1
|
Ni W, Wang Z, Zheng A, Zhao Y. Preparation and self-cleavage of fusion soluble farnesyl diphosphate synthase in E. coli. Prep Biochem Biotechnol 2023; 53:988-994. [PMID: 36639146 DOI: 10.1080/10826068.2022.2164591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Farnesyl diphosphate synthase (FPPS) is a crucial protein in terpenoid production. However, its industrial application is limited owing to its low solubility in Escherichia coli. In this study, we focused on ispA encoding FPPS and designed a fusion expression system to reduce inclusion body (IB) formation. Among the chosen fusion tags, the GB1-domain (GB1) exhibited the highest ability to solubilize the recombinant protein. Increased rare tRNA abundance not only improved the GB1-FPPS yield but also increased its soluble level. A "one-step" method for the acquisition of soluble FPPS was also considered. By combining GB1-FPPS expression and Tobacco Etch Virus protease (TEVp) cleavage in vivo, a controllable GB1-FPPS "self-cleavage" system was constructed. Overall, this study provides an efficient approach for obtaining soluble forms of FPPS, which show great potential for use in the soluble expression of other homologous diphosphate synthase.
Collapse
Affiliation(s)
- Wenfeng Ni
- The Province Key Laboratory of the Biodiversity Study and Ecology Conservation in Southwest Anhui Province, Research Center of Aquatic Organism Conservation and Water Ecosystem Restoration in Anhui Province, College of Life Sciences, Anqing Normal University, Anqing, Anhui, China
| | - Zixuan Wang
- The Province Key Laboratory of the Biodiversity Study and Ecology Conservation in Southwest Anhui Province, Research Center of Aquatic Organism Conservation and Water Ecosystem Restoration in Anhui Province, College of Life Sciences, Anqing Normal University, Anqing, Anhui, China
| | - Aifang Zheng
- The Province Key Laboratory of the Biodiversity Study and Ecology Conservation in Southwest Anhui Province, Research Center of Aquatic Organism Conservation and Water Ecosystem Restoration in Anhui Province, College of Life Sciences, Anqing Normal University, Anqing, Anhui, China
| | - Ying Zhao
- The Province Key Laboratory of the Biodiversity Study and Ecology Conservation in Southwest Anhui Province, Research Center of Aquatic Organism Conservation and Water Ecosystem Restoration in Anhui Province, College of Life Sciences, Anqing Normal University, Anqing, Anhui, China
| |
Collapse
|
2
|
Ravitchandirane G, Bandhu S, Chaudhuri TK. Multimodal approaches for the improvement of the cellular folding of a recombinant iron regulatory protein in E. coli. Microb Cell Fact 2022; 21:20. [PMID: 35123481 PMCID: PMC8818239 DOI: 10.1186/s12934-022-01749-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 01/25/2022] [Indexed: 11/12/2022] Open
Abstract
Background During the recombinant protein expression, most heterologous proteins expressed in E. coli cell factories are generated as insoluble and inactive aggregates, which prohibit E. coli from being employed as an expression host despite its numerous advantages and ease of use. The yeast mitochondrial aconitase protein, which has a tendency to aggregate when expressed in E. coli cells in the absence of heterologous chaperones GroEL/ES was utilised as a model to investigate how the modulation of physiological stimuli in the host cell can increase protein solubility. The presence of folding modulators such as exogenous molecular chaperones or osmolytes, as well as process variables such as incubation temperature, inducer concentrations, growth media are all important for cellular folding and are investigated in this study. This study also investigated how the cell's stress response system activates and protects the proteins from aggregation. Results The cells exposed to osmolytes plus a pre-induction heat shock showed a substantial increase in recombinant aconitase activity when combined with modulation of process conditions. The concomitant GroEL/ES expression further assists the folding of these soluble aggregates and increases the functional protein molecules in the cytoplasm of the recombinant E. coli cells. Conclusions The recombinant E. coli cells enduring physiological stress provide a cytosolic environment for the enhancement in the solubility and activity of the recombinant proteins. GroEL/ES-expressing cells not only aided in the folding of recombinant proteins, but also had an effect on the physiology of the expression host. The improvement in the specific growth rate and aconitase production during chaperone GroEL/ES co-expression is attributed to the reduction in overall cellular stress caused by the expression host's aggregation-prone recombinant protein expression. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12934-022-01749-w.
Collapse
|
3
|
The co-expression of denileukin diftitox immunotoxin with Artemin: soluble and aggregation analysis in presence of an efficient protein chaperone. Biologia (Bratisl) 2021. [DOI: 10.1007/s11756-021-00846-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
4
|
Hernández-Rollán C, Falkenberg KB, Rennig M, Bertelsen AB, Ipsen JØ, Brander S, Daley DO, Johansen KS, Nørholm MHH. LyGo: A Platform for Rapid Screening of Lytic Polysaccharide Monooxygenase Production. ACS Synth Biol 2021; 10:897-906. [PMID: 33797234 DOI: 10.1021/acssynbio.1c00034] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Environmentally friendly sources of energy and chemicals are essential constituents of a sustainable society. An important step toward this goal is the utilization of biomass to supply building blocks for future biorefineries. Lytic polysaccharide monooxygenases (LPMOs) are enzymes that play a critical role in breaking the chemical bonds in the most abundant polymers found in recalcitrant biomass, such as cellulose and chitin. To use them in industrial processes they need to be produced in high titers in cell factories. Predicting optimal strategies for producing LPMOs is often nontrivial, and methods allowing for screening several strategies simultaneously are therefore needed. Here, we present a standardized platform for cloning LPMOs. The platform allows users to combine gene fragments with 14 different expression vectors in a simple 15 min reaction, thus enabling rapid exploration of several gene contexts, hosts, and expression strategies in parallel. The open-source LyGo platform is accompanied by easy-to-follow online protocols for both cloning and expression. As a demonstration of its utility, we explore different strategies for expressing several different LPMOs in Escherichia coli, Bacillus subtilis, and Komagataella phaffii.
Collapse
Affiliation(s)
- Cristina Hernández-Rollán
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, 2800, Denmark
| | - Kristoffer B. Falkenberg
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, 2800, Denmark
| | - Maja Rennig
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, 2800, Denmark
- Mycropt ApS, Kongens Lyngby, 2800, Denmark
| | - Andreas B. Bertelsen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, 2800, Denmark
| | - Johan Ø. Ipsen
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, 1871, Denmark
| | - Søren Brander
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Frederiksberg, 1958, Denmark
| | - Daniel O. Daley
- Mycropt ApS, Kongens Lyngby, 2800, Denmark
- Center for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, Stockholm, 10691, Sweden
| | - Katja S. Johansen
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Frederiksberg, 1958, Denmark
| | - Morten H. H. Nørholm
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, 2800, Denmark
- Mycropt ApS, Kongens Lyngby, 2800, Denmark
| |
Collapse
|
5
|
Bhatwa A, Wang W, Hassan YI, Abraham N, Li XZ, Zhou T. Challenges Associated With the Formation of Recombinant Protein Inclusion Bodies in Escherichia coli and Strategies to Address Them for Industrial Applications. Front Bioeng Biotechnol 2021; 9:630551. [PMID: 33644021 PMCID: PMC7902521 DOI: 10.3389/fbioe.2021.630551] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 01/20/2021] [Indexed: 12/12/2022] Open
Abstract
Recombinant proteins are becoming increasingly important for industrial applications, where Escherichia coli is the most widely used bacterial host for their production. However, the formation of inclusion bodies is a frequently encountered challenge for producing soluble and functional recombinant proteins. To overcome this hurdle, different strategies have been developed through adjusting growth conditions, engineering host strains of E. coli, altering expression vectors, and modifying the proteins of interest. These approaches will be comprehensively highlighted with some of the new developments in this review. Additionally, the unique features of protein inclusion bodies, the mechanism and influencing factors of their formation, and their potential advantages will also be discussed.
Collapse
Affiliation(s)
- Arshpreet Bhatwa
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON, Canada
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | - Weijun Wang
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON, Canada
| | - Yousef I. Hassan
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON, Canada
| | - Nadine Abraham
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON, Canada
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Xiu-Zhen Li
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON, Canada
| | - Ting Zhou
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON, Canada
| |
Collapse
|
6
|
Takalloo Z, Ardakani ZA, Maroufi B, Shahangian SS, Sajedi RH. Stress-dependent conformational changes of artemin: Effects of heat and oxidant. PLoS One 2020; 15:e0242206. [PMID: 33196673 PMCID: PMC7668597 DOI: 10.1371/journal.pone.0242206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 10/28/2020] [Indexed: 11/24/2022] Open
Abstract
Artemin is an abundant thermostable protein in Artemia embryos and it is considered as a highly efficient molecular chaperone against extreme environmental stress conditions. The conformational dynamics of artemin have been suggested to play a critical role in its biological functions. In this study, we have investigated the conformational and functional changes of artemin under heat and oxidative stresses to identify the relationship between its structure and function. The tertiary and quaternary structures of artemin were evaluated by fluorescence measurements, protein cross-linking analysis, and dynamic light scattering. Based on the structural analysis, artemin showed irreversible substantial conformational lability in responses to heat and oxidant, which was mainly mediated through the hydrophobic interactions and dimerization of the chaperone. In addition, the chaperone-like activity of heated and oxidized artemin was examined using lysozyme refolding assay and the results showed that although both factors, i.e. heat and oxidant, at specific levels improved artemin potency, simultaneous incubation with both stressors significantly triggered the chaperone activation. Moreover, the heat-induced dimerization of artemin was found to be the most critical factor for its activation. It was suggested that oxidation presumably acts through stabilizing the dimer structures of artemin through formation of disulfide bridges between the subunits and strengthens its chaperoning efficacy. Accordingly, it is proposed that artemin probably exists in a monomer–oligomer equilibrium in Artemia cysts and environmental stresses and intracellular portion of protein substrates may shift the equilibrium towards the active dimer forms of the chaperone.
Collapse
Affiliation(s)
- Zeinab Takalloo
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Zahra Afshar Ardakani
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | | | | | - Reza H. Sajedi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
- * E-mail:
| |
Collapse
|
7
|
Soluble overexpression, high-level production and purification of receptor binding domain of human VEGF8-109 in E. coli. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|