1
|
Garg H, Singhal N, Singh A, Khan MD, Sheikh J. Laccase-assisted colouration of wool fabric using green tea extract for imparting antioxidant, antibacterial, and UV protection activities. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:84386-84396. [PMID: 37365356 DOI: 10.1007/s11356-023-28287-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 06/12/2023] [Indexed: 06/28/2023]
Abstract
The demand for natural dyes for imparting sustainable dyeing effects to textiles is increasing. Metal mordants generate an unstainable impact in the natural dyeing of textiles. In order to avoid the toxic effect due to the use of metal mordants, the present work uses enzyme for sustainable natural dyeing of wool. The current study is aimed at preparing multifunctional wool fabric using natural dye green tea (Camellia sinensis). Laccase (an enzyme) was used to polymerise the phenolic compounds of Camellia sinensis in situ on wool. The in situ colouration of wool fabric was performed at various varying dyeing conditions (temperature, time, and concentrations) using laccase. Colouration properties (colour values and strength) were examined to estimate the appearance of dyed fabrics. The evaluation of dyed fabrics for functional properties such as antibacterial, antioxidant, and UV protection was done. The efficient functional properties viz, antibacterial activity (> 75%), antioxidant property (> 90%), and excellent UV protection, were obtained. FTIR analysis of separately prepared polymeric dye and the dyed fabric was also done to confirm the laccase-assisted polymerisation. Thus, a novel approach of enzymatic functional natural dyeing of wool was explored.
Collapse
Affiliation(s)
- Harsh Garg
- Department of Textile and Fibre Engineering, Indian Institute of Technology, Delhi, India
| | - Neharika Singhal
- Department of Textile and Fibre Engineering, Indian Institute of Technology, Delhi, India
| | - Ankit Singh
- Department of Textile and Fibre Engineering, Indian Institute of Technology, Delhi, India
| | - Mohammad Danish Khan
- Department of Textile and Fibre Engineering, Indian Institute of Technology, Delhi, India
| | - Javed Sheikh
- Department of Textile and Fibre Engineering, Indian Institute of Technology, Delhi, India.
| |
Collapse
|
2
|
Morozova OV, Vasil'eva IS, Shumakovich GP, Zaitseva EA, Yaropolov AI. Deep Eutectic Solvents for Biotechnology Applications. BIOCHEMISTRY (MOSCOW) 2023; 88:S150-S175. [PMID: 37069119 DOI: 10.1134/s0006297923140092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Deep eutectic solvents (DESs) are an alternative to traditional organic solvents and ionic liquids and meet the requirements of "green" chemistry. They are easy to prepare using low-cost constituents, are non-toxic and biodegradable. The review analyzes literature on the use of DES in various fields of biotechnology, provides data on the types of DESs, methods for their preparation, and properties. The main areas of using DESs in biotechnology include extraction of physiologically active substances from natural resources, pretreatment of lignocellulosic biomass to improve enzymatic hydrolysis of cellulose, production of bioplastics, as well as a reaction medium for biocatalytic reactions. The aim of this review is to summarize available information on the use of new solvents for biotechnological purposes.
Collapse
Affiliation(s)
- Olga V Morozova
- Bach Institute of Biochemistry, Federal Research Center "Fundamental Bases of Biotechnology" of the Russian Academy of Sciences, Moscow, 119071, Russia
| | - Irina S Vasil'eva
- Bach Institute of Biochemistry, Federal Research Center "Fundamental Bases of Biotechnology" of the Russian Academy of Sciences, Moscow, 119071, Russia
| | - Galina P Shumakovich
- Bach Institute of Biochemistry, Federal Research Center "Fundamental Bases of Biotechnology" of the Russian Academy of Sciences, Moscow, 119071, Russia
| | - Elena A Zaitseva
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Alexander I Yaropolov
- Bach Institute of Biochemistry, Federal Research Center "Fundamental Bases of Biotechnology" of the Russian Academy of Sciences, Moscow, 119071, Russia.
| |
Collapse
|
3
|
Ünlü AE, Prasad B, Anavekar K, Bubenheim P, Liese A. The effect of natural deep eutectic solvents on laccase activity and oligomerization of rutin. BIOCATAL BIOTRANSFOR 2022. [DOI: 10.1080/10242422.2022.2120391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Ayşe Ezgi Ünlü
- Institute of Technical Biocatalysis, Ankara University, Hamburg, Germany
- Department of Chemical Engineering, Faculty of Engineering, TUHH, Ankara, Turkey
| | - Brinda Prasad
- Institute of Technical Biocatalysis, Ankara University, Hamburg, Germany
| | - Kishan Anavekar
- Institute of Technical Biocatalysis, Ankara University, Hamburg, Germany
| | - Paul Bubenheim
- Institute of Technical Biocatalysis, Ankara University, Hamburg, Germany
| | - Andreas Liese
- Institute of Technical Biocatalysis, Ankara University, Hamburg, Germany
| |
Collapse
|
4
|
Saini R, Kumar S, Sharma A, Kumar V, Sharma R, Janghu S, Suthar P. Deep eutectic solvents: The new generation sustainable and safe extraction systems for bioactive compounds in agri food sector: An update. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.16250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Rajni Saini
- Department of Food Science & Technology Punjab Agricultural University Ludhiana India
| | - Satish Kumar
- Department of Food Science & Technology Dr. Y. S. Parmar University of Horticulture and Forestry Solan India
| | - Ajay Sharma
- Department of Chemistry Career Point University Hamirpur India
| | - Vikas Kumar
- Department of Food Science & Technology Punjab Agricultural University Ludhiana India
| | - Rakesh Sharma
- Department of Food Science & Technology Dr. Y. S. Parmar University of Horticulture and Forestry Solan India
| | - Sandeep Janghu
- Department of Food Product Development Indian Institute of Food Processing Technology Thanjavur India
| | - Priyanka Suthar
- Food Technology and Nutrition School of Agriculture Lovely Professional University Phagwara India
| |
Collapse
|
5
|
Khlupova ME, Morozova OV, Vasil’eva IS, Shumakovich GP, Zaitseva EA, Chertkov VA, Shestakova AK, Yaropolov AI. Polymerization of (+)-Catechin in a Deep Eutectic Solvent Using a Fungal Laccase: Physicochemical Properties of the Products and Inhibition of α-Glucosidase. APPL BIOCHEM MICRO+ 2021. [DOI: 10.1134/s0003683821060065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
6
|
Mikolasch A, Hahn V. Laccase-Catalyzed Derivatization of Antibiotics with Sulfonamide or Sulfone Structures. Microorganisms 2021; 9:microorganisms9112199. [PMID: 34835324 PMCID: PMC8620746 DOI: 10.3390/microorganisms9112199] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/15/2021] [Accepted: 10/18/2021] [Indexed: 11/16/2022] Open
Abstract
Trametes spec. laccase (EC 1.10.3.2.) mediates the oxidative coupling of antibiotics with sulfonamide or sulfone structures with 2,5-dihydroxybenzene derivatives to form new heterodimers and heterotrimers. These heteromolecular hybrid products are formed by nuclear amination of the p-hydroquinones with the primary amino group of the sulfonamide or sulfone antibiotics, and they inhibited in vitro the growth of Staphylococcus species, including multidrug-resistant strains.
Collapse
Affiliation(s)
- Annett Mikolasch
- Institute for Microbiology, University of Greifswald, Felix-Hausdorff-Str. 8, 17489 Greifswald, Germany;
- Interfaculty Institute for Genetics and Functional Genomics, University of Greifswald, Felix-Hausdorff-Str. 8, 17489 Greifswald, Germany
| | - Veronika Hahn
- Institute for Microbiology, University of Greifswald, Felix-Hausdorff-Str. 8, 17489 Greifswald, Germany;
- Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
- Correspondence: ; Tel.: +49-3834-5543872
| |
Collapse
|
7
|
Enzymatic Polymerization of Dihydroquercetin (Taxifolin) in Betaine-Based Deep Eutectic Solvent and Product Characterization. Catalysts 2021. [DOI: 10.3390/catal11050639] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Deep eutectic solvents (DESs) are an alternative to conventional organic solvents in various biocatalytic reactions. Meanwhile, there have been few studies reporting on synthetic reactions in DESs or DES-containing mixtures involving oxidoreductases. In this work, we have studied the effects of several DESs based on betaine as the acceptor of hydrogen bonds on the catalytic activity and stability of laccase from the basidial fungus Trametes hirsuta and performed enzymatic polymerization of the flavonoid dihydroquercetin (DHQ, taxifolin) in a DES–buffer mixture containing 60 vol.% of betaine-glycerol DES (molar ratio 1:2). The use of the laccase redox mediator TEMPO enabled an increased yield of DHQ oligomers (oligoDHQ), with a number average molecular weight of 1800 g mol−1 and a polydispersity index of 1.09. The structure of the synthesized product was studied using different physicochemical methods. NMR spectroscopy showed that oligoDHQ had a linear structure with an average chain length of 6 monomers. A scheme for enzymatic polymerization of DHQ in a DES–buffer mixture was also proposed.
Collapse
|
8
|
Abstract
Laccases are multicopper oxidases, which have been widely investigated in recent decades thanks to their ability to oxidize organic substrates to the corresponding radicals while producing water at the expense of molecular oxygen. Besides their successful (bio)technological applications, for example, in textile, petrochemical, and detoxifications/bioremediations industrial processes, their synthetic potentialities for the mild and green preparation or selective modification of fine chemicals are of outstanding value in biocatalyzed organic synthesis. Accordingly, this review is focused on reporting and rationalizing some of the most recent and interesting synthetic exploitations of laccases. Applications of the so-called laccase-mediator system (LMS) for alcohol oxidation are discussed with a focus on carbohydrate chemistry and natural products modification as well as on bio- and chemo-integrated processes. The laccase-catalyzed Csp2-H bonds activation via monoelectronic oxidation is also discussed by reporting examples of enzymatic C-C and C-O radical homo- and hetero-couplings, as well as of aromatic nucleophilic substitutions of hydroquinones or quinoids. Finally, the laccase-initiated domino/cascade synthesis of valuable aromatic (hetero)cycles, elegant strategies widely documented in the literature across more than three decades, is also presented.
Collapse
|
9
|
Ünlü AE, Arikaya A, Altundağ A, Takaç S. Remarkable effects of deep eutectic solvents on the esterification of lactic acid with ethanol over Amberlyst-15. KOREAN J CHEM ENG 2020. [DOI: 10.1007/s11814-019-0385-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
10
|
Microbiological Advances in Bioactives from High Altitude. MICROBIOLOGICAL ADVANCEMENTS FOR HIGHER ALTITUDE AGRO-ECOSYSTEMS & SUSTAINABILITY 2020. [DOI: 10.1007/978-981-15-1902-4_17] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
11
|
Jablonský M, Škulcová A, Šima J. Use of Deep Eutectic Solvents in Polymer Chemistry-A Review. Molecules 2019; 24:E3978. [PMID: 31684174 PMCID: PMC6864848 DOI: 10.3390/molecules24213978] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 10/30/2019] [Accepted: 11/01/2019] [Indexed: 12/18/2022] Open
Abstract
This review deals with two overlapping issues, namely polymer chemistry and deep eutectic solvents (DESs). With regard to polymers, specific aspects of synthetic polymers, polymerization processes producing such polymers, and natural cellulose-based nanopolymers are evaluated. As for DESs, their compliance with green chemistry requirements, their basic properties and involvement in polymer chemistry are discussed. In addition to reviewing the state-of-the-art for selected kinds of polymers, the paper reveals further possibilities in the employment of DESs in polymer chemistry. As an example, the significance of DES polarity and polymer polarity to control polymerization processes, modify polymer properties, and synthesize polymers with a specific structure and behavior, is emphasized.
Collapse
Affiliation(s)
- Michal Jablonský
- Institute of Natural and Synthetic Polymers, Department of Wood, Pulp and Paper, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinskeho 9, Bratislava SK-812 37, Slovakia.
| | - Andrea Škulcová
- Department of Zoology and Fisheries, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Science, Kamýcka 129, 165 00 Prague 6-Suchdol, Czech Republic.
- Institute of Chemical and Environmental Engineering, Department of Environmental Engineering, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinskeho 9, Bratislava SK-812 37, Slovakia.
| | - Jozef Šima
- Department of Inorganic Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinskeho 9, Bratislava SK-812 37, Slovakia.
| |
Collapse
|
12
|
Deep Eutectic Solvents as Extraction Media for Valuable Flavonoids from Natural Sources. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9194169] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The present review article attempts to summarize the use of deep eutectic solvents in the extraction of flavonoids, one of the most important classes of plant secondary metabolites. All of the applications reviewed have reported success in isolation and extraction of the target compounds; competitive, if not superior, extraction rates compared with conventional solvents; and satisfactory behavior of the extract in the latter applications (such as direct analysis, synthesis, or catalysis), wherever attempted.
Collapse
|
13
|
Arıkaya A, Ünlü AE, Takaç S. Use of deep eutectic solvents in the enzyme catalysed production of ethyl lactate. Process Biochem 2019. [DOI: 10.1016/j.procbio.2019.06.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
14
|
Pätzold M, Siebenhaller S, Kara S, Liese A, Syldatk C, Holtmann D. Deep Eutectic Solvents as Efficient Solvents in Biocatalysis. Trends Biotechnol 2019; 37:943-959. [PMID: 31000203 DOI: 10.1016/j.tibtech.2019.03.007] [Citation(s) in RCA: 179] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 02/21/2019] [Accepted: 03/05/2019] [Indexed: 11/26/2022]
Abstract
'Ideal' solvents in biocatalysis have to fulfill a large number of requirements, such as high substrate solubility, high enzyme activity and stability, and positive effects on reaction equilibrium. In the past decades, many enzymatic synthesis routes in water-based and nonaqueous (organic solvents, ionic or supercritical fluids) reaction media have been developed. However, no solvent meets every demand for different reaction types at the same time, and there is still a need for novel solvents suited for different reaction types and applications. Deep eutectic solvents (DESs) have recently been evaluated as solvents in different biocatalytic reactions. They can improve substrate supply, conversion, and stability. The best results were obtained when the DES is formed by the substrates of an enzymatic reaction.
Collapse
Affiliation(s)
- Magdalena Pätzold
- DECHEMA Research Institute, Industrial Biotechnology, Theodor-Heuss-Allee 25, 60486 Frankfurt am Main, Germany; Hamburg University of Technology, Institute of Technical Biocatalysis, Denickestr. 15, 21073 Hamburg, Germany
| | - Sascha Siebenhaller
- Karlsruhe Institute of Technology, Institute of Process Engineering in Life Sciences 2 - Technical Biology, Fritz-Haber-Weg 4, 76131 Karlsruhe, Germany
| | - Selin Kara
- Hamburg University of Technology, Institute of Technical Biocatalysis, Denickestr. 15, 21073 Hamburg, Germany; Aarhus University, Department of Engineering, Biocatalysis and Bioprocessing Group, Gustav Wieds Vej 10, 8000 Aarhus, Denmark
| | - Andreas Liese
- Hamburg University of Technology, Institute of Technical Biocatalysis, Denickestr. 15, 21073 Hamburg, Germany
| | - Christoph Syldatk
- Karlsruhe Institute of Technology, Institute of Process Engineering in Life Sciences 2 - Technical Biology, Fritz-Haber-Weg 4, 76131 Karlsruhe, Germany
| | - Dirk Holtmann
- DECHEMA Research Institute, Industrial Biotechnology, Theodor-Heuss-Allee 25, 60486 Frankfurt am Main, Germany.
| |
Collapse
|
15
|
Rizo J, Guillén D, Farrés A, Díaz-Ruiz G, Sánchez S, Wacher C, Rodríguez-Sanoja R. Omics in traditional vegetable fermented foods and beverages. Crit Rev Food Sci Nutr 2018; 60:791-809. [PMID: 30582346 DOI: 10.1080/10408398.2018.1551189] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
For a long time, food microbiota has been studied using traditional microbiological techniques. With the arrival of molecular or culture-independent techniques, a strong understanding of microbiota dynamics has been achieved. However, analyzing the functional role of microbial communities is not an easy task. The application of omics sciences to the study of fermented foods would provide the metabolic and functional understanding of the microbial communities and their impact on the fermented product, including the molecules that define its aroma and flavor, as well as its nutritional properties. Until now, most omics studies have focused on commercial fermented products, such as cheese, wine, bread and beer, but traditional fermented foods have been neglected. Therefore, the information that allows to relate the present microbiota in the food and its properties remains limited. In this review, reports on the applications of omics in the study of traditional fermented foods and beverages are reviewed to propose new ways to analyze the fermentation phenomena.
Collapse
Affiliation(s)
- Jocelin Rizo
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, México
| | - Daniel Guillén
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, México
| | - Amelia Farrés
- Departamento de Alimentos y Biotecnología, Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, México
| | - Gloria Díaz-Ruiz
- Departamento de Alimentos y Biotecnología, Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, México
| | - Sergio Sánchez
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, México
| | - Carmen Wacher
- Departamento de Alimentos y Biotecnología, Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, México
| | - Romina Rodríguez-Sanoja
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, México
| |
Collapse
|
16
|
|