencing or pharmacological inhibition suggest FABP7 promotes cell growth, migration, invasion, colony and spheroid formation/increased size, lipid uptake, and lipid droplet formation. Xenograft studies show that suppression of FABP7 inhibits tumour formation and tumour growth, and improves host survival. The molecular mechanisms involve promotion of FA uptake, lipid droplets, signalling [focal adhesion kinase (FAK), proto-oncogene tyrosine-protein kinase Src (Src), mitogen-activated protein kinase kinase/p-extracellular signal-regulated kinase (MEK/ERK), and Wnt/β-catenin], hypoxia-inducible factor 1-alpha (Hif1α), vascular endothelial growth factor A/prolyl 4-hydroxylase subunit alpha-1 (VEGFA/P4HA1), snail family zinc finger 1 (Snail1), and twist-related protein 1 (Twist1). The oncogenic capacity of FABP7 makes it a promising pharmacological target for future cancer treatments.
Collapse
Affiliation(s)
| | - Myles Osborn
- Artelo Biosciences Limited, Alderley Park, Cheshire, UK
| | - Andrew Yates
- Artelo Biosciences Limited, Alderley Park, Cheshire, UK
| | | |
Collapse
|
3
|
Liu S, Jiao B, Zhao H, Liang X, Jin F, Liu X, Hu J. LncRNAs-circRNAs as Rising Epigenetic Binary Superstars in Regulating Lipid Metabolic Reprogramming of Cancers. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2303570. [PMID: 37939296 PMCID: PMC10767464 DOI: 10.1002/advs.202303570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/28/2023] [Indexed: 11/10/2023]
Abstract
As one of novel hallmarks of cancer, lipid metabolic reprogramming has recently been becoming fascinating and widely studied. Lipid metabolic reprogramming in cancer is shown to support carcinogenesis, progression, distal metastasis, and chemotherapy resistance by generating ATP, biosynthesizing macromolecules, and maintaining appropriate redox status. Notably, increasing evidence confirms that lipid metabolic reprogramming is under the control of dysregulated non-coding RNAs in cancer, especially lncRNAs and circRNAs. This review highlights the present research findings on the aberrantly expressed lncRNAs and circRNAs involved in the lipid metabolic reprogramming of cancer. Emphasis is placed on their regulatory targets in lipid metabolic reprogramming and associated mechanisms, including the clinical relevance in cancer through lipid metabolism modulation. Such insights will be pivotal in identifying new theranostic targets and treatment strategies for cancer patients afflicted with lipid metabolic reprogramming.
Collapse
Affiliation(s)
- Shanshan Liu
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of EducationCancer Center, First HospitalJilin UniversityChangchun130021China
- Hematology DepartmentFirst HospitalJilin UniversityChangchun130021China
| | - Benzheng Jiao
- NHC Key Laboratory of Radiobiology (Jilin University)School of Public HealthJilin UniversityChangchun130021China
- Nuclear Medicine DepartmentFirst HospitalJilin UniversityChangchun130021China
| | - Hongguang Zhao
- Nuclear Medicine DepartmentFirst HospitalJilin UniversityChangchun130021China
| | - Xinyue Liang
- Hematology DepartmentFirst HospitalJilin UniversityChangchun130021China
| | - Fengyan Jin
- Hematology DepartmentFirst HospitalJilin UniversityChangchun130021China
| | - Xiaodong Liu
- NHC Key Laboratory of Radiobiology (Jilin University)School of Public HealthJilin UniversityChangchun130021China
- Radiation Medicine Department, School of Public Health and ManagementWenzhou Medical UniversityWenzhou325035China
| | - Ji‐Fan Hu
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of EducationCancer Center, First HospitalJilin UniversityChangchun130021China
- Palo Alto Veterans Institute for ResearchStanford University Medical SchoolPalo AltoCA94304USA
| |
Collapse
|
4
|
Liu L, Zhao H, Li J, Huang J, Xu Y, Li X, Wu Y, Li P, Guan X, Tang R. ALKB homolog 5 (ALKBH5)-induced circPUM1 upregulation facilitated the progression of neuroblastoma via miR-423-5p/PA2G4 axis. Pathol Res Pract 2023; 248:154609. [PMID: 37421841 DOI: 10.1016/j.prp.2023.154609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 05/14/2023] [Accepted: 06/07/2023] [Indexed: 07/10/2023]
Abstract
BACKGROUND The oncogenic role of circPUM1 has been revealed in multiple cancers. Nevertheless, the specific role and molecular mechanism of circPUM1 in neuroblastoma (NB) have never been reported. METHODS The expression of genes was detected using RT-qPCR and Western Blot assay. The proliferation, migration, and invasion of NB cells were evaluated by CCK-8 and Transwell assays. Besides, mouse model was established to evaluate the effect of circPUM1 on the progression of NB. The interaction among genes was verified through RIP, MeRIP, or Luciferase reporter assay. RESULTS Through our investigation, it was discovered that circPUM1 expression was abnormally elevated in NB tissues and the abundance of circPUM1 was correlated with unfavorable clinical outcomes in NB patients. Besides, the viability and mobility of NB cells as well as NB tumor growth were suppressed by silencing circPUM1. Moreover, bioinformatics prediction and experimental verification demonstrated that circPUM1 was a sponge for miR-423-5p which further targeted proliferation-associated protein 2G4 (PA2G4). The oncogenic effect of circPUM1 on NB was exerted through suppressing miR-423-5p to elevate PA2G4 expression. Finally, we investigated the transcriptional factor causing the upregulation of circPUM1 in NB. The result was that ALKB homolog 5 (ALKBH5), an m6A demethylase, suppressed the m6A modification of circPUM1 and caused the elevation of circPUM1 expression in NB. CONCLUSION ALKBH5 induced the upregulation of circPUM1 to accelerate the development of NB through regulating miR-423-5p/PA2G4 axis.
Collapse
Affiliation(s)
- Lin Liu
- Institute of Pediatric Research, Children's Hospital of Soochow University, China
| | - He Zhao
- Institute of Pediatric Research, Children's Hospital of Soochow University, China
| | - Jing Li
- Department of General Surgery, Children's Hospital of Soochow University, China
| | - Jie Huang
- Institute of Pediatric Research, Children's Hospital of Soochow University, China
| | - Yunyun Xu
- Institute of Pediatric Research, Children's Hospital of Soochow University, China
| | - Xiaolu Li
- Institute of Pediatric Research, Children's Hospital of Soochow University, China
| | - Yi Wu
- Institute of Pediatric Research, Children's Hospital of Soochow University, China
| | - Ping Li
- Department of Clinical Nutrition, Children's Hospital of Soochow University, China.
| | - Xinxian Guan
- Department of Neonatology, Children's Hospital of Soochow University, China.
| | - Ruze Tang
- Department of General Surgery, Children's Hospital of Soochow University, China.
| |
Collapse
|
5
|
Modulation and function of Pumilio proteins in cancer. Semin Cancer Biol 2022; 86:298-309. [PMID: 35301091 DOI: 10.1016/j.semcancer.2022.03.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/06/2022] [Accepted: 03/11/2022] [Indexed: 01/27/2023]
Abstract
Post-transcriptional regulation is involved in tumorigenesis, and in this control, RNA-binding proteins are the main protagonists. Pumilio proteins are highly conserved RNA-binding proteins that regulate many aspects of RNA processing. The dysregulation of Pumilio expression is associated with different types of cancer. This review summarizes the roles of Pumilio 1 and Pumilio 2 in cancer and discusses the factors that account for their distinct biological functions. Pumilio levels seem to be related to tumor progression and poor prognoses in some kinds of tumors, such as lung, pancreatic, prostate, and cervical cancers. Pumilio 1 is associated with cancer proliferation, migration, and invasion, and so is Pumilio 2, although there are contradictory reports regarding the latter. Furthermore, the circular RNA, circPUM1, has been described as a miRNAs sponge, regulating miRNA involved in the cell cycle. The expression and function of Pumilio proteins depend on the fine adjustment of a set of modulators, including miRNAs, lncRNAs, and circRNAs; this demonstrates that Pumilio plays an important role in tumorigenesis through a variety of regulatory axes.
Collapse
|
6
|
Zhou Y, Li C, Wang Z, Tan S, Liu Y, Zhang H, Li X. CircRNAs as Novel Biomarkers and Therapeutic Targets in Renal Cell Carcinoma. Front Mol Biosci 2022; 9:833079. [PMID: 35223991 PMCID: PMC8874010 DOI: 10.3389/fmolb.2022.833079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 01/24/2022] [Indexed: 12/28/2022] Open
Abstract
Circular RNAs (circRNAs) are a type of long non-coding RNA with covalently closed loops that are naturally resistant to exoribonuclease. With the rapid development of high-throughput sequencing technologies and bioinformatics, increasing data suggest that circRNAs are abnormally expressed in renal cell carcinoma (RCC) and act as important regulators of RCC carcinogenesis and progression. CircRNAs play important biological roles in modulating cell proliferation, migration, invasion, apoptosis, and gemcitabine chemoresistance in RCC. Most of the circRNAs studied in RCC have been reported to be significantly associated with many clinicopathologic characteristics and survival parameters of RCC. The stability and specificity of circRNAs enable them potential molecular markers for RCC diagnosis and prognosis. Moreover, circRNAs have emerged as targets for developing new therapies, because they can regulate various signaling pathways associated with RCC initiation and progression. In this review, we briefly summarize the biogenesis, degradation, and biological functions of circRNAs as well as the potential clinical applications of these molecules for RCC diagnosis, prognosis, and targeted therapy.
Collapse
Affiliation(s)
- Yuxia Zhou
- The First Affiliated Hospital, Department of Medical Oncology, Hengyang Medical School, University of South China, Hengyang, China
| | - Cheng Li
- The First Affiliated Hospital, Department of Medical Oncology, Hengyang Medical School, University of South China, Hengyang, China
| | - Zhenping Wang
- The First Affiliated Hospital, Department of Medical Oncology, Hengyang Medical School, University of South China, Hengyang, China
| | - Shuangfeng Tan
- The First Affiliated Hospital, Department of Medical Oncology, Hengyang Medical School, University of South China, Hengyang, China
| | - Yiqi Liu
- The Second Affiliated Hospital, Department of Urology, Hengyang Medical School, University of South China, Hengyang, China
| | - Hu Zhang
- The First Affiliated Hospital, Department of Urology, Hengyang Medical School, University of South China, Hengyang, China
| | - Xuefeng Li
- The First Affiliated Hospital, Department of Medical Oncology, Hengyang Medical School, University of South China, Hengyang, China
- *Correspondence: Xuefeng Li,
| |
Collapse
|
7
|
Sayad A, Najafi S, Kashi AH, Hosseini SJ, Akrami SM, Taheri M, Ghafouri-Fard S. Circular RNAs in renal cell carcinoma: Functions in tumorigenesis and diagnostic and prognostic potentials. Pathol Res Pract 2021; 229:153720. [PMID: 34942510 DOI: 10.1016/j.prp.2021.153720] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/20/2021] [Accepted: 11/25/2021] [Indexed: 12/23/2022]
Abstract
Circular RNAs (circRNAs) are non-coding RNAs with closed ends which makes them resistant to degrading enzyme RNAse R. These RNA molecules show cell, tissue or organ specific expression. Regulatory functions have been reported for a number of circRNAs. Particularly, they have been found to affect cell cycle and control cell proliferation. CircRNAs are involved in physiological processes like natural organ development. Their dysregulation in high-throughput technologies have been shown in a growing number of diseases especially many types of cancers such as renal cell carcinoma (RCC). Differentially expressed circRNAs in RCC tissues compared to normal tissues may affect carcinogenesis process. Overexpressed circRNAs promote tumorigenic functions of RCC cell lines while down-regulated transcripts repress them. Both dysregulated circRNAs are correlated with clinicopathological features, prognosis and survival in RCC patients which along with their acceptable diagnostic values suggest them as potential biomarkers in diagnosis or prediction of prognosis of RCC patients. In this review, we have assessed tumorigenic or tumor-suppressing effects of circRNAs and also their diagnostic and prognostic potentials in RCC.
Collapse
Affiliation(s)
- Arezou Sayad
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sajad Najafi
- Student Research Committee, Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Hossein Kashi
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Jalil Hosseini
- Men's Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Mohamamd Akrami
- Department of Medical Genetics, School of Medicine Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|