1
|
Nan F, Liu B, Yao C. Discovering the role of microRNAs and exosomal microRNAs in chest and pulmonary diseases: a spotlight on chronic obstructive pulmonary disease. Mol Genet Genomics 2024; 299:107. [PMID: 39527303 DOI: 10.1007/s00438-024-02199-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024]
Abstract
Chronic obstructive pulmonary disease (COPD) is a progressive respiratory condition and ranks as the fourth leading cause of mortality worldwide. Despite extensive research efforts, a reliable diagnostic or prognostic tool for COPD remains elusive. The identification of novel biomarkers may facilitate improved therapeutic strategies for patients suffering from this debilitating disease. MicroRNAs (miRNAs), which are small non-coding RNA molecules, have emerged as promising candidates for the prediction and diagnosis of COPD. Studies have demonstrated that dysregulation of miRNAs influences critical cellular and molecular pathways, including Notch, Wnt, hypoxia-inducible factor-1α, transforming growth factor, Kras, and Smad, which may contribute to the pathogenesis of COPD. Extracellular vesicles, particularly exosomes, merit further investigation due to their capacity to transport various biomolecules such as mRNAs, miRNAs, and proteins between cells. This intercellular communication can significantly impact the progression and severity of COPD by modulating signaling pathways in recipient cells. A deeper exploration of circulating miRNAs and the content of extracellular vesicles may lead to the discovery of novel diagnostic and prognostic biomarkers, ultimately enhancing the management of COPD. The current review focus on the pathogenic role of miRNAs and their exosomal counterparts in chest and respiratory diseases, centering COPD.
Collapse
Affiliation(s)
- FangYuan Nan
- Thoracic Surgery Department of the First People's Hospital of Jiangxia District, Wuhan, 430200, Hubei Province, China
| | - Bo Liu
- Thoracic Surgery Department of the First People's Hospital of Jiangxia District, Wuhan, 430200, Hubei Province, China
| | - Cheng Yao
- Infectious Diseases Department of the First People's Hospital of Jiangxia District, Wuhan, 430200, Hubei Province, China.
| |
Collapse
|
2
|
Yang LJ, Sui SX, Zheng QH, Wang M. circUQCRC2 promotes asthma progression in children by activating the VEGFA/NF-κB pathway by targeting miR-381-3p. Kaohsiung J Med Sci 2024; 40:699-709. [PMID: 39031804 DOI: 10.1002/kjm2.12868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/07/2024] [Accepted: 05/22/2024] [Indexed: 07/22/2024] Open
Abstract
This study targeted to explore circUQCRC2's role and mechanism in childhood asthma. A mouse model of ovalbumin-induced asthma was established to evaluate the effects of circUQCRC2 on childhood asthma in terms of oxidative stress, inflammation, and collagen deposition. The effects of circUQCRC2 on platelet-derived growth factor-BB (PDGF-BB)-induced smooth muscle cells (SMCs) were evaluated, the downstream mRNA of miRNA and its associated pathways were predicted and validated, and their effects on asthmatic mice were evaluated. circUQCRC2 levels were upregulated in bronchoalveolar lavage fluid of asthmatic mice and PDGF-BB-treated SMCs. Depleting circUQCRC2 alleviated tissue damage in asthmatic mice, improved inflammatory levels and oxidative stress in asthmatic mice and PDGF-BB-treated SMC, inhibited malignant proliferation and migration of SMCs, and improved airway remodeling. Mechanistically, circUQCRC2 regulated VEGFA expression through miR-381-3p and activated the NF-κB cascade. circUQCRC2 knockdown inactivated the NF-κB cascade by modulating the miR-381-3p/VEGFA axis. Promoting circUQCRC2 stimulates asthma development by activating the miR-381-3p/VEGFA/NF-κB cascade. Therefore, knocking down circUQCRC2 or overexpressing miR-381-3p offers a new approach to treating childhood asthma.
Collapse
Affiliation(s)
- Li-Juan Yang
- Department of Pediatrics, Dongying People's Hospital (Dongying Hospital of Shandong Provincial Hospital Group), Dongying City, Shandong Province, China
| | - Shu-Xiang Sui
- Department of Pediatrics, Dongying People's Hospital (Dongying Hospital of Shandong Provincial Hospital Group), Dongying City, Shandong Province, China
| | - Qing-Hua Zheng
- Department of Pediatrics, Dongying People's Hospital (Dongying Hospital of Shandong Provincial Hospital Group), Dongying City, Shandong Province, China
| | - Min Wang
- Department of Pediatrics, Dongying People's Hospital (Dongying Hospital of Shandong Provincial Hospital Group), Dongying City, Shandong Province, China
| |
Collapse
|
3
|
Rajizadeh MA, Najafipour H, Bejeshk MA. An Updated Comprehensive Review of Plants and Herbal Compounds with Antiasthmatic Effect. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2024; 2024:5373117. [PMID: 39263346 PMCID: PMC11390241 DOI: 10.1155/2024/5373117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 12/11/2023] [Accepted: 01/27/2024] [Indexed: 09/13/2024]
Abstract
Background Asthma is a common disease with rising prevalence worldwide, especially in industrialized countries. Current asthma therapy with traditional medicines lacks satisfactory success, hence the patients' search for alternative and complementary treatments for their diseases. Researchers have conducted many studies on plants with antiallergic and antiasthmatic effects in recent decades. Many of these plants are now used in clinics, and searching for their mechanism of action may result in creating new ideas for producing more effective drugs. Purpose The goal of this review was to provide a compilation of the findings on plants and their active agents with experimentally confirmed antiasthmatic effects. Study Design and Method. A literature search was conducted from 1986 to November 2023 in Scopus, Springer Link, EMBASE, Science Direct, PubMed, Google Scholar, and Web of Science to identify and report the accumulated knowledge on herbs and their compounds that may be effective in asthma treatment. Results The results revealed that 58 plants and 32 herbal extracted compounds had antiasthmatic activity. Also, 32 plants were shown to have anti-inflammatory and antioxidative effects or may act as bronchodilators and potentially have antiasthmatic effects, which must be investigated in future studies. Conclusion The ability of herbal medicine to improve asthma symptoms has been confirmed by clinical and preclinical studies, and such compounds may be used as a source for developing new antiasthmatic drugs. Moreover, this review suggests that many bioactive compounds have therapeutic potential against asthma.
Collapse
Affiliation(s)
- Mohammad Amin Rajizadeh
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Hamid Najafipour
- Cardiovascular Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Science, Kerman, Iran
| | - Mohammad Abbas Bejeshk
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
4
|
Wang BH, Tang LL, Sun XH, Zhang Q, Liu CY, Zhang XN, Yu KY, Yang Y, Hu J, Shi XL, Wang Y, Liu L. Qufeng Xuanbi Formula inhibited benzo[a]pyrene-induced aggravated asthma airway mucus secretion by AhR/ROS/ERK pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117203. [PMID: 37734473 DOI: 10.1016/j.jep.2023.117203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/12/2023] [Accepted: 09/17/2023] [Indexed: 09/23/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Excessive secretion of airway mucus may be an important pathological factor of air pollution-induced acute asthma attacks. Treatment of airway mucus hypersecretion improves asthma aggravated by air pollutants. Qufeng Xuanbi Formula (QFXBF) has been used to treat asthma for more than 30 years. However, whether QFXBF inhibits asthmatic mucus secretion exacerbated by air pollutants has not yet been established. AIM OF THE STUDY This study aimed to evaluate the effect of QFXBF on airway mucus secretion and the mechanism of action in an air pollutant benzo[a]pyrene (BaP)-induced mouse model of aggravated asthma. MATERIALS AND METHODS Ovalbumin (OVA) and BaP co-exposure were used to establish the aggravated asthma model. The average enhanced pause (Penh), serum OVA-specific IgE, and changes in lung histopathology were determined. 16HBE cells exposed to BaP, treatment with QFXBF, arylhydrocarbon receptor (AhR) signal antagonist SR1, reactive oxygen species (ROS) antagonist NAC, or extracellular signal-regulated kinase (ERK1/2) signal antagonist U0126 were established to investigate the effect of QFXBF on BaP-induced mucus secretion and its target. The mRNA and protein expression levels of MUC5AC in the lung tissue and 16HBE cells were examined. We also studied the effect of QFXBF on ROS production. Finally, the protein expression of AhR, phospho-extracellular signal-regulated kinases (p-ERK1/2), and ERK1/2 in 16HBE cells and lung tissues was determined by western blotting. RESULTS Administration of QFXBF significantly alleviated the pathological symptoms, including Penh, serum OVA-specific IgE, and changes in lung histopathology in a BaP-induced mouse model of aggravated asthma. QFXBF inhibited MUC5AC expression in asthmatic mice and 16HBE cells exposed to BaP. ROS production, AhR expression, and ERK1/2 phosphorylation were significantly increased in BaP-induced asthmatic mice and 16HBE cells. Signaling pathway inhibitors StemRegenin 1 (SR1), NAC, and U0126 significantly inhibitedBaP-induced MUC5AC expression in 16HBE cells. SR1 reversed Bap-induced ROS production and ERK activation, and NAC inhibited Bap-induced ERK activation. In addition, QFXBF regulated AhR signaling, inhibited ROS production, reversed ERK activation, and downregulated mucus secretion to improve asthma aggravated by air pollutant BaP. CONCLUSIONS QFXBF can ameliorate mucus secretion in BaP-induced aggravated asthmatic mice and 16HBE cells, and the specific mechanism may be related to the inhibition of the AhR/ROS/ERK signaling pathway.
Collapse
Affiliation(s)
- Bo-Han Wang
- Affiliated Hospital of Nanjing University of Chinese Medicine/ Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, Jiangsu Province, China
| | - Ling-Ling Tang
- School of Chinese Medicine & School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu Province, China
| | - Xian-Hong Sun
- Affiliated Hospital of Nanjing University of Chinese Medicine/ Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, Jiangsu Province, China
| | - Qian Zhang
- Department of Pharmacy, Affiliated Hospital of Nanjing University of Chinese Medicine/Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, Jiangsu Province, China
| | - Chun-Yang Liu
- Department of Pathology, Affiliated Hospital of Nanjing University of Chinese Medicine/Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, Jiangsu Province, China
| | - Xiao-Na Zhang
- Affiliated Hospital of Nanjing University of Chinese Medicine/ Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, Jiangsu Province, China
| | - Ke-Yao Yu
- Affiliated Hospital of Nanjing University of Chinese Medicine/ Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, Jiangsu Province, China
| | - Ying Yang
- Affiliated Hospital of Nanjing University of Chinese Medicine/ Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, Jiangsu Province, China
| | - Jun Hu
- College of Acupuncture-Moxibustion and Tuina & College of Health Preservation and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu Province, China
| | - Xiao-Lu Shi
- Affiliated Hospital of Nanjing University of Chinese Medicine/ Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, Jiangsu Province, China.
| | - Yue Wang
- Affiliated Hospital of Nanjing University of Chinese Medicine/ Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, Jiangsu Province, China.
| | - Li Liu
- Central Laboratory, Affiliated Hospital of Nanjing University of Chinese Medicine/Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, Jiangsu Province, China.
| |
Collapse
|
5
|
Baicalin Inhibits Airway Smooth Muscle Cells Proliferation through the RAS Signaling Pathway in Murine Asthmatic Airway Remodeling Model. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:4144138. [PMID: 36814956 PMCID: PMC9940961 DOI: 10.1155/2023/4144138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/31/2022] [Accepted: 01/12/2023] [Indexed: 02/17/2023]
Abstract
Background Studies that looked at asthma airway remodeling pathogenesis and prevention have led to the discovery of the rat sarcoma viral oncogene (RAS) signaling pathway as a key mechanism that controls airway smooth muscle cell (ASMC) proliferation. Baicalin has great anti-inflammatory, proliferation-inhibited, and respiratory disease-relieving properties. However, the inhibitory effects and mechanisms of baicalin on ASMC-mediated airway remodeling in mice are still poorly understood. Methods After establishing the asthmatic mice model by ovalbumin (OVA) and interfering with baicalin, airway remodeling characteristics such as airway resistance, mRNA, and protein expression levels of remodeling-related cytokines were measured by histopathological assessment, quantitative real-time polymerase chain reaction (qPCR), enzyme-linked immunosorbent assay (ELISA), and western blot. Further efforts on detailed mechanisms were used antibody arrays to compare the expression and activation of proteins involved in the RAS signaling pathway. In addition, validation experiments were performed in ASMC proliferation model and low-expression cells of the target gene by using shRNA. Results In OVA-induced asthmatic mice model, baicalin significantly reduced the infiltration of inflammatory cells in lung tissue, attenuated airway resistance, and decreased mRNA and protein expression levels of remodeling-related cytokines such as interleukin-13 (IL-13), vascular endothelial growth factor (VEGF), transforming growth factor-beta 1 (TGF-β1), matrix metallopeptidase 9 (MMP9), and tissue inhibitor of metalloproteinase 1 (TIMP1). The results of antibody arrays involved in RAS signaling pathway revealed that OVA and baicalin administration altered the activation of protein kinase C alpha type (PKC-α), A-rapidly accelerated fibrosarcoma (A-RAF), mitogen-activated protein kinase 2 (MEK2), extracellular regulated MAP kinase (ERK), MAPK interacting serine/threonine kinase 1 (MNK1), and ETS transcription factor 1 (ELK1). The above results were further verified in the ASMC proliferation model. A-RAF silencing (shA-RAF) could promote ASMC proliferation and downregulate p-MEK2, p-ERK, p-MNK1, and p-ELK1 expression. Conclusion The effects of baicalin against airway remodeling and ASMC proliferation might partially be achieved by suppressing the RAS signaling pathway. Baicalin may be a new therapeutic option for managing airway remodeling in asthma patients.
Collapse
|
6
|
Wang D, Li Y. Pharmacological effects of baicalin in lung diseases. Front Pharmacol 2023; 14:1188202. [PMID: 37168996 PMCID: PMC10164968 DOI: 10.3389/fphar.2023.1188202] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 04/10/2023] [Indexed: 05/13/2023] Open
Abstract
The flavonoids baicalin and baicalein were discovered in the root of Scutellaria baicalensis Georgi and are primarily used in traditional Chinese medicine, herbal supplements and healthcare. Recently, accumulated investigations have demonstrated the therapeutic benefits of baicalin in treating various lung diseases due to its antioxidant, anti-inflammatory, immunomodulatory, antiapoptotic, anticancer, and antiviral effects. In this review, the PubMed database and ClinicalTrials website were searched with the search string "baicalin" and "lung" for articles published between September 1970 and March 2023. We summarized the therapeutic role that baicalin plays in a variety of lung diseases, such as chronic obstructive pulmonary disease, asthma, pulmonary fibrosis, pulmonary hypertension, pulmonary infections, acute lung injury/acute respiratory distress syndrome, and lung cancer. We also discussed the underlying mechanisms of baicalin targeting in these lung diseases.
Collapse
Affiliation(s)
- Duoning Wang
- Chengdu Hi-tech Nanxili Jiuzheng Clinic, Chengdu, Sichuan, China
| | - Yi Li
- Chengdu Hi-tech Nanxili Jiuzheng Clinic, Chengdu, Sichuan, China
- *Correspondence: Yi Li, /
| |
Collapse
|
7
|
Massara L, Gosset P. MicroRNA Control Lipid-laden Alveolar Macrophages in Smokers: A Potential Therapeutic Target for Chronic Obstructive Pulmonary Disease? Am J Respir Cell Mol Biol 2022; 67:619-620. [PMID: 36084079 PMCID: PMC9743187 DOI: 10.1165/rcmb.2022-0338ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Layal Massara
- Center for Infection and Immunity of LilleUniversity LilleLille, France,Center for Infection and Immunity of LilleINSERM U1019Lille, France,Center for Infection and Immunity of LilleCNRS UMR9017Lille, France,Center for Infection and Immunity of LilleInstitut Pasteur LilleLille, France,Center for Infection and Immunity of LilleCHRU LilleLille, France
| | - Philippe Gosset
- Center for Infection and Immunity of LilleUniversity LilleLille, France,Center for Infection and Immunity of LilleINSERM U1019Lille, France,Center for Infection and Immunity of LilleCNRS UMR9017Lille, France,Center for Infection and Immunity of LilleInstitut Pasteur LilleLille, France,Center for Infection and Immunity of LilleCHRU LilleLille, France
| |
Collapse
|
8
|
Abstract
PURPOSE OF REVIEW The study of microRNA in asthma has revealed a vibrant new level of gene regulation underlying asthma pathology. Several miRNAs have been shown to be important in asthma, influencing various biological mechanisms which lead to asthma pathology and symptoms. In addition, miRNAs have been proposed as biomarkers of asthma affection status, asthma severity, and asthma treatment response. We review all recent asthma-miRNA work, while also presenting comprehensive tables of all miRNA results related to asthma. RECENT FINDINGS We here reviewed 63 recent studies published reporting asthma and miRNA research, and an additional 14 reviews of the same. We summarized the information for both adult and childhood asthma, as well as research on miRNAs in asthma-COPD overlap syndrome (ACOs), and virus-induced asthma exacerbations. We attempted to present a comprehensive collection of recently published asthma-associated miRNAs as well as tables of all published asthma-related miRNA results.
Collapse
Affiliation(s)
- Rinku Sharma
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Anshul Tiwari
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Michael J McGeachie
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
9
|
Farmanzadeh A, Qujeq D, Yousefi T. The Interaction Network of MicroRNAs with Cytokines and Signaling Pathways in Allergic Asthma. Microrna 2022; 11:104-117. [PMID: 35507792 DOI: 10.2174/2211536611666220428134324] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 01/15/2022] [Accepted: 03/10/2022] [Indexed: 01/01/2023]
Abstract
Allergic asthma is a complicated disease that is affected by many factors. Numerous cytokines and signaling pathways are attributed to the cause of asthma symptoms. MicroRNAs (miRNAs) are a group of small non-coding single-stranded RNA molecules that are involved in gene silencing and posttranscriptional regulation of gene expression by targeting mRNAs. In pathological conditions, altered expression of microRNAs differentially regulates cytokines and signaling pathways and therefore, can be the underlying reason for the pathogenesis of allergic asthma. Indeed, microRNAs participate in airway inflammation via inducing airway structural cells and activating immune responses by targeting cytokines and signaling pathways. Thus, to make a complete understanding of allergic asthma, it is necessary to investigate the communication network of microRNAs with cytokines and signaling pathways which is contributed to the pathogenesis of allergic asthma. Here, we shed light on this aspect of asthma pathology by Summarizing our current knowledge of this topic.
Collapse
Affiliation(s)
- Ali Farmanzadeh
- Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Durdi Qujeq
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.,Department of Clinical Biochemistry, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Tooba Yousefi
- Department of Clinical Biochemistry, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
10
|
Li D, Huang LT, Zhang CP, Li Q, Wang JH. Insights Into the Role of Platelet-Derived Growth Factors: Implications for Parkinson’s Disease Pathogenesis and Treatment. Front Aging Neurosci 2022; 14:890509. [PMID: 35847662 PMCID: PMC9283766 DOI: 10.3389/fnagi.2022.890509] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
Parkinson’s disease (PD), the second most common neurodegenerative disease after Alzheimer’s disease, commonly occurs in the elderly population, causing a significant medical and economic burden to the aging society worldwide. At present, there are few effective methods that achieve satisfactory clinical results in the treatment of PD. Platelet-derived growth factors (PDGFs) and platelet-derived growth factor receptors (PDGFRs) are important neurotrophic factors that are expressed in various cell types. Their unique structures allow for specific binding that can effectively regulate vital functions in the nervous system. In this review, we summarized the possible mechanisms by which PDGFs/PDGFRs regulate the occurrence and development of PD by affecting oxidative stress, mitochondrial function, protein folding and aggregation, Ca2+ homeostasis, and cell neuroinflammation. These modes of action mainly depend on the type and distribution of PDGFs in different nerve cells. We also summarized the possible clinical applications and prospects for PDGF in the treatment of PD, especially in genetic treatment. Recent advances have shown that PDGFs have contradictory roles within the central nervous system (CNS). Although they exert neuroprotective effects through multiple pathways, they are also associated with the disruption of the blood–brain barrier (BBB). Our recommendations based on our findings include further investigation of the contradictory neurotrophic and neurotoxic effects of the PDGFs acting on the CNS.
Collapse
Affiliation(s)
- Dan Li
- Department of Family Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Le-Tian Huang
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Cheng-pu Zhang
- Department of Family Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qiang Li
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, China
- *Correspondence: Qiang Li,
| | - Jia-He Wang
- Department of Family Medicine, Shengjing Hospital of China Medical University, Shenyang, China
- Jia-He Wang,
| |
Collapse
|
11
|
Zhang C, Gao J, Zhu S. Hypoxia-inducible factor-1α promotes proliferation of airway smooth muscle cells through miRNA-103-mediated signaling pathway under hypoxia. In Vitro Cell Dev Biol Anim 2021; 57:944-952. [PMID: 34888746 DOI: 10.1007/s11626-021-00607-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 07/06/2021] [Indexed: 10/19/2022]
Abstract
The hypoxia-inducible factor-1α (HIF-1α) activated during asthma development plays a causative role in the abnormal proliferation of airway smooth muscle (ASM) cells and consequential airway remodeling. Although the underlying mechanisms of HIF-1α activity have not been fully revealed, HIF-1α-regulated miRNA signaling is considered important for disrupted differentiation and proliferation of local cells in various tissues under inflammation. We aimed to identify the key miRNA signaling involved in HIF-1α regulation of the proliferation of ASM cells. This study was based on primary ASM cells isolated from adult male rats. Three percent O2 and 21% O2 were set as hypoxic and normoxic condition for ASM cell treatment, respectively. Knockdown of HIF-1α was performed through transfection of pSUPER-shHIF-1α plasmid. Overexpression and knockdown of miRNA-103 were performed through transfection of miRNA-103 mimic or inhibitor, respectively. Levels of HIF-1α, PTEN, and PCNA were determined with Western blot and RT-qPCR. Hypoxia increased HIF-1α and miRNA-103 expression and proliferation in ASM cells. Knockdown of HIF-1α suppressed hypoxia-induced upregulation of proliferation and miRNA-103 expression in ASM cells. Knockdown of miRNA-103 displayed similar effects as knockdown of HIF-1α in ASM cells under hypoxia, while overexpression of miRNA-103 played the opposite role. Additionally, increased or decreased expression of PTEN was also detected when HIF-1α/miRNA-103 was knocked down under hypoxia or miRNA-103 was overexpressed under normoxia, respectively. Our results suggest that HIF-1α promotes the proliferation of ASM cells via upregulating miRNA-103 expression under hypoxia, and PTEN is involved in the miRNA-103-mediated signaling pathway.
Collapse
Affiliation(s)
- Cantang Zhang
- Department of Respiration, The Affiliated Hospital of Xuzhou Medical University, 89 Huaihai West Road, Xuzhou, 221000, Jiangsu, China
| | - Jin Gao
- Department of Cell Biology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Shuyang Zhu
- Department of Respiration, The Affiliated Hospital of Xuzhou Medical University, 89 Huaihai West Road, Xuzhou, 221000, Jiangsu, China.
| |
Collapse
|